1
|
Yan B, Li X, Qiao N, Da Z, Xu J, Jiang C, Ba S. The co-occurrence patterns and assembly mechanisms of microeukaryotic communities in geothermal ecosystems of the Qinghai-Tibet Plateau. Front Microbiol 2025; 16:1513944. [PMID: 39967736 PMCID: PMC11832674 DOI: 10.3389/fmicb.2025.1513944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 01/13/2025] [Indexed: 02/20/2025] Open
Abstract
Geothermal spring ecosystems, as extreme habitats, exert significant environmental pressure on their microeukaryotic communities. However, existing studies on the stability of microeukaryotic communities in geothermal ecosystems across different habitats and temperature gradients are still limited. In this study, we used high-throughput 18S rDNA sequencing in combination with environmental factor analysis to investigate the co-occurrence patterns, assembly mechanisms, and responses to environmental changes of microeukaryotic communities in sediment and water samples from 36 geothermal springs across different temperature gradients in southern Tibet. The results show that with increasing temperature, the network stability of microeukaryotic communities in sediments significantly improved, while the stability in water communities decreased. The assembly mechanisms of microeukaryotic communities in both sediment and water were primarily driven by undominant processes within stochastic processes. Latitude and longitude were the key factors influencing changes in sediment community composition, while water temperature and electrical conductivity were the major environmental factors affecting water community composition. Additionally, the stability of the geothermal community network was closely related to its response to external disturbances: sediment communities, being in relatively stable environments, demonstrated higher resistance to disturbances, whereas water communities, influenced by environmental changes such as water flow and precipitation, exhibited greater dynamic variability. These findings not only enhance our understanding of the ecological adaptability of microeukaryotic communities in geothermal springs but also provide valuable insights into how microorganisms in extreme environments respond to external disturbances. This is especially significant for understanding how microeukaryotic communities maintain ecological stability under highly dynamic and stressful environmental conditions.
Collapse
Affiliation(s)
- Bingjie Yan
- Laboratory of Wetland and Watershed Ecowaters of Tibetan Plateau, Tibet University, Lhasa, China
- Provincial Level of Mitika Wetland Ecosystem Observation and Research Station in Tibet Autonomous Region, Nagqu, China
| | - Xiaodong Li
- Laboratory of Wetland and Watershed Ecowaters of Tibetan Plateau, Tibet University, Lhasa, China
- Provincial Level of Mitika Wetland Ecosystem Observation and Research Station in Tibet Autonomous Region, Nagqu, China
| | - Nanqian Qiao
- Laboratory of Wetland and Watershed Ecowaters of Tibetan Plateau, Tibet University, Lhasa, China
- Provincial Level of Mitika Wetland Ecosystem Observation and Research Station in Tibet Autonomous Region, Nagqu, China
| | - Zhen Da
- Laboratory of Wetland and Watershed Ecowaters of Tibetan Plateau, Tibet University, Lhasa, China
- Provincial Level of Mitika Wetland Ecosystem Observation and Research Station in Tibet Autonomous Region, Nagqu, China
| | - Jiajie Xu
- Laboratory of Wetland and Watershed Ecowaters of Tibetan Plateau, Tibet University, Lhasa, China
- Provincial Level of Mitika Wetland Ecosystem Observation and Research Station in Tibet Autonomous Region, Nagqu, China
| | - Chuanqi Jiang
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Wuhan, China
| | - Sang Ba
- Laboratory of Wetland and Watershed Ecowaters of Tibetan Plateau, Tibet University, Lhasa, China
- Provincial Level of Mitika Wetland Ecosystem Observation and Research Station in Tibet Autonomous Region, Nagqu, China
| |
Collapse
|
2
|
Cadena LR, Edgcomb V, Lukeš J. Gazing into the abyss: A glimpse into the diversity, distribution, and behaviour of heterotrophic protists from the deep-sea floor. Environ Microbiol 2024; 26:e16598. [PMID: 38444221 DOI: 10.1111/1462-2920.16598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 02/08/2024] [Indexed: 03/07/2024]
Abstract
The benthic biome of the deep-sea floor, one of the largest biomes on Earth, is dominated by diverse and highly productive heterotrophic protists, second only to prokaryotes in terms of biomass. Recent evidence suggests that these protists play a significant role in ocean biogeochemistry, representing an untapped source of knowledge. DNA metabarcoding and environmental sample sequencing have revealed that deep-sea abyssal protists exhibit high levels of specificity and diversity across local regions. This review aims to provide a comprehensive summary of the known heterotrophic protists from the deep-sea floor, their geographic distribution, and their interactions in terms of parasitism and predation. We offer an overview of the most abundant groups and discuss their potential ecological roles. We argue that the exploration of the biodiversity and species-specific features of these protists should be integrated into broader deep-sea research and assessments of how benthic biomes may respond to future environmental changes.
Collapse
Affiliation(s)
- Lawrence Rudy Cadena
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Virginia Edgcomb
- Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
- Faculty of Sciences, University of South Bohemia, České Budějovice, Czech Republic
| |
Collapse
|
3
|
Zhang Y, Qu Z, Zhang K, Li J, Lin X. Different Microeukaryotic Trophic Groups Show Different Latitudinal Spatial Scale Dependences in Assembly Processes across the Continental Shelves of China. Microorganisms 2024; 12:124. [PMID: 38257952 PMCID: PMC10821338 DOI: 10.3390/microorganisms12010124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/02/2024] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
The relative role of stochasticity versus determinism is critically dependent on the spatial scale over which communities are studied. However, only a few studies have attempted to reveal how spatial scales influence the balance of different assembly processes. In this study, we investigated the latitudinal spatial scale dependences in assembly processes of microeukaryotic communities in surface water and sediment along the continental shelves of China. It was hypothesized that different microeukaryotic trophic groups (i.e., autotroph, heterotroph, mixotroph, and parasite) showed different latitudinal scale dependences in their assembly processes. Our results disclosed that the relative importance of different assembly processes depended on a latitudinal space scale for planktonic microeukaryotes. In surface water, as latitudinal difference increased, the relative contributions of homogenous selection and homogenizing dispersal decreased for the entire community, while those of heterogeneous selection and drift increased. The planktonic autotrophic and heterotrophic groups shifted from stochasticity-dominated processes to heterogeneous selection as latitudinal differences surpassed thresholds of 8° and 16°, respectively. For mixotrophic and parasitic groups, however, the assembly processes were always dominated by drift across different spatial scales. The balance of different assembly processes for the autotrophic group was mainly driven by temperature, whereas that of the heterotrophic group was driven by salinity and geographical distance. In sediment, neither the entire microeukaryotic community nor the four trophic groups showed remarkable spatial scale dependences in assembly processes; they were always overwhelmingly dominated by the drift. This work provides a deeper understanding of the distribution mechanisms of microeukaryotes along the continental shelves of China from the perspective of trophic groups.
Collapse
Affiliation(s)
- Yong Zhang
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, Fujian Province Key Laboratory for Coastal Ecology and Environmental Studies, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China; (Y.Z.); (Z.Q.); (K.Z.); (J.L.)
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao 266071, China
| | - Zhishuai Qu
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, Fujian Province Key Laboratory for Coastal Ecology and Environmental Studies, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China; (Y.Z.); (Z.Q.); (K.Z.); (J.L.)
| | - Kexin Zhang
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, Fujian Province Key Laboratory for Coastal Ecology and Environmental Studies, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China; (Y.Z.); (Z.Q.); (K.Z.); (J.L.)
| | - Jiqiu Li
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, Fujian Province Key Laboratory for Coastal Ecology and Environmental Studies, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China; (Y.Z.); (Z.Q.); (K.Z.); (J.L.)
| | - Xiaofeng Lin
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, Fujian Province Key Laboratory for Coastal Ecology and Environmental Studies, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China; (Y.Z.); (Z.Q.); (K.Z.); (J.L.)
| |
Collapse
|
4
|
Cho A, Tikhonenkov DV, Lax G, Prokina KI, Keeling PJ. Phylogenomic position of genetically diverse phagotrophic stramenopile flagellates in the sediment-associated MAST-6 lineage and a potentially halotolerant placididean. Mol Phylogenet Evol 2024; 190:107964. [PMID: 37951557 DOI: 10.1016/j.ympev.2023.107964] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 11/02/2023] [Accepted: 11/08/2023] [Indexed: 11/14/2023]
Abstract
Unlike morphologically conspicuous ochrophytes, many flagellates belonging to basally branching stramenopiles are small and often overlooked. As a result, many of these lineages are known only through molecular surveys and identified as MArine STramenopiles (MAST), and remain largely uncharacterized at the cellular or genomic level. These likely phagotrophic flagellates are not only phylogenetically diverse, but also extremely abundant in some environments, making their characterization all the more important. MAST-6 is one example of a phylogenetically distinct group that has been known to be associated with sediments, but little else is known about it. Indeed, until the present study, only a single species from this group, Pseudophyllomitus vesiculosus (Pseudophyllomitidae), has been both formally described and associated with genomic information. Here, we describe four new species including two new genera of sediment-dwelling MAST-6, Vomastramonas tehuelche gen. et sp. nov., Mastreximonas tlaamin gen. et sp. nov., one undescribed Pseudophyllomitus sp., BSC2, and a new species belonging to Placididea, the potentially halotolerant Haloplacidia sinai sp. nov. We also provide two additional bikosian transcriptomes from a public culture collection, to allow for better phylogenetic reconstructions of deep-branching stramenopiles. With the SSU rRNA sequences of the new MAST-6 species, we investigate the phylogenetic diversity of the MAST-6 group and show a high relative abundance of MAST-6 related to M. tlaamin in samples across various depths and geographical locations. Using the new MAST-6 species, we also update the phylogenomic tree of stramenopiles, particularly focusing on the paraphyly of Bigyra.
Collapse
Affiliation(s)
- Anna Cho
- Department of Botany, University of British Columbia, Vancouver V6T 1Z4, British Columbia, Canada.
| | - Denis V Tikhonenkov
- Papanin Institute for Biology of Inland Waters, Russian Academy of Science, Borok 152742, Russia
| | - Gordon Lax
- Department of Botany, University of British Columbia, Vancouver V6T 1Z4, British Columbia, Canada
| | - Kristina I Prokina
- Papanin Institute for Biology of Inland Waters, Russian Academy of Science, Borok 152742, Russia; Ecologie Systématique Evolution, CNRS, Université Paris-Saclay, AgroParisTech, Gif-sur-Yvette, France
| | - Patrick J Keeling
- Department of Botany, University of British Columbia, Vancouver V6T 1Z4, British Columbia, Canada
| |
Collapse
|
5
|
Xu Z, Chen J, Li Y, Shekarriz E, Wu W, Chen B, Liu H. High Microeukaryotic Diversity in the Cold-Seep Sediment. MICROBIAL ECOLOGY 2023; 86:2003-2020. [PMID: 36973438 DOI: 10.1007/s00248-023-02212-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 03/22/2023] [Indexed: 06/18/2023]
Abstract
Microeukaryotic diversity, community structure, and their regulating mechanisms remain largely unclear in chemosynthetic ecosystems. Here, using high-throughput sequencing data of 18S rRNA genes, we explored microeukaryotic communities from the Haima cold seep in the northern South China Sea. We compared three distinct habitats: active, less active, and non-seep regions, with vertical layers (0-25 cm) from sediment cores. The results showed that seep regions harbored more abundant and diverse parasitic microeukaryotes (e.g., Apicomplexa and Syndiniales) as indicator species, compared to nearby non-seep region. Microeukaryotic community heterogeneity was larger between habitats than within habitat, and greatly increased when considering molecular phylogeny, suggesting the local diversification in cold-seep sediments. Microeukaryotic α-diversity at cold seeps was positively increased by metazoan richness and dispersal rate of microeukaryotes, while its β-diversity was promoted by heterogeneous selection mainly from metazoan communities (as potential hosts). Their combined effects led to the significant higher γ-diversity (i.e., total diversity in a region) at cold seeps than non-seep regions, suggesting cold-seep sediment as a hotspot for microeukaryotic diversity. Our study highlights the importance of microeukaryotic parasitism in cold-seep sediment and has implications for the roles of cold seep in maintaining and promoting marine biodiversity.
Collapse
Affiliation(s)
- Zhimeng Xu
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Jiawei Chen
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Yingdong Li
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Erfan Shekarriz
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Wenxue Wu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
| | - Bingzhang Chen
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- Department of Mathematics and Statistics, University of Strathclyde, Glasgow, UK
| | - Hongbin Liu
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China.
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China.
- Department of Ocean Science and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Hong Kong, China.
- CAS-HKUST Sanya Joint Laboratory of Marine Science Research, Sanya, China.
| |
Collapse
|
6
|
Hu W, Zheng N, Zhang Y, Bartlam M, Wang Y. Spatiotemporal dynamics of high and low nucleic acid-content bacterial communities in Chinese coastal seawater: assembly process, co-occurrence relationship and the ecological functions. Front Microbiol 2023; 14:1219655. [PMID: 37601370 PMCID: PMC10433394 DOI: 10.3389/fmicb.2023.1219655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 07/20/2023] [Indexed: 08/22/2023] Open
Abstract
Studies of high nucleic acid-content (HNA) and low nucleic acid-content (LNA) bacterial communities are updating our view of their distributions and taxonomic composition. However, there are still large gaps in our knowledge of the composition, assembly processes, co-occurrence relationships and ecological functions of HNA and LNA bacterial communities. Here, using 16S rRNA gene amplicon sequencing, we investigated the spatiotemporal dynamics, assembly processes, co-occurrence relationships and ecological functions of HNA and LNA bacterial communities in the samples collected in summer and winter in Chinese coastal seas. The communities of HNA and LNA bacteria had clear spatiotemporal patterns and LNA bacteria was phylogenetically less diverse than HNA bacteria in both seasons. The distribution of HNA and LNA bacteria were significantly affected by the environmental factors and a significant seasonal-consistent distance-decay patterns were found in HNA and LNA bacteria. Furthermore, a quantitative assessment of ecological processes revealed that dispersal limitation, homogeneous selection exerted important roles in the community assembly of HNA and LNA bacteria. More importantly, we observed seasonality in the co-occurrence relationships: closer inter-taxa connections of HNA bacterial communities in winter than in summer and the opposite is true in the LNA bacterial communities. Some ecological functions, such as: phototrophy, photoautotrophy, oxygenic photoautotrophy, were different between HNA and LNA bacteria. These results provide a better understanding of spatiotemporal patterns, processes, and the ecological functions of HNA and LNA bacterial communities in Chinese coastal seawater.
Collapse
Affiliation(s)
- Wei Hu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai International Advanced Research Institute (Shenzhen Futian), Nankai University, Tianjin, China
| | - Ningning Zheng
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai International Advanced Research Institute (Shenzhen Futian), Nankai University, Tianjin, China
| | - Yadi Zhang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai International Advanced Research Institute (Shenzhen Futian), Nankai University, Tianjin, China
| | - Mark Bartlam
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai International Advanced Research Institute (Shenzhen Futian), Nankai University, Tianjin, China
| | - Yingying Wang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai International Advanced Research Institute (Shenzhen Futian), Nankai University, Tianjin, China
| |
Collapse
|
7
|
Zhang P, Xiong J, Qiao N, Luo S, Yang Q, Li X, An R, Jiang C, Miao W, Ba S. High Variation in Protist Diversity and Community Composition in Surface Sediment of Hot Springs in Himalayan Geothermal Belt, China. Microorganisms 2023; 11:microorganisms11030674. [PMID: 36985247 PMCID: PMC10053680 DOI: 10.3390/microorganisms11030674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/17/2023] [Accepted: 02/28/2023] [Indexed: 03/09/2023] Open
Abstract
Hot springs are some of the most special environments on Earth. Many prokaryotic and eukaryotic microbes have been found to live in this environment. The Himalayan geothermal belt (HGB) has numerous hot springs spread across the area. Comprehensive research using molecular techniques to investigate eukaryotic microorganisms is still lacking; investigating the composition and diversity of eukaryotic microorganisms such as protists in the hot spring ecosystems will not only provide critical information on the adaptations of protists to extreme conditions, but could also give valuable contributions to the global knowledge of biogeographic diversity. In this study, we used high-throughput sequencing to illuminate the diversity and composition pattern of protist communities in 41 geothermal springs across the HGB on the Tibetan Plateau. A total of 1238 amplicon sequence variants (ASVs) of protists were identified in the hot springs of the HGB. In general, Cercozoa was the phylum with the highest richness, and Bacillariophyta was the phylum with the highest relative abundance in protists. Based on the occurrence of protist ASVs, most of them are rare. A high variation in protist diversity was found in the hot springs of the HGB. The high variation in protist diversity may be due to the different in environmental conditions of these hot springs. Temperature, salinity, and pH are the most important environmental factors that affect the protist communities in the surface sediments of the hot springs in the HGB. In summary, this study provides the first comprehensive study of the composition and diversity of protists in the hot springs of the HGB and facilitates our understanding of the adaptation of protists in these extreme habitats.
Collapse
Affiliation(s)
- Peng Zhang
- Laboratory of Wetland and Catchments Ecology in Tibetan Plateau, Faculty of Ecology and Environment, Tibet University, Lhasa 850000, China
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Jie Xiong
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Nanqian Qiao
- Laboratory of Wetland and Catchments Ecology in Tibetan Plateau, Faculty of Ecology and Environment, Tibet University, Lhasa 850000, China
| | - Shuai Luo
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Qing Yang
- Laboratory of Wetland and Catchments Ecology in Tibetan Plateau, Faculty of Ecology and Environment, Tibet University, Lhasa 850000, China
| | - Xiaodong Li
- Laboratory of Wetland and Catchments Ecology in Tibetan Plateau, Faculty of Ecology and Environment, Tibet University, Lhasa 850000, China
| | - Ruizhi An
- Laboratory of Wetland and Catchments Ecology in Tibetan Plateau, Faculty of Ecology and Environment, Tibet University, Lhasa 850000, China
| | - Chuanqi Jiang
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Wei Miao
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- Correspondence: (W.M.); (S.B.)
| | - Sang Ba
- Laboratory of Wetland and Catchments Ecology in Tibetan Plateau, Faculty of Ecology and Environment, Tibet University, Lhasa 850000, China
- Correspondence: (W.M.); (S.B.)
| |
Collapse
|
8
|
Niu T, Xu Y, Chen J, Qin L, Li Z, Yang Y, Liang J. Bacterial taxonomic and functional profiles from Bohai Sea to northern Yellow Sea. Front Microbiol 2023; 14:1139950. [PMID: 36910186 PMCID: PMC9995391 DOI: 10.3389/fmicb.2023.1139950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 02/03/2023] [Indexed: 02/25/2023] Open
Abstract
Microbial distribution patterns are the result of a combination of biotic and abiotic factors, which are the core issues in microbial ecology research. To better understand the biogeographic pattern of bacteria in water environments from the Bohai Sea to the northern Yellow Sea, the effects of environmental factors, and spatial distance on the structure of bacterial communities in marine water were investigated using high-throughput sequencing technology based on 16S rRNA genes. The results showed that Proteobacteria, Bacteroidetes, Actinobacteri, Desulfobacterota, and Bdellovibrionota were the dominant phyla in the study area. A clear spatial pattern in the bacterial community was observed, and environmental factors, including salinity, nutrient concentration, carbon content, total phosphorus, dissolved oxygen, and seawater turbidity emerged as the central environmental factors regulating the variation in bacterial communities. In addition, the study provides direct evidence of the existence of dispersal limitation in this strongly connected marine ecological system. Therefore, these results revealed that the variation in bacterial community characteristics was attributed to environmental selection, accompanied by the regulation of stochastic diffusion. The network analysis demonstrated a nonrandom co-occurrence pattern in the microbial communities with distinct spatial distribution characteristics. It is implied that the biogeography patterns of bacterial community may also be associated with the characteristics of co-occurrence characterize among bacterial species. Furthermore, the PICRUSt analysis indicated a clear spatial distribution of functional characteristics in bacterial communities. This functional variation was significantly modulated by the environmental characteristics of seawater but uncoupled from the taxonomic characteristics of bacterial communities (e.g., diversity characteristics, community structure, and co-occurrence relationships). Together, this findings represent a significant advance in linking seawater to the mechanisms underlying bacterial biogeographic patterns and community assembly, co-occurrence patterns, and ecological functions, providing new insights for identifying the microbial ecology as well as the biogeochemical cycle in the marine environment.
Collapse
Affiliation(s)
- Tianyi Niu
- School of Marine Sciences, Guangxi University, Nanning, China
| | - Yongqian Xu
- School of Marine Sciences, Guangxi University, Nanning, China
| | - Jinni Chen
- School of Marine Sciences, Guangxi University, Nanning, China
| | - Liangyun Qin
- School of Marine Sciences, Guangxi University, Nanning, China
| | - Zhicong Li
- School of Marine Sciences, Guangxi University, Nanning, China
| | - Yating Yang
- School of Marine Sciences, Guangxi University, Nanning, China
| | - Jiayuan Liang
- School of Marine Sciences, Guangxi University, Nanning, China.,Coral Reef Research Center of China, Guangxi University, Nanning, China.,Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Nanning, China
| |
Collapse
|
9
|
Lu M, Wang X, Li H, Jiao JJ, Luo X, Luo M, Yu S, Xiao K, Li X, Qiu W, Zheng C. Microbial community assembly and co-occurrence relationship in sediments of the river-dominated estuary and the adjacent shelf in the wet season. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 308:119572. [PMID: 35661808 DOI: 10.1016/j.envpol.2022.119572] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/09/2022] [Accepted: 06/01/2022] [Indexed: 06/15/2023]
Abstract
In the estuarine ecosystem, microbial community plays a vital role in controlling biogeochemical processes. However, there is currently limited comprehensive study on the deterministic and stochastic processes that drive the microbial community assembly in the estuaries and adjacent shelves. In this study, we systematically investigated the co-occurrence relationship and microbial community assembly in the sediments along a large river-dominated estuary to shelf in the northern South China Sea during the wet season. The sampling sites were divided into estuary, transection, and shelf sections based on their salinity values. The microbial co-occurrence networks, hierarchical partitioning-based canonical analysis, null model, neutral community model, and the Mantel test were used to investigate the community assembly. Results suggested that microbial community in the estuary section exhibited more interactions and a higher positive interaction ratio than those in the transition and shelf sections. Stochastic processes dominated community assembly in the study, with homogenizing dispersal contributing the most. The estuary exhibited a higher degree of heterogeneous selection than the transition and shelf sections, whereas homogeneous selection showed an opposite trend. Only the estuary section showed dispersal limitation and undominated processes. The river inflow and the resulting environmental heterogeneity were believed to be the key regulators of the community assembly in the studied area. Our study improved the understanding of how microbial community assembly in estuaries and adjacent shelves.
Collapse
Affiliation(s)
- Meiqing Lu
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China; Department of Earth Sciences, The University of Hong Kong, Hong Kong, China
| | - Xuejing Wang
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Hailong Li
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jiu Jimmy Jiao
- Department of Earth Sciences, The University of Hong Kong, Hong Kong, China
| | - Xin Luo
- Department of Earth Sciences, The University of Hong Kong, Hong Kong, China
| | - Manhua Luo
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Shengchao Yu
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China; Department of Earth Sciences, The University of Hong Kong, Hong Kong, China
| | - Kai Xiao
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xiang Li
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Wenhui Qiu
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Chunmiao Zheng
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
10
|
Diao C, Jia H, Guo S, Hou G, Xian W, Zhang H. Biodiversity exploration in autumn using environmental DNA in the South China sea. ENVIRONMENTAL RESEARCH 2022; 204:112357. [PMID: 34774836 DOI: 10.1016/j.envres.2021.112357] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/30/2021] [Accepted: 11/06/2021] [Indexed: 06/13/2023]
Abstract
The South China Sea (SCS) is an important part of the Indo-Pacific convergence zone, with high biodiversity and abundant marine resources. Traditional methods are primarily used to monitor biodiversity. However, a few studies have used environmental DNA (eDNA) metabarcoding to research the assemblage structure of the SCS. This study used eDNA metabarcoding to survey the SCS assemblage and its relationship with environmental factors over a month-long time-series (August 30th to September 30th, 2020) of seawater samples from the central part of the SCS (9°-20°86' N, 113°-118°47' E). 32 stations were divided into six groups (A, B, C, D, E, F) according to longitude. We collected water samples, extracted eDNA, and amplified 18S rRNA gene V4 region (18S V4), 18S rRNA gene V9 region (18S V9), and 12S rRNA gene (12S). Krona diagrams were used to show species composition. We identified 192 phytoplankton, 104 invertebrate, and 61 fish species from 18S V4, 18S V9, and 12S, respectively. Generally, the three assemblage structures exhibited an increase in species diversity with increasing longitude. Group E had the highest fish diversity. Groups F and C had the highest phytoplankton and invertebrate diversity, respectively. Canonical correspondence analysis showed that four factors (chlorophyll a, depth, salinity, and temperature) were correlated with assemblage structure. Chlorophyll a was the main environmental factor that affected fish, phytoplankton, and invertebrate assemblage structures; salinity was strongly correlated with fish and invertebrate assemblage structures; temperature was a key factor that impacted fish and invertebrate assemblage structures; and depth was strongly correlated with invertebrate assemblage structure. Our results revealed that eDNA metabarcoding is a powerful tool for improving detection rate and using multiple markers is an effective approach for monitoring biodiversity. This study provided information that can be used to enhance biodiversity protection efforts in the SCS.
Collapse
Affiliation(s)
- Caoyun Diao
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hui Jia
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China; China School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Shujin Guo
- Jiaozhou Bay National Marine Ecosystem Research Station, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Gang Hou
- College of Fisheries, Guangdong Ocean University, Zhanjiang, 524000, China
| | - Weiwei Xian
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China.
| | - Hui Zhang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
11
|
Zhang Y, Huang N, Wang M, Liu H, Jing H. Microbial Eukaryotes Associated With Sediments in Deep-Sea Cold Seeps. Front Microbiol 2021; 12:782004. [PMID: 35003010 PMCID: PMC8740301 DOI: 10.3389/fmicb.2021.782004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 11/19/2021] [Indexed: 11/30/2022] Open
Abstract
Microbial eukaryotes are key components of the marine food web, but their distribution in deep-sea chemosynthetic ecosystems has not been well studied. Here, high-throughput sequencing of the 18S rRNA gene and network analysis were applied to investigate the diversity, distribution and potential relationships between microbial eukaryotes in samples collected from two cold seeps and one trough in the northern South China Sea. SAR (i.e., Stramenopiles, Alveolata, and Rhizaria) was the predominant group in all the samples, and it was highly affiliated to genotypes with potential symbiotic and parasitic strategies identified from other deep-sea extreme environments (e.g., oxygen deficient zones, bathypelagic waters, and hydrothermal vents). Our findings indicated that specialized lineages of deep-sea microbial eukaryotes exist in chemosynthetic cold seeps, where microbial eukaryotes affiliated with parasitic/symbiotic taxa were prevalent in the community. The biogeographic pattern of the total community was best represented by the intermediate operational taxonomic unit (OTU) category, whose relative abundance ranged 0.01–1% within a sample, and the communities of the two cold seeps were distinct from the trough, which suggests that geographical proximity has no critical impact on the distribution of deep-sea microbial eukaryotes. Overall, this study has laid the foundations for future investigations regarding the ecological function and in situ trophic relationships of microbial eukaryotes in deep-sea ecosystems.
Collapse
Affiliation(s)
- Yue Zhang
- CAS Key Laboratory for Experimental Study Under Deep-Sea Extreme Conditions, Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
| | - Ning Huang
- CAS Key Laboratory for Experimental Study Under Deep-Sea Extreme Conditions, Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
| | - Minxiao Wang
- Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Hongbin Liu
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, Hong Kong SAR, China
- HKUST-CAS Sanya Joint Laboratory of Marine Science Research, Chinese Academy of Sciences, Sanya, China
- Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, China
| | - Hongmei Jing
- CAS Key Laboratory for Experimental Study Under Deep-Sea Extreme Conditions, Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
- HKUST-CAS Sanya Joint Laboratory of Marine Science Research, Chinese Academy of Sciences, Sanya, China
- Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, China
- *Correspondence: Hongmei Jing,
| |
Collapse
|
12
|
Guo K, Wu N, Li W, Baattrup-Pedersen A, Riis T. Microbial biofilm community dynamics in five lowland streams. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 798:149169. [PMID: 34329932 DOI: 10.1016/j.scitotenv.2021.149169] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 07/12/2021] [Accepted: 07/16/2021] [Indexed: 06/13/2023]
Abstract
Stream biofilms are complex aggregates of diverse organism groups that play a vital role in global carbon and nitrogen cycles. Most of the current studies on stream biofilm focus on a limited number of organism groups (e.g., bacteria and algae), and few have included both prokaryote and eukaryote communities simultaneously. In this study, we incubated artificial substrates in five Danish lowland streams exhibiting different hydrological and physico-chemical conditions and explored the dynamics of community composition and diversity of the benthic biofilm, including both prokaryotes and eukaryotes. We found that few phyla in the prokaryote (Gammaproteobacteria and Bacteroidetes) and eukaryote (Cercozoa) communities accounted for over two-thirds of the total abundance at most of the sites. Both prokaryotic and eukaryotic diversity displayed the same temporal patterns, i.e., diversity peaked in July and January. We also found that hydrological and physico-chemical variables significantly explained the variation in the community composition at phylum level for both prokaryotes and eukaryotes. However, a large proportion of variation remained unexplained, which can be ascribed to important but unmeasured variables like light intensity and biological factors such as trophic and non-trophic interactions as revealed by network analysis. Therefore, we suggest that use of a multitrophic level perspective is needed to study biofilm i.e., the "microbial jungles", where high occurrences of trophic and non-trophic interactions are expected.
Collapse
Affiliation(s)
- Kun Guo
- Department of Biology, Aarhus University, Ole Worms Allé 1, 8000 Aarhus, Denmark; School of Ecological and Environmental Sciences, East China Normal University, 200241 Shanghai, China
| | - Naicheng Wu
- Department of Geography and Spatial Information Techniques, Center for Land and Marine Spatial Utilization and Governance Research, Ningbo University, 315211 Ningbo, China.
| | - Wei Li
- Department of Land Resources and Environmental Sciences, Montana State University, 59717 Bozeman, MT, United States
| | | | - Tenna Riis
- Department of Biology, Aarhus University, Ole Worms Allé 1, 8000 Aarhus, Denmark; WATEC, Aarhus University, Centre for Water Technology, 8000 Aarhus, Denmark
| |
Collapse
|
13
|
Zhu C, Liu W, Li X, Xu Y, El-Serehy HA, Al-Farraj SA, Ma H, Stoeck T, Yi Z. High salinity gradients and intermediate spatial scales shaped similar biogeographical and co-occurrence patterns of microeukaryotes in a tropical freshwater-saltwater ecosystem. Environ Microbiol 2021; 23:4778-4796. [PMID: 34258839 DOI: 10.1111/1462-2920.15668] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 06/12/2021] [Accepted: 07/09/2021] [Indexed: 11/26/2022]
Abstract
Microeukaryotes play key ecological roles in the microbial web of aquatic ecosystems. However, large knowledge gaps urgently need to be filled regarding the biogeography with associated shaping mechanisms and co-occurrence patterns of microeukaryotes under freshwater-saltwater gradients, especially true in tropical regions. Here, we investigated microeukaryotes of six mixed freshwater-saltwater regions in the Pearl River Estuary and surrounding coasts in southern China, with salinity ranging 0.1-32.0% and distances spanned up to 500 km, using molecular ecological methods. Results indicate that the biogeography of abundant and rare microeukaryotic communities was similar, both their co-occurrence patterns and biogeographical patterns were driven by deterministic and stochastic processes. The environmental factors with higher selective pressure than dispersal limitation meant that the role of deterministic process in structuring communities was more significant than that of stochastic process, and salinity played important role in structuring both microeukaryotic communities and networks. The abundant communities had stronger influence on entire microeukaryotic communities and seemed to be more sensitive to environmental changes than their rare counterparts, while rare ones had stronger interspecific relationships. Finally, the geographic scale and environmental gradients of study regions should firstly be clarified in future research on the ecological processes of microeukaryotes before conclusions are drawn.
Collapse
Affiliation(s)
- Changyu Zhu
- Institute of Evolution & Marine Biodiversity, and College of Fisheries, Ocean University of China, Qingdao, 266003, China.,Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Weiwei Liu
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China.,Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Science, Guangzhou, 510301, China
| | - Xinghao Li
- Key Laboratory of Regional Development and Environmental Response, and Hubei Engineering Research Center for Rural Drinking Water Security, Hubei University, Wuhan, 430062, China
| | - Yusen Xu
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Hamed A El-Serehy
- Zoology Department, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia.,Department of Oceanography, College of Science, Port Said University, Port Said, 42511, Egypt
| | - Saleh A Al-Farraj
- Zoology Department, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Honggang Ma
- Institute of Evolution & Marine Biodiversity, and College of Fisheries, Ocean University of China, Qingdao, 266003, China
| | - Thorsten Stoeck
- Department of Ecology, University of Technology Kaiserslautern, Kaiserslautern, 67663, Germany
| | - Zhenzhen Yi
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| |
Collapse
|
14
|
Bergsveinson J, Lawrence J, Schebel A, Wasserscheid J, Roy J, Conly FM, Sanschagrin S, Korber DR, Tremblay J, Greer CW, Droppo IG. Impact of sample collection on prokaryotic and eukaryotic diversity of niche environments of the oil-sand mining impacted Athabasca River. Can J Microbiol 2021; 67:813-826. [PMID: 34171204 DOI: 10.1139/cjm-2021-0058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Microbial communities are an important aspect of overall riverine ecology; however, appreciation of the effects of anthropogenic activities on unique riverine microbial niches, and how the collection of these samples affects the observed diversity and community profile is lacking. We analyzed prokaryotic and eukaryotic communities from surface water, biofilm, suspended load niches along a gradient of oil sands-related contamination in the Athabasca River (Alberta, Canada), with suspended load or particle-associated communities collected either via Kenney Sampler or centrifugation manifold. At the level of phyla, different niche communities were highly similar to one another and across locations. However, there were significant differences in the abundance of specific genera amongst different niches and across sampling locations. A generalized linear model revealed that use of the Kenney Sampler resulted in more diverse bacterial and eukaryotic suspended load community than centrifugal collection, though "suspended load" communities collected by any means remained stably diverse across locations. Though there was influence of water quality parameters on community composition, all sampled sites support diverse bacterial and eukaryotic communities regardless of the degree of contamination, highlighting the need to look beyond ecological diversity as means of assessing ecological perturbations, and consider collecting samples from multiple niche environments.
Collapse
Affiliation(s)
- Jordyn Bergsveinson
- Environment and Climate Change Canada, Watershed Hydrology and Ecology Research Division, Saskatoon, Saskatchewan, Canada;
| | - John Lawrence
- Environment and Climate Change Canada, Watershed Hydrology and Ecology Research Division, Saskatoon, Saskatchewan, Canada;
| | - Alixandra Schebel
- Environment and Climate Change Canada, Watershed Hydrology and Ecology Research Division, Saskatoon, Saskatchewan, Canada;
| | - Jessica Wasserscheid
- National Research Council, Energy, Mining and Environment Research Centre, Montreal, Quebec, Canada;
| | - Julie Roy
- Environment and Climate Change Canada, Watershed Hydrology and Ecology Research Division, Saskatoon, Saskatchewan, Canada;
| | - F Malcom Conly
- Environment and Climate Change Canada, Watershed Hydrology and Ecology Research Division, Saskatoon, Saskatchewan, Canada;
| | - Sylvie Sanschagrin
- National Research Council, Energy, Mining and Environment Research Centre, Montreal, Quebec, Canada;
| | - Darren R Korber
- University of Saskatchewan, Department of Food and Bioproduct Science, Saskatoon, Saskatchewan, Canada;
| | - Julien Tremblay
- National Research Council, Energy, Mining and Environment Research Centre, Montreal, Quebec, Canada;
| | - Charles W Greer
- National Research Council, Energy, Mining and Environment Research Centre, Montreal, Quebec, Canada;
| | - Ian G Droppo
- Environment and Climate Change Canada, Canada Centre for Inland Waters, Burlington, Ontario, Canada;
| |
Collapse
|
15
|
Mo Y, Peng F, Gao X, Xiao P, Logares R, Jeppesen E, Ren K, Xue Y, Yang J. Low shifts in salinity determined assembly processes and network stability of microeukaryotic plankton communities in a subtropical urban reservoir. MICROBIOME 2021; 9:128. [PMID: 34082826 PMCID: PMC8176698 DOI: 10.1186/s40168-021-01079-w] [Citation(s) in RCA: 203] [Impact Index Per Article: 50.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 04/15/2021] [Indexed: 05/19/2023]
Abstract
BACKGROUND Freshwater salinization may result in significant changes of microbial community composition and diversity, with implications for ecosystem processes and function. Earlier research has revealed the importance of large shifts in salinity on microbial physiology and ecology, whereas studies on the effects of smaller or narrower shifts in salinity on the microeukaryotic community in inland waters are scarce. Our aim was to unveil community assembly mechanisms and the stability of microeukaryotic plankton networks at low shifts in salinity. RESULTS Here, we analyzed a high-resolution time series of plankton data from an urban reservoir in subtropical China over 13 consecutive months following one periodic salinity change ranging from 0 to 6.1‰. We found that (1) salinity increase altered the community composition and led to a significant decrease of plankton diversity, (2) salinity change influenced microeukaryotic plankton community assembly primarily by regulating the deterministic-stochastic balance, with deterministic processes becoming more important with increased salinity, and (3) core plankton subnetwork robustness was higher at low-salinity levels, while the satellite subnetworks had greater robustness at the medium-/high-salinity levels. Our results suggest that the influence of salinity, rather than successional time, is an important driving force for shaping microeukaryotic plankton community dynamics. CONCLUSIONS Our findings demonstrate that at low salinities, even small increases in salinity are sufficient to exert a selective pressure to reduce the microeukaryotic plankton diversity and alter community assembly mechanism and network stability. Our results provide new insights into plankton ecology of inland urban waters and the impacts of salinity change in the assembly of microbiotas and network architecture. Video abstract.
Collapse
Affiliation(s)
- Yuanyuan Mo
- Aquatic Ecohealth Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Feng Peng
- Aquatic Ecohealth Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021 China
| | - Xiaofei Gao
- Aquatic Ecohealth Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Peng Xiao
- Aquatic Ecohealth Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021 China
| | - Ramiro Logares
- Institute of Marine Sciences, CSIC, Passeig Marítim de la Barceloneta 37-49, ES08003 Barcelona, Spain
| | - Erik Jeppesen
- Department of Bioscience, Aarhus University, 8600 Silkeborg, Denmark
- Sino-Danish Centre for Education and Research, Beijing, 100049 China
- Limnology Laboratory, Department of Biological Sciences and Centre for Ecosystem Research and Implementation, Middle East Technical University, 06800 Ankara, Turkey
- Institute of Marine Sciences, Middle East Technical University, 33731 Erdemli-Mersin, Turkey
| | - Kexin Ren
- Aquatic Ecohealth Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021 China
| | - Yuanyuan Xue
- Aquatic Ecohealth Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021 China
| | - Jun Yang
- Aquatic Ecohealth Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021 China
| |
Collapse
|
16
|
Gu R, Sun P, Wang Y, Yu F, Jiao N, Xu D. Genetic Diversity, Community Assembly, and Shaping Factors of Benthic Microbial Eukaryotes in Dongshan Bay, Southeast China. Front Microbiol 2020; 11:592489. [PMID: 33424795 PMCID: PMC7785585 DOI: 10.3389/fmicb.2020.592489] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 11/27/2020] [Indexed: 11/28/2022] Open
Abstract
Microbial eukaryotes are pivotal components of marine ecosystems. However, compared with the pelagic environments, the diversity distribution and the driving mechanisms of microbial eukaryotes in the marine sediments have rarely been explored. In this study, sediment cores were collected along a transect from inner to outer Dongshan Bay, Southeast China. By combining high throughput sequencing of small-subunit (SSU) rRNA gene with measurements on multiple environmental variables, the genetic diversity, community structure and assembly processes, and environmental shaping factors were investigated. Alveolata (mainly Ciliophora and Dinophyceae), Rhizaria (mainly Cercozoa), and Stramenopiles (mainly Bacillariophyta) were the most dominant groups in terms of both relative sequence abundance and operational taxonomic unit (OTU) richness. Grain size composition of the sediment was the primary factor determining the alpha diversity of microbial eukaryotes followed by sediment depth and heavy metal, including chromium (Cr), zinc (Zn), and plumbum (Pb). Geographic distance and water depth surpassed other environmental factors to be the primary factors shaping the microbial eukaryotic communities. Dispersal limitation was the primary driver of the microbial eukaryotic communities, followed by drift and homogeneous selection. Overall, our study shed new light on the spatial distribution patterns and controlling factors of benthic microbial eukaryotes in a subtropical bay which is subjected to increasing anthropogenic pressure.
Collapse
Affiliation(s)
- Rong Gu
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
- Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen, China
| | - Ping Sun
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, College of the Environment and Ecology, Xiamen University, Xiamen, China
- Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Xiamen University, Xiamen, China
| | - Ying Wang
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
- Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen, China
| | - Fengling Yu
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Nianzhi Jiao
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
- Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen, China
| | - Dapeng Xu
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
- Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen, China
| |
Collapse
|
17
|
Xu D, Kong H, Yang EJ, Li X, Jiao N, Warren A, Wang Y, Lee Y, Jung J, Kang SH. Contrasting Community Composition of Active Microbial Eukaryotes in Melt Ponds and Sea Water of the Arctic Ocean Revealed by High Throughput Sequencing. Front Microbiol 2020; 11:1170. [PMID: 32582106 PMCID: PMC7291953 DOI: 10.3389/fmicb.2020.01170] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 05/07/2020] [Indexed: 01/03/2023] Open
Abstract
Melt ponds (MPs), form as the result of thawing of snow and sea ice in the summer, have lower albedo than the sea ice and are thus partly responsible for the polar amplification of global warming. Knowing the community composition of MP organisms is key to understanding their roles in the biogeochemical cycles of nutrients and elements. However, the community composition of MP microbial eukaryotes has rarely been studied. In the present study, we assessed the microbial eukaryote biodiversity, community composition, and assembly processes in MPs and surface sea water (SW) using high throughput sequencing of 18S rRNA of size-fractionated samples. Alpha diversity estimates were lower in the MPs than SW across all size fractions. The community composition of MPs was significantly different from that of SW. The MP communities were dominated by members from Chrysophyceae, the ciliate classes Litostomatea and Spirotrichea, and the cercozoan groups Filosa-Thecofilosea. One open MP community was similar to SW communities, which was probably due to the advanced stage of development of the MP enabling the exchange of species between it and adjacent SW. High portions of shared species between MPs and SW may indicate the vigorous exchange of species between these two major types of environments in the Arctic Ocean. SW microbial eukaryote communities are mainly controlled by dispersal limitation whereas those of MP are mainly controlled by ecological drift.
Collapse
Affiliation(s)
- Dapeng Xu
- State Key Laboratory of Marine Environmental Science, Institute of Marine Microbes and Ecospheres, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China.,Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen, China
| | - Hejun Kong
- State Key Laboratory of Marine Environmental Science, Institute of Marine Microbes and Ecospheres, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China.,Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen, China
| | - Eun-Jin Yang
- Division of Polar Ocean Science, Korea Polar Research Institute, Incheon, South Korea
| | - Xinran Li
- State Key Laboratory of Marine Environmental Science, Institute of Marine Microbes and Ecospheres, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China.,Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen, China
| | - Nianzhi Jiao
- State Key Laboratory of Marine Environmental Science, Institute of Marine Microbes and Ecospheres, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China.,Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen, China
| | - Alan Warren
- Department of Life Sciences, Natural History Museum, London, United Kingdom
| | - Ying Wang
- State Key Laboratory of Marine Environmental Science, Institute of Marine Microbes and Ecospheres, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Youngju Lee
- Division of Polar Ocean Science, Korea Polar Research Institute, Incheon, South Korea
| | - Jinyoung Jung
- Division of Polar Ocean Science, Korea Polar Research Institute, Incheon, South Korea
| | - Sung-Ho Kang
- Division of Polar Ocean Science, Korea Polar Research Institute, Incheon, South Korea
| |
Collapse
|
18
|
Liu J, Zhu S, Liu X, Yao P, Ge T, Zhang XH. Spatiotemporal dynamics of the archaeal community in coastal sediments: assembly process and co-occurrence relationship. THE ISME JOURNAL 2020; 14:1463-1478. [PMID: 32132664 PMCID: PMC7242467 DOI: 10.1038/s41396-020-0621-7] [Citation(s) in RCA: 138] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 02/15/2020] [Accepted: 02/18/2020] [Indexed: 12/30/2022]
Abstract
Studies of marine benthic archaeal communities are updating our view of their taxonomic composition and metabolic versatility. However, large knowledge gaps remain with regard to community assembly processes and inter taxa associations. Here, using 16S rRNA gene amplicon sequencing and qPCR, we investigated the spatiotemporal dynamics, assembly processes, and co-occurrence relationships of the archaeal community in 58 surface sediment samples collected in both summer and winter from across ~1500 km of the eastern Chinese marginal seas. Clear patterns in spatiotemporal dynamics in the archaeal community structure were observed, with a more pronounced spatial rather than seasonal variation. Accompanying the geographic variation was a significant distance-decay pattern with varying contributions from different archaeal clades, determined by their relative abundance. In both seasons, dispersal limitation was the most important process, explaining ~40% of the community variation, followed by homogeneous selection and ecological drift, that made an approximately equal contribution (~30%). This meant that stochasticity rather than determinism had a greater impact on the archaeal community assembly. Furthermore, we observed seasonality in archaeal co-occurrence patterns: closer inter-taxa connections in winter than in summer, and unmatched geographic patterns between community composition and co-occurrence relationship. These results demonstrate that the benthic archaeal community was assembled under a seasonal-consistent mechanism but the co-occurrence relationships changed over the seasons, indicating complex archaeal dynamic patterns in coastal sediments of the eastern Chinese marginal seas.
Collapse
Affiliation(s)
- Jiwen Liu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Shangqing Zhu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Xiaoyue Liu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Peng Yao
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Institute for Advanced Ocean Studies, Ocean University of China, Qingdao, 266100, China
| | - Tiantian Ge
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China
| | - Xiao-Hua Zhang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China.
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China.
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|
19
|
Wu W, Huang B. Protist diversity and community assembly in surface sediments of the South China Sea. Microbiologyopen 2019; 8:e891. [PMID: 31218846 PMCID: PMC6813438 DOI: 10.1002/mbo3.891] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 05/15/2019] [Accepted: 05/20/2019] [Indexed: 11/10/2022] Open
Abstract
Protists are pivotal components of marine ecosystems in terms of their high diversity, but protist communities have been poorly explored in benthic environments. Here, we investigated protist diversity and community assembly in surface sediments in the South China Sea (SCS) at a basin scale. Pyrosequencing of 18S rDNA was performed for a total of six samples taken from the surface seafloor at water depths ranging from 79 to 2,939 m. We found that Cercozoa was the dominant group, accounting for an average of 39.9% and 25.3% of the reads and operational taxonomic units (OTUs), respectively. The Cercozoa taxa were highly diverse, comprising 14 phylogenetic clades, six of which were affiliated with unknown groups belonging to Filosa and Endomyxa. Fungi were also an important group in both read‐ (18.1% on average) and OTU‐derived (9.3% on average) results. Moreover, the turnover patterns of the protist communities were differently explained by species sorting (53.3%), dispersal limitation (33.3%), mass effects (0%), and drift (13.3%). In summary, our findings show that the basin‐wide protist communities in the surface sediments of the SCS are primarily dominated by Cercozoa and are mainly assembled by species sorting and dispersal limitation.
Collapse
Affiliation(s)
- Wenxue Wu
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, China.,Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Bangqin Huang
- Fujian Provincial Key Laboratory of Coastal Ecology and Environmental Studies, Xiamen University, Xiamen, China
| |
Collapse
|