1
|
Zhang J, Xing Z, Gu F, Wang Y, Wang T, Chen J. Changes in the microflora on the seed surface and seed vigor of maize (Zea mays) under different conditions. PLoS One 2024; 19:e0311258. [PMID: 39570885 PMCID: PMC11581300 DOI: 10.1371/journal.pone.0311258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 09/16/2024] [Indexed: 11/24/2024] Open
Abstract
Seed vigor encompasses the germination capacity, ability to form seedlings, and potential for production of seeds, and during storage, the deterioration of seed vigor is an inevitable biological process. However, changes in the microflora of the seed surface and seed vigor under different storage conditions have rarely been studied. In this study, the changes in fungal species on the surface and embryo and their effects of the hybrid maize cultivar Zhengdan958 seeds under different storage conditions were studied. The seed vigor was evaluated according to standard germination, MDA content, respiration rate, ATP content and the integrity of the ATP synthase subunits of seed embryos, with the aim of providing a basis for revealing the molecular mechanism of seed deterioration. The results revealed that at 33% relative humidity (RH), the dominant microflora constituent on the seed surface was Fusarium sp. In the seed embryo, the dominant microflora constituent was Aspergillus fumigatus. At 91% RH, the dominant microflora constituent on the seed surface was Aspergillus Jensen. In the seed embryo, the dominant microflora constituent was Penicillium sp. With the increased RH in the storage environment, the seed germination rate decreased by 86.67%. The respiration rate decreased by 0.04 mg·g-1·h-1 after 24 h imbibition. The seed embryo was hardly stained via TTC. The MDA content increased by 0.99 nmol·g-1, and the ATP content decreased by 0.33 μmol·g-1 after 24 h imbibition. The mRNA integrity of ATP synthase α, β, γ and δ subunits, except for ε subunit, in the seed embryo decreased to different degrees. These findings suggest that a change in the microflora is one of the most important factors causing a decrease in or total loss of seed vigor.
Collapse
Affiliation(s)
- Junming Zhang
- Agronomy College of Henan Agricultural University, Zhengzhou, China
| | - Zhenzhen Xing
- Agronomy College of Henan Agricultural University, Zhengzhou, China
| | - Fengxu Gu
- Agronomy College of Henan Agricultural University, Zhengzhou, China
| | - Yulu Wang
- Agronomy College of Henan Agricultural University, Zhengzhou, China
| | - Tianbo Wang
- Agronomy College of Henan Agricultural University, Zhengzhou, China
| | - Junying Chen
- Agronomy College of Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
2
|
Jeong E, Abdellaoui N, Lim JY, Seo JA. The presence of a significant endophytic fungus in mycobiome of rice seed compartments. Sci Rep 2024; 14:23367. [PMID: 39375368 PMCID: PMC11458573 DOI: 10.1038/s41598-024-73550-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 09/18/2024] [Indexed: 10/09/2024] Open
Abstract
Seed microbial communities have been known to have a crucial role in the life cycle of a plant. In this study, we examined the distribution of the fungal communities in three compartments (husk, brown rice, and milled rice) of the fourteen rice seed samples. Ten fungal genera distributed throughout the three compartments of the rice seeds were identified as the core mycobiome of the rice seeds, regardless of collecting regions or cultivars. Based on the diversity analysis, the distribution of the fungal community in milled rice was found to be more diversified, evenly distributed, and differently clustered from the other two compartments. Among the core mycobiome, Moesziomyces dominated almost 80% of the fungal communities in the outer compartments of rice seeds, whereas the abundances of other endophytic pathogenic fungi declined. Our results provide that antagonistic yeast Moesziomyces may be able to control the endogenous pathogenic fungal communities in rice seeds, hence maintaining the quality of rice seeds. In addition, the distribution of fungal communities differs depending on the rice seed's compartment, indicating that the compartment can affect the distribution of the seed microbial community.
Collapse
Affiliation(s)
- Eunji Jeong
- School of Systems Biomedical Science, Soongsil University, Seoul, Republic of Korea
| | - Najib Abdellaoui
- School of Systems Biomedical Science, Soongsil University, Seoul, Republic of Korea
| | - Jae Yun Lim
- School of Systems Biomedical Science, Soongsil University, Seoul, Republic of Korea
| | - Jeong-Ah Seo
- School of Systems Biomedical Science, Soongsil University, Seoul, Republic of Korea.
| |
Collapse
|
3
|
Ottesen A, Kocurek B, Reed E, Commichaux S, Mammel M, Ramachandran P, McDermott P, Flannery BM, Strain E. Paired metagenomic and chemical evaluation of aflatoxin-contaminated dog kibble. Front Vet Sci 2024; 11:1374839. [PMID: 38665771 PMCID: PMC11043538 DOI: 10.3389/fvets.2024.1374839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
Introduction Identification of chemical toxins from complex or highly processed foods can present 'needle in the haystack' challenges for chemists. Metagenomic data can be used to guide chemical toxicity evaluations by providing DNA-based description of the wholistic composition (eukaryotic, bacterial, protozoal, viral, and antimicrobial resistance) of foods suspected to harbor toxins, allergens, or pathogens. This type of information can focus chemistry-based diagnostics, improve hazard characterization and risk assessment, and address data gaps. Additionally, there is increasing recognition that simultaneously co-occurring mycotoxins, either from single or multiple species, can impact dietary toxicity exposure. Metagenomic data provides a way to address data gaps related to co-occurrence of multiple fungal species. Methods Paired metagenomic and chemical data were used to evaluate aflatoxin-contaminated kibble with known levels of specific mycotoxins. Kibble was ground to a fine powder for both chemical and molecular analyses. Chemical analyses were performed with Liquid Chromatography Mass Spectrometry (LCMS) and according to the AOAC Official method 2005.08: Aflatoxins in Corn, Raw Peanuts, and Peanut Butter using Liquid Chromatography with Post-Column Photochemical Derivatization. Metagenomes were created from DNA extracted from ground kibble and sequenced on an Illumina NextSeq 2000 with an average sequence depth of 180 million reads per replicate. Results and discussion Metagenomic data demonstrated that the abundance of DNA from putative aflatoxigenic Aspergillus spp. correlated with the levels of aflatoxin quantified by LCMS. Metagenomic data also identified an expansive range of co-occurring fungal taxa which may produce additional mycotoxins. DNA data paired with chemical data provides a novel modality to address current data gaps surrounding dietary mycotoxin exposure, toxigenic fungal taxonomy, and mycotoxins of emerging concern.
Collapse
Affiliation(s)
- Andrea Ottesen
- Center for Veterinary Medicine (CVM), U.S. Food and Drug Administration, Laurel, MD, United States
| | - Brandon Kocurek
- Center for Veterinary Medicine (CVM), U.S. Food and Drug Administration, Laurel, MD, United States
| | - Elizabeth Reed
- Center for Food Safety and Applied Nutrition (CFSAN), U.S. Food and Drug Administration, College Park, MD, United States
| | - Seth Commichaux
- Center for Food Safety and Applied Nutrition (CFSAN), U.S. Food and Drug Administration, College Park, MD, United States
| | - Mark Mammel
- Center for Food Safety and Applied Nutrition (CFSAN), U.S. Food and Drug Administration, College Park, MD, United States
| | - Padmini Ramachandran
- Center for Food Safety and Applied Nutrition (CFSAN), U.S. Food and Drug Administration, College Park, MD, United States
| | - Patrick McDermott
- Center for Veterinary Medicine (CVM), U.S. Food and Drug Administration, Laurel, MD, United States
| | - Brenna M. Flannery
- Center for Food Safety and Applied Nutrition (CFSAN), U.S. Food and Drug Administration, College Park, MD, United States
| | - Errol Strain
- Center for Food Safety and Applied Nutrition (CFSAN), U.S. Food and Drug Administration, College Park, MD, United States
| |
Collapse
|
4
|
Masenya K, Manganyi MC, Dikobe TB. Exploring Cereal Metagenomics: Unravelling Microbial Communities for Improved Food Security. Microorganisms 2024; 12:510. [PMID: 38543562 PMCID: PMC10974370 DOI: 10.3390/microorganisms12030510] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/21/2024] [Accepted: 02/28/2024] [Indexed: 11/12/2024] Open
Abstract
Food security is an urgent global challenge, with cereals playing a crucial role in meeting the nutritional requirements of populations worldwide. In recent years, the field of metagenomics has emerged as a powerful tool for studying the microbial communities associated with cereal crops and their impact on plant health and growth. This chapter aims to provide a comprehensive overview of cereal metagenomics and its role in enhancing food security through the exploration of beneficial and pathogenic microbial interactions. Furthermore, we will examine how the integration of metagenomics with other tools can effectively address the adverse effects on food security. For this purpose, we discuss the integration of metagenomic data and machine learning in providing novel insights into the dynamic interactions shaping plant-microbe relationships. We also shed light on the potential applications of leveraging microbial diversity and epigenetic modifications in improving crop resilience and yield sustainability. Ultimately, cereal metagenomics has revolutionized the field of food security by harnessing the potential of beneficial interactions between cereals and their microbiota, paving the way for sustainable agricultural practices.
Collapse
Affiliation(s)
- Kedibone Masenya
- National Zoological Gardens, South African National Biodiversity Institute, 32 Boom St., Pretoria 0001, South Africa
| | - Madira Coutlyne Manganyi
- Department of Biological and Environmental Sciences, Sefako Makgatho Health Sciences University, P.O. Box 139, Pretoria 0204, South Africa;
| | - Tshegofatso Bridget Dikobe
- Department of Botany, School of Biological Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa;
| |
Collapse
|
5
|
Brito VD, Achimón F, Zunino MP, Zygadlo JA, Pizzolitto RP. Fungal diversity and mycotoxins detected in maize stored in silo-bags: a review. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:2640-2650. [PMID: 35076089 DOI: 10.1002/jsfa.11756] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 12/01/2021] [Accepted: 01/08/2021] [Indexed: 06/14/2023]
Abstract
Silo-bags are hermetic storage systems that inhibit fungal growth because of their atmosphere with low humidity, as well as low pH and O2 concentrations, and a high CO2 concentration. If a silo-bag with stored maize loses its hermetic nature, it favors the development of fungi and the production of mycotoxins. To the best of our knowledge, this is the first review on the diversity of fungal species and mycotoxins that were reported in maize stored under the environmental conditions provided by silo-bags. The genera Penicillium, Aspergillus and Fusarium were found more frequently, whereas Acremonium spp., Alternaria sp., Candida sp., Cladosporium sp., Debaryomyces spp., Epiconum sp., Eupenicillium spp., Eurotium sp., Eurotium amstelodami, Hyphopichia spp., Hyphopichia burtonii, Moniliella sp., Wallemia sp. and genera within the orden Mucorales were reported less recurrently. Despite finding a great fungal diversity, all of the studies focused their investigations on a small group of toxins: fumonisins (FBs), aflatoxins (AFs), deoxynivalenol (DON), zearalenone (ZEA), patulin (PAT), toxin T2 (T2) and ochratoxin (OT). Of the FBs, fumonisin B1 and fumonisin B2 presented higher incidence percentages, followed by fumonisin B3 . Of the AFs, the only one reported was aflatoxin B1. The mycotoxins DON, ZEA and OT were found with lower incidences, whereas PAT and T2 were not detected. Good management practices of the silo-bags are necessary to achieve a hermetically sealed environment, without exchange of gases and water with the external environment during the storage period. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Vanessa D Brito
- Instituto Multidisciplinario de Biología Vegetal (IMBIV-CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina
- Instituto de Ciencia y Tecnología de los Alimentos (ICTA), FCEFyN, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Fernanda Achimón
- Instituto Multidisciplinario de Biología Vegetal (IMBIV-CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina
- Instituto de Ciencia y Tecnología de los Alimentos (ICTA), FCEFyN, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - María P Zunino
- Instituto Multidisciplinario de Biología Vegetal (IMBIV-CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina
- Instituto de Ciencia y Tecnología de los Alimentos (ICTA), FCEFyN, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Julio A Zygadlo
- Instituto Multidisciplinario de Biología Vegetal (IMBIV-CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina
- Instituto de Ciencia y Tecnología de los Alimentos (ICTA), FCEFyN, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Romina P Pizzolitto
- Instituto Multidisciplinario de Biología Vegetal (IMBIV-CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina
- Instituto de Ciencia y Tecnología de los Alimentos (ICTA), FCEFyN, Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
6
|
Phylogenetic diversity and antioxidant activity of selected fungi from ethno-medicinal plants and soil. Mycol Prog 2022. [DOI: 10.1007/s11557-022-01776-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
7
|
Analysis of seed-associated bacteria and fungi on staple crops using the cultivation and metagenomic approaches. Folia Microbiol (Praha) 2022; 67:351-361. [PMID: 35220558 PMCID: PMC9072454 DOI: 10.1007/s12223-022-00958-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 02/09/2022] [Indexed: 11/04/2022]
Abstract
AbstractOne of the key factors affecting seed quality is microbial communities residing on and in the seeds. In this study, microbial populations of seeds of conventionally and organically produced wheat, barley, and maize were analyzed using two different approaches: the cultivation method and metagenomics. For cultivation, three basic media were used: DG18 (for fungi), and nutrient agar or tryptic soy agar supplemented with cycloheximide or nystatin (for bacteria). Metagenomic sequencing was performed using the Illumina MiSeq platform. A total of 452 bacterial isolates comprising 36 genera and 5 phyla and 90 fungal isolates comprising 10 genera and 3 phyla were obtained from the seed surfaces. Among bacteria, representatives from the genera Bacillus, Pantoea, Paenibacillus, and Curtobacterium predominated, and among fungi, Aspergillus predominated. A total of 142 fungal OTUs and 201 bacterial OTUs were obtained from all the samples. Proteobacteria, Firmicutes, Bacteroides, and Actinobacteria comprised most of the bacterial OTUs, and Ascomycota comprised most of the fungal OTUs. Only 3 fungal OTUs (representatives of Curvibasidium, Venturia, and Dermateaceae) were exclusively present only within seeds and not on the seed surfaces. Barley seeds had the highest microbial load and richness, whereas corn had the lowest. Wheat and barley shared a higher number of OTUs than either of them did with corn with higher overlap between conventionally grown cereals than between organically grown cereals. Some OTUs were farming specific. This study demonstrates that the microbiome of cereal seeds is greatly dependent on the species of the host and is less affected by agricultural practices.
Collapse
|
8
|
Endophytic fungal communities and their biotechnological implications for agro-environmental sustainability. Folia Microbiol (Praha) 2022; 67:203-232. [PMID: 35122218 DOI: 10.1007/s12223-021-00939-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 12/07/2021] [Indexed: 02/05/2023]
Abstract
Endophytic fungal communities have attracted a great attention to chemists, ecologists, and microbiologists as a treasure trove of biological resource. Endophytic fungi play incredible roles in the ecosystem including abiotic and biotic stress tolerance, eco-adaptation, enhancing growth and development, and maintaining the health of their host. In recent times, endophytic fungi have drawn a special focus owing to their indispensable diversity, unique distribution, and unparalleled metabolic pathways. The endophytic fungal communities belong to three phyla, namely Mucoromycota, Basidiomycota, and Ascomycota with seven predominant classes Agaricomycetes, Dothideomycetes, Eurotiomycetes, Mortierellomycotina, Mucoromycotina, Saccharomycetes, and Sordariomycetes. In a review of a huge number of research finding, it was found that endophytic fungal communities of genera Aspergillus, Chaetomium, Fusarium, Gaeumannomyces, Metarhizium, Microsphaeropsis, Paecilomyces, Penicillium, Piriformospora, Talaromyces, Trichoderma, Verticillium, and Xylaria have been sorted out and well characterized for diverse biotechnological applications for future development. Furthermore, these communities are remarkable source of novel bioactive compounds with amazing biological activity for use in agriculture, food, and pharmaceutical industry. Endophytes are endowed with a broad range of structurally unique bioactive natural products, including alkaloids, benzopyranones, chinones, flavonoids, phenolic acids, and quinines. Subsequently, there is still an excellent opportunity to explore novel compounds from endophytic fungi among numerous plants inhabiting different niches. Furthermore, high-throughput sequencing could be a tool to study interaction between plants and endophytic fungi which may provide further opportunities to reveal unknown functions of endophytic fungal communities. The present review deals with the biodiversity of endophytic fungal communities and their biotechnological implications for agro-environmental sustainability.
Collapse
|
9
|
Błaszczyk L, Waśkiewicz A, Gromadzka K, Mikołajczak K, Chełkowski J. Sarocladium and Lecanicillium Associated with Maize Seeds and Their Potential to Form Selected Secondary Metabolites. Biomolecules 2021; 11:biom11010098. [PMID: 33451141 PMCID: PMC7828580 DOI: 10.3390/biom11010098] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/09/2021] [Accepted: 01/11/2021] [Indexed: 01/03/2023] Open
Abstract
The occurrence and diversity of Lecanicillium and Sarocladium in maize seeds and their role in this cereal are poorly understood. Therefore, the present study aimed to investigate Sarocladium and Lecanicillium communities found in endosphere of maize seeds collected from fields in Poland and their potential to form selected bioactive substances. The sequencing of the internally transcribed spacer regions 1 (ITS 1) and 2 (ITS2) and the large-subunit (LSU, 28S) of the rRNA gene cluster resulted in the identification of 17 Sarocladium zeae strains, three Sarocladium strictum and five Lecanicillium lecanii isolates. The assay on solid substrate showed that S. zeae and S. strictum can synthesize bassianolide, vertilecanin A, vertilecanin A methyl ester, 2-decenedioic acid and 10-hydroxy-8-decenoic acid. This is also the first study revealing the ability of these two species to produce beauvericin and enniatin B1, respectively. Moreover, for the first time in the present investigation, pyrrocidine A and/or B have been annotated as metabolites of S. strictum and L. lecanii. The production of toxic, insecticidal and antibacterial compounds in cultures of S. strictum, S. zeae and L. lecanii suggests the requirement to revise the approach to study the biological role of fungi inhabiting maize seeds.
Collapse
Affiliation(s)
- Lidia Błaszczyk
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479 Poznań, Poland; (K.M.); (J.C.)
- Correspondence: ; Tel.: +48-61-65-50-272
| | - Agnieszka Waśkiewicz
- Department of Chemistry, Poznan University of Life Sciences, Wojska Polskiego 75, 60-625 Poznań, Poland; (A.W.); (K.G.)
| | - Karolina Gromadzka
- Department of Chemistry, Poznan University of Life Sciences, Wojska Polskiego 75, 60-625 Poznań, Poland; (A.W.); (K.G.)
| | - Katarzyna Mikołajczak
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479 Poznań, Poland; (K.M.); (J.C.)
| | - Jerzy Chełkowski
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479 Poznań, Poland; (K.M.); (J.C.)
| |
Collapse
|
10
|
Altered bacteria community dominance reduces tolerance to resident fungus and seed to seedling growth performance in maize (Zea mays L. var. DKB 177). Microbiol Res 2020; 243:126643. [PMID: 33227680 DOI: 10.1016/j.micres.2020.126643] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/23/2020] [Accepted: 10/30/2020] [Indexed: 11/21/2022]
Abstract
Seeds are reservoirs of beneficial and harmful microorganism that modulates plant growth and health. Here, we access seed to seedling bacteriome assembly modified by seed-disinfection and the underlined effect over maize germination performance and root-seedlings microbial colonization. Seed-disinfection was performed with sodium hypochlorite (1.25 %, 30 min), resulting in a reduction of the cultivable-dependent fraction of seed-borne bacteria population, but not significantly detected by real-time PCR, microscopy, and biochemical analysis of the roots on germinated seeds. 16S rRNA sequencing revealed that bacteriome of non-germinated seeds and roots of 5-d germinated seeds exhibited similar diversity and did not differ in the structure concerning seed-disinfection. On the other hand, the relative abundance reduction of the genera f_Enterobacteriaceae_922761 (unassigned genus), Azospirillum, and Acinetobacter in disinfected-seed prior germination seems to display changes in prominence of several new taxa in the roots of germinated seeds. Interestingly, this bacteriome community rebuilt negatively affected the germination speed and growth of maize plantlets. Additionally, bacteriome re-shape increased the maize var. DKB 177 susceptible to the seed-borne plant pathogen Penicillium sp. Such changes in the natural seed-borne composition removed the natural barrier, increasing susceptibility to pathogens, impairing disinfected seeds to germinate, and develop. We conclude that bacteria borne in seeds modulate the relative abundance of taxa colonizing emerged roots, promote germination, seedling growth, and protect the maize against fungal pathogens.
Collapse
|
11
|
Martínez-Romero E, Aguirre-Noyola JL, Taco-Taype N, Martínez-Romero J, Zuñiga-Dávila D. Plant microbiota modified by plant domestication. Syst Appl Microbiol 2020; 43:126106. [PMID: 32847781 DOI: 10.1016/j.syapm.2020.126106] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/19/2020] [Accepted: 06/20/2020] [Indexed: 12/19/2022]
Abstract
Human life became largely dependent on agricultural products after distinct crop-domestication events occurred around 10,000 years ago in different geographical sites. Domestication selected suitable plants for human agricultural practices with unexpected consequences on plant microbiota, which has notable effects on plant growth and health. Among other traits, domestication has changed root architecture, exudation, or defense responses that could have modified plant microbiota. Here we present the comparison of reported data on the microbiota from widely consumed cereals and legumes and their ancestors showing that different bacteria were found in domesticated and wild plant microbiomes in some cases. Considering the large variability in plant microbiota, adequate sampling efforts and function-based approaches are needed to further support differences between the microbiota from wild and domesticated plants. The study of wild plant microbiomes could provide a valuable resource of unexploited beneficial bacteria for crops.
Collapse
Affiliation(s)
| | | | - Nataly Taco-Taype
- Laboratorio de Ecología Microbiana, Departamento de Biología, Facultad de Ciencias, Universidad Nacional Agraria La Molina, Lima, Peru
| | | | - Doris Zuñiga-Dávila
- Laboratorio de Ecología Microbiana, Departamento de Biología, Facultad de Ciencias, Universidad Nacional Agraria La Molina, Lima, Peru
| |
Collapse
|
12
|
Shen Y, Nie J, Kuang L, Zhang J, Li H. DNA sequencing, genomes and genetic markers of microbes on fruits and vegetables. Microb Biotechnol 2020; 14:323-362. [PMID: 32207561 PMCID: PMC7936329 DOI: 10.1111/1751-7915.13560] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/01/2020] [Accepted: 03/02/2020] [Indexed: 12/20/2022] Open
Abstract
The development of DNA sequencing technology has provided an effective method for studying foodborne and phytopathogenic microorganisms on fruits and vegetables (F & V). DNA sequencing has successfully proceeded through three generations, including the tens of operating platforms. These advances have significantly promoted microbial whole‐genome sequencing (WGS) and DNA polymorphism research. Based on genomic and regional polymorphisms, genetic markers have been widely obtained. These molecular markers are used as targets for PCR or chip analyses to detect microbes at the genetic level. Furthermore, metagenomic analyses conducted by sequencing the hypervariable regions of ribosomal DNA (rDNA) have revealed comprehensive microbial communities in various studies on F & V. This review highlights the basic principles of three generations of DNA sequencing, and summarizes the WGS studies of and available DNA markers for major bacterial foodborne pathogens and phytopathogenic fungi found on F & V. In addition, rDNA sequencing‐based bacterial and fungal metagenomics are summarized under three topics. These findings deepen the understanding of DNA sequencing and its application in studies of foodborne and phytopathogenic microbes and shed light on strategies for the monitoring of F & V microbes and quality control.
Collapse
Affiliation(s)
- Youming Shen
- Institute of Pomology, Chinese Academy of Agricultural Sciences/Laboratory of Quality & Safety Risk Assessment for Fruit (Xingcheng), Ministry of Agriculture and Rural Affairs/Quality Inspection and Test Center for Fruit and Nursery Stocks (Xingcheng), Ministry of Agriculture and Rural Affairs, Xingcheng, 125100, China
| | - Jiyun Nie
- Institute of Pomology, Chinese Academy of Agricultural Sciences/Laboratory of Quality & Safety Risk Assessment for Fruit (Xingcheng), Ministry of Agriculture and Rural Affairs/Quality Inspection and Test Center for Fruit and Nursery Stocks (Xingcheng), Ministry of Agriculture and Rural Affairs, Xingcheng, 125100, China.,College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
| | - Lixue Kuang
- Institute of Pomology, Chinese Academy of Agricultural Sciences/Laboratory of Quality & Safety Risk Assessment for Fruit (Xingcheng), Ministry of Agriculture and Rural Affairs/Quality Inspection and Test Center for Fruit and Nursery Stocks (Xingcheng), Ministry of Agriculture and Rural Affairs, Xingcheng, 125100, China
| | - Jianyi Zhang
- Institute of Pomology, Chinese Academy of Agricultural Sciences/Laboratory of Quality & Safety Risk Assessment for Fruit (Xingcheng), Ministry of Agriculture and Rural Affairs/Quality Inspection and Test Center for Fruit and Nursery Stocks (Xingcheng), Ministry of Agriculture and Rural Affairs, Xingcheng, 125100, China
| | - Haifei Li
- Institute of Pomology, Chinese Academy of Agricultural Sciences/Laboratory of Quality & Safety Risk Assessment for Fruit (Xingcheng), Ministry of Agriculture and Rural Affairs/Quality Inspection and Test Center for Fruit and Nursery Stocks (Xingcheng), Ministry of Agriculture and Rural Affairs, Xingcheng, 125100, China
| |
Collapse
|
13
|
Wang L, Liu B, Jin J, Ma L, Dai X, Pan L, Liu Y, Zhao Y, Xing F. The Complex Essential Oils Highly Control the Toxigenic Fungal Microbiome and Major Mycotoxins During Storage of Maize. Front Microbiol 2019; 10:1643. [PMID: 31379790 PMCID: PMC6646819 DOI: 10.3389/fmicb.2019.01643] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 07/02/2019] [Indexed: 12/29/2022] Open
Abstract
The contamination of maize with fungi and subsequent mycotoxins is a pivotal and long-standing safety concern in the maize industry. In this study, the inhibitory effects of the complex essential oils (cinnamaldehyde, citral, eugenol, and menthol, 3:3:2:2, v/v) on fungal growth and mycotoxins production in stored maize were evaluated using traditional plate counting, internal transcribed spacer 2 (ITS2) sequencing and liquid chromatography-tandem mass spectrometry. Complex essential oils (0.02%) significantly (p < 0.05) reduced the total fungi counts and the content of aflatoxin B1, zearalenone, and deoxynivalenol in stored maize during 12 months of storage, and were more effective than propionic acid (0.2%). The fungal diversity of the control group was the highest with 113 operational taxonomic units. During storage of maize kernels, Aspergillus, Fusarium, Wallemia, Sarocladium, and Penicillium were main genera. At 0-6 months, the fungal diversity was high and Fusarium was predominant genus. However, at 7-11 months, the fungal diversity was low and Aspergillus was predominant genus. During the later stages of storage, the prevalence of Aspergillus in maize treated with essential oils was significantly lower than (p < 0.05) that observed in the propionic acid treated and control samples. The results of this study suggest that the complex essential oils may be employed successfully to control toxigenic fungi and subsequent contamination with mycotoxins in maize.
Collapse
Affiliation(s)
- Limin Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Bin Liu
- Shandong Quality Inspection Center for Medical Devices, Jinan, China
| | - Jing Jin
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Longxue Ma
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Xiaofeng Dai
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Lin Pan
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Yang Liu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Yueju Zhao
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Fuguo Xing
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing, China
| |
Collapse
|
14
|
Cobo-Díaz JF, Baroncelli R, Le Floch G, Picot A. Combined Metabarcoding and Co-occurrence Network Analysis to Profile the Bacterial, Fungal and Fusarium Communities and Their Interactions in Maize Stalks. Front Microbiol 2019; 10:261. [PMID: 30833940 PMCID: PMC6387940 DOI: 10.3389/fmicb.2019.00261] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 01/31/2019] [Indexed: 11/13/2022] Open
Abstract
Fusarium Head Blight (FHB) is one of the most devastating diseases of cereals worldwide, threatening both crop production by affecting cereal grain development, and human and animal health by contaminating grains with mycotoxins. Despite that maize residues constitute the primary source of inoculum for Fusarium pathogenic species, the structure and diversity of Fusarium spp. and microbial communities in maize residues have received much less attention than in grains. In this study, a metabarcoding approach was used to study the bacterial, fungal and Fusarium communities encountered in maize stalks collected from 8 fields in Brittany, France, after maize harvest during fall 2015. Some predominant genera found in maize residues were cereal or maize pathogens, such as the fungal Fusarium, Acremonium, and Phoma genera, and the bacterial Pseudomonas and Erwinia genera. Furthermore, a high predominance of genera with previously reported biocontrol activity was found, including the bacterial Sphingomonas, Pedobacter, Flavobacterium, Pseudomonas, and Janthinobacterium genera; and the fungal Epicoccum, Articulospora, Exophiala, and Sarocladium genera. Among Fusarium spp., F. graminearum and F. avenaceum were dominant. We also found that the maize cultivar and previous crop could influence the structure of microbial communities. Using SparCC co-occurrence network analysis, significant negative correlations were obtained between Fusarium spp. responsible for FHB (including F. graminearum and F. avenaceum) and bacterial OTUs classified as Sphingomonas and fungal OTUs classified as Sarocladium and Epicoccum. Considering that isolates belonging to these taxa have already been associated with antagonist effect against different Fusarium spp. and/or other pathogenic microorganisms and due to their predominance and negative associations with Fusarium spp., they may be good candidates as biocontrol agents. Combining the use of Fusarium-specific primers with universal primers for bacteria and fungi allowed us to study the microbial communities, but also to track correlations between Fusarium spp. and other bacterial and fungal genera, using co-occurrence network analysis. Such approach could be a useful tool as part of a screening strategy for novel antagonist candidates against toxigenic Fusarium spp., allowing the selection of taxa of interest.
Collapse
Affiliation(s)
- José Francisco Cobo-Díaz
- Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, IBSAM, ESIAB, Université de Bretagne Occidentale, Plouzané, France
| | - Riccardo Baroncelli
- Instituto Hispano-Luso de Investigaciones Agrarias (CIALE), University of Salamanca, Salamanca, Spain
| | - Gaétan Le Floch
- Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, IBSAM, ESIAB, Université de Bretagne Occidentale, Plouzané, France
| | - Adeline Picot
- Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, IBSAM, ESIAB, Université de Bretagne Occidentale, Plouzané, France
| |
Collapse
|
15
|
Endophytic Fungi: Biodiversity, Ecological Significance, and Potential Industrial Applications. RECENT ADVANCEMENT IN WHITE BIOTECHNOLOGY THROUGH FUNGI 2019. [DOI: 10.1007/978-3-030-10480-1_1] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
16
|
Xing H, Ma J, Xu B, Zhang S, Wang J, Cao L, Yang X. Mycobiota of maize seeds revealed by rDNA-ITS sequence analysis of samples with varying storage times. Microbiologyopen 2018; 7:e00609. [PMID: 29573223 PMCID: PMC6291794 DOI: 10.1002/mbo3.609] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Revised: 01/17/2018] [Accepted: 01/25/2018] [Indexed: 11/16/2022] Open
Abstract
Fungi are an integral component of the plant microbiome. However, the composition and variation in the fungal communities (mycobiota) associated with seeds are poorly understood. In this study, we investigated the mycobiota of 11 maize seed samples with storage times ranging from 6 months to 12 years. Mycobiota were characterized by a culture-based approach, and fungal species were identified through rDNA-ITS sequence analyses. From a total of 169 pure fungal isolates obtained from both the seed surface and internal tissues, we identified 16 distinct species (belonging to 10 genera) associated with maize seeds, all but one of which were ascomycetes. Among these species, seven were exclusively isolated from internal tissues, two species were isolated only from the seed surface, and another six species were isolated from both the surface and internal tissues. Aspergillus niger was consistently found under all storage conditions and dominated fungal communities with a relative abundance of 36%-100%. Species of Fusarium (9%-40%) and Penicillium (9%-20%) were also frequently isolated, but other species appeared sporadically and were isolated from fewer than three seed stocks. According to our results, while the overall incidence of fungal infection generally declined with storage time, there was no consistent association between seed storage time and fungal species richness or relative abundance; furthermore, the composition of the mycobiota associated with maize seeds was highly variable among the samples. The detection of the four major mycotoxigenic fungal genera, specifically Aspergillus, Fusarium, Penicillium, and Alternaria, was alarming, and the isolation of a potential controlling agent as well as information about their temporal occurrence will contribute to the management of mycotoxins in the future.
Collapse
Affiliation(s)
- Hui‐Qin Xing
- College of Plant ProtectionGansu Agricultural University and Biocontol Engineering Laboratory of Crop Diseases and Pests of Gansu ProvinceLanzhouGansuChina
- College of Agriculture and BiotechnologyHexi UniversityZhangyeGansuChina
| | - Jian‐Cang Ma
- Zhangye Maize Stock Production BaseZhangyeGansuChina
| | - Bing‐Liang Xu
- College of Plant ProtectionGansu Agricultural University and Biocontol Engineering Laboratory of Crop Diseases and Pests of Gansu ProvinceLanzhouGansuChina
| | - Shu‐Wu Zhang
- College of Plant ProtectionGansu Agricultural University and Biocontol Engineering Laboratory of Crop Diseases and Pests of Gansu ProvinceLanzhouGansuChina
| | - Jin Wang
- College of Agriculture and BiotechnologyHexi UniversityZhangyeGansuChina
| | - Li Cao
- College of Agriculture and BiotechnologyHexi UniversityZhangyeGansuChina
| | - Xue‐Mei Yang
- College of Agriculture and BiotechnologyHexi UniversityZhangyeGansuChina
| |
Collapse
|
17
|
Lane B, Sharma S, Niu C, Maina AW, Wagacha JM, Bluhm BH, Woloshuk CP. Changes in the Fungal Microbiome of Maize During Hermetic Storage in the United States and Kenya. Front Microbiol 2018; 9:2336. [PMID: 30333810 PMCID: PMC6176044 DOI: 10.3389/fmicb.2018.02336] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 09/12/2018] [Indexed: 11/20/2022] Open
Abstract
Prior to harvest, maize kernels are invaded by a diverse population of fungal organisms that comprise the microbiome of the grain mass. Poor post-harvest practices and improper drying can lead to the growth of mycotoxigenic storage fungi and deterioration of grain quality. Hermetic storage bags are a low-cost technology for the preservation of grain during storage, which has seen significant adoption in many regions of Sub-Saharan Africa. This study explored the use of high-throughput DNA sequencing of the fungal Internal Transcribed Spacer 2 (ITS2) region for characterization of the fungal microbiome before and after 3 months of storage in hermetic and non-hermetic (woven) bags in the United States and Kenya. Analysis of 1,377,221 and 3,633,944 ITS2 sequences from the United States and Kenya, respectively, resulted in 251 and 164 operational taxonomic units (OTUs). Taxonomic assignment of these OTUs revealed 63 and 34 fungal genera in the US and Kenya samples, respectively, many of which were not detected by traditional plating methods. The most abundant genus was Fusarium, which was identified in all samples. Storage fungi were detected in the grain mass prior to the storage experiments and increased in relative abundance within the woven bags. The results also indicate that storage location had no effect on the fungal microbiome of grain stored in the United States, while storage bag type led to significant changes in fungal composition. The fungal microbiome of the Kenya grain also underwent significant changes in composition during storage and fungal diversity increased during storage regardless of bag type. Our results indicated that extraction of DNA from ground kernels is sufficient for identifying the fungi associated with the maize. The results also indicated that bag type was the most important factor influencing changes in fungal microbiome during storage. The results also support the recommended use of hermetic storage for reducing food safety risks, especially from mycotoxigenic fungi.
Collapse
Affiliation(s)
- Brett Lane
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, United States
| | - Sandeep Sharma
- Department of Plant Pathology, University of Arkansas, Fayetteville, AR, United States
| | - Chenxing Niu
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, United States
| | - Angeline W. Maina
- School of Biological Sciences, University of Nairobi, Nairobi, Kenya
| | - John M. Wagacha
- School of Biological Sciences, University of Nairobi, Nairobi, Kenya
| | - Burton H. Bluhm
- Department of Plant Pathology, University of Arkansas, Fayetteville, AR, United States
| | - Charles P. Woloshuk
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, United States
| |
Collapse
|