1
|
Donia M, Aref NE, Zeineldin M, Megahed A, Blair B, Lowe J, Aldridge B. Impact of Parenteral Ceftiofur on Developmental Dynamics of Early Life Fecal Microbiota and Antibiotic Resistome in Neonatal Lambs. Antibiotics (Basel) 2025; 14:434. [PMID: 40426501 PMCID: PMC12108499 DOI: 10.3390/antibiotics14050434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2025] [Revised: 04/15/2025] [Accepted: 04/23/2025] [Indexed: 05/29/2025] Open
Abstract
Background: Early gut microbiome development is critical for neonatal health, and its dysbiosis may impact long-term animal productivity. This study examined the effects of parenteral Ceftiofur Crystalline Free Acid (CCFA) on the composition and diversity of the neonatal lamb fecal microbiome. The emergence of antimicrobial resistance genes associated with CCFA exposure was also investigated. Results: There were distinct microbial populations in the CCFA-treated lambs compared to the control group at each time point, with a highly significant decrease in alpha and beta diversity. The CCFA treatment showed a reduction in several key microbial taxa during nursing, but these differences were diminished by day 56. Unlike the control group, CCFA-treated lambs had core microbes potentially carrying multiple antibiotic resistance genes, including those for beta-lactam, fosfomycin, methicillin, and multidrug resistance. Methods: Twenty-four healthy neonatal lambs were randomly assigned to CCFA-treated (n = 12) and control (n = 12) groups. Fecal samples were collected on days 0, 7, 14, 28, and 56. Genomic DNA was extracted and sequenced using the Illumina MiSeq platform. Microbial composition was analyzed using the MG-RAST pipeline with the RefSeq database. Conclusions: Despite temporary reductions in critical bacterial populations during nursing, the early sheep fecal microbiome demonstrated resilience by repopulating after CCFA antibiotic disruption. While this highlights microbiota stability after short-course antibiotic exposure, the transient disturbance underscores potential risks to early gut health. Importantly, persistent CCFA resistance poses environmental dissemination risks, emphasizing the need for cautious antibiotic use in livestock to mitigate ecological impacts.
Collapse
Affiliation(s)
- Mohamed Donia
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana-Champaign, IL 61802, USA;
- Department of Animal Medicine (Internal Medicine), Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Nasr-Eldin Aref
- Department of Animal Medicine (Internal Medicine), Faculty of Veterinary Medicine, Assiut University, Assiut 71526, Egypt;
| | - Mohamed Zeineldin
- Department of Animal Medicine (Internal Medicine), Faculty of Veterinary Medicine, Benha University, Moshtohor-Toukh 13736, Egypt; (M.Z.); (A.M.)
| | - Ameer Megahed
- Department of Animal Medicine (Internal Medicine), Faculty of Veterinary Medicine, Benha University, Moshtohor-Toukh 13736, Egypt; (M.Z.); (A.M.)
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Benjamin Blair
- Integrated Food Animal Management Systems, Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana-Champaign, IL 61802, USA; (B.B.); (J.L.)
| | - James Lowe
- Integrated Food Animal Management Systems, Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana-Champaign, IL 61802, USA; (B.B.); (J.L.)
| | - Brian Aldridge
- Department of Veterinary Medicine and Sciences, College of Veterinary Medicine, Clemson University, Clemson, SC 29634, USA
| |
Collapse
|
2
|
Feng X, Liu Y, Xu S, Ma J, Yuan H, Wang H, Hu J, Jin S, Liu S, Zhong J, Ma T, Tu Y. Functional analysis of Parabacteroides distasonis F4: a novel probiotic strain linked to calf growth and rumen fermentation. J Anim Sci Biotechnol 2025; 16:50. [PMID: 40181465 PMCID: PMC11969818 DOI: 10.1186/s40104-025-01182-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 02/19/2025] [Indexed: 04/05/2025] Open
Abstract
BACKGROUND Rumen microorganisms are key regulators of ruminant growth and production performance. Identifying probiotic candidates through microbial culturomics presents a promising strategy for improving ruminant production performance. Our previous study identified significant differences in rumen microbial communities of Holstein calves with varying average daily gain (ADG). This study aims to identify a target strain based on the findings from multi-omics analysis and literature review, isolating and evaluating the target microbial strains from both the rumen and hindgut contents for their probiotic potential. RESULTS Parabacteroides distasonis, a strain closely associated with ADG, was successfully isolated from calf rumen content cultured with Fastidious Anaerobe Agar (FAA) medium and named Parabacteroides distasonis F4. Whole-genome sequencing and pan-genome analysis showed that P. distasonis F4 possesses a core functional potential for carbohydrate and amino acid metabolism, with the ability to produce propionate, acetate, and lactate. The results of targeted and untargeted metabolomics further validated the organic acid production and metabolic pathways of P. distasonis F4. An in vitro simulated rumen fermentation test showed that supplementation with P. distasonis F4 significantly altered rumen microbial community structure and increased the molar proportions of propionate and butyrate in the rumen. Furthermore, an in vivo study demonstrated that dietary supplementation with P. distasonis F4 significantly increased the ADG of pre-weaning calves. CONCLUSIONS This study represents the first isolation of P. distasonis F4 from rumen, highlighting its potential as a probiotic strain for improving rumen development and growth performance in ruminants.
Collapse
Affiliation(s)
- Xiaoran Feng
- Beijing Key Laboratory for Dairy Cow Nutrition, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yunlong Liu
- Beijing Key Laboratory for Dairy Cow Nutrition, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Shengyang Xu
- Beijing Key Laboratory for Dairy Cow Nutrition, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Junnan Ma
- Beijing Key Laboratory for Dairy Cow Nutrition, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Hao Yuan
- Beijing Key Laboratory for Dairy Cow Nutrition, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Haixin Wang
- Beijing Key Laboratory for Dairy Cow Nutrition, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jiachen Hu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Sijie Jin
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Shanji Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jin Zhong
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Tao Ma
- Beijing Key Laboratory for Dairy Cow Nutrition, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yan Tu
- Beijing Key Laboratory for Dairy Cow Nutrition, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
3
|
Tardiolo G, La Fauci D, Riggio V, Daghio M, Di Salvo E, Zumbo A, Sutera AM. Gut Microbiota of Ruminants and Monogastric Livestock: An Overview. Animals (Basel) 2025; 15:758. [PMID: 40076043 PMCID: PMC11899476 DOI: 10.3390/ani15050758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 03/02/2025] [Accepted: 03/04/2025] [Indexed: 03/14/2025] Open
Abstract
The diversity and composition of the gut microbiota are widely recognized as fundamental factors influencing the well-being and productivity of domestic animals. Advancements in sequencing technologies have revolutionized studies in this research field, allowing for deeper insights into the composition and functionality of microbiota in livestock. Ruminants and monogastric animals exhibit distinct digestive systems and microbiota characteristics: ruminants rely on fermentation, while monogastrics use enzymatic digestion, and monogastric animals have simpler stomach structures, except for horses and rabbits, where both processes coexist. Understanding the gut microbiota's impact and composition in both animal types is essential for optimizing production efficiency and promoting animal health. Following this perspective, the present manuscript review aims to provide a comprehensive overview of the gut microbiota in ruminants (such as cattle, sheep, and goats) and monogastric animals (including horses, pigs, rabbits, and chickens).
Collapse
Affiliation(s)
- Giuseppe Tardiolo
- Department of Veterinary Sciences, University of Messina, Viale Giovanni Palatucci 13, 98168 Messina, Italy; (G.T.); (D.L.F.)
| | - Deborah La Fauci
- Department of Veterinary Sciences, University of Messina, Viale Giovanni Palatucci 13, 98168 Messina, Italy; (G.T.); (D.L.F.)
| | - Valentina Riggio
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Edinburgh EH25 9RG, UK;
| | - Matteo Daghio
- Department of Agriculture, Food, Environment and Forestry, University of Florence, Piazzale delle Cascine 18, 50144 Florence, Italy;
| | - Eleonora Di Salvo
- Department of Biomedical, Dental Sciences, Morphological and Functional Imaging, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy;
| | - Alessandro Zumbo
- Department of Veterinary Sciences, University of Messina, Viale Giovanni Palatucci 13, 98168 Messina, Italy; (G.T.); (D.L.F.)
| | - Anna Maria Sutera
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy;
| |
Collapse
|
4
|
Waters SM, Roskam E, Smith PE, Kenny DA, Popova M, Eugène M, Morgavi DP. The role of rumen microbiome in the development of methane mitigation strategies for ruminant livestock. J Dairy Sci 2025:S0022-0302(25)00043-8. [PMID: 39890073 DOI: 10.3168/jds.2024-25778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 12/30/2024] [Indexed: 02/03/2025]
Abstract
Ruminants play an important role in global food security and nutrition. The rumen microbial community provides ruminants with a unique ability to convert human indigestible plant matter, into high quality edible protein. However, enteric CH4 produced in the rumen is both a potent GHG and a metabolizable energy loss for ruminants. As the rumen microbiome constitutes 15-40% of the inter-animal variation in enteric CH4 emissions, understanding the microbiological mechanisms underpinning ruminal methanogenesis and its interaction with the host animal, is crucial for developing CH4 mitigation strategies. Variation in the relative abundance of different microbial species has been observed in cattle with contrasting residual CH4 emission and CH4 yield with up to 20% of the variation in inter-animal CH4 emissions attributable to the presence of a small number of microbial species. The demonstration of ruminotypes associated with high or low CH4 emissions suggests that interactions within complex microbial consortia and with their host are a major source of variation in CH4 emissions. Consequently, microbiome-assisted genomic approaches are being developed to select low CH4 emitting cattle, with breeding values for enteric CH4 being included as part of national breeding programmes. Generating rumen microbiome data for use in selection programs is expensive, therefore, identifying microbial biomarkers in milk or plasma to develop predictive models which include microbial predictors in equations based on animal related data, is required. A better understanding of the rumen microbiome has also aided the development and refinements of anti-methanogenic feed additives. However, these strategies, which increase the amount of reducing equivalents in the rumen ecosystem, do not generally result in an enrichment of propionate or an improvement in animal performance. Current research aims to provide alternative sinks to reducing equivalents and to stimulate activity of commensal microbes or the supplementation of direct fed microbials to capture lost energy. Furthering our knowledge of the rumen microbiome and its interaction with the host, will aid in the development of CH4 mitigation strategies for ruminant livestock.
Collapse
Affiliation(s)
- S M Waters
- School of Biological and Chemical Sciences and Ryan Institute, University of Galway, University Road, Galway.
| | - E Roskam
- School of Biological and Chemical Sciences and Ryan Institute, University of Galway, University Road, Galway; Animal and Bioscience Department, Teagasc Grange, Dunsany, Co. Meath, Ireland
| | - P E Smith
- Animal and Bioscience Department, Teagasc Grange, Dunsany, Co. Meath, Ireland
| | - D A Kenny
- Animal and Bioscience Department, Teagasc Grange, Dunsany, Co. Meath, Ireland
| | - M Popova
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR Herbivores, Saint-Genes-Champanelle, France
| | - M Eugène
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR Herbivores, Saint-Genes-Champanelle, France
| | - D P Morgavi
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR Herbivores, Saint-Genes-Champanelle, France
| |
Collapse
|
5
|
Young JD, Pinnell LJ, Wolfe CA, Doster E, Valeris-Chacin R, Lawrence TE, Richeson JT, Morley PS. The biogeography of gastrointestinal mucosal microbiota of beef cattle at harvest. Front Microbiol 2024; 15:1490882. [PMID: 39717274 PMCID: PMC11663860 DOI: 10.3389/fmicb.2024.1490882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 11/21/2024] [Indexed: 12/25/2024] Open
Abstract
Introduction The gastrointestinal microbiota profoundly influences the health and productivity of animals. This study aimed to characterize microbial community structures of the mouth, gastrointestinal tract (GIT), and feces of cattle. Methods Samples were collected from 18 Akaushi crossbred steers at harvest from multiple locations, including the oral cavity, rumen, abomasum, duodenum, jejunum, ileum, cecum, spiral colon, distal colon, and feces. These cattle were raised without exposure to antimicrobial drugs or hormone implants. Total microbial abundance was assessed using qPCR targeting the V3-V4 region of the 16S rRNA gene, and microbial community composition was evaluated through 16S rRNA gene sequencing. Results Total microbial abundance was lesser in the small intestine than in other GIT regions (p ≤ 0.05). Additionally, microbial communities in the small intestine had lower richness and diversity than other regions (p ≤ 0.05). Microbial community compositions were measurably different along the GIT, with greater relatedness in adjacent GIT sections when progressing from oral to aboral locations. Firmicutes, Bacteroidota, and Actinobacteria were the dominant phyla in all samples. However, variations in composition were evident at lower taxonomic levels within these dominant phyla among samples from different regions. Genera previously associated with healthy gut microbiome communities were observed in low abundance across GIT regions. Taxa historically associated with liver abscesses (e.g., Fusobacterium and Trueperella) were detected in low abundance (≤0.02% relative abundance) throughout the GIT. In contrast, Bacteroides, which recently has been identified as a dominant feature in many liver abscesses, was observed in greater relative abundance (5.2% on average) in the hindgut. Discussion This study provides an in-depth evaluation of the GIT of harvest-ready Akaushi crossbred cattle of varying growth rates. Clear differences exist in the abundance and composition of microbial populations at different points of the GIT. Unfortunately, no single GIT location can adequately represent the microbial communities of the entire GIT, which has important implications for future research. Additionally, examining microbiome data only at the phylum level likely oversimplifies important complexities of the microbial community structures, and investigations of lower taxonomic ranks should be included.
Collapse
Affiliation(s)
- J. Daniel Young
- Department of Agricultural Sciences, West Texas A&M University, Canyon, TX, United States
- VERO Program, Texas A&M University, Canyon, TX, United States
| | - Lee J. Pinnell
- VERO Program, Texas A&M University, Canyon, TX, United States
| | - Cory A. Wolfe
- VERO Program, Texas A&M University, Canyon, TX, United States
| | - Enrique Doster
- VERO Program, Texas A&M University, Canyon, TX, United States
| | | | - Ty E. Lawrence
- Department of Agricultural Sciences, West Texas A&M University, Canyon, TX, United States
| | - John T. Richeson
- Department of Agricultural Sciences, West Texas A&M University, Canyon, TX, United States
| | - Paul S. Morley
- VERO Program, Texas A&M University, Canyon, TX, United States
| |
Collapse
|
6
|
Yu B, Li H, Chen Q, Yang C, Guo Y, Sun B. Dynamic Changes in Intestinal Microorganisms and Hematological Indices in Giraffes of Different Ages, and the Effect of Diarrhea on Intestinal Microbiota. Animals (Basel) 2024; 14:3379. [PMID: 39682345 DOI: 10.3390/ani14233379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/14/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
This study employed high-throughput sequencing to explore bacterial diversity and hematological variations across different age groups of giraffes, as well as the impact of diarrhea on their intestinal microbiota. Additionally, the correlation between intestinal flora and hematological indices was examined for the first time. Firmicutes, Bacteroides, and Proteobacteria were the predominant bacterial groups in the giraffe's intestinal flora. The α-diversity analysis indicated significant variations in microbial diversity among giraffes of varying ages (p < 0.05). Furthermore, giraffes suffering from diarrhea exhibited significant alterations in the abundance of Proteobacteria and Actinobacteriota at the phylum level (p < 0.05). At the genus level, Rikenellaceae_RC9_gut_group, Monoglobus, and Prevotellaceae_UCG-004 had significant differences compared to healthy counterparts (p < 0.05). Hematological parameters such as lymphocyte count (Lym), red blood cell count (RBC), mean corpuscular volume (MCV), mean corpuscular hemoglobin (MCH), mean corpuscular hemoglobin concentration (MCHC), platelet count (PLT), and plateletcrit (PCT) varied significantly across different age groups (p < 0.05). A substantial correlation was observed between the intestinal microbiome composition and hematological parameters (p < 0.05). In conclusion, this study highlights significant differences in both the intestinal microbiome composition and hematological indices among giraffes of different ages. Diarrhea was found to significantly alter the abundance and composition of the intestinal microbial community. These insights provide a valuable theoretical foundation for the microbiological and hematological aspects of giraffe health management and breeding practices.
Collapse
Affiliation(s)
- Baisheng Yu
- College of Animal Science, South China Agriculture University, Guangzhou 510642, China
| | - Hangfan Li
- College of Animal Science, South China Agriculture University, Guangzhou 510642, China
| | - Qiong Chen
- College of Animal Science, South China Agriculture University, Guangzhou 510642, China
| | - Chuang Yang
- College of Animal Science, South China Agriculture University, Guangzhou 510642, China
| | - Yongqing Guo
- College of Animal Science, South China Agriculture University, Guangzhou 510642, China
| | - Baoli Sun
- College of Animal Science, South China Agriculture University, Guangzhou 510642, China
| |
Collapse
|
7
|
Estrada R, Romero Y, Quilcate C, Dipaz D, Alejos-Asencio CS, Leon S, Alvarez-García WY, Rojas D, Alvarado W, Maicelo JL, Arbizu CI. Age-Dependent Changes in Protist and Fungal Microbiota in a Peruvian Cattle Genetic Nucleus. Life (Basel) 2024; 14:1010. [PMID: 39202752 PMCID: PMC11355802 DOI: 10.3390/life14081010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/21/2024] [Accepted: 08/13/2024] [Indexed: 09/03/2024] Open
Abstract
In this research, the connection between age and microbial diversity in cattle was explored, revealing significant changes in both protist diversity and fungal microbiota composition with age. Using fecal samples from 21 Simmental cattle, microbial communities were analyzed through 18S rRNA gene sequencing. Results indicated significant differences in alpha protist diversity among the three age groups, while fungal composition varied notably with age and was linked to hematological parameters. Despite the stability of fungal alpha diversity, compositional changes suggest the gut as a stable niche for microbial colonization influenced by diet, clinical parameters, and microbial interactions. All cattle were maintained on a consistent diet, tailored to meet the specific nutritional needs of each age group. These findings emphasize the importance of understanding age-related microbial dynamics to enhance livestock management and animal health, contributing to broader ecological and biomedical research. This study was limited by the lack of comprehensive metabolic analyses correlating microbiota changes with specific age-related variations, indicating a need for further research in this area.
Collapse
Affiliation(s)
- Richard Estrada
- Dirección de Desarrollo Tecnológico Agrario, Instituto Nacional de Innovación Agraria (INIA), Lima 15024, Peru; (R.E.); (Y.R.); (C.Q.); (D.D.); (C.S.A.-A.); (S.L.); (W.Y.A.-G.); (D.R.)
| | - Yolanda Romero
- Dirección de Desarrollo Tecnológico Agrario, Instituto Nacional de Innovación Agraria (INIA), Lima 15024, Peru; (R.E.); (Y.R.); (C.Q.); (D.D.); (C.S.A.-A.); (S.L.); (W.Y.A.-G.); (D.R.)
| | - Carlos Quilcate
- Dirección de Desarrollo Tecnológico Agrario, Instituto Nacional de Innovación Agraria (INIA), Lima 15024, Peru; (R.E.); (Y.R.); (C.Q.); (D.D.); (C.S.A.-A.); (S.L.); (W.Y.A.-G.); (D.R.)
| | - Deisy Dipaz
- Dirección de Desarrollo Tecnológico Agrario, Instituto Nacional de Innovación Agraria (INIA), Lima 15024, Peru; (R.E.); (Y.R.); (C.Q.); (D.D.); (C.S.A.-A.); (S.L.); (W.Y.A.-G.); (D.R.)
| | - Carol S. Alejos-Asencio
- Dirección de Desarrollo Tecnológico Agrario, Instituto Nacional de Innovación Agraria (INIA), Lima 15024, Peru; (R.E.); (Y.R.); (C.Q.); (D.D.); (C.S.A.-A.); (S.L.); (W.Y.A.-G.); (D.R.)
| | - Silvia Leon
- Dirección de Desarrollo Tecnológico Agrario, Instituto Nacional de Innovación Agraria (INIA), Lima 15024, Peru; (R.E.); (Y.R.); (C.Q.); (D.D.); (C.S.A.-A.); (S.L.); (W.Y.A.-G.); (D.R.)
| | - Wuesley Yusmein Alvarez-García
- Dirección de Desarrollo Tecnológico Agrario, Instituto Nacional de Innovación Agraria (INIA), Lima 15024, Peru; (R.E.); (Y.R.); (C.Q.); (D.D.); (C.S.A.-A.); (S.L.); (W.Y.A.-G.); (D.R.)
| | - Diorman Rojas
- Dirección de Desarrollo Tecnológico Agrario, Instituto Nacional de Innovación Agraria (INIA), Lima 15024, Peru; (R.E.); (Y.R.); (C.Q.); (D.D.); (C.S.A.-A.); (S.L.); (W.Y.A.-G.); (D.R.)
| | - Wigoberto Alvarado
- Facultad de Ingeniería Zootecnista, Agronegocios y Biotecnología, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas (UNTRM), Cl. Higos Urco 342, Chachapoyas 01001, Peru; (W.A.)
| | - Jorge L. Maicelo
- Facultad de Ingeniería Zootecnista, Agronegocios y Biotecnología, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas (UNTRM), Cl. Higos Urco 342, Chachapoyas 01001, Peru; (W.A.)
| | - Carlos I. Arbizu
- Facultad de Ingeniería y Ciencias Agrarias, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas (UNTRM), Cl. Higos Urco 342, Chachapoyas 01001, Peru
| |
Collapse
|
8
|
Ren C, Zhang X, Wei H, Wang S, Wang W, He L, Lu Y, Zhang K, Zhang Z, Wang G, Huang Y. Effect of Replacing Alfalfa Hay with Common Vetch Hay in Sheep Diets on Growth Performance, Rumen Fermentation and Rumen Microbiota. Animals (Basel) 2024; 14:2182. [PMID: 39123708 PMCID: PMC11310988 DOI: 10.3390/ani14152182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
The aim of this study was to determine whether the inclusion of 40% of common vetch (CV) hay as a feed ingredient in place of alfalfa hay (AH) would improve performance and ruminal fermentation and microbiota in fattening lambs. Twenty lambs were equally divided into two groups: control group (fed 40% AH with 20% rice straw) and CV group (fed 40% CV hay with 20% rice straw). Concerning hay quality, CV hay had greater in vitro digestibility of dry matter and neutral detergent fiber (p < 0.05) than AH. Lambs fed the CV diet had a higher average daily gain (ADG) and efficiency of feed and economy than lambs fed the control group. The NH3-N content and estimated methane produced per unit of ADG of the CV diet group were significantly lower (p < 0.05) than control group. Multiple differential microbial genera were identified, with Prevotella being the most dominant genus and a tendency towards higher (p = 0.095) in lambs offered CV diet. The higher Ruminococcus abundance (p < 0.05) was found in animals of the CV group compared to the control group. In summary, CV can be incorporated into lamb diets as a low-cost forage alternative to AH to improve feed efficiency and animal performance and to reduce methane produced per unit of ADG.
Collapse
Affiliation(s)
- Chunhuan Ren
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (C.R.); (X.Z.); (H.W.); (S.W.); (W.W.); (Y.L.); (K.Z.); (Z.Z.)
| | - Xiaoan Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (C.R.); (X.Z.); (H.W.); (S.W.); (W.W.); (Y.L.); (K.Z.); (Z.Z.)
- National Agricultural Green Development Long-Term Fixed Observation Yingshang Test Station, Fuyang 236200, China
- Center of Agriculture Technology Cooperation and Promotion of Dingyuan County, Chuzhou 233200, China
| | - Huiqing Wei
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (C.R.); (X.Z.); (H.W.); (S.W.); (W.W.); (Y.L.); (K.Z.); (Z.Z.)
| | - Sunze Wang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (C.R.); (X.Z.); (H.W.); (S.W.); (W.W.); (Y.L.); (K.Z.); (Z.Z.)
| | - Wenjie Wang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (C.R.); (X.Z.); (H.W.); (S.W.); (W.W.); (Y.L.); (K.Z.); (Z.Z.)
| | - Li He
- New Rural Development Research Institute, Anhui Agricultural University, Hefei 230036, China;
| | - Yuan Lu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (C.R.); (X.Z.); (H.W.); (S.W.); (W.W.); (Y.L.); (K.Z.); (Z.Z.)
| | - Kefan Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (C.R.); (X.Z.); (H.W.); (S.W.); (W.W.); (Y.L.); (K.Z.); (Z.Z.)
| | - Zijun Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (C.R.); (X.Z.); (H.W.); (S.W.); (W.W.); (Y.L.); (K.Z.); (Z.Z.)
- Center of Agriculture Technology Cooperation and Promotion of Dingyuan County, Chuzhou 233200, China
| | - Guanjun Wang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (C.R.); (X.Z.); (H.W.); (S.W.); (W.W.); (Y.L.); (K.Z.); (Z.Z.)
- National Agricultural Green Development Long-Term Fixed Observation Yingshang Test Station, Fuyang 236200, China
| | - Yafeng Huang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (C.R.); (X.Z.); (H.W.); (S.W.); (W.W.); (Y.L.); (K.Z.); (Z.Z.)
- Center of Agriculture Technology Cooperation and Promotion of Dingyuan County, Chuzhou 233200, China
| |
Collapse
|
9
|
Elmagzoub WA, Idris SM, Elnaiem MHE, Mukhtar ME, Eltayeb E, Bakhiet SM, Okuni JB, Ojok L, El Sanousi SM, El Wahed AA, Gameel AA, Eltom KH. Faecal microbial diversity in a cattle herd infected by Mycobacterium avium subsp. paratuberculosis: a possible effect of production status. World J Microbiol Biotechnol 2024; 40:276. [PMID: 39037634 PMCID: PMC11263420 DOI: 10.1007/s11274-024-04080-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 07/11/2024] [Indexed: 07/23/2024]
Abstract
Mycobacterium avium subsp. paratuberculosis (MAP) causes Johne's disease, or paratuberculosis (PTB) in ruminants, besides having zoonotic potential. It possibly changes the gut microbiome, but no conclusive data are available yet. This study aimed at investigating the influence of MAP on the faecal microbiome of cattle naturally infected with PTB. In a follow up period of 10 months, PTB status was investigated in a herd of dairy cattle with history of clinical cases. Each animal was tested for MAP infection using serum and milk ELISA for MAP anti-bodies and IS900 real-time PCR and recombinase polymerase amplification assays for MAP DNA in the faeces and milk monthly for 4 successive months, then a last one after 6 months. The faecal samples were subjected to 16S rDNA metagenomic analysis using Oxford Nanopore Sequencing Technology. The microbial content was compared between animal groups based on MAP positivity rate and production status. All animals were MAP positive by one or more tests, but two animals were consistently negative for MAP DNA in the faeces. In all animals, the phyla firmicutes and bacteroidetes were highly enriched with a small contribution of proteobacteria, and increased abundance of the families Oscillospiraceae, Planococcaceae, and Streptococcacaceae was noted. Animals with high MAP positivity rate showed comparable faecal microbial content, although MAP faecal positivity had no significant effect (p > 0.05) on the microbiome. Generally, richness and evenness indices decreased with increasing positivity rate. A significantly different microbial content was found between dry cows and heifers (p < 0.05). Particularly, Oscillospiraceae and Rikenellaceae were enriched in heifers, while Planococcaceae and Streptococcaceae were overrepresented in dry cows. Furthermore, abundance of 72 genera was significantly different between these two groups (p < 0.05). Changes in faecal microbiome composition were notably associated with increasing MAP shedding in the faeces. The present findings suggest a combined influence of the production status and MAP on the cattle faecal microbiome. This possibly correlates with the fate of the infection, the concern in disease control, again remains for further investigations.
Collapse
Affiliation(s)
- Wisal A Elmagzoub
- Department of Animal Health and Safety of Animal Products, Institute for Studies and Promotion of Animal Exports, University of Khartoum, Shambat, 13314, Khartoum North, Sudan
- Department of Biology and Biotechnology, College of Applied and Industrial Sciences, University of Bahri, Khartoum North, Sudan
| | - Sanaa M Idris
- Department of Animal Health and Safety of Animal Products, Institute for Studies and Promotion of Animal Exports, University of Khartoum, Shambat, 13314, Khartoum North, Sudan
- Department of Pathology, Faculty of Veterinary Medicine, University of Khartoum, Shambat, 13314, Khartoum North, Sudan
| | - Marwa H E Elnaiem
- Department of Botany and Agricultural Biotechnology, Faculty of Agriculture, University of Khartoum, Shambat, 13314, Khartoum North, Sudan
| | - Mohamed E Mukhtar
- Department of Agricultural Extension and Rural Development, Faculty of Agriculture, University of Khartoum, Shambat, 13314, Khartoum North, Sudan
| | - ElSagad Eltayeb
- Faculty of Medicine, Al Neelain University/Ibn Sina Specialised Hospital, Street 17-21, Alamarat, 12217, Khartoum, Sudan
| | - Sahar M Bakhiet
- Department of Molecular Biology, Institute of Endemic Diseases, University of Khartoum, Khartoum, Sudan
| | - Julius B Okuni
- College of Veterinary Medicine, Animal Resources and Biosecurity (COVAB), Makerere University, P. O. Box 7062, Kampala, Uganda
| | - Lonzy Ojok
- College of Veterinary Medicine, Animal Resources and Biosecurity (COVAB), Makerere University, P. O. Box 7062, Kampala, Uganda
- Department of Pathology, Faculty of Medicine, Gulu University, P.O.Box 166, Gulu, Uganda
| | - Sulieman M El Sanousi
- Department of Microbiology, Faculty of Veterinary Medicine, University of Khartoum, Shambat, 13314, Khartoum North, Sudan
| | - Ahmed Abd El Wahed
- Faculty of Veterinary Medicine, Institute of Animal Hygiene and Veterinary Public Health, Leipzig University, An den Tierkliniken 1, 04103, Leipzig, Germany.
| | - Ahmed A Gameel
- Department of Pathology, Faculty of Veterinary Medicine, University of Khartoum, Shambat, 13314, Khartoum North, Sudan
| | - Kamal H Eltom
- Department of Animal Health and Safety of Animal Products, Institute for Studies and Promotion of Animal Exports, University of Khartoum, Shambat, 13314, Khartoum North, Sudan.
| |
Collapse
|
10
|
García-Gamboa R, Perfecto-Avalos Y, Gonzalez-Garcia J, Alvarez-Calderon MJ, Gutierrez-Vilchis A, Garcia-Gonzalez A. In vitro analysis of postbiotic antimicrobial activity against Candida Species in a minimal synthetic model simulating the gut mycobiota in obesity. Sci Rep 2024; 14:16760. [PMID: 39033245 PMCID: PMC11271299 DOI: 10.1038/s41598-024-66806-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 07/04/2024] [Indexed: 07/23/2024] Open
Abstract
Gut fungal imbalances, particularly increased Candida spp., are linked to obesity. This study explored the potential of Lactiplantibacillus plantarum cell-free extracts (postbiotics) to modulate the growth of Candida albicans and Candida kefyr, key members of the gut mycobiota. A minimal synthetic gut model was employed to evaluate the effects of Lactiplantibacillus plantarum postbiotics on fungal growth in mono- and mixed cultures. Microreactors were employed for culturing, fungal growth was quantified using CFU counting, and regression analysis was used to evaluate the effects of postbiotics on fungal growth. Postbiotics at a concentration of 12.5% significantly reduced the growth of both Candida species. At 24 h, both C. albicans and C. kefyr in monocultures exhibited a decrease in growth of 0.11 log CFU/mL. In contrast, mixed cultures showed a more pronounced antifungal effect, with C. albicans and C. kefyr reductions of 0.62 log CFU/mL and 0.64 log CFU/mL, respectively. Regression analysis using the Gompertz model supported the antifungal activity of postbiotics and revealed species-specific differences in growth parameters. These findings suggest that L. plantarum postbiotics have the potential to modulate the gut mycobiota by reducing Candida growth, potentially offering a therapeutic approach for combating fungal overgrowth associated with obesity.
Collapse
Affiliation(s)
- Ricardo García-Gamboa
- Escuela de Medicina y Ciencias de la Salud, Tecnologico de Monterrey, Av. General Ramon Corona 2514, 45138, Nuevo Mexico, Zapopan, Jalisco, Mexico.
| | - Yocanxóchitl Perfecto-Avalos
- Escuela de Ingenieria y Ciencias, Tecnologico de Monterrey, Av. General Ramon Corona 2514, 45138, Nuevo Mexico, Zapopan, Jalisco, Mexico
| | - Julieta Gonzalez-Garcia
- Escuela de Medicina y Ciencias de la Salud, Tecnologico de Monterrey, Av. General Ramon Corona 2514, 45138, Nuevo Mexico, Zapopan, Jalisco, Mexico
| | - María J Alvarez-Calderon
- Escuela de Medicina y Ciencias de la Salud, Tecnologico de Monterrey, Av. General Ramon Corona 2514, 45138, Nuevo Mexico, Zapopan, Jalisco, Mexico
| | - Abel Gutierrez-Vilchis
- Escuela de Medicina y Ciencias de la Salud, Tecnologico de Monterrey, Av. General Ramon Corona 2514, 45138, Nuevo Mexico, Zapopan, Jalisco, Mexico
| | - Alejandro Garcia-Gonzalez
- Escuela de Medicina y Ciencias de la Salud, Tecnologico de Monterrey, Av. General Ramon Corona 2514, 45138, Nuevo Mexico, Zapopan, Jalisco, Mexico.
| |
Collapse
|
11
|
Wang K, Jiang M, Chen Y, Huang Y, Cheng Z, Datsomor O, Jama SM, Zhu L, Li Y, Zhao G, Lin M. Changes in the rumen development, rumen fermentation, and rumen microbiota community in weaned calves during steviol glycosides treatment. Front Microbiol 2024; 15:1395665. [PMID: 38979539 PMCID: PMC11228177 DOI: 10.3389/fmicb.2024.1395665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/22/2024] [Indexed: 07/10/2024] Open
Abstract
Early weaning leads to weaning stress in calves, which hinders healthy growth and development. As an excellent sweetener applied in food, steviol glycosides (STE) has also been shown to exhibit positive biological activity in monogastric animals. Therefore, this study aimed to evaluate the impact of incorporating STE as a dietary supplement on rumen development, fermentation, and microbiota of rumen in weaned calves. This study selected 24 healthy Holstein bull calves and randomly allocated them into two groups (CON and STE). The results indicated that supplementation STE group improved rumen development in weaned calves, as demonstrated by a marked increase in the weight of the rumen, as well as the length and surface area of the rumen papilla. Compared with the CON group, the concentrations of total volatile fatty acids (TVFA), propionate, butyrate, and valerate were higher in the STE group. Moreover, STE treatment increased the relative abundance of Firmicutes and Actinobacteria at the phylum level. At the genus level, the STE group showed a significantly increased relative abundance of Succiniclasticum, Lachnospiraceae_NK3A20_group, and Olsenella, and a decreased relative abundance of Acinetobacter compared to the CON group. Pusillimonas, Lachnospiraceae_NK3A20_group, Olsenella, and Succiniclasticum were significantly enriched in rumen chyme after supplementation with STE, as demonstrated by LEfSe analysis. Overall, our findings revealed that rumen bacterial communities altered in response to the dietary supplementation with STE, and some bacterial taxa in these communities may have positive effects on rumen development during this period.
Collapse
Affiliation(s)
- Kexin Wang
- Institute of Animal Culture Collection and Application, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Maocheng Jiang
- Institute of Animal Culture Collection and Application, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Yuhang Chen
- Institute of Animal Culture Collection and Application, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Yuncheng Huang
- Institute of Animal Culture Collection and Application, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Zhiqiang Cheng
- Institute of Animal Culture Collection and Application, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Osmond Datsomor
- Institute of Animal Culture Collection and Application, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Shakib Mohamed Jama
- Institute of Animal Culture Collection and Application, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Liping Zhu
- Zhucheng Haotian Pharm Co., Ltd., Zhucheng, China
| | - Yajing Li
- Zhucheng Haotian Pharm Co., Ltd., Zhucheng, China
| | - Guoqi Zhao
- Institute of Animal Culture Collection and Application, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education, Yangzhou University, Yangzhou, China
| | - Miao Lin
- Institute of Animal Culture Collection and Application, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| |
Collapse
|
12
|
Zhang X, Wang W, Wang Y, Cao Z, Yang H, Li S. Metagenomic and metabolomic analyses reveal differences in rumen microbiota between grass- and grain-fed Sanhe heifers. Front Microbiol 2024; 15:1336278. [PMID: 38803375 PMCID: PMC11128563 DOI: 10.3389/fmicb.2024.1336278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/26/2024] [Indexed: 05/29/2024] Open
Abstract
Introduction The aim of this study was to investigate the effects of diets on the composition and function of rumen microbiome and metabolites in Sanhe heifers. Methods Metagenomic and metabolomic analyses were performed using rumen fluid samples collected from Sanhe heifers (n = 20) with similar body weights and ages from grass-fed and grain-fed systems. Results The grain-fed group exhibited more intensive rumen fermentation than the grass-fed group. However, the grass-fed group exhibited carbohydrate metabolism and methane production higher than that of the grain-fed group; these increases were observed as a higher abundance of various bacterial phyla (Firmicutes, Bacteroidetes, Actinobacteria, Lentisphaerae, and Verrucomicrobia), families (Lachnospiraceae, Eubacteriaceae, and Eggerthellaceae), and the archaeal family Methanobacteriaceae. A comparison of genes encoding carbohydrate-active enzymes, using Kyoto Encyclopedia of Genes and Genome profiles, revealed noteworthy differences in the functions of rumen microbiota; these differences were largely dependent on the feeding system. Conclusion These results could help manipulate and regulate feed efficiency in Sanhe cattle.
Collapse
Affiliation(s)
| | | | | | | | | | - Shengli Li
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
13
|
Liu Y, Ma L, Riqing D, Qu J, Chen J, Zhandu D, Li B, Jiang M. Microbial Metagenomes and Host Transcriptomes Reveal the Dynamic Changes of Rumen Gene Expression, Microbial Colonization and Co-Regulation of Mineral Element Metabolism in Yaks from Birth to Adulthood. Animals (Basel) 2024; 14:1365. [PMID: 38731369 PMCID: PMC11083404 DOI: 10.3390/ani14091365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 04/26/2024] [Accepted: 04/30/2024] [Indexed: 05/13/2024] Open
Abstract
Yaks are the main pillar of plateau animal husbandry and the material basis of local herdsmen's survival. The level of mineral elements in the body is closely related to the production performance of yaks. In this study, we performed a comprehensive analysis of rumen epithelial morphology, transcriptomics and metagenomics to explore the dynamics of rumen functions, microbial colonization and functional interactions in yaks from birth to adulthood. Bacteria, eukaryotes, archaea and viruses colonized the rumen of yaks from birth to adulthood, with bacteria being the majority. Bacteroidetes and Firmicutes were the dominant phyla in five developmental stages, and the abundance of genus Lactobacillus and Fusobacterium significantly decreased with age. Glycoside hydrolase (GH) genes were the most highly represented in five different developmental stages, followed by glycosyltransferases (GTs) and carbohydrate-binding modules (CBMs), where the proportion of genes coding for CBMs increased with age. Integrating host transcriptome and microbial metagenome revealed 30 gene modules related to age, muscle layer thickness, nipple length and width of yaks. Among these, the MEmagenta and MEturquoise were positively correlated with these phenotypic traits. Twenty-two host genes involved in transcriptional regulation related to metal ion binding (including potassium, sodium, calcium, zinc, iron) were positively correlated with a rumen bacterial cluster 1 composed of Alloprevotella, Paludibacter, Arcobacter, Lactobacillus, Bilophila, etc. Therefore, these studies help us to understand the interaction between rumen host and microorganisms in yaks at different ages, and further provide a reliable theoretical basis for the development of feed and mineral element supplementation for yaks at different ages.
Collapse
Affiliation(s)
- Yili Liu
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation, College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China; (Y.L.); (D.R.); (B.L.)
| | - Liangliang Ma
- College of Grassland Resources, Southwest Minzu University, Chengdu 610041, China;
| | - Daojie Riqing
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation, College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China; (Y.L.); (D.R.); (B.L.)
| | - Jiu Qu
- Agriculture and Rural Affairs Bureau of Naqu City, Naqu 852000, China; (J.Q.); (D.Z.)
| | - Jiyong Chen
- Yushu Prefecture Animal Disease Prevention and Control Center, Yushu 815000, China;
| | - Danzeng Zhandu
- Agriculture and Rural Affairs Bureau of Naqu City, Naqu 852000, China; (J.Q.); (D.Z.)
| | - Biao Li
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation, College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China; (Y.L.); (D.R.); (B.L.)
| | - Mingfeng Jiang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation, College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China; (Y.L.); (D.R.); (B.L.)
| |
Collapse
|
14
|
Zhang J, Ren X, Wang S, Liu R, Shi B, Dong H, Wu Q. Microbial interventions in yak colibacillosis: Lactobacillus-mediated regulation of intestinal barrier. Front Cell Infect Microbiol 2024; 14:1337439. [PMID: 38390621 PMCID: PMC10883308 DOI: 10.3389/fcimb.2024.1337439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/17/2024] [Indexed: 02/24/2024] Open
Abstract
Introduction The etiology of Escherichia coli in yaks, along with its drug resistance, results in economic losses within the yak breeding industry. The utilization of lactic acid bacteria treatment has emerged as a viable alternative to antibiotics in managing colibacillosis. Methods To elucidate the therapeutic mechanisms of Lactobacillus against Escherichia coli-induced intestinal barrier damage in yaks, we employed yak epithelial cells as the experimental model and established a monolayer epithelial barrier using Transwell. The study encompassed four groups: a control group, a model group (exposed to E. coli O78), a low-dose Lactobacillus group (E. coli O78 + 1 × 105CFU LAB), and a high-dose Lactobacillus group (E. coli O78 + 1 × 107CFU LAB). Various techniques, including transmembrane resistance measurement, CFU counting, RT-qPCR, and Western Blot, were employed to assess indicators related to cell barrier permeability and tight junction integrity. Results In the Model group, Escherichia coli O78 significantly compromised the permeability and tight junction integrity of the yak epithelial barrier. It resulted in decreased transmembrane resistance, elevated FD4 flux, and bacterial translocation. Furthermore, it downregulated the mRNA and protein expression of MUC2, Occludin, and ZO-1, while upregulating the mRNA expression and protein expression of FABP2 and Zonulin, thereby impairing intestinal barrier function. Contrastingly, Lactobacillus exhibited a remarkable protective effect. It substantially increased transmembrane resistance, mitigated FD4 flux, and reduced bacterial translocation. Moreover, it significantly upregulated the mRNA and protein expression of MUC2, Occludin, and ZO-1, while downregulating the mRNA and protein expression of FABP2 and Zonulin. Notably, high-dose LAB demonstrated superior regulatory effects compared to the low-dose LAB group. Discussion In conclusion, our findings suggest that Lactobacillus holds promise in treating yak colibacillosis by enhancing mucin and tight junction protein expression. Furthermore, we propose that Lactobacillus achieves these effects through the regulation of Zonulin.
Collapse
Affiliation(s)
- Jingbo Zhang
- College of Animal Science, Tibet Agriculture and Animal Husbandry University, Linzhi, China
| | - Xiaoli Ren
- College of Animal Science, Tibet Agriculture and Animal Husbandry University, Linzhi, China
| | - Shuo Wang
- College of Animal Science, Tibet Agriculture and Animal Husbandry University, Linzhi, China
| | - Ruidong Liu
- College of Animal Science, Tibet Agriculture and Animal Husbandry University, Linzhi, China
| | - Bin Shi
- College of Animal Science, Tibet Agriculture and Animal Husbandry University, Linzhi, China
- Institute of Animal Husbandry and Veterinary Medicine, Tibet Autonomous Region Academy of Agriculture and Animal Science, Lhasa, China
| | - Hailong Dong
- College of Animal Science, Tibet Agriculture and Animal Husbandry University, Linzhi, China
| | - Qingxia Wu
- College of Animal Science, Tibet Agriculture and Animal Husbandry University, Linzhi, China
| |
Collapse
|
15
|
Wu Y, Jiao C, Diao Q, Tu Y. Effect of Dietary and Age Changes on Ruminal Microbial Diversity in Holstein Calves. Microorganisms 2023; 12:12. [PMID: 38276181 PMCID: PMC10818949 DOI: 10.3390/microorganisms12010012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/01/2023] [Accepted: 12/03/2023] [Indexed: 01/27/2024] Open
Abstract
Ruminal microorganisms play a crucial role in the energy supply of ruminants and animal performance. We analyzed the variations in rumen bacteria and fungi at 45 d, 75 d, and 105 d by using 16SrRNA and ITS sequencing data and investigated their correlation with rumen fermentation. According to the results, rumen microflora tended to gradually mature with age, and bacterial and fungal establishment gradually stabilized. Upon comparing the three periods, the concentration of propionic acid increased significantly (p < 0.05) after weaning, and weaning accompanied by a transition in diet remarkably decreased (p < 0.05) rumen diversity in the short term and induced a corresponding change in the rumen microbiota composition. Bacteroidota, Actinobacteriota, and Firmicutes were the core bacterial phyla for all age periods. Ruminococcus, NK4A214_group, Sharpea, Rikenellaceae_RC9_gut_group, and norank_f__Butyricicoccaceae were the markedly abundant bacterial genera in pre-weaning. After weaning, the relative abundance of Erysipelotrichaceae_ UCG-002, Eubacterium_ruminantium_group, and Solobacterium significantly increased (p < 0.05). The relative abundance of Acetitomaculum increased with age with the greatest abundance noted at 105 d (37%). The dominant fungal phyla were Ascomycota and Basidiomycota, and Aspergillus and Xeromyces were the most abundant fungal genera after weaning. Trichomonascus, Phialosimplex, and Talaromyces were enriched at 105 d. However, the low abundance of Neocallimastigomycota was not detected throughout the study, which is worthy of further investigation. In addition, correlations were observed between age-related abundances of specific genera and microbiota functions and rumen fermentation-related parameters. This study revealed that rumen microbiota and rumen fermentation capacity are correlated, which contributed to a better understanding of the effects of age and diet on rumen microbiology and fermentation in calves.
Collapse
Affiliation(s)
| | | | | | - Yan Tu
- Key Laboratory for Dairy Cow Nutrition, Institute of Feed Research of Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.W.); (C.J.); (Q.D.)
| |
Collapse
|
16
|
Wang YC, Wang X, Li JZ, Huang PF, Li YL, Ding XQ, Huang J, Zhu MZ, Yin J, Dai CP, Wang QY, Yang HS. The impact of lactating Hu sheep's dietary protein levels on lactation performance, progeny growth and rumen development. Anim Biotechnol 2023; 34:1919-1930. [PMID: 35416756 DOI: 10.1080/10495398.2022.2058006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
This study aimed to investigate whether lactating Hu sheep's dietary protein levels could generate dynamic effects on the performance of their offspring. Twelve ewes with similar parity were fed iso-energy diets which contained different protein levels (P1: 9.82%, P2: 10.99%) (n = 6), and the corresponding offspring were divided into SP1 and SP2 (n = 12). At 60 days, half of the lambs were harvested for further study: the carcass weight (p = 0.043) and dressing percentage (p = 0.004) in the SP2 group were significantly higher than SP1. The acetic acid (p = 0.007), propionic acid (p = 0.003), butyric acid (p < 0.001) and volatile fatty acids (p < 0.001) in rumen fluid of SP2 were significantly lower than SP1. The expression of MCT2 (p = 0.024), ACSS1 (p = 0.039) and NHE3 (p = 0.006) in the rumen of SP2 was lower than SP1, while the HMGCS1 (p = 0.026), HMGCR (p = 0.024) and Na+/K+-ATPase (p = 0.020) was higher than SP1. The three dominant phyla in the rumen are Bacteroidetes, Proteobacteria and Firmicutes. The membrane transport, amino acid metabolism and carbohydrate metabolism of SP1 were relatively enhanced, the replication and repair function of SP2 was relatively enhanced. To sum up, the increase of dietary protein level significantly increased the carcass weight and dressing percentage of offspring and had significant effects on rumen volatile fatty acids, acetic acid activation and cholesterol synthesis related genes. HIGHLIGHTSIn the early feeding period, the difference in ADG of lambs was mainly caused by the sucking effect.The increase in dietary protein level of ewes significantly increased the carcass weight and dressing percentage of offspring.The dietary protein level of ewes significantly affected the volatile fatty acids (VFAs) and genes related to acetic acid activation and cholesterol synthesis in the rumen of their offspring.The membrane transport, amino acid metabolism and carbohydrate metabolism of the offspring of ewes fed with a low protein diet were relatively enhanced.The replication and repair function of the offspring of ewes fed with a high protein diet was relatively strengthened.
Collapse
Affiliation(s)
- Yan-Can Wang
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Xin Wang
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Jian-Zhong Li
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Peng-Fei Huang
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Ya-Li Li
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Xue-Qin Ding
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Jing Huang
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Ming-Zhi Zhu
- Key Laboratory of Tea Science of Ministry of Education, National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, College of Horticulture, Hunan Agricultural University, Changsha, China
| | - Jia Yin
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Chun-Peng Dai
- Hubei Zhiqinghe Agriculture and Animal Husbandry Co., Ltd., Yichang, China
| | - Qi-Ye Wang
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, China
- Hubei Zhiqinghe Agriculture and Animal Husbandry Co., Ltd., Yichang, China
| | - Huan-Sheng Yang
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, China
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Engineering Research Center of Healthy Livestock, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| |
Collapse
|
17
|
Xu J, Jia Z, Xiao S, Long C, Wang L. Effects of Enterotoxigenic Escherichia coli Challenge on Jejunal Morphology and Microbial Community Profiles in Weaned Crossbred Piglets. Microorganisms 2023; 11:2646. [PMID: 38004658 PMCID: PMC10672776 DOI: 10.3390/microorganisms11112646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/25/2023] [Accepted: 10/05/2023] [Indexed: 11/26/2023] Open
Abstract
Pathogenic enterotoxigenic Escherichia coli (ETEC) is a major cause of bacterial diarrhea in weaning piglets, which are vulnerable to changes in environment and feed. This study aimed to determine the effects of the ETEC challenge on piglet growth performance, diarrhea rate, jejunal microbial profile, jejunal morphology and goblet cell distribution. A total of 13 piglets from one litter were selected on postnatal day 21 and assigned to treatments with or without ETEC challenge at 1 × 108 CFUs, as ETEC group or control group, respectively. On postnatal day 28, samples were collected, followed by the detection of serum biochemical indexes and inflammatory indicators, HE staining, PAS staining and 16S rDNA gene amplicon sequencing. Results showed that the growth performance decreased, while the diarrhea rate increased for the ETEC group. The jejunum is the main segment of the injured intestine during the ETEC challenge. Compared with the control, the ETEC group displayed fewer goblet cells in the jejunum, where goblet cells are more distributed at the crypt and less distributed at the villus. In addition, ETEC piglets possessed higher abundances of the genus Desulfovibrio, genus Oxalobacter and genus Peptococus and lower abundances of the genus Prevotella 2, genus Flavonifractor and genus Blautra. In terms of alpha diversity, Chao 1 and observed features indexes were both increased for the ETEC group. Our study provides insights into jejunal histopathological impairment and microbial variation in response to ETEC infection for weaned piglets and is a valuable reference for researchers engaged in animal health research to select stress models.
Collapse
Affiliation(s)
- Juan Xu
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410081, China; (J.X.); (Z.J.); (S.X.)
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha 410081, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
| | - Zhen Jia
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410081, China; (J.X.); (Z.J.); (S.X.)
| | - Shu Xiao
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410081, China; (J.X.); (Z.J.); (S.X.)
| | - Cimin Long
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410081, China; (J.X.); (Z.J.); (S.X.)
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha 410081, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
| | - Leli Wang
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410081, China; (J.X.); (Z.J.); (S.X.)
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha 410081, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
| |
Collapse
|
18
|
Yin X, Duan C, Ji S, Tian P, Ju S, Yan H, Zhang Y, Liu Y. Average Daily Gain in Lambs Weaned at 60 Days of Age Is Correlated with Rumen and Rectum Microbiota. Microorganisms 2023; 11:microorganisms11020348. [PMID: 36838313 PMCID: PMC9966089 DOI: 10.3390/microorganisms11020348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/28/2023] [Accepted: 01/28/2023] [Indexed: 02/01/2023] Open
Abstract
Colonization of gastrointestinal microbiota in mammals during early life is vital to host health. The objective of this study was to investigate whether lambs with high and low ADG have a different rumen and rectum microbial community. Thus, we investigated potential relationships between rumen and rectum microbiota and average daily gain (ADG) in weaned lambs. Sixteen lambs with similar body weights (7.63 ± 1.18 kg) were selected at 30 days of age. At 60 days of age, lambs were weaned, and ADG was calculated from 60 to 90 days. Then, two groups were generated: higher ADG (HG, 134.17 ± 13.48 g/day) and lower ADG (LG, 47.50 ± 19.51 g/day). Microbiota was evaluated at 30, 60, and 90 days of age. The final live weight and ADG at 90 days of age was higher (p < 0.05) in the HG group compared to the LG group. The maturity of bacterial and fungal communities was increased (p < 0.05) in the HG group for the 30 days vs. 90 days comparison and 60 days vs. 90 days comparison. Linear discriminant analysis effect size (LEfSe) analysis revealed a total of 18 bacterial biomarkers that are ADG-specific in the rumen and 35 bacterial biomarkers in the rectum. Meanwhile, 15 fungal biomarkers were found in the rumen and 8 biomarkers were found in the rectum. Our findings indicated that ADG is related to the rumen and rectum microbiota in lambs.
Collapse
|
19
|
Luo S, Wang Y, Kang X, Liu P, Wang G. Research progress on the association between mastitis and gastrointestinal microbes in dairy cows and the effect of probiotics. Microb Pathog 2022; 173:105809. [PMID: 36183956 DOI: 10.1016/j.micpath.2022.105809] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/25/2022] [Accepted: 09/26/2022] [Indexed: 11/15/2022]
Abstract
Mastitis in dairy cows affects milk quality and thereby constrains the development of the dairy industry. A clear understanding of the pathogenesis of mastitis can help its treatment. Mastitis is caused by the invasion of pathogenic bacteria into the mammary gland through the mammary ducts. However, recent studies suggested that an endogenous entero-mammary pathway in dairy cattle might also be playing an important role in regulating mastitis. Also, probiotic intervention regulating host gut microbes has become an interesting tool to control mastitis. This review discusses the association of gastrointestinal microbes with mastitis and the mechanism of action of probiotics in dairy cows to provide new ideas for the management of mastitis in large-scale dairy farms.
Collapse
Affiliation(s)
- Shuangyan Luo
- School of Agriculture, Ningxia University, 750021, Yinchuan, China
| | - Yuxia Wang
- School of Agriculture, Ningxia University, 750021, Yinchuan, China
| | - Xinyun Kang
- School of Agriculture, Ningxia University, 750021, Yinchuan, China
| | - Panpan Liu
- School of Agriculture, Ningxia University, 750021, Yinchuan, China
| | - Guiqin Wang
- School of Agriculture, Ningxia University, 750021, Yinchuan, China.
| |
Collapse
|
20
|
Li LP, Peng KL, Xue MY, Zhu SL, Liu JX, Sun HZ. An Age Effect of Rumen Microbiome in Dairy Buffaloes Revealed by Metagenomics. Microorganisms 2022; 10:microorganisms10081491. [PMID: 35893549 PMCID: PMC9332492 DOI: 10.3390/microorganisms10081491] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/15/2022] [Accepted: 07/20/2022] [Indexed: 12/10/2022] Open
Abstract
Age is an important factor in shaping the gut microbiome. However, the age effect on the rumen microbial community for dairy buffaloes remains less explored. Using metagenomics, we examined the microbial composition and functions of rumen microbiota in dairy Murrah buffaloes of different ages: Y (1 year old), M (3−5 years old), E (6−8 years old), and O (>9 years old). We found that Bacteroidetes and Firmicutes were the predominant phyla, with Prevotella accounting for the highest abundance at the genus level. The proportion of Bacteroides and Methanobrevibacter significantly increased with age, while the abundance of genus Lactobacillus significantly decreased with age (LDA > 3, p < 0.05). Most differed COG and KEGG pathways were enriched in Y with carbohydrate metabolism, while older buffaloes enriched more functions of protein metabolism and the processing of replication and repair (LDA > 2, p < 0.05). Additionally, the functional contribution analysis revealed that the genera Prevotella and Lactobacillus of Y with more functions of CAZymes encoded genes of glycoside hydrolases and carbohydrate esterases for their roles of capable of metabolizing starch and sucrose-associated oligosaccharide enzyme, hemicellulase, and cellulase activities than the other three groups (LDA > 2, p < 0.05), thus affecting the 1-year-old dairy buffalo rumen carbohydrate metabolism. This study provides comprehensive dairy buffalo rumen metagenome data and assists in manipulating the rumen microbiome for improved dairy buffalo production.
Collapse
Affiliation(s)
- Long-Ping Li
- Ministry of Education Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou 310058, China; (L.-P.L.); (K.-L.P.); (M.-Y.X.); (S.-L.Z.); (J.-X.L.)
- Shaanxi Provincial Engineering and Technology Research Center of Cashmere Goats, Yulin University, Yulin 719000, China
| | - Ke-Lan Peng
- Ministry of Education Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou 310058, China; (L.-P.L.); (K.-L.P.); (M.-Y.X.); (S.-L.Z.); (J.-X.L.)
| | - Ming-Yuan Xue
- Ministry of Education Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou 310058, China; (L.-P.L.); (K.-L.P.); (M.-Y.X.); (S.-L.Z.); (J.-X.L.)
| | - Sen-Lin Zhu
- Ministry of Education Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou 310058, China; (L.-P.L.); (K.-L.P.); (M.-Y.X.); (S.-L.Z.); (J.-X.L.)
| | - Jian-Xin Liu
- Ministry of Education Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou 310058, China; (L.-P.L.); (K.-L.P.); (M.-Y.X.); (S.-L.Z.); (J.-X.L.)
| | - Hui-Zeng Sun
- Ministry of Education Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou 310058, China; (L.-P.L.); (K.-L.P.); (M.-Y.X.); (S.-L.Z.); (J.-X.L.)
- Correspondence: ; Tel.: +86-0571-88981341
| |
Collapse
|
21
|
Ault-Seay TB, Brandt KJ, Henniger MT, Payton RR, Mathew DJ, Moorey SE, Schrick FN, Pohler KG, Smith TPL, Rhinehart JD, Schneider LG, McLean KJ, Myer PR. Bacterial Communities of the Uterus and Rumen During Heifer Development With Protein Supplementation. FRONTIERS IN ANIMAL SCIENCE 2022. [DOI: 10.3389/fanim.2022.903909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Bacterial communities play major roles in rumen and uterine function toward optimal animal performance and may be affected by changes occurring during heifer development such as nutritional supplementation for optimal growth and the attainment of puberty. The effect of different levels of protein supplementation on ruminal and uterine bacterial communities following weaning was examined through first breeding of heifers. Angus heifers (n = 39) were blocked by initial body weight (BW) and randomly assigned to one of three 163-day (d) crude protein (CP) supplementation diets including control (10% CP, n = 14), 20% CP (n = 11), or 40% CP (n = 14) treatment groups. Growth and development were monitored by body weight, with blood progesterone concentration determined every 14 d to determine pubertal status. Uterine flush and rumen fluid were collected on d 56, 112, and 163 relative to the start of supplementation. Bacterial DNA was extracted from fluid samples, the V1–V3 hypervariable region of the 16S rRNA gene was amplified, and amplicons were sequenced then processed in R 4.1. Statistical analyses were performed in SAS 9.4 with a GLIMMIX procedure utilizing fixed effects of protein, month, pubertal status, and interactions, with random effects including BW, interaction of BW and protein, and heifer within the interaction, and repeated measures of day. In the uterus, pubertal status and day of supplementation affected the observed amplicon sequence variants (ASVs) and led to clustering of samples in a principal coordinate analysis (PCoA; P < 0.05), but no effect of protein supplementation was observed. Ruminal samples clustered in PCoA (P = 0.001), and observed ASVs were impacted over time (P < 0.0001), but no effect of protein supplementation was detected. In contrast, protein supplementation, pubertal status, and day of supplementation affected the abundance of multiple phyla and genera in the uterus and rumen (P < 0.05). Temporal and pubertal status effects on the heifer’s uterine bacterial communities potentially indicate a maturing uterine microbiome. Protein supplementation did not impact microbial diversity measures but did affect the abundance of individual bacterial phyla and genera that may provide future opportunities to manipulate bacterial community composition and maximize productivity.
Collapse
|
22
|
Su Y, Su J, Li F, Tian X, Liu Z, Ding G, Bai J, Li Z, Ma Z, Peppelenbosch MP. Yak Gut Microbiota: A Systematic Review and Meta-Analysis. Front Vet Sci 2022; 9:889594. [PMID: 35836500 PMCID: PMC9274166 DOI: 10.3389/fvets.2022.889594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 05/30/2022] [Indexed: 11/30/2022] Open
Abstract
The yak (Bos grunniens) is closely related to common cows (Bos taurus), but is clearly a distinct species. Yaks are of substantial importance to food and leather production in certain high-altitude regions of Asia. The animal is increasing elsewhere as well, mainly because of the perceived health benefits of its milk. Like all ruminants, the animal harbors a complex community of microbial cells in its gut, crucial for its physiology. Despite yaks being important domestic animals, the composition of its gut microbiota and how the composition is guided by its specific high-altitude environment remains largely uncategorized. Hence, online databases (Embase, Medline ALL, Web of Science Core Collection, Cochrane Central Register of Controlled Trials, and Google Scholar) were searched for articles on yak intestinal microbiota. The pooled taxonomic abundance was compared between regions, sexes, different age groups, and feeding patterns. The gut microbiota distribution across different yak intestinal segments was established through pooled average taxonomic abundance. A total of 34 studies met the inclusion criteria and yielded information on 982 unique yak gut microbiota samples. An analysis of overall pooled microbiota revealed a segmented microbial community composition of the yak gut. Yak rumen microbiota was significantly influenced by difference in region, sex, and feeding patterns, the latter factor being dominant in this respect. Yak microbiome is shaped by the feeding strategy and provides an obvious avenue for improving health and productivity of the animal. More generally, the current segmental description of physiological gut microbiome provides insight into how the microbiology of this animal has adapted itself to help comping yaks with its high-altitude habitat.
Collapse
Affiliation(s)
- Yuxin Su
- China-Malaysia National Joint Laboratory, Biomedical Research Center of Northwest Minzu University, Lanzhou, China
| | - Junhong Su
- Department of Gastroenterology and Hepatology, Erasmus MC – University Medical Center, Rotterdam, Netherlands
| | - Fanglin Li
- China-Malaysia National Joint Laboratory, Biomedical Research Center of Northwest Minzu University, Lanzhou, China
| | - Xiaojing Tian
- China-Malaysia National Joint Laboratory, Biomedical Research Center of Northwest Minzu University, Lanzhou, China
- Ganan Research Institute of Yak Milk, Hezuo, China
| | - Zewen Liu
- China-Malaysia National Joint Laboratory, Biomedical Research Center of Northwest Minzu University, Lanzhou, China
| | - Gongtao Ding
- China-Malaysia National Joint Laboratory, Biomedical Research Center of Northwest Minzu University, Lanzhou, China
| | - Jialin Bai
- China-Malaysia National Joint Laboratory, Biomedical Research Center of Northwest Minzu University, Lanzhou, China
| | - Zhuo Li
- China-Malaysia National Joint Laboratory, Biomedical Research Center of Northwest Minzu University, Lanzhou, China
- Zhuo Li
| | - Zhongren Ma
- China-Malaysia National Joint Laboratory, Biomedical Research Center of Northwest Minzu University, Lanzhou, China
- Ganan Research Institute of Yak Milk, Hezuo, China
- Zhongren Ma
| | - Maikel P. Peppelenbosch
- Department of Gastroenterology and Hepatology, Erasmus MC – University Medical Center, Rotterdam, Netherlands
- *Correspondence: Maikel P. Peppelenbosch
| |
Collapse
|
23
|
Arshad MA, Hassan FU, Rehman MS, Huws SA, Cheng Y, Din AU. Gut microbiome colonization and development in neonatal ruminants: Strategies, prospects, and opportunities. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2021; 7:883-895. [PMID: 34632119 PMCID: PMC8484983 DOI: 10.1016/j.aninu.2021.03.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 01/23/2021] [Accepted: 03/23/2021] [Indexed: 02/08/2023]
Abstract
Colonization and development of the gut microbiome is a crucial consideration for optimizing the health and performance of livestock animals. This is mainly attributed to the fact that dietary and management practices greatly influence the gut microbiota, subsequently leading to changes in nutrient utilization and immune response. A favorable microbiome can be implanted through dietary or management interventions of livestock animals, especially during early life. In this review, we explore all the possible factors (for example gestation, colostrum, and milk feeding, drinking water, starter feed, inoculation from healthy animals, prebiotics/probiotics, weaning time, essential oil and transgenesis), which can influence rumen microbiome colonization and development. We discuss the advantages and disadvantages of potential strategies used to manipulate gut development and microbial colonization to improve the production and health of newborn calves at an early age when they are most susceptible to enteric disease. Moreover, we provide insights into possible interventions and their potential effects on rumen development and microbiota establishment. Prospects of latest techniques like transgenesis and host genetics have also been discussed regarding their potential role in modulation of rumen microbiome and subsequent effects on gut development and performance in neonatal ruminants.
Collapse
Affiliation(s)
- Muhammad A Arshad
- Institute of Animal and Dairy Sciences, Faculty of Animal Husbandry, University of Agriculture, Faisalabad, 38040, Pakistan
- Laboratory of Gastrointestinal Microbiology, National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, 210095, China
| | - Faiz-Ul Hassan
- Institute of Animal and Dairy Sciences, Faculty of Animal Husbandry, University of Agriculture, Faisalabad, 38040, Pakistan
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Ministry of Agriculture and Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, 530001, China
| | - Muhammad S Rehman
- Institute of Animal and Dairy Sciences, Faculty of Animal Husbandry, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Sharon A Huws
- School of Biological Sciences, Institute for Global Food Security, Queen's University of Belfast, Belfast, BT9 5DL, GB-NIR, UK
| | - Yanfen Cheng
- Laboratory of Gastrointestinal Microbiology, National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ahmad U Din
- Drug Discovery Research Center, Southwest Medical University, Luzhou, 646000, China
| |
Collapse
|
24
|
Guo CY, Ji SK, Yan H, Wang YJ, Liu JJ, Cao ZJ, Yang HJ, Zhang WJ, Li SL. Dynamic change of the gastrointestinal bacterial ecology in cows from birth to adulthood. Microbiologyopen 2020; 9:e1119. [PMID: 33034165 PMCID: PMC7658451 DOI: 10.1002/mbo3.1119] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 08/08/2020] [Accepted: 08/21/2020] [Indexed: 01/18/2023] Open
Abstract
The gut microbiota plays multiple critical roles in maintaining the health of the host, especially in ruminants. However, our understanding of the establishment of gut microbiota from birth to adulthood is still limited. To address this, the bacterial ecology of the rumen, abomasum, duodenum, and rectum in Holstein cows ranging in age from 1 week to 5 years old was investigated using 16S rRNA gene sequencing in this study. A major change in the composition, diversity, and abundance of bacteria was observed with increased age (p < 0.05). Microbiota gradually matured in each gut segment and followed the Gompertz model when the Chao1, Shannon, and maturity indexes (p < 0.05, r > 0.94) were applied. Importantly, the Gompertz model parameter differed between the gut segments, with the highest microbiota growth rate found in the rectum, followed by the rumen, abomasum, and duodenum. Compared to older animals, greater microbiota similarities were found in the adjacent gut segments of younger animals (p < 0.05). Our findings indicate that gut microbiotas are established quickly when cows are young and then slow with age and that early in life, hindgut microbiota may be more easily affected by the foregut microbiota.
Collapse
Affiliation(s)
- Chun Y Guo
- College of Animal Science and Technology, Shihezi University, Shihezi, China.,State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China.,Jinzhong Vocational and Technical College, Jinzhong, China
| | - Shou K Ji
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China.,College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
| | - Hui Yan
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China.,College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
| | - Ya J Wang
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jing J Liu
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zhi J Cao
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Hong J Yang
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Wen J Zhang
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Sheng L Li
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|