1
|
Thiele S, Vader A, Øvreås L. The mystery of the ice cold rose-Microbiome of an Arctic winter frost flower. Microbiologyopen 2023; 12:e1345. [PMID: 36825884 PMCID: PMC9898838 DOI: 10.1002/mbo3.1345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 01/27/2023] [Accepted: 01/27/2023] [Indexed: 02/05/2023] Open
Abstract
Under very cold conditions, delicate ice-crystal structures called frost flowers emerge on the surface of newly formed sea ice. These understudied, ephemeral structures include saline brine, organic material, inorganic nutrients, and bacterial and archaeal communities in their brine channels. Hitherto, only a few frost flowers have been studied during spring and these have been reported to be dominated by Rhizobia or members of the SAR11 clade. Here we report on the microbiome of frost flowers sampled during the winter and polar night in the Barents Sea. There was a distinct difference in community profile between the extracted DNA and RNA, but both were dominated by members of the SAR11 clade (78% relative abundance and 41.5% relative activity). The data further suggested the abundance and activity of Cand. Nitrosopumilus, Nitrospinia, and Nitrosomonas. Combined with the inference of marker genes based on the 16S rRNA gene data, this indicates that sulfur and nitrogen cycling are likely the major metabolism in these ephemeral structures.
Collapse
Affiliation(s)
- Stefan Thiele
- Department of Biological ScienceUniversity of BergenBergenNorway
- Polar Climate research groupBjerknes Centre for Climate ResearchBergenNorway
| | - Anna Vader
- Department of Arctic BiologyUniversity Center in Svalbard, UNISLongyearbyenNorway
| | - Lise Øvreås
- Department of Biological ScienceUniversity of BergenBergenNorway
- Polar Climate research groupBjerknes Centre for Climate ResearchBergenNorway
- Department of Arctic BiologyUniversity Center in Svalbard, UNISLongyearbyenNorway
| |
Collapse
|
2
|
Wintertime Simulations Induce Changes in the Structure, Diversity and Function of Antarctic Sea Ice-Associated Microbial Communities. Microorganisms 2022; 10:microorganisms10030623. [PMID: 35336197 PMCID: PMC8950563 DOI: 10.3390/microorganisms10030623] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/04/2022] [Accepted: 03/11/2022] [Indexed: 11/26/2022] Open
Abstract
Antarctic sea-ice is exposed to a wide range of environmental conditions during its annual existence; however, there is very little information describing the change in sea-ice-associated microbial communities (SIMCOs) during the changing seasons. It is well known that during the solar seasons, SIMCOs play an important role in the polar carbon-cycle, by increasing the total photosynthetic primary production of the South Ocean and participating in the remineralization of phosphates and nitrogen. What remains poorly understood is the dynamic of SIMCO populations and their ecological contribution to carbon and nutrient cycling throughout the entire annual life of Antarctic sea-ice, especially in winter. Sea ice at this time of the year is an extreme environment, characterized by complete darkness (which stops photosynthesis), extremely low temperatures in its upper horizons (down to −45 °C) and high salinity (up to 150–250 psu) in its brine inclusions, where SIMCOs thrive. Without a permanent station, wintering expeditions in Antarctica are technically difficult; therefore, in this study, the process of autumn freezing was modelled under laboratory conditions, and the resulting ‘young ice’ was further incubated in cold and darkness for one month. The ice formation experiment was primarily designed to reproduce two critical conditions: (i) total darkness, causing the photosynthesis to cease, and (ii) the presence of a large amount of algae-derived organic matter. As expected, in the absence of photosynthesis, the activity of aerobic heterotrophs quickly created micro-oxic conditions, which caused the emergence of new players, namely facultative anaerobic and anaerobic microorganisms. Following this finding, we can state that Antarctic pack-ice and its surrounding ambient (under-ice seawater and platelet ice) are likely to be very dynamic and can quickly respond to environmental changes caused by the seasonal fluctuations. Given the size of Antarctic pack-ice, even in complete darkness and cessation of photosynthesis, its ecosystem appears to remain active, continuing to participate in global carbon-and-sulfur cycling under harsh conditions.
Collapse
|
3
|
Life from a Snowflake: Diversity and Adaptation of Cold-Loving Bacteria among Ice Crystals. CRYSTALS 2022. [DOI: 10.3390/cryst12030312] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Incredible as it is, researchers have now the awareness that even the most extreme environment includes special habitats that host several forms of life. Cold environments cover different compartments of the cryosphere, as sea and freshwater ice, glaciers, snow, and permafrost. Although these are very particular environmental compartments in which various stressors coexist (i.e., freeze–thaw cycles, scarce water availability, irradiance conditions, and poorness of nutrients), diverse specialized microbial communities are harbored. This raises many intriguing questions, many of which are still unresolved. For instance, a challenging focus is to understand if microorganisms survive trapped frozen among ice crystals for long periods of time or if they indeed remain metabolically active. Likewise, a look at their site-specific diversity and at their putative geochemical activity is demanded, as well as at the equally interesting microbial activity at subzero temperatures. The production of special molecules such as strategy of adaptations, cryoprotectants, and ice crystal-controlling molecules is even more intriguing. This paper aims at reviewing all these aspects with the intent of providing a thorough overview of the main contributors in investigating the microbial life in the cryosphere, touching on the themes of diversity, adaptation, and metabolic potential.
Collapse
|
4
|
Fernández-Gómez B, Díez B, Polz MF, Arroyo JI, Alfaro FD, Marchandon G, Sanhueza C, Farías L, Trefault N, Marquet PA, Molina-Montenegro MA, Sylvander P, Snoeijs-Leijonmalm P. Bacterial community structure in a sympagic habitat expanding with global warming: brackish ice brine at 85-90 °N. THE ISME JOURNAL 2019; 13:316-333. [PMID: 30228379 PMCID: PMC6331608 DOI: 10.1038/s41396-018-0268-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 06/11/2018] [Accepted: 07/24/2018] [Indexed: 01/13/2023]
Abstract
Larger volumes of sea ice have been thawing in the Central Arctic Ocean (CAO) during the last decades than during the past 800,000 years. Brackish brine (fed by meltwater inside the ice) is an expanding sympagic habitat in summer all over the CAO. We report for the first time the structure of bacterial communities in this brine. They are composed of psychrophilic extremophiles, many of them related to phylotypes known from Arctic and Antarctic regions. Community structure displayed strong habitat segregation between brackish ice brine (IB; salinity 2.4-9.6) and immediate sub-ice seawater (SW; salinity 33.3-34.9), expressed at all taxonomic levels (class to genus), by dominant phylotypes as well as by the rare biosphere, and with specialists dominating IB and generalists SW. The dominant phylotypes in IB were related to Candidatus Aquiluna and Flavobacterium, those in SW to Balneatrix and ZD0405, and those shared between the habitats to Halomonas, Polaribacter and Shewanella. A meta-analysis for the oligotrophic CAO showed a pattern with Flavobacteriia dominating in melt ponds, Flavobacteriia and Gammaproteobacteria in solid ice cores, Flavobacteriia, Gamma- and Betaproteobacteria, and Actinobacteria in brine, and Alphaproteobacteria in SW. Based on our results, we expect that the roles of Actinobacteria and Betaproteobacteria in the CAO will increase with global warming owing to the increased production of meltwater in summer. IB contained three times more phylotypes than SW and may act as an insurance reservoir for bacterial diversity that can act as a recruitment base when environmental conditions change.
Collapse
Affiliation(s)
- Beatriz Fernández-Gómez
- Department of Molecular Genetics and Microbiology, Pontifical University Catholic of Chile, Santiago, Chile
- INTA-Universidad de Chile, Santiago, Chile
| | - Beatriz Díez
- Department of Molecular Genetics and Microbiology, Pontifical University Catholic of Chile, Santiago, Chile.
- Center for Climate and Resilience Research, Concepción, Chile.
| | - Martin F Polz
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, USA
| | - José Ignacio Arroyo
- Department of Ecology, Pontifical University Catholic of Chile, Santiago, Chile
| | - Fernando D Alfaro
- GEMA Center for Genomics, Ecology & Environment, Universidad Mayor, Santiago, Chile
- Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
| | - Germán Marchandon
- Department of Molecular Genetics and Microbiology, Pontifical University Catholic of Chile, Santiago, Chile
| | - Cynthia Sanhueza
- Department of Molecular Genetics and Microbiology, Pontifical University Catholic of Chile, Santiago, Chile
| | - Laura Farías
- Center for Climate and Resilience Research, Concepción, Chile
- Department of Oceanography, Universidad de Concepción, Concepción, Chile
| | - Nicole Trefault
- GEMA Center for Genomics, Ecology & Environment, Universidad Mayor, Santiago, Chile
| | - Pablo A Marquet
- Department of Ecology, Pontifical University Catholic of Chile, Santiago, Chile
- Instituto de Ecología y Biodiversidad, Universidad de Chile, Santiago, Chile
| | - Marco A Molina-Montenegro
- Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
- Centro de Estudios Avanzados en Zonas Áridas, Universidad Católica del Norte, Coquimbo, Chile
| | - Peter Sylvander
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| | | |
Collapse
|
5
|
Retelletti Brogi S, Ha SY, Kim K, Derrien M, Lee YK, Hur J. Optical and molecular characterization of dissolved organic matter (DOM) in the Arctic ice core and the underlying seawater (Cambridge Bay, Canada): Implication for increased autochthonous DOM during ice melting. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 627:802-811. [PMID: 29426205 DOI: 10.1016/j.scitotenv.2018.01.251] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 01/24/2018] [Accepted: 01/24/2018] [Indexed: 06/08/2023]
Abstract
Sea ice contains a large amount of dissolved organic matter (DOM), which can be released into the ocean once it melts. In this study, Arctic sea ice DOM was characterized for its optical (fluorescence) properties as well as the molecular sizes and composition via size exclusion chromatography and Fourier transformation ion cyclotron resonance mass spectrometry (FT-ICR MS). Ice cores were collected along with the underlying seawater samples in Cambridge Bay, an Arctic area experiencing seasonal ice formation. The ice core samples revealed a marked enrichment of dissolved organic carbon (DOC) compared to the seawater counterparts (up to 6.2 times greater). The accumulation can be attributed to in situ production by the autotrophic and heterotrophic communities. Fluorescence excitation emission matrices (EEMs) elaborated with parallel factor analysis (PARAFAC) evidenced the prevalence of protein-like substances in the ice cores, which likely results from in situ production followed by accumulation in the ice. Size exclusion chromatography further revealed the in situ production of all DOM size fractions, with the exception of the humic substance fraction. The majority of DOM in both the ice and seawater consists of low molecular weight compounds (<350 Da) probably derived by the microbial degradation/transformation of freshly produced DOM. Molecular characterization also supported the in situ production of DOM and highlighted the marked difference in molecular composition between sea ice and seawater. This study provides new insights into the possible role of sea ice DOM in the Arctic carbon cycle under climate change.
Collapse
Affiliation(s)
| | - Sun-Yong Ha
- Division of Polar Ocean Science Research, Korea Polar Research Institute (KOPRI), Incheon 21990, South Korea
| | - Kwanwoo Kim
- Department of Oceanography, Pusan National University, 30, Jangjeon-dong, Geumjeong-gu, Busan 46241, South Korea
| | - Morgane Derrien
- Department of Environment & Energy, Sejong University, Seoul 05006, South Korea
| | - Yun Kyung Lee
- Department of Environment & Energy, Sejong University, Seoul 05006, South Korea
| | - Jin Hur
- Department of Environment & Energy, Sejong University, Seoul 05006, South Korea.
| |
Collapse
|
6
|
An active bacterial community linked to high chl-a concentrations in Antarctic winter-pack ice and evidence for the development of an anaerobic sea-ice bacterial community. ISME JOURNAL 2017; 11:2345-2355. [PMID: 28708127 DOI: 10.1038/ismej.2017.96] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 05/02/2017] [Accepted: 05/06/2017] [Indexed: 11/09/2022]
Abstract
Antarctic sea-ice bacterial community composition and dynamics in various developmental stages were investigated during the austral winter in 2013. Thick snow cover likely insulated the ice, leading to high (<4 μg l-1) chlorophyll-a (chl-a) concentrations and consequent bacterial production. Typical sea-ice bacterial genera, for example, Octadecabacter, Polaribacter and Glaciecola, often abundant in spring and summer during the sea-ice algal bloom, predominated in the communities. The variability in bacterial community composition in the different ice types was mainly explained by the chl-a concentrations, suggesting that as in spring and summer sea ice, the sea-ice bacteria and algae may also be coupled during the Antarctic winter. Coupling between the bacterial community and sea-ice algae was further supported by significant correlations between bacterial abundance and production with chl-a. In addition, sulphate-reducing bacteria (for example, Desulforhopalus) together with odour of H2S were observed in thick, apparently anoxic ice, suggesting that the development of the anaerobic bacterial community may occur in sea ice under suitable conditions. In all, the results show that bacterial community in Antarctic sea ice can stay active throughout the winter period and thus possible future warming of sea ice and consequent increase in bacterial production may lead to changes in bacteria-mediated processes in the Antarctic sea-ice zone.
Collapse
|
7
|
Eronen-Rasimus E, Piiparinen J, Karkman A, Lyra C, Gerland S, Kaartokallio H. Bacterial communities in Arctic first-year drift ice during the winter/spring transition. ENVIRONMENTAL MICROBIOLOGY REPORTS 2016; 8:527-535. [PMID: 27264318 DOI: 10.1111/1758-2229.12428] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Horizontal and vertical variability of first-year drift-ice bacterial communities was investigated along a North-South transect in the Fram Strait during the winter/spring transition. Two different developmental stages were captured along the transect based on the prevailing environmental conditions and the differences in bacterial community composition. The differences in the bacterial communities were likely driven by the changes in sea-ice algal biomass (2.6-5.6 fold differences in chl-a concentrations). Copiotrophic genera common in late spring/summer sea ice, such as Polaribacter, Octadecabacter and Glaciecola, dominated the bacterial communities, supporting the conclusion that the increase in the sea-ice algal biomass was possibly reflected in the sea-ice bacterial communities. Of the dominating bacterial genera, Polaribacter seemed to benefit the most from the increase in algal biomass, since they covered approximately 39% of the total community at the southernmost stations with higher (>6 μg l(-1) ) chl-a concentrations and only 9% at the northernmost station with lower chl-a concentrations (<6 μg l(-1) ). The sea-ice bacterial communities also varied between the ice horizons at all three stations and thus we recommend that for future studies multiple ice horizons be sampled to cover the variability in sea-ice bacterial communities in spring.
Collapse
Affiliation(s)
- Eeva Eronen-Rasimus
- Marine Research Centre, Finnish Environment Institute, PO Box 140, Erik Palménin aukio 1, Helsinki, 00251, Finland
- Tvärminne Zoological Station, University of Helsinki, J.A. Palménin tie 260, Hanko, 10900, Finland
| | - Jonna Piiparinen
- Marine Research Centre, Finnish Environment Institute, PO Box 140, Erik Palménin aukio 1, Helsinki, 00251, Finland
- Tvärminne Zoological Station, University of Helsinki, J.A. Palménin tie 260, Hanko, 10900, Finland
| | - Antti Karkman
- Department of Food and Environmental Sciences, University of Helsinki, PO Box 56, Viikinkaari 9, 00014, Finland
| | - Christina Lyra
- Department of Food and Environmental Sciences, University of Helsinki, PO Box 56, Viikinkaari 9, 00014, Finland
| | - Sebastian Gerland
- Norwegian Polar Institute, Fram Centre, P.O. Box 6606 Langnes, Tromsø, 9296, Norway
| | - Hermanni Kaartokallio
- Marine Research Centre, Finnish Environment Institute, PO Box 140, Erik Palménin aukio 1, Helsinki, 00251, Finland
| |
Collapse
|
8
|
Wind-driven distribution of bacteria in coastal Antarctica: evidence from the Ross Sea region. Polar Biol 2016. [DOI: 10.1007/s00300-016-1921-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
9
|
Boetius A, Anesio AM, Deming JW, Mikucki JA, Rapp JZ. Microbial ecology of the cryosphere: sea ice and glacial habitats. Nat Rev Microbiol 2015; 13:677-90. [PMID: 26344407 DOI: 10.1038/nrmicro3522] [Citation(s) in RCA: 234] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The Earth's cryosphere comprises those regions that are cold enough for water to turn into ice. Recent findings show that the icy realms of polar oceans, glaciers and ice sheets are inhabited by microorganisms of all three domains of life, and that temperatures below 0 °C are an integral force in the diversification of microbial life. Cold-adapted microorganisms maintain key ecological functions in icy habitats: where sunlight penetrates the ice, photoautotrophy is the basis for complex food webs, whereas in dark subglacial habitats, chemoautotrophy reigns. This Review summarizes current knowledge of the microbial ecology of frozen waters, including the diversity of niches, the composition of microbial communities at these sites and their biogeochemical activities.
Collapse
Affiliation(s)
- Antje Boetius
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany.,Max Planck Institute for Marine Microbiology, Celsiusstraße 1, 28359 Bremen, Germany
| | - Alexandre M Anesio
- Bristol Glaciology Center, School of Geographical Sciences, University of Bristol, BS8 1SS, UK
| | - Jody W Deming
- School of Oceanography, Box 357940, University of Washington, Seattle, Washington 98195, USA
| | - Jill A Mikucki
- Department of Biology, 276 Bicentennial Way, Middlebury College, Middlebury, Vermont 05753, USA
| | - Josephine Z Rapp
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany.,Max Planck Institute for Marine Microbiology, Celsiusstraße 1, 28359 Bremen, Germany
| |
Collapse
|
10
|
Eronen-Rasimus E, Lyra C, Rintala JM, Jürgens K, Ikonen V, Kaartokallio H. Ice formation and growth shape bacterial community structure in Baltic Sea drift ice. FEMS Microbiol Ecol 2015; 91:1-13. [PMID: 25764550 DOI: 10.1093/femsec/fiu022] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Drift ice, open water and under-ice water bacterial communities covering several developmental stages from open water to thick ice were studied in the northern Baltic Sea. The bacterial communities were assessed with 16S rRNA gene terminal-restriction fragment length polymorphism and cloning, together with bacterial abundance and production measurements. In the early stages, open water and pancake ice were dominated by Alphaproteobacteria and Actinobacteria, which are common bacterial groups in Baltic Sea wintertime surface waters. The pancake ice bacterial communities were similar to the open-water communities, suggesting that the parent water determines the sea-ice bacterial community in the early stages of sea-ice formation. In consolidated young and thick ice, the bacterial communities were significantly different from water bacterial communities as well as from each other, indicating community development in Baltic Sea drift ice along with ice-type changes. The thick ice was dominated by typical sea-ice genera from classes Flavobacteria and Gammaproteobacteria, similar to those in polar sea-ice bacterial communities. Since the thick ice bacterial community was remarkably different from that of the parent seawater, results indicate that thick ice bacterial communities were recruited from the rarer members of the seawater bacterial community.
Collapse
Affiliation(s)
- Eeva Eronen-Rasimus
- Marine Research Centre, Finnish Environment Institute (SYKE), Erik Palménin aukio 1, PO Box 140, Helsinki 00251, Finland Tvärminne Zoological Station, University of Helsinki, J.A. Palménin tie 260, FI-10900 Hanko, Finland
| | - Christina Lyra
- Department of Food and Environmental Sciences, PO Box 56, Viikinkaari 9, FI-00014 University of Helsinki, Finland
| | - Janne-Markus Rintala
- Tvärminne Zoological Station, University of Helsinki, J.A. Palménin tie 260, FI-10900 Hanko, Finland Department of Environmental Sciences, PO Box 65, Viikinkaari 1, FI-00014 University of Helsinki, Finland
| | - Klaus Jürgens
- Leibniz Institute for Baltic Sea Research Biological Oceanography, Seestr. 15, 18119 Rostock, Germany
| | - Vilma Ikonen
- Marine Research Centre, Finnish Environment Institute (SYKE), Erik Palménin aukio 1, PO Box 140, Helsinki 00251, Finland
| | - Hermanni Kaartokallio
- Marine Research Centre, Finnish Environment Institute (SYKE), Erik Palménin aukio 1, PO Box 140, Helsinki 00251, Finland
| |
Collapse
|
11
|
|