1
|
Crosby CO, Dhand AP, Taasan JT, Burdick JA. Fabrication of Microgel-Reinforced Hydrogels via Vat Photopolymerization. ACS Macro Lett 2025; 14:603-609. [PMID: 40298865 DOI: 10.1021/acsmacrolett.5c00086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
We report a facile method for the vat photopolymerization (i.e., digital light processing, DLP) of microgel-reinforced hydrogels that leverages both light and dark polymerization for curing. As an example, norbornene modified hyaluronic acid (NorHA) microgels at varying volume fractions swollen in acrylamide monomer are implemented as resins. When processed with DLP, acrylamide polymerization and cross-linking results in the formation of a secondary, continuous network that percolates through the microgels. At even low volume fractions (e.g., 30% v/v), the addition of microgels results in up to 4-fold increases in the stress at failure and work of fracture and a reduction in hydrogel swelling. The microgel-reinforced hydrogels are 3D printed into intricate shapes (e.g., metamaterial lattices) while maintaining uniform microgel distributions, and microgels with varied cross-link densities, cross-linkers, and fabrication methods are also investigated. This work expands the potential of microgel-reinforced hydrogels across applications where geometric freedom is essential.
Collapse
Affiliation(s)
- Cody O Crosby
- BioFrontiers Institute and Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80303, United States
- Department of Physics, Southwestern University, Georgetown, Texas 78626, United States
| | - Abhishek P Dhand
- Department of Bioengineering, University of Pennsylvania; Philadelphia, Pennsylvania 19104, United States
| | - Jonathan T Taasan
- BioFrontiers Institute and Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80303, United States
| | - Jason A Burdick
- BioFrontiers Institute and Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80303, United States
- Department of Bioengineering, University of Pennsylvania; Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
2
|
Pradal P, Kim JB, Nam SK, Kim SH, Amstad E. Direct Ink Writing of Rigid Microparticles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2405675. [PMID: 39568272 DOI: 10.1002/smll.202405675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/29/2024] [Indexed: 11/22/2024]
Abstract
Direct ink writing (DIW) enables 3D printing of macroscopic objects with well-defined structures and compositions that controllably change over length scales of order 100 µm. Unfortunately, only a limited number of materials can be processed through DIW because it imparts stringent rheological requirements on inks. This limitation can be overcome for soft materials, if they are formulated as microparticles that, if jammed, fulfill the rheological requirements to be printed. By contrast, densely packed rigid microparticles with stiffnesses exceeding 2 MPa do not exhibit appropriate rheological properties that enable DIW. Here, an ink composed of up to 60 vol% rigid microparticles with core stiffnesses up to 50 MPa is introduced. To achieve this goal, rigid microparticles possessing soft hydrogel shells are produced. The 3D printed fragile granular structure is transformed into a load-bearing granular material through the formation of a 2nd network within the soft shells and in the interstitial spaces. The potential of these particles is demonstrated to be printed into intricate 3D structures, such as a trophy cup, or cast into flexible macroscopic photonic films.
Collapse
Affiliation(s)
- Pauline Pradal
- Soft Materials Laboratory - Institute of Materials in École Polytechnique Fédérale de Lausanne, Lausanne, 1015, Switzerland
| | - Jong Bin Kim
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, 19104, USA
| | - Seong Kyeong Nam
- Department of Chemical and Biomolecular Engineering - Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Shin-Hyun Kim
- Department of Chemical and Biomolecular Engineering - Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Esther Amstad
- Soft Materials Laboratory - Institute of Materials in École Polytechnique Fédérale de Lausanne, Lausanne, 1015, Switzerland
| |
Collapse
|
3
|
Popescu I, Pelin IM, Suflet DM, Stanciu MC, Constantin M. Chitosan/Poly(maleic acid- alt-vinyl acetate) Hydrogel Beads for the Removal of Cu 2+ from Aqueous Solution. Gels 2024; 10:500. [PMID: 39195029 DOI: 10.3390/gels10080500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/19/2024] [Accepted: 07/26/2024] [Indexed: 08/29/2024] Open
Abstract
Covalent cross-linked hydrogels based on chitosan and poly(maleic acid-alt-vinyl acetate) were prepared as spherical beads. The structural modifications of the beads during the preparation steps (dropping in liquid nitrogen and lyophilization, thermal treatment, washing with water, and treatment with NaOH) were monitored by FT-IR spectroscopy. The hydrogel beads have a porous inner structure, as shown by SEM microscopy; moreover, they are stable in acidic and basic pH due to the covalent crosslinking. The swelling degree is strongly influenced by the pH since the beads possess ionizable amine and carboxylic groups. The binding capacity for Cu2+ ions was examined in batch mode as a function of sorbent composition, pH, contact time, and the initial concentration of Cu2+. The kinetic data were well-fitted with the pseudo-second-order kinetic, while the sorption equilibrium data were better fitted with Langmuir and Sips isotherms. The maximum equilibrium sorption capacity was higher for the beads obtained with a 3:1 molar ratio between the maleic copolymer and chitosan (142.4 mg Cu2+ g-1), compared with the beads obtained using a 1:1 molar ratio (103.7 mg Cu2+ g-1). The beads show a high degree of reusability since no notable decrease in the sorption capacity was observed after five consecutive sorption/desorption cycles.
Collapse
Affiliation(s)
- Irina Popescu
- "Petru Poni" Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley 41A, 700487 Iasi, Romania
| | - Irina Mihaela Pelin
- "Petru Poni" Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley 41A, 700487 Iasi, Romania
| | - Dana Mihaela Suflet
- "Petru Poni" Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley 41A, 700487 Iasi, Romania
| | | | - Marieta Constantin
- "Petru Poni" Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley 41A, 700487 Iasi, Romania
| |
Collapse
|
4
|
Kim M, Hong S, Park JJ, Jung Y, Choi SH, Cho C, Ha I, Won P, Majidi C, Ko SH. A Gradient Stiffness-Programmed Circuit Board by Spatially Controlled Phase-Transition of Supercooled Hydrogel for Stretchable Electronics Integration. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2313344. [PMID: 38380843 DOI: 10.1002/adma.202313344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/25/2024] [Indexed: 02/22/2024]
Abstract
Due to emerging demands in soft electronics, there is an increasing need for material architectures that support robust interfacing between soft substrates, stretchable electrical interconnects, and embedded rigid microelectronics chips. Though researchers have adopted rigid-island structures to solve the issue, this approach merely shifts stress concentrations from chip-conductor interfaces to rigid-island-soft region interfaces in the substrate. Here, a gradient stiffness-programmed circuit board (GS-PCB) that possesses high stretchability and stability with surface mounted chips is introduced. The board comprises a stiffness-programmed hydrogel substrate and a laser-patterned liquid metal conductor. The hydrogel simultaneously obtains a large stiffness disparity and robust interfaces between rigid-islands and soft regions. These seemingly contradictory conditions are accomplished by adopting a gradient stiffness structure at the interfaces, enabled by combining polymers with different interaction energies and a supercooled sodium acetate solution. By integrating the gel with laser-patterned liquid metal with exceptional properties, GS-PCB exhibits higher electromechanical stability than other rigid-island research. To highlight the practicality of this approach, a finger-sensor device that successfully distinguishes objects by direct physical contact is fabricated, demonstrating its stability under various mechanical disturbances.
Collapse
Affiliation(s)
- Minwoo Kim
- Applied Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Sangwoo Hong
- Applied Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Jung Jae Park
- Applied Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Yeongju Jung
- Applied Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Seok Hwan Choi
- Applied Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Chulmin Cho
- Mechatronics Research, Device Solution, Samsung Electronics, 1, Samsungjeonja-ro, Hwaseong-si, Gyeonggi-do, 18848, South Korea
| | - Inho Ha
- Applied Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Phillip Won
- Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Carmel Majidi
- Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Seung Hwan Ko
- Applied Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
- Institute of Engineering Research/Institute of Advanced Machinery and Design (SNU-IAMD), Seoul National University, Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
- Interdisciplinary Program in Bioengineering, Seoul National University, Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| |
Collapse
|
5
|
Yang Y, Xiao Y, Wu X, Deng J, Wei R, Liu A, Chai H, Wang R. Microgel-Crosslinked Thermo-Responsive Hydrogel Actuators with High Mechanical Properties and Rapid Response. Macromol Rapid Commun 2024; 45:e2300643. [PMID: 38225681 DOI: 10.1002/marc.202300643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/23/2023] [Indexed: 01/17/2024]
Abstract
Smart hydrogels responsive to external stimuli are promising for various applications such as soft robotics and smart devices. High mechanical strength and fast response rate are particularly important for the construction of hydrogel actuators. Herein, tough hydrogels with rapid response rates are synthesized using vinyl-functionalized poly(N-isopropylacrylamide) (PNIPAM) microgels as macro-crosslinkers and N-isopropylacrylamide as monomers. The compression strength of the obtained PNIPAM hydrogels is up to 7.13 MPa. The response rate of the microgel-crosslinked hydrogels is significantly enhanced compared with conventional chemically crosslinked PNIPAM hydrogels. The mechanical strength and response rate of hydrogels can be adjusted by varying the proportion of monomers and crosslinkers. The lower critical solution temperature (LCST) of the PNIPAM hydrogels could be tuned by copolymerizing with ionic monomer sodium methacrylate. Thermo-responsive bilayer hydrogels are fabricated using PINPAM hydrogels with different LCSTs via a layer-by-layer method. The thermo-responsive fast swelling and shrinking properties of the two layers endow the bilayer hydrogel with anisotropic structures and asymmetric response characteristics, allowing the hydrogel to respond rapidly. The bilayer hydrogels are fabricated into clamps to grab small objects and flowers that mimicked the closure of petals, and it shows great application prospects in the field of actuators.
Collapse
Affiliation(s)
- Yanyu Yang
- Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang, 315300, P. R. China
- Zhejiang International Scientific and Technological Cooperative Base of Biomedical Materials and Technology, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Ningbo Cixi Institute of Biomedical Engineering, Ningbo, 315300, P. R. China
| | - Ying Xiao
- Zhejiang International Scientific and Technological Cooperative Base of Biomedical Materials and Technology, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Ningbo Cixi Institute of Biomedical Engineering, Ningbo, 315300, P. R. China
| | - Xiang Wu
- Ningbo Medical Center Li Huili Hospital, Health Science Center, Ningbo University, Ningbo, 315000, P. R. China
| | - Junjie Deng
- Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang, 315300, P. R. China
- Zhejiang International Scientific and Technological Cooperative Base of Biomedical Materials and Technology, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Ningbo Cixi Institute of Biomedical Engineering, Ningbo, 315300, P. R. China
| | - Rufang Wei
- Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang, 315300, P. R. China
- Zhejiang International Scientific and Technological Cooperative Base of Biomedical Materials and Technology, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Ningbo Cixi Institute of Biomedical Engineering, Ningbo, 315300, P. R. China
| | - Ashuang Liu
- Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang, 315300, P. R. China
- Zhejiang International Scientific and Technological Cooperative Base of Biomedical Materials and Technology, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Ningbo Cixi Institute of Biomedical Engineering, Ningbo, 315300, P. R. China
| | - Haiyang Chai
- Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang, 315300, P. R. China
- Zhejiang International Scientific and Technological Cooperative Base of Biomedical Materials and Technology, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Ningbo Cixi Institute of Biomedical Engineering, Ningbo, 315300, P. R. China
| | - Rong Wang
- Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang, 315300, P. R. China
- Zhejiang International Scientific and Technological Cooperative Base of Biomedical Materials and Technology, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Ningbo Cixi Institute of Biomedical Engineering, Ningbo, 315300, P. R. China
| |
Collapse
|
6
|
Ji W, Li S, Hou X, Zhao J, Yuan X. Multiple Non-Covalent Cross-Linked Multifunctional Strong Hemostatic Agent for Dynamic Exposure Hemostasis. Adv Healthc Mater 2024; 13:e2302574. [PMID: 38063242 DOI: 10.1002/adhm.202302574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/22/2023] [Indexed: 02/20/2024]
Abstract
Trauma requires immediate hemostasis during primary care, as well as durable hemostasis that can withstand dynamic wound exposure. Although current hemostatic materials can treat bleeding sites in emergency situations, their mechanical strength and storage conditions limit their practical application. The simultaneous combination of good mechanical properties, storage stability, biocompatibility, and rapid hemostasis of hemostatic materials remains a challenge. In this paper, a novel hemostatic material based on multiple non-covalent bond crosslinking, which has excellent mechanical properties, good biocompatibility, storage stability, and rapid hemostasis ability, is reported. Under the drive of multiple non-covalent bonds, the flowability of hydrogel micro-modules (HM) decreases rapidly within 20 s after exposure to physiological saline. The HM form a gel barrier with a tensile strength of 62.10 kPa and an elongation at break of 1976% under multiple non-covalent bonding. Furthermore, the mechanical properties do not change significantly after 30 days of storage. Cell viability is maintained at over 80% after 3 days of incubation with the cells, and the hemolysis test shows a very low hemolysis rate (2.08%). The hemostatic gel formed by HM effectively prevents secondary bleeding in dynamic hemostasis experiments simulating transportation. This work provides a hemostatic material with comprehensive properties for practical applications.
Collapse
Affiliation(s)
- Weijun Ji
- College of Materials Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Sidi Li
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, Shandong, 264005, China
| | - Xin Hou
- College of Materials Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Jin Zhao
- College of Materials Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Xubo Yuan
- College of Materials Science and Engineering, Tianjin University, Tianjin, 300350, China
| |
Collapse
|