1
|
Roson-Calero N, Lucas J, Gomis-Font MA, de Pedro-Jové R, Oliver A, Ballesté-Delpierre C, Vila J. Cyclic Peptide MV6, an Aminoglycoside Efficacy Enhancer Against Acinetobacter baumannii. Antibiotics (Basel) 2024; 13:1147. [PMID: 39766537 PMCID: PMC11672505 DOI: 10.3390/antibiotics13121147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 11/22/2024] [Accepted: 11/24/2024] [Indexed: 01/11/2025] Open
Abstract
Background/Objectives: Acinetobacter baumannii is a globally emerging pathogen with widespread antimicrobial resistance driven by multiple mechanisms, such as altered expression of efflux pumps like AdeABC, placing it as a priority for research. Driven by the lack of new treatments, alternative approaches are being explored to combat its infections, among which efficacy-enhancing adjuvants can be found. This study presents and characterizes MV6, a synthetic cyclic peptide that boosts aminoglycoside efficacy. Methods: MV6's activity was assessed through antimicrobial susceptibility testing in combination with different antibiotic classes against A. baumannii strains characterized by PCR and RT-qPCR. PAβN served as a reference efflux pump inhibitor. Synergy was evaluated using checkerboard assays, and spontaneous mutants were generated with netilmicin with/without MV6 (100 mg/L). Whole-genome sequencing and variant calling analysis were then performed. Results: MV6 presented low antimicrobial activity in A. baumannii with MICs higher than 2048 mg/L. MV6 showed a better boosting effect for aminoglycosides, especially netilmicin, exceeding that of PAβN. Checkerboard assays confirmed a strong synergy between netilmicin and MV6, and a significant correlation was found between netilmicin MIC and adeB overexpression, which was mitigated by the presence of MV6. MV6 reduced, by 16-fold, the mutant prevention concentration of netilmicin. Mutations in a TetR-family regulator and ABC-binding proteins were found in both groups, suggesting a direct or indirect implication of these proteins in the resistance acquisition process. Conclusions: MV6 lacks intrinsic antimicrobial activity, minimizing selective pressure, yet enhances netilmicin's effectiveness except for strain 210, which lacks the AdeABC efflux pump. Resistant mutants indicate specific aminoglycoside resistance mechanisms involving efflux pump mutations, suggesting synergistic interactions. Further research, including transcriptomic analysis, is essential to elucidate MV6's role in enhancing netilmicin efficacy and its resistance mechanisms.
Collapse
Affiliation(s)
- Natalia Roson-Calero
- Barcelona Institute for Global Health (ISGlobal), 08036 Barcelona, Spain; (N.R.-C.); (J.L.); (R.d.P.-J.)
- Department of Basic Clinical Practice, School of Medicine, University of Barcelona, 08036 Barcelona, Spain
| | - Jimmy Lucas
- Barcelona Institute for Global Health (ISGlobal), 08036 Barcelona, Spain; (N.R.-C.); (J.L.); (R.d.P.-J.)
| | - María A. Gomis-Font
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto Salud Carlos III, 28029 Madrid, Spain; (M.A.G.-F.); (A.O.); (C.B.-D.)
- Department of Microbiology, Hospital Universitario Son Espases, Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma de Mallorca, Spain
| | - Roger de Pedro-Jové
- Barcelona Institute for Global Health (ISGlobal), 08036 Barcelona, Spain; (N.R.-C.); (J.L.); (R.d.P.-J.)
| | - Antonio Oliver
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto Salud Carlos III, 28029 Madrid, Spain; (M.A.G.-F.); (A.O.); (C.B.-D.)
- Department of Microbiology, Hospital Universitario Son Espases, Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma de Mallorca, Spain
| | - Clara Ballesté-Delpierre
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto Salud Carlos III, 28029 Madrid, Spain; (M.A.G.-F.); (A.O.); (C.B.-D.)
- Department of Clinical Microbiology, Biomedical Diagnostic Center, Hospital Clinic, 08036 Barcelona, Spain
| | - Jordi Vila
- Barcelona Institute for Global Health (ISGlobal), 08036 Barcelona, Spain; (N.R.-C.); (J.L.); (R.d.P.-J.)
- Department of Basic Clinical Practice, School of Medicine, University of Barcelona, 08036 Barcelona, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto Salud Carlos III, 28029 Madrid, Spain; (M.A.G.-F.); (A.O.); (C.B.-D.)
- Department of Clinical Microbiology, Biomedical Diagnostic Center, Hospital Clinic, 08036 Barcelona, Spain
| |
Collapse
|
2
|
Duffey M, Jumde RP, da Costa RM, Ropponen HK, Blasco B, Piddock LJ. Extending the Potency and Lifespan of Antibiotics: Inhibitors of Gram-Negative Bacterial Efflux Pumps. ACS Infect Dis 2024; 10:1458-1482. [PMID: 38661541 PMCID: PMC11091901 DOI: 10.1021/acsinfecdis.4c00091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/14/2024] [Accepted: 03/20/2024] [Indexed: 04/26/2024]
Abstract
Efflux is a natural process found in all prokaryotic and eukaryotic cells that removes a diverse range of substrates from inside to outside. Many antibiotics are substrates of bacterial efflux pumps, and modifications to the structure or overexpression of efflux pumps are an important resistance mechanism utilized by many multidrug-resistant bacteria. Therefore, chemical inhibition of bacterial efflux to revitalize existing antibiotics has been considered a promising approach for antimicrobial chemotherapy over two decades, and various strategies have been employed. In this review, we provide an overview of bacterial multidrug resistance (MDR) efflux pumps, of which the resistance nodulation division (RND) efflux pumps are considered the most clinically relevant in Gram-negative bacteria, and describe over 50 efflux inhibitors that target such systems. Although numerous efflux inhibitors have been identified to date, none have progressed into clinical use because of formulation, toxicity, and pharmacokinetic issues or a narrow spectrum of inhibition. For these reasons, the development of efflux inhibitors has been considered a difficult and complex area of research, and few active preclinical studies on efflux inhibitors are in progress. However, recently developed tools, including but not limited to computational tools including molecular docking models, offer hope that further research on efflux inhibitors can be a platform for research and development of new bacterial efflux inhibitors.
Collapse
Affiliation(s)
- Maëlle Duffey
- Global
Antibiotic Research & Development Partnership (GARDP), Chemin Camille-Vidart 15, 1202 Geneva, Switzerland
| | - Ravindra P. Jumde
- Global
Antibiotic Research & Development Partnership (GARDP), Chemin Camille-Vidart 15, 1202 Geneva, Switzerland
| | - Renata M.A. da Costa
- Global
Antibiotic Research & Development Partnership (GARDP), Chemin Camille-Vidart 15, 1202 Geneva, Switzerland
| | - Henni-Karoliina Ropponen
- Global
Antibiotic Research & Development Partnership (GARDP), Chemin Camille-Vidart 15, 1202 Geneva, Switzerland
| | - Benjamin Blasco
- Global
Antibiotic Research & Development Partnership (GARDP), Chemin Camille-Vidart 15, 1202 Geneva, Switzerland
| | - Laura J.V. Piddock
- Global
Antibiotic Research & Development Partnership (GARDP), Chemin Camille-Vidart 15, 1202 Geneva, Switzerland
| |
Collapse
|
3
|
Zack KM, Sorenson T, Joshi SG. Types and Mechanisms of Efflux Pump Systems and the Potential of Efflux Pump Inhibitors in the Restoration of Antimicrobial Susceptibility, with a Special Reference to Acinetobacter baumannii. Pathogens 2024; 13:197. [PMID: 38535540 PMCID: PMC10974122 DOI: 10.3390/pathogens13030197] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 02/19/2024] [Accepted: 02/21/2024] [Indexed: 02/11/2025] Open
Abstract
Bacteria express a plethora of efflux pumps that can transport structurally varied molecules, including antimicrobial agents and antibiotics, out of cells. Thus, efflux pump systems participate in lowering intracellular concentrations of antibiotics, which allows phenotypic multidrug-resistant (MDR) bacteria to survive effectively amid higher concentrations of antibiotics. Acinetobacter baumannii is one of the classic examples of pathogens that can carry multiple efflux pump systems, which allows these bacteria to be MDR-to-pan-drug resistant and is now considered a public health threat. Therefore, efflux pumps in A. baumannii have gained major attention worldwide, and there has been increased interest in studying their mechanism of action, substrates, and potential efflux pump inhibitors (EPIs). Efflux pump inhibitors are molecules that can inhibit efflux pumps, rendering pathogens susceptible to antimicrobial agents, and are thus considered potential therapeutic agents for use in conjunction with antibiotics. This review focuses on the types of various efflux pumps detected in A. baumannii, their molecular mechanisms of action, the substrates they transport, and the challenges in developing EPIs that can be clinically useful in reference to A. baumannii.
Collapse
Affiliation(s)
- Kira M. Zack
- Center for Surgical Infections and Biofilms, Department of Surgery, College of Medicine, Drexel University, Philadelphia, PA 19104, USA;
| | - Trent Sorenson
- Center for Surgical Infections and Biofilms, Drexel School of Biomedical Engineering, Science & Health Systems, Drexel University, Philadelphia, PA 19104, USA;
| | - Suresh G. Joshi
- Center for Surgical Infections and Biofilms, Department of Surgery, College of Medicine, Drexel University, Philadelphia, PA 19104, USA;
- Center for Surgical Infections and Biofilms, Drexel School of Biomedical Engineering, Science & Health Systems, Drexel University, Philadelphia, PA 19104, USA;
| |
Collapse
|
4
|
Pérez-Varela M, Tierney ARP, Dawson E, Hutcheson AR, Tipton KA, Anderson SE, Haldopoulos ME, Song S, Tomlinson BR, Shaw LN, Weiss DS, Kim M, Rather PN. Stochastic activation of a family of TetR type transcriptional regulators controls phenotypic heterogeneity in Acinetobacter baumannii. PNAS NEXUS 2022; 1:pgac231. [PMID: 36704122 PMCID: PMC9802203 DOI: 10.1093/pnasnexus/pgac231] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 10/06/2022] [Indexed: 11/13/2022]
Abstract
Phenotypic heterogeneity is an important mechanism for regulating bacterial virulence, where a single regulatory switch is typically activated to generate virulent and avirulent subpopulations. The opportunistic pathogen Acinetobacter baumannii can transition at high frequency between virulent opaque (VIR-O) and avirulent translucent subpopulations, distinguished by cells that form opaque or translucent colonies. We demonstrate that expression of 11 TetR-type transcriptional regulators (TTTRs) can drive cells from the VIR-O opaque subpopulation to cells that form translucent colonies. Remarkably, in a subpopulation of VIR-O cells, four of these TTTRs were stochastically activated in different combinations to drive cells to the translucent state. The resulting translucent subvariants exhibited unique phenotypic differences and the majority were avirulent. Due to their functional redundancy, a quadruple mutant with all four of these TTTRs inactivated was required to observe a loss of switching from the VIR-O state. Further, we demonstrate a small RNA, SrvS, acts as a "rheostat," where the levels of SrvS expression influences both the VIR-O to translucent switching frequency, and which TTTR is activated when VIR-O cells switch. In summary, this work has revealed a new paradigm for phenotypic switching in bacteria, where an unprecedented number of related transcriptional regulators are activated in different combinations to control virulence and generate unique translucent subvariants with distinct phenotypic properties.
Collapse
Affiliation(s)
- María Pérez-Varela
- Department of Microbiology and Immunology, Emory University, Atlanta, GA 30322, USA
| | - Aimee R P Tierney
- Department of Microbiology and Immunology, Emory University, Atlanta, GA 30322, USA
| | - Emma Dawson
- Department of Physics, Emory University, Atlanta, GA 30322, USA
| | - Anna R Hutcheson
- Research Service, Atlanta VA Medical Center, Decatur, GA 30033, USA
| | - Kyle A Tipton
- Department of Microbiology and Immunology, Emory University, Atlanta, GA 30322, USA
| | - Sarah E Anderson
- Department of Microbiology and Immunology, Emory University, Atlanta, GA 30322, USA
- Research Service, Atlanta VA Medical Center, Decatur, GA 30033, USA
| | - Marina E Haldopoulos
- Emory Antibiotic Resistance Center, Emory University, Atlanta, GA 30322, USA
- Emory Vaccine Center, Emory University, Atlanta, GA 30322, USA
- Department of Medicine, Division of Infectious Diseases, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Shaina Song
- Research Service, Atlanta VA Medical Center, Decatur, GA 30033, USA
| | - Brooke R Tomlinson
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL 33620, USA
| | - Lindsey N Shaw
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL 33620, USA
| | - David S Weiss
- Research Service, Atlanta VA Medical Center, Decatur, GA 30033, USA
- Emory Antibiotic Resistance Center, Emory University, Atlanta, GA 30322, USA
- Emory Vaccine Center, Emory University, Atlanta, GA 30322, USA
- Department of Medicine, Division of Infectious Diseases, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Minsu Kim
- Department of Physics, Emory University, Atlanta, GA 30322, USA
- Emory Antibiotic Resistance Center, Emory University, Atlanta, GA 30322, USA
| | - Philip N Rather
- Department of Microbiology and Immunology, Emory University, Atlanta, GA 30322, USA
- Research Service, Atlanta VA Medical Center, Decatur, GA 30033, USA
- Emory Antibiotic Resistance Center, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
5
|
Zgurskaya HI, Adamiak JW, Leus IV. Making sense of drug-efflux transporters in the physiological environment. Curr Opin Microbiol 2022; 69:102179. [PMID: 35882103 PMCID: PMC9942525 DOI: 10.1016/j.mib.2022.102179] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 02/06/2023]
Abstract
Bacterial drug-efflux transporters act synergistically with diffusion barriers of cellular membranes and other resistance mechanisms to protect cells from antibiotics and toxic metabolites. Their critical roles in clinical antibiotic and multidrug resistance are well established. In addition, a large body of evidence has been accumulated in support of their important contributions to bacterial growth and proliferation during infections. However, how these diverse functions of drug transporters are integrated at the level of bacterial cell physiology remains unclear. This opinion briefly summarizes the current understanding of substrate specificities and physiological roles of drug-efflux pumps from Resistance-Nodulation-Division (RND) superfamily of proteins in two ESKAPE pathogens Pseudomonas aeruginosa and Acinetobacter baumannii. Based on the analysis of phenotypic and transcriptomic studies in vitro and in vivo, we propose that RND pumps of Gram-negative bacteria fall into three categories: constitutively expressed, regulated, and silent. These three categories of efflux pumps participate in different physiological programs, which are not involved in the central metabolism and bacterial growth.
Collapse
Affiliation(s)
- Helen I Zgurskaya
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73072, USA.
| | - Justyna W Adamiak
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73072, USA
| | - Inga V Leus
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73072, USA
| |
Collapse
|
6
|
New Multidrug Efflux Systems in a Microcystin-Degrading Bacterium Blastomonas fulva and Its Genomic Feature. Int J Mol Sci 2022; 23:ijms231810856. [PMID: 36142771 PMCID: PMC9505733 DOI: 10.3390/ijms231810856] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 11/17/2022] Open
Abstract
A microcystin-degrading bacterial strain, Blastomonas fulva T2, was isolated from the culture of a microalgae Microcystis. The strain B. fulva T2 is Gram-stain-negative, non-motile, aerobic, non-spore-forming and phototrophic. The cells of B. fulva T2 are able to grow in ranges of temperature from 15 to 37 °C, with a pH of 6 to 8 and a salinity of 0 to 1% NaCl. Here, we sequenced the complete genome of B. fulva T2, aiming to better understand the evolutionary biology and the function of the genus Blastomonas at the molecular level. The complete genome of B. fulva T2 contained a circular chromosome (3,977,381 bp) with 64.3% GC content and a sizable plasmid (145.829 bp) with 60.7% GC content which comprises about 3.5% of the total genetic content. A total of 3842 coding genes, including 46 tRNAs and 6 rRNAs, were predicted in the genome. The genome contains genes for glycolysis, citric acid cycle, Entner–Doudoroff pathways, photoreaction center and bacteriochlorophylla synthesis. A 7.9 K gene cluster containing mlrA, mlrB, mlrC and mlrD1,2,3,4 of microcystin-degrading enzymes was identified. Notably, eight different efflux pumps categorized into RND, ABC and MFS types have been identified in the genome of strain T2. Our findings should provide new insights of the alternative reaction pathway as well as the enzymes which mediated the degradation of microcystin by bacteria, as well as the evolution, architectures, chemical mechanisms and physiological roles of the new bacterial multidrug efflux system.
Collapse
|
7
|
Suvaithenamudhan S, Ananth S, Mariappan V, Dhayabaran VV, Parthasarathy S, Ganesh PS, Shankar EM. In Silico Evaluation of Bioactive Compounds of Artemisia pallens Targeting the Efflux Protein of Multidrug-Resistant Acinetobacter baumannii (LAC-4 Strain). Molecules 2022; 27:molecules27165188. [PMID: 36014428 PMCID: PMC9414700 DOI: 10.3390/molecules27165188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/04/2022] [Accepted: 08/08/2022] [Indexed: 11/16/2022] Open
Abstract
Acinetobacter baumannii (A. baumannii) is one of the major representative aetiologies of recalcitrant nosocomial infections. Genotypic and phenotypic alterations in A. baumannii have resulted in a significant surge in multidrug resistance (MDR). Of all the factors responsible for the development of antimicrobial resistance (AMR), efflux protein pumps play a paramount role. In pursuit of a safe alternative for the prevention and control of A. baumannii infections, bioactive compounds from the aerial parts of the medicinal plant Artemisia pallens were studied. GC-MS analysis of the ethanol extract of A. pallens detected five major compounds: lilac alcohol A, spathulenol, lilac alcohol C, n-hexadecanoic acid, and vulgarin. In silico examinations were performed using the Schrödinger suite. Homology modelling was performed to predict the structure of the efflux protein of A. baumannii-LAC-4 strain (MDR Ab-EP). The identified bioactive compounds were analysed for their binding efficiency with MDR Ab-EP. High binding efficiency was observed with vulgarin with a glide score of −4.775 kcal/mol and stereoisomers of lilac alcohol A (−3.706 kcal/mol) and lilac alcohol C (−3.706 kcal/mol). Our molecular dynamic simulation studies unveiled the stability of the ligand–efflux protein complex. Vulgarin and lilac alcohol A possessed strong and stable binding efficiency with MDR Ab-EP. Furthermore, validation of the absorption, distribution, metabolism, excretion, and toxicity (ADMET) properties of the ligands strongly suggested that these compounds could serve as a lead molecule in the development of an alternate drug from A. pallens.
Collapse
Affiliation(s)
- Suvaiyarasan Suvaithenamudhan
- Infection Biology, Department of Life Sciences, School of Life Sciences, Central University of Tamil Nadu, Thiruvarur 610 005, Tamil Nadu, India
- Correspondence: (S.S.); (V.M.); (E.M.S.)
| | - Sivapunniyam Ananth
- Sivan Bioscience Research and Training Laboratory, Kumbakonam 612 401, Tamil Nadu, India
| | - Vanitha Mariappan
- Center for Toxicology and Health Risk Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia
- Correspondence: (S.S.); (V.M.); (E.M.S.)
| | - Victor Violet Dhayabaran
- Department of Biotechnology and Bioinformatics, Bishop Heber College, Tiruchirappalli 620 017, Tamil Nadu, India
| | - Subbiah Parthasarathy
- Department of Bioinformatics, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu, India
| | - Pitchaipillai Sankar Ganesh
- Department of Microbiology, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai 600 077, Tamil Nadu, India
| | - Esaki Muthu Shankar
- Infection Biology, Department of Life Sciences, School of Life Sciences, Central University of Tamil Nadu, Thiruvarur 610 005, Tamil Nadu, India
- Correspondence: (S.S.); (V.M.); (E.M.S.)
| |
Collapse
|
8
|
Tierney ARP, Chin CY, Weiss DS, Rather PN. A LysR-Type Transcriptional Regulator Controls Multiple Phenotypes in Acinetobacter baumannii. Front Cell Infect Microbiol 2021; 11:778331. [PMID: 34805000 PMCID: PMC8601201 DOI: 10.3389/fcimb.2021.778331] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 10/14/2021] [Indexed: 12/03/2022] Open
Abstract
Acinetobacter baumannii is a multidrug-resistant, Gram-negative nosocomial pathogen that exhibits phenotypic heterogeneity resulting in virulent opaque (VIR-O) and avirulent translucent (AV-T) colony variants. Each variant has a distinct gene expression profile resulting in multiple phenotypic differences. Cells interconvert between the VIR-O and AV-T variants at high frequency under laboratory conditions, suggesting that the genetic mechanism underlying the phenotypic switch could be manipulated to attenuate virulence. Therefore, our group has focused on identifying and characterizing genes that regulate this switch, which led to the investigation of ABUW_1132 (1132), a highly conserved gene predicted to encode a LysR-type transcriptional regulator. ABUW_1132 was shown to be a global regulator as the expression of 74 genes was altered ≥ 2-fold in an 1132 deletion mutant. The 1132 deletion also resulted in a 16-fold decrease in VIR-O to AV-T switching, loss of 3-OH-C12-HSL secretion, and reduced surface-associated motility. Further, the deletion of 1132 in the AV-T background caused elevated capsule production, which increased colony opacity and altered the typical avirulent phenotype of translucent cells. These findings distinguish 1132 as a global regulatory gene and advance our understanding of A. baumannii’s opacity-virulence switch.
Collapse
Affiliation(s)
- Aimee R P Tierney
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, United States
| | - Chui Yoke Chin
- Emory Vaccine Center, Atlanta, GA, United States.,Yerkes National Primate Research Center, Atlanta, GA, United States.,Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, United States.,Emory Antibiotic Resistance Center, Atlanta, GA, United States
| | - David S Weiss
- Emory Vaccine Center, Atlanta, GA, United States.,Yerkes National Primate Research Center, Atlanta, GA, United States.,Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, United States.,Emory Antibiotic Resistance Center, Atlanta, GA, United States.,Research Service, Department of Veterans Affairs, Atlanta Veterans Affairs (VA) Medical Center, Decatur, GA, United States
| | - Philip N Rather
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, United States.,Research Service, Department of Veterans Affairs, Atlanta Veterans Affairs (VA) Medical Center, Decatur, GA, United States
| |
Collapse
|
9
|
Kumar S, Anwer R, Azzi A. Virulence Potential and Treatment Options of Multidrug-Resistant (MDR) Acinetobacter baumannii. Microorganisms 2021; 9:microorganisms9102104. [PMID: 34683425 PMCID: PMC8541637 DOI: 10.3390/microorganisms9102104] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/18/2021] [Accepted: 09/21/2021] [Indexed: 12/12/2022] Open
Abstract
Acinetobacter baumannii is an opportunistic pathogen which is undoubtedly known for a high rate of morbidity and mortality in hospital-acquired infections. A. baumannii causes life-threatening infections, including; ventilator-associated pneumonia (VAP), meningitis, bacteremia, and wound and urinary tract infections (UTI). In 2017, the World Health Organization listed A. baumannii as a priority-1 pathogen. The prevalence of A. baumannii infections and outbreaks emphasizes the direct need for the use of effective therapeutic agents for treating such infections. Available antimicrobials, such as; carbapenems, tigecycline, and colistins have insufficient effectiveness due to the appearance of multidrug-resistant strains, accentuating the need for alternative and novel therapeutic remedies. To understand and overcome this menace, the knowledge of recent discoveries on the virulence factors of A. baumannii is needed. Herein, we summarized the role of various virulence factors, including; outer membrane proteins, efflux pumps, biofilm, penicillin-binding proteins, and siderophores/iron acquisition systems. We reviewed the recent scientific literature on different A. baumannii virulence factors and the effective antimicrobial agents for the treatment and management of bacterial infections.
Collapse
Affiliation(s)
- Sunil Kumar
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala 133207, India;
| | - Razique Anwer
- Department of Pathology, College of Medicine, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 13317-4233, Saudi Arabia;
| | - Arezki Azzi
- Department of Biochemistry, College of Medicine, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 13317-4233, Saudi Arabia
- Correspondence:
| |
Collapse
|
10
|
Abstract
Acinetobacter spp. have become of increased clinical importance as studies have shown the antimicrobial resistant potential of these species. Efflux pumps can lead to reduced susceptibility to a variety of antibiotics and are present in large number across Acinetobacter spp. There are six families of efflux pumps that have been shown to be of clinical relevance: the major facilitator superfamily (MFS), small multidrug resistance (SMR) family, ATP-binding cassette (ABC) family, multidrug and toxic compound extrusion (MATE) family, proteobacterial antimicrobial compound efflux (PACE) family, and the resistance-nodulation-division (RND) family. Much work has been done for understanding and characterizing the roles these efflux pumps play in relation to antimicrobial resistance and the physiology of these bacteria. RND efflux pumps, with their expansive substrate profiles, are a major component of Acinetobacter spp. antimicrobial resistance. New discoveries over the last decade have shed light on the complex regulation of these efflux pumps, leading to greater understanding and the potential of slowing the reduced susceptibility seen in these bacterial species.
Collapse
|
11
|
ToxR Mediates the Antivirulence Activity of Phenyl-Arginine-β-Naphthylamide To Attenuate Vibrio cholerae Virulence. Infect Immun 2021; 89:e0014721. [PMID: 33941578 DOI: 10.1128/iai.00147-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Multidrug efflux systems belonging to the resistance-nodulation-cell division (RND) family are ubiquitous in Gram-negative bacteria and are critical for antimicrobial resistance. This realization has led to efforts to develop efflux pump inhibitors (EPI) for use as adjuvants for antibiotic treatment of resistant organisms. However, the functions of RND transporters extend beyond antimicrobial resistance to include physiological functions that are critical for pathogenesis, suggesting that EPIs could also be used as antivirulence therapeutics. This was documented in the enteric pathogen Vibrio cholerae, in which EPIs were shown to attenuate the production of the critical virulence factors cholera toxin (CT) and the toxin-coregulated pilus (TCP). In this study, we investigated the antivirulence mechanism of action of the EPI phenyl-arginine-β-naphthylamide (PAβN) on V. cholerae. Using bioassays, we documented that PAβN inhibited virulence factor production in three epidemic V. cholerae isolates. Transcriptional reporter studies and mutant analysis indicated that PAβN initiated a ToxR-dependent regulatory circuit to activate leuO expression and that LeuO repressed the expression of the critical virulence activator aphA to attenuate CT and TCP production. The antivirulence activity of PAβN was found to be dependent on the ToxR periplasmic sensing domain (PPD), suggesting that a feedback mechanism was involved in its activity. Collectively, the data indicated that PAβN inhibited V. cholerae virulence factor production by activating a ToxR-dependent metabolic feedback mechanism to repress the expression of the ToxR virulence regulon. This suggests that efflux pump inhibitors could be used as antivirulence therapeutics for the treatment of cholera and perhaps that of other Gram-negative pathogens.
Collapse
|
12
|
Alav I, Kobylka J, Kuth MS, Pos KM, Picard M, Blair JMA, Bavro VN. Structure, Assembly, and Function of Tripartite Efflux and Type 1 Secretion Systems in Gram-Negative Bacteria. Chem Rev 2021; 121:5479-5596. [PMID: 33909410 PMCID: PMC8277102 DOI: 10.1021/acs.chemrev.1c00055] [Citation(s) in RCA: 128] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Indexed: 12/11/2022]
Abstract
Tripartite efflux pumps and the related type 1 secretion systems (T1SSs) in Gram-negative organisms are diverse in function, energization, and structural organization. They form continuous conduits spanning both the inner and the outer membrane and are composed of three principal components-the energized inner membrane transporters (belonging to ABC, RND, and MFS families), the outer membrane factor channel-like proteins, and linking the two, the periplasmic adaptor proteins (PAPs), also known as the membrane fusion proteins (MFPs). In this review we summarize the recent advances in understanding of structural biology, function, and regulation of these systems, highlighting the previously undescribed role of PAPs in providing a common architectural scaffold across diverse families of transporters. Despite being built from a limited number of basic structural domains, these complexes present a staggering variety of architectures. While key insights have been derived from the RND transporter systems, a closer inspection of the operation and structural organization of different tripartite systems reveals unexpected analogies between them, including those formed around MFS- and ATP-driven transporters, suggesting that they operate around basic common principles. Based on that we are proposing a new integrated model of PAP-mediated communication within the conformational cycling of tripartite systems, which could be expanded to other types of assemblies.
Collapse
Affiliation(s)
- Ilyas Alav
- Institute
of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Jessica Kobylka
- Institute
of Biochemistry, Biocenter, Goethe Universität
Frankfurt, Max-von-Laue-Straße 9, D-60438 Frankfurt, Germany
| | - Miriam S. Kuth
- Institute
of Biochemistry, Biocenter, Goethe Universität
Frankfurt, Max-von-Laue-Straße 9, D-60438 Frankfurt, Germany
| | - Klaas M. Pos
- Institute
of Biochemistry, Biocenter, Goethe Universität
Frankfurt, Max-von-Laue-Straße 9, D-60438 Frankfurt, Germany
| | - Martin Picard
- Laboratoire
de Biologie Physico-Chimique des Protéines Membranaires, CNRS
UMR 7099, Université de Paris, 75005 Paris, France
- Fondation
Edmond de Rothschild pour le développement de la recherche
Scientifique, Institut de Biologie Physico-Chimique, 75005 Paris, France
| | - Jessica M. A. Blair
- Institute
of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Vassiliy N. Bavro
- School
of Life Sciences, University of Essex, Colchester, CO4 3SQ United Kingdom
| |
Collapse
|
13
|
Sykes EME, Deo S, Kumar A. Recent Advances in Genetic Tools for Acinetobacter baumannii. Front Genet 2020; 11:601380. [PMID: 33414809 PMCID: PMC7783400 DOI: 10.3389/fgene.2020.601380] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/30/2020] [Indexed: 12/26/2022] Open
Abstract
Acinetobacter baumannii is classified as a top priority pathogen by the World Health Organization (WHO) because of its widespread resistance to all classes of antibiotics. This makes the need for understanding the mechanisms of resistance and virulence critical. Therefore, tools that allow genetic manipulations are vital to unravel the mechanisms of multidrug resistance (MDR) and virulence in A. baumannii. A host of current strategies are available for genetic manipulations of A. baumannii laboratory-strains, including ATCC® 17978TM and ATCC® 19606T, but depending on susceptibility profiles, these strategies may not be sufficient when targeting strains newly obtained from clinic, primarily due to the latter's high resistance to antibiotics that are commonly used for selection during genetic manipulations. This review highlights the most recent methods for genetic manipulation of A. baumannii including CRISPR based approaches, transposon mutagenesis, homologous recombination strategies, reporter systems and complementation techniques with the spotlight on those that can be applied to MDR clinical isolates.
Collapse
Affiliation(s)
| | | | - Ayush Kumar
- Department of Microbiology, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
14
|
Leus IV, Adamiak J, Trinh AN, Smith RD, Smith L, Richardson S, Ernst RK, Zgurskaya HI. Inactivation of AdeABC and AdeIJK efflux pumps elicits specific nonoverlapping transcriptional and phenotypic responses in Acinetobacter baumannii. Mol Microbiol 2020; 114:1049-1065. [PMID: 32858760 DOI: 10.1111/mmi.14594] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/17/2020] [Indexed: 12/24/2022]
Abstract
Multidrug resistant (MDR) strains of Acinetobacter baumannii present a serious clinical challenge. The development of antibiotic resistance in this species is enabled by efflux pumps of the Resistance-Nodulation-Division (RND) superfamily of proteins creating an efficient permeability barrier for antibiotics. At least three RND pumps, AdeABC, AdeIJK, and AdeFGH are encoded in the A. baumannii genome and are reported to contribute to antibiotic resistance in clinical isolates. In this study, we analyzed the contributions of AdeABC and AdeIJK in antibiotic resistance and growth physiology of the two MDR strains, AYE and AB5075. We found that not only the two pumps have nonoverlapping substrate specificities, their inactivation leads to specific nonoverlapping changes in gene expression as determined by RNA sequencing and confirmed by gene knockouts and growth phenotypes. Our results suggest that inactivation of AdeIJK elicits broader changes in the abundances of mRNAs and this response is modified in the absence of AdeB. In contrast, inactivation of AdeB leads to a focused cellular response, which is not sensitive to the activity of AdeIJK. We identified additional efflux pumps and transcriptional regulators that contribute to MDR phenotype of clinical A. baumannii isolates.
Collapse
Affiliation(s)
- Inga V Leus
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, USA
| | - Justyna Adamiak
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, USA
| | - Anhthu N Trinh
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, USA
| | - Richard D Smith
- Department of Microbial Pathogenesis, University of Maryland, Baltimore, Baltimore, MD, USA
| | - Lauren Smith
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, USA
| | - Sophie Richardson
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, USA
| | - Robert K Ernst
- Department of Microbial Pathogenesis, University of Maryland, Baltimore, Baltimore, MD, USA
| | - Helen I Zgurskaya
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, USA
| |
Collapse
|
15
|
Copy Number of an Integron-Encoded Antibiotic Resistance Locus Regulates a Virulence and Opacity Switch in Acinetobacter baumannii AB5075. mBio 2020; 11:mBio.02338-20. [PMID: 33024041 PMCID: PMC7542366 DOI: 10.1128/mbio.02338-20] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Acinetobacter baumannii remains a leading cause of hospital-acquired infections. Widespread multidrug resistance in this species has prompted the WHO to name carbapenem-resistant A. baumannii as its top priority for research and development of new antibiotics. Many strains of A. baumannii undergo a high-frequency virulence switch, which is an attractive target for new therapeutics targeting this pathogen. This study reports a novel mechanism controlling the frequency of switching in strain AB5075. The rate of switching from the virulent opaque (VIR-O) to the avirulent translucent (AV-T) variant is positively influenced by the copy number of an antibiotic resistance locus encoded on a plasmid-borne composite integron. Our data suggest that this locus encodes a small RNA that regulates opacity switching. Low-switching opaque variants, which harbor a single copy of this locus, also exhibit decreased virulence. This study increases our understanding of this critical phenotypic switch, while also identifying potential targets for virulence-based A. baumannii treatments. We describe a novel genetic mechanism in which tandem amplification of a plasmid-borne integron regulates virulence, opacity variation, and global gene expression by altering levels of a putative small RNA (sRNA) in Acinetobacter baumannii AB5075. Copy number of this amplified locus correlated with the rate of switching between virulent opaque (VIR-O) and avirulent translucent (AV-T) cells. We found that prototypical VIR-O colonies, which exhibit high levels of switching and visible sectoring with AV-T cells by 24 h of growth, harbor two copies of this locus. However, a subset of opaque colonies that did not form AV-T sectors within 24 h were found to harbor only one copy. The colonies with decreased sectoring to AV-T were designated low-switching opaque (LSO) variants and were found to exhibit a 3-log decrease in switching relative to that of the VIR-O. Overexpression studies revealed that the element regulating switching was localized to the 5′ end of the aadB gene within the amplified locus. Northern blotting indicated that an sRNA of approximately 300 nucleotides (nt) is encoded in this region and is likely responsible for regulating switching to AV-T. Copy number of the ∼300-nt sRNA was also found to affect virulence, as the LSO variant exhibited decreased virulence during murine lung infections. Global transcriptional profiling revealed that >100 genes were differentially expressed between VIR-O and LSO variants, suggesting that the ∼300-nt sRNA may act as a global regulator. Several virulence genes exhibited decreased expression in LSO cells, potentially explaining their decreased virulence.
Collapse
|
16
|
Subhadra B, Surendran S, Lim BR, Yim JS, Kim DH, Woo K, Kim HJ, Oh MH, Choi CH. Regulation of the AcrAB efflux system by the quorum-sensing regulator AnoR in Acinetobacter nosocomialis. J Microbiol 2020; 58:507-518. [PMID: 32462488 DOI: 10.1007/s12275-020-0185-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/11/2020] [Accepted: 05/11/2020] [Indexed: 10/24/2022]
Abstract
Multidrug efflux pumps play an important role in antimicrobial resistance and pathogenicity in bacteria. Here, we report the functional characterization of the RND (resistance-nodulation- division) efflux pump, AcrAB, in Acinetobacter nosocomialis. An in silico analysis revealed that homologues of the AcrAB efflux pump, comprising AcrA and AcrB, are widely distributed among different bacterial species. Deletion of acrA and/or acrB genes led to decreased biofilm/pellicle formation and reduced antimicrobial resistance in A. nosocomialis. RNA sequencing and mRNA expression analyses showed that expression of acrA/B was downregulated in a quorum sensing (QS) regulator (anoR)-deletion mutant, indicating transcriptional activation of the acrAB operon by AnoR in A. nosocomialis. Bioassays showed that secretion of N-acyl homoserine lactones (AHLs) was unaffected in acrA and acrB deletion mutants; however, AHL secretion was limited in a deletion mutant of acrR, encoding the acrAB regulator, AcrR. An in silico analysis indicated the presence of AcrR-binding motifs in promoter regions of anoI (encoding AHL synthase) and anoR. Specific binding of AcrR was confirmed by electrophoretic mobility shift assays, which revealed that AcrR binds to positions -214 and -217 bp upstream of the translational start sites of anoI and anoR, respectively, demonstrating transcriptional regulation of these QS genes by AcrR. The current study further addresses the possibility that AcrAB is controlled by the osmotic stress regulator, OmpR, in A. nosocomialis. Our data demonstrate that the AcrAB efflux pump plays a crucial role in biofilm/pellicle formation and antimicrobial resistance in A. nosocomialis, and is under the transcriptional control of a number of regulators. In addition, the study emphasizes the interrelationship of QS and AcrAB efflux systems in A. nosocomialis.
Collapse
Affiliation(s)
- Bindu Subhadra
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea.,Department of Medical Science, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Surya Surendran
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea.,Department of Medical Science, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Bo Ra Lim
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea.,Department of Medical Science, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Jong Sung Yim
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea.,Department of Medical Science, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Dong Ho Kim
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea.,Department of Medical Science, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Kyungho Woo
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea.,Department of Medical Science, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Hwa-Jung Kim
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea.,Department of Medical Science, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Man Hwan Oh
- Department of Nanobiomedical Science, Dankook University, Cheonan, 31116, Republic of Korea.
| | - Chul Hee Choi
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea. .,Department of Medical Science, Chungnam National University, Daejeon, 34134, Republic of Korea.
| |
Collapse
|
17
|
Characterization of RelA in Acinetobacter baumannii. J Bacteriol 2020; 202:JB.00045-20. [PMID: 32229531 DOI: 10.1128/jb.00045-20] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 03/26/2020] [Indexed: 12/21/2022] Open
Abstract
In response to nutrient depletion, the RelA and SpoT proteins generate the signaling molecule (p)ppGpp, which then controls a number of downstream effectors to modulate cell physiology. In Acinetobacter baumannii strain AB5075, a relA ortholog (ABUW_3302) was identified by a transposon insertion that conferred an unusual colony phenotype. An in-frame deletion in relA (ΔrelA) failed to produce detectable levels of ppGpp when amino acid starvation was induced with serine hydroxamate. The ΔrelA mutant was blocked from switching from the virulent opaque colony variant (VIR-O) to the avirulent translucent colony variant (AV-T), but the rate of AV-T to VIR-O switching was unchanged. In addition, the ΔrelA mutation resulted in a pronounced hypermotile phenotype on 0.35% agar plates. This hypermotility was dependent on the activation of a LysR regulator ABUW_1132, which was required for expression of AbaR, a LuxR family quorum-sensing regulator. In the ΔrelA mutant, ABUW_1132 was also required for the increased expression of an operon composed of the ABUW_3766-ABUW_3773 genes required for production of the surfactant-like lipopeptide acinetin 505. Additional phenotypes identified in the ΔrelA mutant included (i) cell elongation at high density, (ii) reduced formation of persister cells tolerant to colistin and rifampin, and (iii) decreased virulence in a Galleria mellonella model.IMPORTANCE Acinetobacter baumannii is a pathogen of worldwide importance. Due to the increasing prevalence of antibiotic resistance, these infections are becoming increasingly difficult to treat. New therapies are required to combat multidrug-resistant isolates. The role of RelA in A. baumannii is largely unknown. This study demonstrates that like in other bacteria, RelA controls a variety of functions, including virulence. Strategies to inhibit the activity of RelA and the resulting production of ppGpp could inhibit virulence and may represent a new therapeutic approach.
Collapse
|
18
|
Genomic and Metabolic Insights into Denitrification, Sulfur Oxidation, and Multidrug Efflux Pump Mechanisms in the Bacterium Rhodoferax sediminis sp. nov. Microorganisms 2020; 8:microorganisms8020262. [PMID: 32075304 PMCID: PMC7074706 DOI: 10.3390/microorganisms8020262] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 02/05/2020] [Accepted: 02/13/2020] [Indexed: 12/31/2022] Open
Abstract
This genus contains both phototrophs and nonphototrophic members. Here, we present a high-quality complete genome of the strain CHu59-6-5T, isolated from a freshwater sediment. The circular chromosome (4.39 Mbp) of the strain CHu59-6-5T has 64.4% G+C content and contains 4240 genes, of which a total of 3918 genes (92.4%) were functionally assigned to the COG (clusters of orthologous groups) database. Functional genes for denitrification (narGHJI, nirK and qnor) were identified on the genomes of the strain CHu59-6-5T, except for N2O reductase (nos) genes for the final step of denitrification. Genes (soxBXAZY) for encoding sulfur oxidation proteins were identified, and the FSD and soxF genes encoding the monomeric flavoproteins which have sulfide dehydrogenase activities were also detected. Lastly, genes for the assembly of two different RND (resistance-nodulation division) type efflux systems and one ABC (ATP-binding cassette) type efflux system were identified in the Rhodoferax sediminis CHu59-6-5T. Phylogenetic analysis based on 16S rRNA sequences and Average Nucleotide Identities (ANI) support the idea that the strain CHu59-6-5T has a close relationship to the genus Rhodoferax. A polyphasic study was done to establish the taxonomic status of the strain CHu59-6-5T. Based on these data, we proposed that the isolate be classified to the genus Rhodoferax as Rhodoferax sediminis sp. nov. with isolate CHu59-6-5T.
Collapse
|
19
|
Geisinger E, Huo W, Hernandez-Bird J, Isberg RR. Acinetobacter baumannii: Envelope Determinants That Control Drug Resistance, Virulence, and Surface Variability. Annu Rev Microbiol 2019; 73:481-506. [DOI: 10.1146/annurev-micro-020518-115714] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Acinetobacter baumannii has emerged as an important nosocomial pathogen, particularly for patients in intensive care units and with invasive indwelling devices. The most recent clinical isolates are resistant to several classes of clinically important antibiotics, greatly restricting the ability to effectively treat critically ill patients. The bacterial envelope is an important driver of A. baumannii disease, both at the level of battling against antibiotic therapy and at the level of protecting from host innate immune function. This review provides a comprehensive overview of key features of the envelope that interface with both the host and antimicrobial therapies. Carbohydrate structures that contribute to protecting from the host are detailed, and mutations that alter these structures, resulting in increased antimicrobial resistance, are explored. In addition, protein complexes involved in both intermicrobial and host-microbe interactions are described. Finally we discuss regulatory mechanisms that control the nature of the cell envelope and its impact on host innate immune function.
Collapse
Affiliation(s)
- Edward Geisinger
- Department of Biology, Northeastern University, Boston, Massachusetts 02115, USA
| | - Wenwen Huo
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | - Juan Hernandez-Bird
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | - Ralph R. Isberg
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| |
Collapse
|
20
|
Abstract
Many strains of Acinetobacter baumannii, including the highly virulent strain AB5075, undergo a high-frequency switch that results in two cell types that are distinguished by their opaque or translucent colony opacities when viewed by oblique lighting. Opaque (VIR-O) and translucent (AV-T) colonies exhibit multiple phenotypic differences, including virulence. Here we describe how to distinguish between VIR-O and AV-T colony variants and how to generate highly pure stocks of each variant. We also describe methods for measuring opacity switching frequencies of cells grown on agar plates and in liquid cultures.
Collapse
|
21
|
Roles of Efflux Pumps from Different Superfamilies in the Surface-Associated Motility and Virulence of Acinetobacter baumannii ATCC 17978. Antimicrob Agents Chemother 2019; 63:AAC.02190-18. [PMID: 30642939 DOI: 10.1128/aac.02190-18] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 01/07/2019] [Indexed: 02/06/2023] Open
Abstract
Although the relationship between Acinetobacter baumannii efflux pumps and antimicrobial resistance is well documented, less is known about the involvement of these proteins in the pathogenicity of this nosocomial pathogen. In previous work, we identified the AbaQ major facilitator superfamily (MFS) efflux pump and demonstrated its participation in the motility and virulence of A. baumannii In the present study, we examined the role in these processes of A. baumannii transporters belonging to different superfamilies of efflux pumps. Genes encoding known or putative permeases belonging to efflux pump superfamilies other than the MFS were selected, and the corresponding knockouts were constructed. The antimicrobial susceptibilities of these mutants were consistent with previously reported data. In mutants of A. baumannii strain ATCC 17978 carrying inactivated genes encoding the efflux pumps A1S_2736 (resistance nodulation division [RND]), A1S_3371 (multidrug and toxic compound extrusion [MATE]), and A1S_0710 (small multidrug resistance [SMR]), as well as the newly described ATP-binding cassette (ABC) permeases A1S_1242 and A1S_2622, both surface-associated motility and virulence were reduced compared to the parental strain. However, inactivation of the genes encoding the known ABC permeases A1S_0536 and A1S_1535, the newly identified putative ABC permeases A1S_0027 and A1S_1057, or the proteobacterial antimicrobial compound efflux (PACE) transporters A1S_1503 and A1S_2063 had no effects on bacterial motility or virulence. Our results demonstrate the involvement of antimicrobial transporters belonging at least to five of the six known efflux pump superfamilies in both surface-associated motility and virulence in A. baumannii ATCC 17978.
Collapse
|
22
|
Ahmad I, Karah N, Nadeem A, Wai SN, Uhlin BE. Analysis of colony phase variation switch in Acinetobacter baumannii clinical isolates. PLoS One 2019; 14:e0210082. [PMID: 30608966 PMCID: PMC6319719 DOI: 10.1371/journal.pone.0210082] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 12/17/2018] [Indexed: 11/19/2022] Open
Abstract
Reversible switching between opaque and translucent colony formation is a novel feature of Acinetobacter baumannii that has been associated with variations in the cell morphology, surface motility, biofilm formation, antibiotic resistance and virulence. Here, we assessed a number of phenotypic alterations related to colony switching in A. baumannii clinical isolates belonging to different multi-locus sequence types. Our findings demonstrated that these phenotypic alterations were mostly strain-specific. In general, the translucent subpopulations of A. baumannii produced more dense biofilms, were more piliated, and released larger amounts of outer membrane vesicles (OMVs). In addition, the translucent subpopulations caused reduced fertility of Caenorhabditis elegans. When assessed for effects on the immune response in RAW 264.7 macrophages, the OMVs isolated from opaque subpopulations of A. baumannii appeared to be more immunogenic than the OMVs from the translucent form. However, also the OMVs from the translucent subpopulations had the potential to evoke an immune response. Therefore, we suggest that OMVs may be considered for development of new immunotherapeutic treatments against A. baumannii infections.
Collapse
Affiliation(s)
- Irfan Ahmad
- The Laboratory for Molecular Infection Medicine Sweden (MIMS) and The Department of Molecular Biology, Umeå University, Umeå, Sweden
- Institute of Biomedical and Allied Health Sciences, University of Health Sciences, Lahore, Pakistan
| | - Nabil Karah
- The Laboratory for Molecular Infection Medicine Sweden (MIMS) and The Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Aftab Nadeem
- The Laboratory for Molecular Infection Medicine Sweden (MIMS) and The Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Sun Nyunt Wai
- The Laboratory for Molecular Infection Medicine Sweden (MIMS) and The Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Bernt Eric Uhlin
- The Laboratory for Molecular Infection Medicine Sweden (MIMS) and The Department of Molecular Biology, Umeå University, Umeå, Sweden
- * E-mail:
| |
Collapse
|
23
|
Abstract
Acinetobacter baumannii has become an important pathogen in hospitals worldwide, where the incidence of these infections has been increasing. A. baumannii infections have become exceedingly difficult to treat due to a rapid increase in the frequency of multidrug- and pan-resistant isolates. This has prompted the World Health Organization to list A. baumannii as the top priority for the research and development of new antibiotics. This study reports for the first time a detailed analysis of aminoglycoside heteroresistance in A. baumannii. We define the mechanistic basis for heteroresistance, where the aadB(ant2″)Ia gene encoding an aminoglycoside adenylyltransferase becomes highly amplified in a RecA-dependent manner. Remarkably, this amplification of 20 to 40 copies occurs stochastically in 1/200 cells in the absence of antibiotic selection. In addition, we provide evidence for a second RecA-independent mechanism for aminoglycoside heteroresistance. This study reveals that aminoglycoside resistance in A. baumannii is far more complex than previously realized and has important implications for the use of aminoglycosides in treating A. baumannii infections. Heteroresistance is a phenomenon where a subpopulation of cells exhibits higher levels of antibiotic resistance than the general population. Analysis of tobramycin resistance in Acinetobacter baumannii AB5075 using Etest strips demonstrated that colonies with increased resistance arose at high frequency within the zone of growth inhibition. The presence of a resistant subpopulation was confirmed by population analysis profiling (PAP). The tobramycin-resistant subpopulation was cross resistant to gentamicin but not amikacin. The increased tobramycin resistance phenotype was highly unstable, and cells reverted to a less resistant population at frequencies of 60 to 90% after growth on nonselective media. Furthermore, the frequency of the resistant subpopulation was not increased by preincubation with subinhibitory concentrations of tobramycin. The tobramycin-resistant subpopulation was shown to replicate during the course of antibiotic treatment, demonstrating that these were not persister cells. In A. baumannii AB5075, a large plasmid (p1AB5075) carries aadB, a 2″-nucleotidyltransferase that confers resistance to both tobramycin and gentamicin but not amikacin. The aadB gene is part of an integron and is carried adjacent to four additional resistance genes that are all flanked by copies of an integrase gene. In isolates with increased resistance, this region was highly amplified in a RecA-dependent manner. However, in a recA mutant, colonies with unstable tobramycin resistance arose by a mechanism that did not involve amplification of this region. These data indicate that tobramycin heteroresistance occurs by at least two mechanisms in A. baumannii, and future studies to determine its effect on patient outcomes are warranted. IMPORTANCEAcinetobacter baumannii has become an important pathogen in hospitals worldwide, where the incidence of these infections has been increasing. A. baumannii infections have become exceedingly difficult to treat due to a rapid increase in the frequency of multidrug- and pan-resistant isolates. This has prompted the World Health Organization to list A. baumannii as the top priority for the research and development of new antibiotics. This study reports for the first time a detailed analysis of aminoglycoside heteroresistance in A. baumannii. We define the mechanistic basis for heteroresistance, where the aadB(ant2″)Ia gene encoding an aminoglycoside adenylyltransferase becomes highly amplified in a RecA-dependent manner. Remarkably, this amplification of 20 to 40 copies occurs stochastically in 1/200 cells in the absence of antibiotic selection. In addition, we provide evidence for a second RecA-independent mechanism for aminoglycoside heteroresistance. This study reveals that aminoglycoside resistance in A. baumannii is far more complex than previously realized and has important implications for the use of aminoglycosides in treating A. baumannii infections.
Collapse
|
24
|
Subhadra B, Kim J, Kim DH, Woo K, Oh MH, Choi CH. Local Repressor AcrR Regulates AcrAB Efflux Pump Required for Biofilm Formation and Virulence in Acinetobacter nosocomialis. Front Cell Infect Microbiol 2018; 8:270. [PMID: 30131944 PMCID: PMC6090078 DOI: 10.3389/fcimb.2018.00270] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 07/19/2018] [Indexed: 12/28/2022] Open
Abstract
Multidrug efflux systems contribute to antimicrobial resistance and pathogenicity in bacteria. Here, we report the identification and characterization of a transcriptional regulator AcrR controlling the yet uncharacterized multidrug efflux pump, AcrAB in Acinetobacter nosocomialis. In silico analysis revealed that the homologs of AcrR and AcrAB are reported in the genomes of many other bacterial species. We confirmed that the genes encoding the AcrAB efflux pump, acrA and acrB forms a polycistronic operon which is under the control of acrR gene upstream of acrA. Bioinformatic analysis indicated the presence of AcrR binding motif in the promoter region of acrAB operon and the specific binding of AcrR was confirmed by electrophoretic mobility shift assay (EMSA). The EMSA data showed that AcrR binds to −89 bp upstream of the start codon of acrA. The mRNA expression analysis depicted that the expression of acrA and acrB genes are elevated in the deletion mutant compared to that in the wild type confirming that AcrR acts as a repressor of acrAB operon in A. nosocomialis. The deletion of acrR resulted in increased motility, biofilm/pellicle formation and invasion in A. nosocomialis. We further analyzed the role of AcrR in A. nosocomialis pathogenesis in vivo using murine model and it was shown that acrR mutant is highly virulent inducing severe infection in mouse leading to host death. In addition, the intracellular survival rate of acrR mutant was higher compared to that of wild type. Our data demonstrates that AcrR functions as an important regulator of AcrAB efflux pump and is associated with several phenotypes such as motility, biofilm/pellicle formation and pathogenesis in A. nosocomialis.
Collapse
Affiliation(s)
- Bindu Subhadra
- Department of Microbiology and Medical Science, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Jaeseok Kim
- Department of Microbiology and Medical Science, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Dong Ho Kim
- Department of Microbiology and Medical Science, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Kyungho Woo
- Department of Microbiology and Medical Science, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Man Hwan Oh
- Department of Nanobiomedical Science, Dankook University, Cheonan, South Korea
| | - Chul Hee Choi
- Department of Microbiology and Medical Science, Chungnam National University School of Medicine, Daejeon, South Korea
| |
Collapse
|
25
|
Chin CY, Tipton KA, Farokhyfar M, Burd EM, Weiss DS, Rather PN. A high-frequency phenotypic switch links bacterial virulence and environmental survival in Acinetobacter baumannii. Nat Microbiol 2018; 3:563-569. [PMID: 29693659 PMCID: PMC5921939 DOI: 10.1038/s41564-018-0151-5] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 03/22/2018] [Indexed: 12/30/2022]
Abstract
Antibiotic resistant infections lead to 700,000 deaths per year worldwide1. The roles of phenotypically diverse subpopulations of clonal bacteria in the progression of diseases are unclear. We found that the increasingly pathogenic and antibiotic resistant pathogen, Acinetobacter baumannii, harbors a highly virulent subpopulation of cells responsible for disease. This virulent subpopulation possesses a thicker capsule and is resistant to host antimicrobials, which drive its enrichment during infection. Importantly, bacteria harvested from the bloodstream of human patients belong exclusively to this virulent subpopulation. Furthermore, the virulent form exhibits increased resistance to hospital disinfectants and desiccation, indicating a role in environmental persistence and the epidemic spread of disease. We identified a transcriptional “master regulator” of the switch between avirulent and virulent cells, and whose overexpression abrogated virulence. Further, the overexpression strain vaccinated mice against lethal challenge. This work highlights a phenotypic subpopulation of bacteria that drastically alters the outcome of infection, and illustrates how knowledge of the regulatory mechanisms controlling such phenotypic switches can be harnessed to attenuate bacteria and develop translational interventions.
Collapse
Affiliation(s)
- Chui Yoke Chin
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA.,Yerkes National Primate Research Center, Emory University School of Medicine, Atlanta, GA, USA.,Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA.,Emory Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Kyle A Tipton
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | | | - Eileen M Burd
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA.,Emory Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, GA, USA.,Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA, USA
| | - David S Weiss
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA. .,Yerkes National Primate Research Center, Emory University School of Medicine, Atlanta, GA, USA. .,Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA. .,Emory Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, GA, USA. .,Research Service, Atlanta VA Medical Center, Decatur, GA, USA.
| | - Philip N Rather
- Emory Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, GA, USA. .,Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA. .,Research Service, Atlanta VA Medical Center, Decatur, GA, USA.
| |
Collapse
|
26
|
Wang J, Zhou Z, He F, Ruan Z, Jiang Y, Hua X, Yu Y. The role of the type VI secretion system vgrG gene in the virulence and antimicrobial resistance of Acinetobacter baumannii ATCC 19606. PLoS One 2018; 13:e0192288. [PMID: 29394284 PMCID: PMC5796710 DOI: 10.1371/journal.pone.0192288] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 01/22/2018] [Indexed: 12/21/2022] Open
Abstract
The Type VI Secretion System (T6SS) is an important virulence system that exists in many bacterial pathogens, and has emerged as a potent mediator of pathogenicity in Acinetobacter baumannii. In this study, we inactivated one of the T6SS components vgrG (valine–glycine repeat G) gene in A. baumannii ATCC 19606 and constructed a complementation strain. BEAS-2b human alveolar epithelial cells was adopted to assess bacterial adhesion, and wild female BALB/c mice were used for in vivo experiments to assess the bacterial killing ability to host. Upon deletion of the vgrG gene, increased antimicrobial resistance to ampicillin/sulbactam, but reduced resistance to chloramphenicol were observed. The vgrG mutant strain showed lower growth rate, reduced eukaryotic cell adherence and impaired lethality in mice. However, the vgrG mutant strain is not implicated in biofilm formation. Our study suggests that the Type VI Secretion System core component VgrG contributes to both virulence and antimicrobial resistance in A. baumannii ATCC 19606.
Collapse
Affiliation(s)
- Jianfeng Wang
- Department of Respiratory Diseases, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Zhihui Zhou
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Key laboratory of microbial technology and bioinformatics of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Fang He
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Key laboratory of microbial technology and bioinformatics of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Zhi Ruan
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Key laboratory of microbial technology and bioinformatics of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Yan Jiang
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Key laboratory of microbial technology and bioinformatics of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Xiaoting Hua
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Key laboratory of microbial technology and bioinformatics of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Yunsong Yu
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Key laboratory of microbial technology and bioinformatics of Zhejiang Province, Hangzhou, Zhejiang, China
- * E-mail:
| |
Collapse
|
27
|
Klotz P, Göttig S, Leidner U, Semmler T, Scheufen S, Ewers C. Carbapenem-resistance and pathogenicity of bovine Acinetobacter indicus-like isolates. PLoS One 2017; 12:e0171986. [PMID: 28207789 PMCID: PMC5313175 DOI: 10.1371/journal.pone.0171986] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 01/30/2017] [Indexed: 02/04/2023] Open
Abstract
The objective of this study was to characterize blaOXA-23 harbouring Acinetobacter indicus-like strains from cattle including genomic and phylogenetic analyses, antimicrobial susceptibility testing and evaluation of pathogenicity in vitro and in vivo. Nasal and rectal swabs (n = 45) from cattle in Germany were screened for carbapenem-non-susceptible Acinetobacter spp. Thereby, two carbapenem resistant Acinetobacter spp. from the nasal cavities of two calves could be isolated. MALDI-TOF mass spectrometry and 16S rDNA sequencing identified these isolates as A. indicus-like. A phylogenetic tree based on partial rpoB sequences indicated closest relation of the two bovine isolates to the A. indicus type strain A648T and human clinical A. indicus isolates, while whole genome comparison revealed considerable intraspecies diversity. High mimimum inhibitory concentrations were observed for carbapenems and other antibiotics including fluoroquinolones and gentamicin. Whole genome sequencing and PCR mapping revealed that both isolates harboured blaOXA-23 localized on the chromosome and surrounded by interrupted Tn2008 transposon structures. Since the pathogenic potential of A. indicus is unknown, pathogenicity was assessed employing the Galleria (G.) mellonella infection model and an in vitro cytotoxicity assay using A549 human lung epithelial cells. Pathogenicity in vivo (G. mellonella killing assay) and in vitro (cytotoxicity assay) of the two A. indicus-like isolates was lower compared to A. baumannii ATCC 17978 and similar to A. lwoffii ATCC 15309. The reduced pathogenicity of A. indicus compared to A. baumannii correlated with the absence of important virulence genes encoding like phospholipase C1+C2, acinetobactin outer membrane protein BauA, RND-type efflux system proteins AdeRS and AdeAB or the trimeric autotransporter adhesin Ata. The emergence of carbapenem-resistant A. indicus-like strains from cattle carrying blaOXA-23 on transposable elements and revealing genetic relatedness to isolates from human clinical sources requires further investigations regarding the pathogenic potential, genomic characteristics, zoonotic risk and putative additional sources of this new Acinetobacter species.
Collapse
Affiliation(s)
- Peter Klotz
- Institute of Hygiene and Infectious Diseases of Animals, Justus-Liebig-University Giessen, Giessen, Germany
| | - Stephan Göttig
- Institute for Medical Microbiology and Infection Control, Hospital of the Johann Wolfgang von Goethe-University, Frankfurt am Main, Germany
| | - Ursula Leidner
- Institute of Hygiene and Infectious Diseases of Animals, Justus-Liebig-University Giessen, Giessen, Germany
| | | | - Sandra Scheufen
- Institute of Hygiene and Infectious Diseases of Animals, Justus-Liebig-University Giessen, Giessen, Germany
| | - Christa Ewers
- Institute of Hygiene and Infectious Diseases of Animals, Justus-Liebig-University Giessen, Giessen, Germany
- * E-mail:
| |
Collapse
|
28
|
Tipton KA, Farokhyfar M, Rather PN. Multiple roles for a novel RND-type efflux system in Acinetobacter baumannii AB5075. Microbiologyopen 2016; 6. [PMID: 27762102 PMCID: PMC5387308 DOI: 10.1002/mbo3.418] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 09/09/2016] [Accepted: 09/20/2016] [Indexed: 01/26/2023] Open
Abstract
Colony opacity phase variation in Acinetobacter baumannii strain AB5075 is regulated by a reversible high‐frequency switch. Transposon mutagenesis was used to generate mutations that decreased the opaque to translucent switch and a gene encoding a predicted periplasmic membrane fusion component of a resistance–nodulation–cell division (RND)‐type efflux system was isolated. This gene was designated arpA and immediately downstream was a gene designated arpB that encodes a predicted membrane transporter of RND‐type systems. A nonpolar, in‐frame deletion in arpA resulted in a 70‐fold decrease in the opaque to translucent switch. An arpB::Tc mutant exhibited a 769‐fold decrease in the opaque to translucent switch. However, the translucent to opaque switch was largely unchanged in both the arpA and arpB mutants. The arpA and arpB mutants also exhibited increased surface motility in the opaque form and the arpB mutant exhibited increased susceptibility to aminoglycosides. The arpA and arpB mutants were both attenuated in a Galleria mellonella model of virulence. A divergently transcribed TetR‐type regulator ArpR was capable of repressing the arpAB operon when this TetR regulator was overexpressed. The arpR gene was also involved in regulating the opaque to translucent switch as an in‐frame arpR mutation decreased this switch by 1,916‐fold.
Collapse
Affiliation(s)
- Kyle A Tipton
- Department of Microbiology and Immunology, Emory University School of Medicine Atlanta, Atlanta, GA, USA
| | | | - Philip N Rather
- Department of Microbiology and Immunology, Emory University School of Medicine Atlanta, Atlanta, GA, USA.,Research Service, Atlanta VA Medical Center, Decatur, GA, USA.,Emory Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|