1
|
Li Y, Wang Z, Tai G, Wang Q, Yang Z, Sun J. Mechanically Robust Nafion-Based Anhydrous Proton Exchange Membranes with High Proton Conductivity and Efficient In Situ Self-Healing Capacities. Macromol Rapid Commun 2025:e2500291. [PMID: 40350960 DOI: 10.1002/marc.202500291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2025] [Revised: 04/27/2025] [Indexed: 05/14/2025]
Abstract
There is increasing demand for self-healing high-temperature proton exchange membranes (HT-PEMs) with superior mechanical robustness and proton conductivity. In this study, the fabrication of mechanically robust HT-PEMs (denoted as N-IL-PW) is demonstrated by integrating high proton conductivity and the ability to in situ heal fatigue and damage during operation via the complexation of Nafion, phosphotungstic acid (PW) clusters, and ionic liquids (ILs). Originating from the synergistic effect of high-density electrostatic interactions as well as hydrogen bonds in ionic domains and stable crystalline domains, the N-IL-PW membranes are highly resilient and fatigue resistant, and display excellent creep resistance even at 170 °C. Under an anhydrous condition of ≈170 °C, the N-IL-PW membranes have a high proton conductivity of ≈18.86 mS cm-1. Meanwhile, the hydrogen-powered HT-PEM fuel cells assembled with N-IL-PW membranes exhibit good cell performance under an anhydrous condition of ≈120 °C. More importantly, the reversibility of electrostatic and hydrogen bonding interactions enables the membranes in situ to heal fatigue and mechanical damages under fuel cell operation conditions. Healed membranes can regain their pristine mechanical properties, proton conductivity, hydrogen barrier property, and cell performance. Excellent high-temperature creep resistance, fatigue resistance, and healing capability can work in concert to enhance the reliability of N-IL-PW membranes.
Collapse
Affiliation(s)
- Yixuan Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Zheyi Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Guitian Tai
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Qinghao Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Zhuo Yang
- China Energy Engineering Group Hydrogen Energy Co. Ltd., Beijing, 100000, P. R. China
| | - Junqi Sun
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| |
Collapse
|
2
|
Zheng CY, Qian HL, Yang C, Yan XP. Design of Self-Standing Chiral Covalent-Organic Framework Nanochannel Membrane for Enantioselective Sensing. SMALL METHODS 2025; 9:e2401120. [PMID: 39487650 DOI: 10.1002/smtd.202401120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/23/2024] [Indexed: 11/04/2024]
Abstract
Nanochannel membranes are promising materials for enantioselective sensing. However, it is difficult to make a compromise between the selectivity and permeability in traditional nanochannel membranes. Therefore, new types of nanochannel membranes with high enantioselectivity and excellent permeability should be explored for chiral analysis. Here, asymmetric catalysis strategy is reported for interfacial polymerization synthesis of chiral covalent-organic framework (cCOF) nanochannel membrane for enantioselective sensing. Chiral phenylethylamine (S/R-PEA) and 2,4,6-triformylphloroglucinol (TP) are used to prepare chiral TP monomer. 4,4',4″-triaminotriphenylamine (TAPA) is then condensed with chiral TP to obtain cCOF nanochannel membrane via a C═N Schiff-base reaction. The molar ratio of TP to S/R-PEA is adjusted so that S/R-PEA is bound to the aldehyde only or both the aldehyde and hydroxyl groups on TP to obtain chiral-induced COF (cCOF-1) or both chiral-induced and modified COF (cCOF-2) nanochannel membrane, respectively. The prepared cCOF-2 nanochannel membrane showed two times more selectivity for limonene enantiomers than cCOF-1 nanochannel membrane. Furthermore, cCOF-2 nanochannel platform exhibited excellent sensing performance for other chiral molecules such as limonene, propanediol, methylbutyric acid, ibuprofen, and naproxen (limits of detection of 19-42 ng L-1, enantiomer excess of 63.6-86.3%). This work provides a promising way to develop cCOF-based nanochannel enantioselective sensor.
Collapse
Affiliation(s)
- Chen-Yan Zheng
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China
- Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Hai-Long Qian
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China
- Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Cheng Yang
- Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Xiu-Ping Yan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China
- Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
3
|
Liu L, Wei D, Liang H, Zhang Y, Zhang X, Zhi Y. Emissive Hydrazone-Linked Covalent Organic Frameworks as Highly Sensitive and Selective Sensor for the Hydrazine Detection. Macromol Rapid Commun 2025; 46:e2400711. [PMID: 39470627 DOI: 10.1002/marc.202400711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 09/30/2024] [Indexed: 10/30/2024]
Abstract
Covalent Organic Frameworks (COFs) exhibit a range of exceptional attributes, including notable porosity, outstanding stability, and a precisely tuned π-conjugated network, rendering them highly promising candidates for fluorescence sensors applications. In this study, the synthesis of two emissive hydrazone-linked COFs designed for hydrazine detection is presented. The partially conjugated structure of the hydrazone linkage effectively weakens the fluorescence quenching processes induced by aggregation. Additionally, the incorporation of flexible structural components further reduces conjugation, thereby enhancing luminescent efficiency. Remarkably, these COFs possess a significant abundance of heteroatoms, enabling distinctive interactions with hydrazine molecules, which in turn results in exceptional selectivity and sensitivity for hydrazine detection. The detection limit of these COFs reaches the nanomolar range, surpassing all previously reported COFs, thereby underscoring their superior performance in chemical sensing applications.
Collapse
Affiliation(s)
- Longjin Liu
- School of Chemistry and Chemical Engineering, Hainan University, Haikou, 570228, China
| | - Dongxue Wei
- Laboratory of Preparation and Applications of Environmental Friendly Materials (Jilin Normal University), Ministry of Education, Changchun, 130103, China
| | - Hao Liang
- School of Chemistry and Chemical Engineering, Hainan University, Haikou, 570228, China
| | - Yuwei Zhang
- Laboratory of Preparation and Applications of Environmental Friendly Materials (Jilin Normal University), Ministry of Education, Changchun, 130103, China
| | - Xueyan Zhang
- School of Materials Science and Engineering, Hainan University, Haikou, 570228, China
| | - Yongfeng Zhi
- School of Chemistry and Chemical Engineering, Hainan University, Haikou, 570228, China
| |
Collapse
|
4
|
Zhang Y, Wei D, Zhang W, Zhao Y, Luo X, Li H. Emissive Covalent Organic Frameworks: Improved Fluorescence via Flexible Building Blocks and Selective Sensing of Nitroaromatic Explosives. Macromol Rapid Commun 2025; 46:e2400673. [PMID: 39340484 DOI: 10.1002/marc.202400673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/10/2024] [Indexed: 09/30/2024]
Abstract
2D covalent organic frameworks (COFs) are attractive for fluorescence sensing due to their lightweight, robust, and highly ordered porous structures. However, the highly conjugated structures between adjacent layers of covalent organic frameworks can often result in aggregation-caused quenching (ACQ) properties. Here, the study designs two flexible hydrazone-linked COFs to suppress ACQ effects, thereby enhancing their luminescent activities. Furthermore, the high density of nitrogen and oxygen atoms on these flexible walls serves as binding sites for hydrogen bonding interactions, indicating sensitivity and selectivity towards 2,4,6-trinitrophenol detection.
Collapse
Affiliation(s)
- Yuwei Zhang
- Laboratory of Preparation and Applications of Environmental Friendly Materials (Jilin Normal University), Ministry of Education, Changchun, 130103, China
| | - Dongxue Wei
- Laboratory of Preparation and Applications of Environmental Friendly Materials (Jilin Normal University), Ministry of Education, Changchun, 130103, China
| | - Wenzhuo Zhang
- Advanced Institute of Materials Science, Changchun University of Technology, Changchun, 130012, China
| | - Yanning Zhao
- Laboratory of Preparation and Applications of Environmental Friendly Materials (Jilin Normal University), Ministry of Education, Changchun, 130103, China
| | - Xiaolong Luo
- Advanced Institute of Materials Science, Changchun University of Technology, Changchun, 130012, China
| | - He Li
- Division of Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| |
Collapse
|
5
|
Lee W, Li H, Du Z, Feng D. Ion transport mechanisms in covalent organic frameworks: implications for technology. Chem Soc Rev 2024; 53:8182-8201. [PMID: 39021129 DOI: 10.1039/d4cs00409d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Covalent organic frameworks (COFs) have emerged as promising materials for ion conduction due to their highly tunable structures and excellent electrochemical stability. This review paper explores the mechanisms of ion conduction in COFs, focusing on how these materials facilitate ion transport across their ordered structures, which is crucial for applications such as solid electrolytes in batteries and fuel cells. We discuss the design strategies employed to enhance ion conductivity, including pore size optimization, functionalization with ionic groups, and the incorporation of solvent molecules and salts. Additionally, we examine the various applications of ion-conductive COFs, particularly in energy storage and conversion technologies, highlighting recent advancements and future directions in this field. This review paper aims to provide a comprehensive overview of the current state of research on ion-conductive COFs, offering insights into their potential to design highly ion-conductive COFs considering not only fundamental studies but also practical perspectives for advanced electrochemical devices.
Collapse
Affiliation(s)
- Wonmi Lee
- Department of Materials Science and Engineering, University of Wisconsin - Madison, Madison, Wisconsin 53706, USA.
| | - Haochen Li
- Department of Materials Science and Engineering, University of Wisconsin - Madison, Madison, Wisconsin 53706, USA.
| | - Zhilin Du
- Department of Chemistry, University of Wisconsin - Madison, Madison, Wisconsin 53706, USA
| | - Dawei Feng
- Department of Materials Science and Engineering, University of Wisconsin - Madison, Madison, Wisconsin 53706, USA.
- Department of Chemistry, University of Wisconsin - Madison, Madison, Wisconsin 53706, USA
| |
Collapse
|
6
|
Shu C, Yang X, Liu L, Hu X, Sun R, Yang X, Cooper AI, Tan B, Wang X. Mixed-Linker Strategy for the Construction of Sulfone-Containing D-A-A Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Peroxide Production. Angew Chem Int Ed Engl 2024; 63:e202403926. [PMID: 38414401 DOI: 10.1002/anie.202403926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 02/27/2024] [Accepted: 02/27/2024] [Indexed: 02/29/2024]
Abstract
The solar-driven photocatalytic production of hydrogen peroxide (H2O2) from water and oxygen using semiconductor catalysts offers a promising approach for converting solar energy into storable chemical energy. However, the efficiency of photocatalytic H2O2 production is often restricted by the low photo-generated charge separation, slow surface reactions and inadequate stability. Here, we developed a mixed-linker strategy to build a donor-acceptor-acceptor (D-A-A) type covalent organic framework (COF) photocatalyst, FS-OHOMe-COF. The FS-OHOMe-COF structure features extended π-π conjugation that improves charge mobility, while the introduction of sulfone units not only as active sites facilitates surface reactions with water but also bolsters stability through increased interlayer forces. The resulting FS-OHOMe-COF has a low exciton binding energy, long excited-state lifetime and high photo-stability that leads to high performance for photocatalytic H2O2 production (up to 1.0 mM h-1) with an H2O2 output of 19 mM after 72 hours of irradiation. Furthermore, the catalyst demonstrates high stability, which sustained activity over 192 hours of photocatalytic experiment.
Collapse
Affiliation(s)
- Chang Shu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Luoyu Road No. 1037, 430074, Wuhan, China
| | - Xiaoju Yang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Luoyu Road No. 1037, 430074, Wuhan, China
| | - Lunjie Liu
- Department of Chemistry and Materials Innovation Factory, University of Liverpool, 51 Oxford Street, Liverpool, L7 3NY, United Kingdom
| | - Xunliang Hu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Luoyu Road No. 1037, 430074, Wuhan, China
| | - Ruixue Sun
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Luoyu Road No. 1037, 430074, Wuhan, China
| | - Xuan Yang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Luoyu Road No. 1037, 430074, Wuhan, China
| | - Andrew I Cooper
- Department of Chemistry and Materials Innovation Factory, University of Liverpool, 51 Oxford Street, Liverpool, L7 3NY, United Kingdom
| | - Bien Tan
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Luoyu Road No. 1037, 430074, Wuhan, China
| | - Xiaoyan Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Luoyu Road No. 1037, 430074, Wuhan, China
| |
Collapse
|
7
|
Xing C, Zhang Y, Wei D, Zhi Y. Constructing Highly Emissive Covalent Organic Frameworks for Fe 3+ Ion Detection via Wall Function. Macromol Rapid Commun 2024; 45:e2300678. [PMID: 38183637 DOI: 10.1002/marc.202300678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/19/2023] [Indexed: 01/08/2024]
Abstract
Covalent organic frameworks (COFs) represent a new type of crystalline porous polymers that possess pre-designed skeletons, uniform nanopores, and ordered π structure. These attributes make them well-suited for the design of light-emitting materials. However, the majority of COFs exhibits poor luminescence due to aggregation-caused quenching (ACQ), resulting from the strong interaction between adjacent layers. To break the limitation, the building units with three methoxy groups on the walls are used to construct TM-OMe-EBTHz-COF, which suppresses the ACQ effects to improve light-emitting activity of COF. The TM-OMe-EBTHz-COF exhibits a notable emission of yellow-green luminescence in the solid state, with a remarkably high absolute quantum yield of 21.1%. The methoxy groups and hydrazine linkage form three coordination sites, contributing to excellent performance in metal ions sensing. The TM-OMe-EBTHz-COF demonstrates high sensitivity and selectivity to Fe3+ ion. Importantly, the low detection limit is below 150 nanomolar, ranking it among the best-performing Fe3+ sensor systems.
Collapse
Affiliation(s)
- Ce Xing
- Laboratory of Preparation and Applications of Environmental Friendly Materials (Jilin Normal University), Ministry of Education, Changchun, 130103, China
| | - Yuwei Zhang
- Laboratory of Preparation and Applications of Environmental Friendly Materials (Jilin Normal University), Ministry of Education, Changchun, 130103, China
| | - Dongxue Wei
- Laboratory of Preparation and Applications of Environmental Friendly Materials (Jilin Normal University), Ministry of Education, Changchun, 130103, China
| | - Yongfeng Zhi
- College of Chemical Engineering and Technology, Hainan University, Haikou, 570228, China
| |
Collapse
|
8
|
Joseph V, Nagai A. Recent advancements of covalent organic frameworks (COFs) as proton conductors under anhydrous conditions for fuel cell applications. RSC Adv 2023; 13:30401-30419. [PMID: 37849707 PMCID: PMC10578502 DOI: 10.1039/d3ra04855a] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/11/2023] [Indexed: 10/19/2023] Open
Abstract
Recent electrochemical energy conversion devices require more advanced proton conductors for their broad applications, especially, proton exchange membrane fuel cell (PEMFC) construction. Covalent organic frameworks (COFs) are an emerging class of organic porous crystalline materials that are composed of organic linkers and connected by strong covalent bonds. The unique characteristics including well-ordered and tailorable pore channels, permanent porosity, high degree of crystallinity, excellent chemical and thermal stability, enable COFs to be the potential proton conductors in fuel cell devices. Generally, proton conduction of COFs is dependent on the amount of water (extent of humidity). So, the constructed fuel cells accompanied complex water management system which requires large radiators and airflow for their operation at around 80 °C to avoid overheating and efficiency roll-off. To overcome such limitations, heavy-duty fuel cells require robust proton exchange membranes with stable proton conduction at elevated temperatures. Thus, proton conducting COFs under anhydrous conditions are in high demand. This review summarizes the recent progress in emerging COFs that exhibit proton conduction under anhydrous conditions, which may be prospective candidates for solid electrolytes in fuel cells.
Collapse
Affiliation(s)
| | - Atsushi Nagai
- Ensemble3 - Centre of Excellence Wólczyńska 133 01-919 Warszawa Poland
| |
Collapse
|
9
|
Khan NA, Luo M, Zha X, Azad CS, Lu J, Chen J, Fan C, Rahman AU, Olson MA, Jiang Z, Wang D. Water/Vapor Assisted Fabrication of Large-Area Superprotonic Conductive Covalent Organic Framework Membranes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303131. [PMID: 37344349 DOI: 10.1002/smll.202303131] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/05/2023] [Indexed: 06/23/2023]
Abstract
Fabrication of large-area ionic covalent organic framework membranes (iCOMs) remains a grand challenge. Herein, the authors report the liquid water and water vapor-assisted fabrication of large-area superprotonic conductive iCOMs. A mixed monomer solution containing 1,3,5-triformylphloroglucinol (TFP) in 1,4-dioxane and p-diaminobenzenesulfonic acid (DABA) in water is first polymerized to obtain a pristine membrane which subsequently underwent crystallization process in mixed vapors containing water vapor. During the polymerization stage, water played a role of a diluting agent, weakening the Coulombic repulsion between sulfonic acid groups. During the crystallization stage, water vapor played a role of a structure-directing agent to facilitate the formation of highly crystalline, large-area iCOMs. The resulting membranes achieved a proton conductivity value of 0.76 S cm-1 at 90 °C under 100% relative humidity, which is among the highest ever reported. Using liquid water and water vapor as versatile additives open a novel avenue to the fabrication of large-area membranes from covalent organic frameworks and other kinds of crystalline organic framework materials.
Collapse
Affiliation(s)
- Niaz Ali Khan
- Key Laboratory of Textile Fiber and Products, Ministry of Education, Wuhan Textile University, Wuhan, 430200, P. R. China
| | - Mengying Luo
- Key Laboratory of Textile Fiber and Products, Ministry of Education, Wuhan Textile University, Wuhan, 430200, P. R. China
| | - Xinlin Zha
- Key Laboratory of Textile Fiber and Products, Ministry of Education, Wuhan Textile University, Wuhan, 430200, P. R. China
| | - Chandra S Azad
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL, 60208, USA
| | - Jing Lu
- Key Laboratory of Textile Fiber and Products, Ministry of Education, Wuhan Textile University, Wuhan, 430200, P. R. China
| | - Jiahui Chen
- Key Laboratory of Textile Fiber and Products, Ministry of Education, Wuhan Textile University, Wuhan, 430200, P. R. China
| | - Chunyang Fan
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Ata Ur Rahman
- Institute of Chemical Sciences, University of Peshawar, Peshawar, 25000, Pakistan
| | - Mark A Olson
- Department of Physical & Environmental Sciences, Texas A&M University Corpus Christi, Corpus Christi, TX, 78412, USA
| | - Zhongyi Jiang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, P. R. China
| | - Dong Wang
- Key Laboratory of Textile Fiber and Products, Ministry of Education, Wuhan Textile University, Wuhan, 430200, P. R. China
| |
Collapse
|
10
|
Li Y, Wu X, Zhang J, Han C, Cao M, Li X, Wan J. Vinylene-Linked Emissive Covalent Organic Frameworks for White-Light-Emitting Diodes. Polymers (Basel) 2023; 15:3704. [PMID: 37765558 PMCID: PMC10535042 DOI: 10.3390/polym15183704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/27/2023] [Accepted: 08/31/2023] [Indexed: 09/29/2023] Open
Abstract
Covalent organic frameworks (COFs) have gained considerable attention due to their highly conjugated π-skeletons, rendering them promising candidates for the design of light-emitting materials. In this study, we present two vinylene-linked COFs, namely, VL-COF-1 and VL-COF-2, which were synthesized through the Knoevenagel condensation of 2,4,6-trimethyl-1,3,5-triazine with terephthalaldehyde or 4,4'-biphenyldicarboxaldehyde. Both VL-COF-1 and VL-COF-2 exhibited excellent chemical and thermal stability. The presence of vinylene linkages between the constituent building blocks in these COFs resulted in broad excitation and emission properties. Remarkably, the designed VL-COFs demonstrated bright emission, fast fluorescence decay, and high stability, making them highly attractive for optoelectronic applications. To assess the potential of these VL-COFs in practical devices, we fabricated white-light-emitting diodes (WLEDs) coated with VL-COF-1 and VL-COF-2. Notably, the WLEDs coated with VL-COF-1 achieved high-quality white light emission, closely approximating standard white light. The promising performance of VL-COF-coated WLEDs suggests the feasibility of utilizing COF materials for stable and efficient lighting applications.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jieqiong Wan
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China; (Y.L.)
| |
Collapse
|
11
|
Wang W, Tai G, Li Y, Sun J. Highly Elastic, Healable, and Durable Anhydrous High-Temperature Proton Exchange Membranes Cross-Linked with Highly Dense Hydrogen Bonds. Macromol Rapid Commun 2023; 44:e2300007. [PMID: 36794467 DOI: 10.1002/marc.202300007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/03/2023] [Indexed: 02/17/2023]
Abstract
Proton exchange membranes (PEMs) with excellent durability and working stability are important for PEM fuel cells with extended service life and enhanced reliability. In this study, highly elastic, healable, and durable electrolyte membranes are fabricated by the complexation of poly(urea-urethane), ionic liquids (ILs), and MXene nanosheets (denoted as PU-IL-MX). The resulting PU-IL-MX electrolyte membranes have a tensile strength of ≈3.86 MPa and a strain at break of ≈281.89%. The PU-IL-MX electrolyte membranes can act as high temperature PEMs to conduct protons under an anhydrous condition of the temperatures above 100 °C. Importantly, the ultrahigh density of hydrogen-bond-cross-linked network renders PU-IL-MX membranes excellent IL retention properties. The membranes can maintain more than ≈98% of their original weight and show no decline of proton conductivity after being placed under highly humid conditions of ≈80 °C and relative humidity of ≈85% for 10 days. Moreover, due to the reversibility of hydrogen bonds, the membranes can heal damage under the working conditions of fuel cells to restore their original mechanical properties, proton conductivities, and cell performances.
Collapse
Affiliation(s)
- Wenjie Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Guitian Tai
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Yixuan Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Junqi Sun
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| |
Collapse
|
12
|
Wang S, Tang X, Yang K, Chen B, Zhang K, Xu H, Wang W, Zhang G, Gu C. Facile, Direct, De Novo Synthesis of an Alkyl Phosphoric Acid-Decorated Covalent Organic Framework. Macromol Rapid Commun 2022:e2200678. [PMID: 36069655 DOI: 10.1002/marc.202200678] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 08/29/2022] [Indexed: 11/07/2022]
Abstract
The development and understanding of proton conductors based on phosphoric acid are critical for the field of chemistry, biology, and energy. Covalent organic frameworks (COFs), featuring highly crystalline structures and controllable pore sizes, are suitable for constructing phosphoric acid-based proton conductors. However, because of tedious and intricate synthesis, how to develop COFs based on phosphoric acid remains a substantial challenge. Herein, we contributed a side-chain decorated strategy to construct a phosphoric acid-functionalized, imine-linked COF by de novo synthesis. The phosphoric acid side chains with vigorous motion integrating with 1D nanochannels endow the resulting COF with intrinsic proton conductivity. This work expectantly provides a competitive alternative for producing phosphoric acid-functionalized COFs with high intrinsic proton conductivity. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Shengdong Wang
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Xiaohui Tang
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Kaijie Yang
- MOE Key Laboratory for Soft Chemistry and Functional Materials, School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Bin Chen
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Kun Zhang
- MOE Key Laboratory for Soft Chemistry and Functional Materials, School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Hong Xu
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, P. R. China
| | - Weitao Wang
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Gen Zhang
- MOE Key Laboratory for Soft Chemistry and Functional Materials, School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Cheng Gu
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China.,Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, P. R. China
| |
Collapse
|
13
|
Wan J, Shi W, Li Y, Yu Y, Wu X, Li Z, Lee SY, Lee KH. Excellent Crystallinity and Stability Covalent-Organic Frameworks with High Emission and Anions Sensing. Macromol Rapid Commun 2022; 43:e2200393. [PMID: 35715386 DOI: 10.1002/marc.202200393] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/31/2022] [Indexed: 11/09/2022]
Abstract
Covalent-organic frameworks (COFs) are a new class of porous crystalline frameworks with high π-conjugation and periodical skeletons. The highly ordered π-conjugation structures in some COFs allow exciton migration and energy transfer over the frameworks, which leads to good fluorescence probing ability. In this work, two COFs (TFHPB-TAPB-COF and TFHPB-TTA-COF) are successfully condensed via the Schiff base condensation reaction. The intramolecular hydrogen bonds between imine bonds and hydroxyl groups form the excited-state intramolecular proton transfer (ESIPT) strategy. Owing to intramolecular hydrogen bonds in the skeleton, the two COFs show high crystallinity, remarkable stability, and excellent luminescence. The COFs represent a good sensitivity and selectivity to fluoride anions via fluorescence turn-off. Other halogen anions (chloride, bromide, and iodine) and acid anions (nitrate and hydrogen carbonate) remain inactive. These results imply that only fluoride anion is capable of opening the hydrogen bond interaction and hence break the ESIPT strategy. The detection limit toward fluoride anion is down to nanomoles level, ranking the best performances among fluoride anion sensors systems.
Collapse
Affiliation(s)
- Jieqiong Wan
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China.,Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, South Korea
| | - Wei Shi
- Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, South Korea
| | - Yan Li
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China
| | - Yue Yu
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Osaka, 563-8577, Japan
| | - Xiaohan Wu
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China
| | - Zhongping Li
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa, 923-1292, Japan
| | - Seung Yong Lee
- Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, South Korea.,KIURI Institute, Yonsei University, Seoul, 03722, South Korea
| | - Kyu Hyoung Lee
- Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, South Korea
| |
Collapse
|
14
|
Zhou M, Li Z, Munyentwali A, Li C, Shui H, Li H. Highly conjugated two-dimensional covalent organic frameworks for efficient iodine uptake. Chem Asian J 2022; 17:e202200358. [PMID: 35607250 DOI: 10.1002/asia.202200358] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/20/2022] [Indexed: 11/09/2022]
Abstract
Radioactive iodine in nuclear waste would be harmful to nature and human health. The design of adsorbents for iodine capture with high efficiency still remains a challenge. Herein, two highly conjugated two-dimensional covalent organic frameworks (TFPB-BPTA-COF and TFPB-PyTTA-COF) have been successfully constructed. Both COFs possess high porosity, stability, and high π-conjugated framework. Impressively, TFPB-PyTTA-COF exhibits an excellent iodine uptake value up to 5.6 g g -1 , which is superior to most of reported COF-based adsorbents for iodine capture.
Collapse
Affiliation(s)
- Mingan Zhou
- Anhui University of Technology, School of Chemistry and Chemical Engineering, CHINA
| | - Zhongping Li
- Yonsei University, Department of Chemical and Biomolecular Engineering, Seoul, KOREA, REPUBLIC OF
| | - Alexis Munyentwali
- DICP: Chinese Academy of Sciences Dalian Institute of Chemical Physics, State Key Laboratory of Catalysis, CHINA
| | - Chunzhi Li
- DICP: Chinese Academy of Sciences Dalian Institute of Chemical Physics, State Key Laboratory of Catalysis, CHINA
| | - Hengfu Shui
- Anhui University of Technology, School of Chemistry and Chemical Engineering, CHINA
| | - He Li
- Dalian Institute of Chemical Physics, State Key Laboratory of Catalysis, Zhongshan Road 457, 116023, Dalian, CHINA
| |
Collapse
|
15
|
Qiao H, Yang L, Yang X, Wang J, Chen Y, Zhang L, Sun W, Zhai L, Mi L. Design of Photoactive Covalent Organic Frameworks as Heterogeneous Catalyst for Preparation of Thiophosphinates from Phosphine Oxides and Thiols. Chemistry 2022; 28:e202200600. [DOI: 10.1002/chem.202200600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Indexed: 12/25/2022]
Affiliation(s)
- Huijie Qiao
- Henan Key Laboratory of Functional Salt Materials Center for Advanced Materials Research Zhongyuan University of Technology Henan 450007 P. R. China
- School of Materials and Chemical Engineering Zhongyuan University of Technology Henan 450007 P. R. China
| | - Liting Yang
- Henan Key Laboratory of Functional Salt Materials Center for Advanced Materials Research Zhongyuan University of Technology Henan 450007 P. R. China
- School of Materials and Chemical Engineering Zhongyuan University of Technology Henan 450007 P. R. China
| | - Xiubei Yang
- Henan Key Laboratory of Functional Salt Materials Center for Advanced Materials Research Zhongyuan University of Technology Henan 450007 P. R. China
- School of Materials and Chemical Engineering Zhongyuan University of Technology Henan 450007 P. R. China
| | - Jialin Wang
- School of Materials and Chemical Engineering Zhongyuan University of Technology Henan 450007 P. R. China
| | - Ya Chen
- School of Materials and Chemical Engineering Zhongyuan University of Technology Henan 450007 P. R. China
| | - Lin Zhang
- Henan Key Laboratory of Functional Salt Materials Center for Advanced Materials Research Zhongyuan University of Technology Henan 450007 P. R. China
| | - Wuxuan Sun
- School of Materials and Chemical Engineering Zhongyuan University of Technology Henan 450007 P. R. China
| | - Lipeng Zhai
- Henan Key Laboratory of Functional Salt Materials Center for Advanced Materials Research Zhongyuan University of Technology Henan 450007 P. R. China
| | - Liwei Mi
- Henan Key Laboratory of Functional Salt Materials Center for Advanced Materials Research Zhongyuan University of Technology Henan 450007 P. R. China
| |
Collapse
|
16
|
Zhang Y, Chen Z, Liu Q, Wan J. Effective carbon dioxide uptake in a tailored covalent organic framework with pore size and active atom regulation. NEW J CHEM 2022. [DOI: 10.1039/d2nj00521b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
A novel tailored covalent organic framework (T-COF) with microporous structure has been designed and constructed for effective CO2 uptake.
Collapse
Affiliation(s)
- Yuwei Zhang
- Laboratory of Preparation and Applications of Environmental Friendly Materials (Jilin Normal University), Ministry of Education, Changchun, 130103, China
| | - Zhangfu Chen
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, South Korea
| | - Qianyu Liu
- Laboratory of Preparation and Applications of Environmental Friendly Materials (Jilin Normal University), Ministry of Education, Changchun, 130103, China
| | - Jieqiong Wan
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, South Korea
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China
| |
Collapse
|
17
|
Zhang Y, Zhao Y, Zhang C, Luo X, Liu X. Robust and emissive covalent organic frameworks via intramolecular hydrogen bond interaction. CrystEngComm 2022. [DOI: 10.1039/d2ce00605g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Covalent organic frameworks (COFs) are a new class of crystalline porous polymers with periodic structure in the skeleton and pre-designable pore structure. COFs merge excellent crystallinity, porosity, stability, and emission,...
Collapse
|
18
|
Wang Z, Huang Y, Wu S, Li XM, Sun Q. Excited-state intramolecular proton transfer based covalent organic framework for fluorescence anions sensing. NEW J CHEM 2022. [DOI: 10.1039/d2nj02032g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An azine linked covalent organic framework, ACOF, has been constructed via hydrazine hydrate and aldehyde group building unit with hydroxyl group in situ under the solvothermal condition. ACOF possesses good...
Collapse
|