1
|
Hu W, Yuan J, Fei J, Imdad K, Yang P, Huang S, Mao D, Yang J. Shaping the future of tobacco through microbial insights: a review of advances and applications. Front Bioeng Biotechnol 2025; 13:1548323. [PMID: 40421115 PMCID: PMC12104242 DOI: 10.3389/fbioe.2025.1548323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 04/28/2025] [Indexed: 05/28/2025] Open
Abstract
Over the past 20 years, researchers have used multi-omics techniques to study microbial diversity and metabolic function on tobacco leaves. The unique metabolic function of tobacco microorganisms has attracted extensive attention from researchers, which is an important research field in tobacco industry to improve the intrinsic quality of tobacco leaf with microbial agents. The microorganisms are particularly rich on the surface of tobacco leaf, and their metabolic function is closely related to the change of tobacco leaf chemical composition. Some microorganisms have important metabolic functions, such as: degrading macromolecular and harmful substances in tobacco leaves, and they have different degradation rates and pathways for the substances. At present, many functions of tobacco leaf microorganisms have not been fully verified and analyzed. In the future, more novel culture methods are needed to screen and isolate microorganisms on the surface of tobacco leaves, deeply tap their metabolic potential, explore the application value of microorganisms in the tobacco industry, and further promote the innovation and development of the industry.
Collapse
Affiliation(s)
- Wei Hu
- College of Tobacco Science and Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Jiaxing Yuan
- College of Tobacco Science and Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Jiaxiang Fei
- Technology Research Developing Center, Shenzhen Tobacco Industrial Co., Ltd., Shenzhen, China
| | - Kaleem Imdad
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Pengfei Yang
- College of Tobacco Science and Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Shen Huang
- College of Tobacco Science and Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Duobin Mao
- College of Tobacco Science and Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Jing Yang
- College of Tobacco Science and Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
| |
Collapse
|
2
|
Wang J, Long T, Jiang Z, Mu W, Su M, Ni L, Ji S, Wang Y, Zhou K, Zhan R, Nie L, Li J, Hu X, He W, Zhang W. Comparison of lignin degradation and flavor compound formation in roasted tobacco by two Bacillus subtilis strains. Front Microbiol 2025; 16:1538773. [PMID: 39916861 PMCID: PMC11801416 DOI: 10.3389/fmicb.2025.1538773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 01/09/2025] [Indexed: 02/09/2025] Open
Abstract
Two strains of Bacillus subtilis designated YY-10 and BY-2, were isolated from the surface of tobacco and found to be capable of significant lignin degradation. The predominant lignin-degrading enzymes produced by these strains were lignin peroxidase (LiP) and manganese peroxidase (MnP), respectively. A notable distinction was observed in the organoleptic evaluation and volatile flavor compounds, as determined by sensory evaluation and GC-MS analysis. The content of volatile flavor compounds, such as geranylacetone, meglumine trienone B, and meglumine trienone C, was found to be significantly increased in roasted tobacco treated with YY-10. This treatment has been shown to reduce the astringent flavor of the roasted tobacco and improve the aroma, which in turn could improve the quality of the roasted tobacco. Conversely, the quality and aroma levels of the roasted tobacco treated with the crude enzyme solution of the BY-2 strain were reduced. Transcriptome analysis revealed that the expression of genes related to amino acid metabolism, genetic material biosynthesis, and protein synthesis was up-regulated in the YY-10 strain compared with the BY-2 strain, which promoted the biosynthesis of LiP. This study provides a preliminary elucidation of the potential mechanism by which YY-10 enhances the quality of tobacco leaves through lignin-degrading enzyme production, thus establishing a research foundation for the subsequent treatment of waste tobacco raw materials and industrial applications.
Collapse
Affiliation(s)
- Junmin Wang
- Food Nutrition and Health Research Center, School of Advanced Manufacturing, Fuzhou University, Fuzhou, Fujian, China
| | - Teng Long
- China Tobacco Fujian Industrial Co., Ltd., Xiamen, Fujian, China
| | - Zhenkun Jiang
- China Tobacco Fujian Industrial Co., Ltd., Xiamen, Fujian, China
| | - Wenjun Mu
- Beijing Life Science Academy, Beijing, China
| | - Mingliang Su
- China Tobacco Fujian Industrial Co., Ltd., Xiamen, Fujian, China
| | - Li Ni
- Food Nutrition and Health Research Center, School of Advanced Manufacturing, Fuzhou University, Fuzhou, Fujian, China
| | - Shunhua Ji
- China Tobacco Fujian Industrial Co., Ltd., Xiamen, Fujian, China
| | - Yuqing Wang
- Food Nutrition and Health Research Center, School of Advanced Manufacturing, Fuzhou University, Fuzhou, Fujian, China
| | - Kangxi Zhou
- China Tobacco Fujian Industrial Co., Ltd., Xiamen, Fujian, China
| | - Renfeng Zhan
- China Tobacco Fujian Industrial Co., Ltd., Xiamen, Fujian, China
| | - Lixuan Nie
- China Tobacco Fujian Industrial Co., Ltd., Xiamen, Fujian, China
| | - Jingjing Li
- China Tobacco Fujian Industrial Co., Ltd., Xiamen, Fujian, China
| | - Xingchuan Hu
- China Tobacco Fujian Industrial Co., Ltd., Xiamen, Fujian, China
| | - Wei He
- China Tobacco Fujian Industrial Co., Ltd., Xiamen, Fujian, China
| | - Wen Zhang
- Food Nutrition and Health Research Center, School of Advanced Manufacturing, Fuzhou University, Fuzhou, Fujian, China
| |
Collapse
|
3
|
Zhengfeng L, Tian Q, Yuzhen X, Le Z, Luoping W, Kai D, Jia L, Jianhua Y, Jianjun X, Juan L. Similarity in the microbial community structure of tobacco from geographically similar regions. Sci Rep 2024; 14:30933. [PMID: 39730636 DOI: 10.1038/s41598-024-81565-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 11/27/2024] [Indexed: 12/29/2024] Open
Abstract
To investigate the structural and functional similarities of microbial communities in burnt-sweetness alcoholized tobacco as a function of distance from the equator and their effects on tobacco quality, we sampled alcoholized tobacco from Chenzhou, Hunan Province, China and from Brazil and Zimbabwe, which are also burnt-sweetness-type tobacco producing regions, and performed high-throughput sequencing of tobacco bacterial and fungal communities along with an analysis of the main chemical constituents of the tobacco to analyze differences in the quality of the tobacco and similarities in the structure of the microbial communities. The total nitrogen, nicotine and starch contents of Chenzhou tobacco were greater than those of Brazilian and Zimbabwean tobacco, and the total sugar and reducing sugar contents of the Brazilian and Zimbabwean tobacco were greater than those of the Chenzhou tobacco (P < 0.05). The alpha diversity indices of the bacterial communities in Chenzhou tobacco were lower than those in the Brazilian and Zimbabwean tobacco, and the alpha diversity indices of the fungal communities in Chenzhou tobacco were greater than those in the Brazilian and Zimbabwean tobacco (P < 0.05). In the ecological networks, bacterial-fungal interactions in the Brazilian and Zimbabwean tobacco were more complex than those in the Chenzhou tobacco, and the microbial ecological networks of the burnt-sweetness-type tobacco from three different regions were dominated by competitive relationships. The microbial community composition of Chenzhou tobacco was similar to that of Brazilian tobacco at the bacterial genus and fungal phylum level, with Sphingomonas being a significantly enriched genus in Brazilian tobacco and a key genus in the Chenzhou network that is able to participate in the degradation of polyphenols and aromatic compounds. Functional microbes related to aromatic compounds and cellulose degradation were significantly more abundant in the Brazilian and Zimbabwean tobacco than in Chenzhou tobacco, and the related degradation of tobacco substances was responsible for the better quality of the Brazilian and Zimbabwean tobacco. In conclusion, there are similarities in the structure, composition and functional flora of microbial communities in tobacco from Chenzhou and Brazil because these regions have similar latitudinal distributions. This study provides theoretical support for selecting cultivation regions for the burnt-sweetness-type alcoholized tobacco and for the alcoholization of tobacco leaves.
Collapse
Affiliation(s)
- Li Zhengfeng
- China Tobacco Yunnan Industrial CO.,LTD, Kunming, 650032, China
| | - Qin Tian
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
| | - Xia Yuzhen
- China Tobacco Yunnan Industrial CO.,LTD, Kunming, 650032, China
| | - Zhou Le
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
| | - Wang Luoping
- China Tobacco Yunnan Industrial CO.,LTD, Kunming, 650032, China
| | - Duan Kai
- China Tobacco Yunnan Industrial CO.,LTD, Kunming, 650032, China
| | - Lei Jia
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
| | - Yao Jianhua
- China Tobacco Yunnan Industrial CO.,LTD, Kunming, 650032, China.
| | - Xia Jianjun
- China Tobacco Yunnan Industrial CO.,LTD, Kunming, 650032, China.
| | - Li Juan
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, China.
| |
Collapse
|
4
|
Zhang Q, Huang Y, An H, Yang S, Lei J, Wang Y, Li P, Zhang H, Cai W, Jia Y, Pang Y, Li D. The impact of gradient variable temperature fermentation on the quality of cigar tobacco leaves. Front Microbiol 2024; 15:1433656. [PMID: 39735193 PMCID: PMC11672604 DOI: 10.3389/fmicb.2024.1433656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 11/20/2024] [Indexed: 12/31/2024] Open
Abstract
Introduction In order to enhance the quality of cigar tobacco leaves (CTLs), a gradient variable temperature fermentation approach was employed. Methods The temperature gradient demonstrated a gradual increase from low temperature (35 ± 2°C) to moderate temperature (45 ± 2°C), and then to high temperature (55 ± 2°C). Each temperature gradient underwent a 10-day fermentation process, resulting in a total duration of 30 days. Changes in sensory evaluation, chemical composition, and bacterial absolute quantitative structure and function were examined throughout the process of gradient variable temperature fermentation. Results Compared to constant temperature fermentation, gradient variable temperature fermentation improved the sensory quality of CTLs, reduced total sugar and cembrane degradation products, and increased the amino acid contents. It resulted in significant changes in bacterial quantity and function of CTLs, but had no significant effects on the richness and diversity of bacterial communities. The results of correlation analyses showed that sensory quality had significant correlation with chemical composition, which effected by predominant microbes. The gradient variable temperature fermentation process underwent a three-phase model to characterize the alterations of CTLs. Phase I (35°C) was the microbial stage, during which there was a significant decrease in both the total number and function of microorganisms. The dominant genera shifted from Acinetobacter to Staphylococcus and Corynebacterium, and with high reducing sugar, polyphenol compound and low sensory score. Phase II (45°C) marked a chemical stage, with an enhancement in sensory evaluation. A total of 17 chemicals significantly decreased and six increased, and the decline of microbial populations persisted. The enhanced relative abundances of four microecological hubs, namely Staphylococcus, Corynebacterium, Oceanobacillus, and Bacillus, had the potential to produce protease and lipase to the production of peptides, amino acids, and organic acid, catabolizing sugars and polyphenol compounds, through carbohydrate metabolism and amino acid metabolism, resulted an increase in sensory quality of CTLs. Phase III (55°C) indicated a relative mature stage with the highest score of sensory evaluation. Eight compositions from plamochromic pigments and polyphenol compounds exhibited gradual decreases, while relative contents of carbohydrate metabolism and amino acid metabolism increased. Conclusion The gradient variable temperature fermentation had demonstrated a significant positive influence on the quality of CTL by providing optimal fermentation temperature for microbial growth, metabolism, and the generation of quality-related chemical compositions.
Collapse
Affiliation(s)
- Qianying Zhang
- Cigar Fermentation Technology Key Laboratory of China Tobacco, Cigar Technology Innovation Center of China Tobacco, China Tobacco Sichuan Industrial Co., Ltd., Chengdu, China
- Industry Efficient Utilization to Domestic Cigar Tobacco Key Laboratory of Sichuan Province, Great Wall Cigar Factory, Shifang, China
| | - Yang Huang
- Cigar Fermentation Technology Key Laboratory of China Tobacco, Cigar Technology Innovation Center of China Tobacco, China Tobacco Sichuan Industrial Co., Ltd., Chengdu, China
- Industry Efficient Utilization to Domestic Cigar Tobacco Key Laboratory of Sichuan Province, Great Wall Cigar Factory, Shifang, China
| | - Hongyue An
- Cigar Fermentation Technology Key Laboratory of China Tobacco, Cigar Technology Innovation Center of China Tobacco, China Tobacco Sichuan Industrial Co., Ltd., Chengdu, China
- Industry Efficient Utilization to Domestic Cigar Tobacco Key Laboratory of Sichuan Province, Great Wall Cigar Factory, Shifang, China
| | - Shuanghong Yang
- Cigar Fermentation Technology Key Laboratory of China Tobacco, Cigar Technology Innovation Center of China Tobacco, China Tobacco Sichuan Industrial Co., Ltd., Chengdu, China
- Industry Efficient Utilization to Domestic Cigar Tobacco Key Laboratory of Sichuan Province, Great Wall Cigar Factory, Shifang, China
| | - Jinshan Lei
- Cigar Fermentation Technology Key Laboratory of China Tobacco, Cigar Technology Innovation Center of China Tobacco, China Tobacco Sichuan Industrial Co., Ltd., Chengdu, China
- Industry Efficient Utilization to Domestic Cigar Tobacco Key Laboratory of Sichuan Province, Great Wall Cigar Factory, Shifang, China
| | - Yue Wang
- Cigar Fermentation Technology Key Laboratory of China Tobacco, Cigar Technology Innovation Center of China Tobacco, China Tobacco Sichuan Industrial Co., Ltd., Chengdu, China
- Industry Efficient Utilization to Domestic Cigar Tobacco Key Laboratory of Sichuan Province, Great Wall Cigar Factory, Shifang, China
| | - Pinhe Li
- Cigar Fermentation Technology Key Laboratory of China Tobacco, Cigar Technology Innovation Center of China Tobacco, China Tobacco Sichuan Industrial Co., Ltd., Chengdu, China
- Industry Efficient Utilization to Domestic Cigar Tobacco Key Laboratory of Sichuan Province, Great Wall Cigar Factory, Shifang, China
| | - Hongfei Zhang
- China National Tobacco Quality Supervision and Test Centre, Zhengzhou, China
| | - Wen Cai
- Cigar Fermentation Technology Key Laboratory of China Tobacco, Cigar Technology Innovation Center of China Tobacco, China Tobacco Sichuan Industrial Co., Ltd., Chengdu, China
- Industry Efficient Utilization to Domestic Cigar Tobacco Key Laboratory of Sichuan Province, Great Wall Cigar Factory, Shifang, China
- Bioengineering College, Chongqing University, Chongqing, China
| | - Yun Jia
- Cigar Fermentation Technology Key Laboratory of China Tobacco, Cigar Technology Innovation Center of China Tobacco, China Tobacco Sichuan Industrial Co., Ltd., Chengdu, China
- Industry Efficient Utilization to Domestic Cigar Tobacco Key Laboratory of Sichuan Province, Great Wall Cigar Factory, Shifang, China
| | - Yongqiang Pang
- China National Tobacco Quality Supervision and Test Centre, Zhengzhou, China
| | - Dongliang Li
- Cigar Fermentation Technology Key Laboratory of China Tobacco, Cigar Technology Innovation Center of China Tobacco, China Tobacco Sichuan Industrial Co., Ltd., Chengdu, China
- Industry Efficient Utilization to Domestic Cigar Tobacco Key Laboratory of Sichuan Province, Great Wall Cigar Factory, Shifang, China
| |
Collapse
|
5
|
Hu W, Cai W, Jia Y, Zhang Q, Zhang Z, Wang Y, Sun C, Li D. Fermentation of cigar tobacco leaves with citrus flavonoids: changes in chemical, microbiological, and sensory properties. Front Bioeng Biotechnol 2024; 12:1469532. [PMID: 39717530 PMCID: PMC11663678 DOI: 10.3389/fbioe.2024.1469532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 11/25/2024] [Indexed: 12/25/2024] Open
Abstract
Introduction Fermentation plays a significant role in improving the quality of cigar tobacco leaves. Particularly, fermentation with characteristic additives has been identified as an effective approach to enhance the fermentation process. The objective of this study was to develop new additives and investigate their influence on cigar tobacco leaves. Methods The active ingredients extracted from three citrus species were obtained by ultrasonic-assisted extraction followed by solid phase purification. The effects of these ingredients as fermentation additives on the primary chemical components, microbial communities, and sensory quality of cigar tobacco leaves were subsequently analyzed. Results Results showed that: (1) Flavonoids were the main components of the prepared citrus extracts. (2) The addition of citrus extracts resulted in a reduced content of amino acids, oxalic acid, and unsaturated fatty acids in cigar tobacco leaves, while increasing the content of citric acid. Besides, the total amount of aroma substances in cigar tobacco leaves increased by 38.15% with the addition of citrus extracts, with notable enhancements in the levels of D-limonene, β-dihydroionone, dihydroactiniolactone, and other representative aroma components. (3) The addition of citrus extracts promoted the succession of the microbial community in cigar tobacco leaves and promoted the enrichment of Pseudomonas and Corynebacterium. (4) The addition of citrus extracts effectively reduced the irritation and improved the aroma richness of cigar tobacco leaves. Discussion In this study, the influence of citrus-derived active ingredients on cigar quality was systematically analyzed, providing a reference for the development of characteristic fermentation additives for cigars and the extension of cigar quality enhancement technologies.
Collapse
Affiliation(s)
- Wanrong Hu
- China Tobacco Technology Innovation Center for Cigar, China Tobacco Sichuan Industrial Co., Ltd., Chengdu, China
- Cigar Fermentation Technology Key Laboratory of Tobacco Industry, China Tobacco Sichuan Industrial Co., Ltd., Chengdu, China
- Industry Efficient Utilization to Domestic Cigar Tobacco Key Laboratory of Sichuan Province, Shifang, China
| | - Wen Cai
- China Tobacco Technology Innovation Center for Cigar, China Tobacco Sichuan Industrial Co., Ltd., Chengdu, China
- Cigar Fermentation Technology Key Laboratory of Tobacco Industry, China Tobacco Sichuan Industrial Co., Ltd., Chengdu, China
| | - Yun Jia
- China Tobacco Technology Innovation Center for Cigar, China Tobacco Sichuan Industrial Co., Ltd., Chengdu, China
- Cigar Fermentation Technology Key Laboratory of Tobacco Industry, China Tobacco Sichuan Industrial Co., Ltd., Chengdu, China
| | - Qianying Zhang
- China Tobacco Technology Innovation Center for Cigar, China Tobacco Sichuan Industrial Co., Ltd., Chengdu, China
- Cigar Fermentation Technology Key Laboratory of Tobacco Industry, China Tobacco Sichuan Industrial Co., Ltd., Chengdu, China
| | - Zhengcheng Zhang
- China Tobacco Technology Innovation Center for Cigar, China Tobacco Sichuan Industrial Co., Ltd., Chengdu, China
| | - Yue Wang
- Digital Intelligence Technology Research Center for Special Crops, Zhejiang University, Hangzhou, China
| | - Chongde Sun
- Digital Intelligence Technology Research Center for Special Crops, Zhejiang University, Hangzhou, China
| | - Dongliang Li
- China Tobacco Technology Innovation Center for Cigar, China Tobacco Sichuan Industrial Co., Ltd., Chengdu, China
| |
Collapse
|
6
|
Zhou Q, Yang J, Feng Y, Yang Z, Wang Y, Zhang Z, Zhang T, Liu W, Xu Y, Yang Y, Huang J. Analysis of the effects of Bacillus velezensis HJ-16 inoculation on tobacco leaves based on multi-omics methods. Front Bioeng Biotechnol 2024; 12:1493766. [PMID: 39713101 PMCID: PMC11659759 DOI: 10.3389/fbioe.2024.1493766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 11/18/2024] [Indexed: 12/24/2024] Open
Abstract
In this study, a strain isolated from the surface of flue-cured tobacco leaves, identified as Bacillus velezensis HJ-16, was applied in the solid-state fermentation of tobacco leaves. This strain, known for producing thermally stable enzymes, including amylase, cellulase, and protease, significantly improved the sensory qualities of tobacco, enhancing aromatic intensity, density, and softness, while reducing irritation. Whole-genome sequencing and functional annotation revealed that B. velezensis HJ-16 possesses a single circular chromosome containing genes associated with enzyme production and metabolic activities, particularly in carbohydrate metabolism and amino acid metabolism. Untargeted metabolomics analysis identified significant changes in non-volatile metabolites induced by fermentation. These metabolites were enriched in pathways related to flavonoid biosynthesis, alkaloid biosynthesis, aromatic amino acid metabolism, lipid metabolism, and carbon metabolism. Metagenomic analysis showed that Bacillus became the dominant genus on the tobacco leaf surface following inoculation with B. velezensis HJ-16, altering the microbial community composition, reducing diversity and evenness, and enhancing microbial metabolic activity. These findings underscore the potential of B. velezensis HJ-16 as a biotechnological tool to improve tobacco leaf quality.
Collapse
Affiliation(s)
- Qing Zhou
- Technology Center, China Tobacco Henan Industrial Co., Ltd., Zhengzhou, China
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, Henan University, Kaifeng, China
| | - Jinchu Yang
- Technology Center, China Tobacco Henan Industrial Co., Ltd., Zhengzhou, China
| | - Yingjie Feng
- Technology Center, China Tobacco Henan Industrial Co., Ltd., Zhengzhou, China
| | - Zongcan Yang
- Technology Center, China Tobacco Henan Industrial Co., Ltd., Zhengzhou, China
| | - Yixuan Wang
- Technology Center, China Tobacco Henan Industrial Co., Ltd., Zhengzhou, China
| | - Zhan Zhang
- Technology Center, China Tobacco Henan Industrial Co., Ltd., Zhengzhou, China
| | - Tingting Zhang
- Technology Center, China Tobacco Henan Industrial Co., Ltd., Zhengzhou, China
| | - Wenzhao Liu
- Technology Center, China Tobacco Henan Industrial Co., Ltd., Zhengzhou, China
| | - YongMing Xu
- Technology Center, China Tobacco Henan Industrial Co., Ltd., Zhengzhou, China
| | - Yongfeng Yang
- Technology Center, China Tobacco Henan Industrial Co., Ltd., Zhengzhou, China
| | - Jihong Huang
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, Henan University, Kaifeng, China
| |
Collapse
|
7
|
Hamed KE, Alsaif AN, Alhewairini SS, Sayyed RZ. Comprehensive analysis of microbiome biodiversity in popular date palm (Phoenix dactylifera L.) fruit varieties. Sci Rep 2024; 14:20658. [PMID: 39232047 PMCID: PMC11375083 DOI: 10.1038/s41598-024-71249-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 08/26/2024] [Indexed: 09/06/2024] Open
Abstract
Due to its nutritional value and health benefits, the date palm (Phoenix dactylifera L.) is an essential dietary food crop throughout Middle Eastern and African countries. Consumers are concerned about the possible microbial contamination of dates, especially since most dates arriving in local markets are unprocessed. The absence of processing increases the possibility of microbial contamination, which raises the probability of microbial contamination. This study aims to analyze and evaluate the variability of fungal and bacterial microbiota identified in the most popular date palm fruits in Saudi Arabia. The study assessed ten date variety fruits from the most popular date palm varieties for consumption in Saudi Arabia and analyzed the microbial count. Morphological and molecular characterization and comparison of nuclear ribosomal DNA internal transcribed spacer (ITS) sequences identified 78 fungi, including 36 distinct species across 15 fungal genera. Alternaria, Fusarium, Curvilaria, Aspergillus, and Penicillium were the most frequent genera among the ten fruit cultivars studied, according to ITS-rDNA sequence analysis. Furthermore, 36 bacterial isolates were obtained from ten date varieties studied, each with a unique colony morphology. These isolates were identified based on sequence alignment and comparison of their 16S rDNA internal spacer regions to those available in public databases. The results showed that the bacterial isolates included 15 species from five bacterial genera. The results suggested that Bacillus, Stenotrophomonas, and Brucella were the prevailing genera among the ten tested fruit varieties. Some bacterial genera, such as Brucella, Achromobacter, and Stenotrophomonas, are well-known potential human pathogens. Chaetomium globosum was also recognized as air pollution causing adverse health effects such as allergies and as the causal agent of human fungal infections among the tested date varieties; the Rashodiah type exhibited the highest fungal contamination, whereas the Sagai variety displayed the lowest fungal contamination. Conversely, the Sukkari, Barhi, and Mejdool varieties were the most contaminated with bacteria among the ten tested varieties, while the Khalas variety showed the least bacterial contamination. To the best of the authors' knowledge, this study provides the initial comprehensive account of the molecular and morphological identification of all fungal and bacterial genera associated with date palm (P. dactylifera) fruits.
Collapse
Affiliation(s)
- Khalid E Hamed
- Department of Plant Protection, College of Agriculture and Food, Qassim University, PO Box 6622, 51452, Buraidah, Qassim, Saudi Arabia
| | - Abdullah N Alsaif
- Department of Plant Protection, College of Agriculture and Food, Qassim University, PO Box 6622, 51452, Buraidah, Qassim, Saudi Arabia
| | - Saleh S Alhewairini
- Department of Plant Protection, College of Agriculture and Food, Qassim University, PO Box 6622, 51452, Buraidah, Qassim, Saudi Arabia.
| | - R Z Sayyed
- Department of Microbiology, PSGVP Mandal's S. I. Patil Arts, G. B. Patel Science and STKV Sangh Commerce College, Shahada, 425409, India.
| |
Collapse
|
8
|
Chen X, Long T, Huang S, Chen Y, Lu H, Jiang Z, Cheng C, Li J, Chen S, He W, Tang X, Fan J. Metabolomics-based study of chemical compositions in cellulase additives derived from a tobacco-origin Bacillus subtilis and their impact on tobacco sensory attributes. Arch Microbiol 2024; 206:163. [PMID: 38483624 DOI: 10.1007/s00203-024-03876-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/26/2024] [Accepted: 01/26/2024] [Indexed: 03/19/2024]
Abstract
To enhance the quality of tobacco leaves and optimize the smoking experience, diverse strains of functional bacteria and their associated metabolites have been used in tobacco aging. Exogenous cellulase additives are frequently employed to facilitate the degradation of cellulose and other macromolecular matrices and enhance the quality of the tobacco product. However, little is known about how microbial metabolites present in exogenous enzyme additives affect tobacco quality. In this study, crude cellulase solutions, produced by a tobacco-originating bacterium Bacillus subtilis FX-1 were employed on flue-cured tobacco. The incorporation of cellulase solutions resulted in the reduction of cellulose crystallinity in tobacco and the enhancement of the overall sensory quality of tobacco. Notably, tobacco treated with cellulase obtained from laboratory flask fermentation demonstrated superior scent and flavor attributes in comparison to tobacco treated with enzymes derived from industrial bioreactor fermentation. The targeted and untargeted metabolomic analysis revealed the presence of diverse flavor-related precursors and components in the cellulase additives, encompassing sugars, alcohols, amino acids, organic acids, and others. The majority of these metabolites exhibited significantly higher levels in the flask group compared to the bioreactor group, probably contributing to a pronounced enhancement in the sensory quality of tobacco. Our findings suggest that the utilization of metabolic products derived from B. subtilis FX-1 as additives in flue-cured tobacco holds promise as a viable approach for enhancing sensory attributes, establishing a solid theoretical foundation for the potential development of innovative tobacco aging additives.
Collapse
Affiliation(s)
- Xiaofeng Chen
- Technical Innovation Center for Utilization of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
- Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen, China
- Fujian Key Laboratory of Island Monitoring and Ecological Development, Island Research Center, Ministry of Natural Resources, Pingtan, China
| | - Teng Long
- Technology Center, China Tobacco Fujian Industrial Co., Ltd., Xiamen, China
| | - Shixin Huang
- Technical Innovation Center for Utilization of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Yiqiang Chen
- Technology Center, China Tobacco Fujian Industrial Co., Ltd., Xiamen, China
| | - Hongliang Lu
- Technology Center, China Tobacco Fujian Industrial Co., Ltd., Xiamen, China
| | - Zhenkun Jiang
- Technology Center, China Tobacco Fujian Industrial Co., Ltd., Xiamen, China
| | - Cheng Cheng
- Technology Center, China Tobacco Fujian Industrial Co., Ltd., Xiamen, China
| | - Jingjing Li
- Technology Center, China Tobacco Fujian Industrial Co., Ltd., Xiamen, China
| | - Shanyi Chen
- Technology Center, China Tobacco Fujian Industrial Co., Ltd., Xiamen, China
| | - Wei He
- Technology Center, China Tobacco Fujian Industrial Co., Ltd., Xiamen, China
| | - Xu Tang
- Technical Innovation Center for Utilization of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China.
- Fujian Key Laboratory of Island Monitoring and Ecological Development, Island Research Center, Ministry of Natural Resources, Pingtan, China.
| | - Jianqiang Fan
- Technology Center, China Tobacco Fujian Industrial Co., Ltd., Xiamen, China.
| |
Collapse
|
9
|
Zhang M, Guo D, Wang H, Wu G, Ding N, Shi Y, Zhou J, Zhao E, Li X. Integrated characterization of filler tobacco leaves: HS-SPME-GC-MS, E-nose, and microbiome analysis across different origins. BIORESOUR BIOPROCESS 2024; 11:11. [PMID: 38647645 PMCID: PMC10992047 DOI: 10.1186/s40643-024-00728-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 01/04/2024] [Indexed: 04/25/2024] Open
Abstract
This study delves into the aroma characteristics and microbial composition of filler tobacco leaves (FTLs) sourced from six distinct cigar-growing regions within Yunnan, China, following standardized fermentation. An integrated approach using gas chromatography-mass spectrometry (GC-MS), electronic nose (E-nose), and microbiome analysis was employed for comprehensive profiling. Results derived from Linear Discriminant Analysis (LDA) using E-nose data confirmed the presence of notable variability in flavor substance profiles among the FTLs from six regions. Additionally, GC-MS was used to discern disparities in volatile organic compound (VOC) distribution across FTLs from these regions, identifying 92, 81, 79, 58, 69, and 92 VOCs within each respective sample set. Significantly, 24 VOCs emerged as pivotal determinants contributing to the heterogeneity of flavor profiles among FTLs from diverse origins, as indicated by Variable Importance for the Projection (VIP) analysis. Furthermore, distinctions in free amino acid content and chemical constituents were observed across FTLs. Of noteworthy significance, solanone, isophorone, durene, (-)-alpha-terpineol, and 2,3'-bipyridine exhibited the strongest correlations with microbiome data, with fungal microorganisms exerting a more pronounced influence on metabolites, as elucidated through two-way orthogonal partial least-squares (O2PLS) modeling. These findings provide a theoretical and technical basis for accurately evaluating the synchronization of FTLs in aromas and fermentation processes, and they will enhance the quality of fermented FTLs and foster the growth of the domestic cigar tobacco industry ultimately.
Collapse
Affiliation(s)
- Mingzhu Zhang
- Key Laboratory for Agricultural Products Processing, School of Food and Biological Engineering, Hefei University of Technology, Danxia Road 485#, Hefei City, 230601, Anhui Province, China
| | - Dongfeng Guo
- China Tobacco Anhui Industrial Co., Ltd., Huangshan Road 606#, Hefei City, 230088, Anhui Province, China.
| | - Haiqing Wang
- Key Laboratory for Agricultural Products Processing, School of Food and Biological Engineering, Hefei University of Technology, Danxia Road 485#, Hefei City, 230601, Anhui Province, China
| | - Guanglong Wu
- Key Laboratory for Agricultural Products Processing, School of Food and Biological Engineering, Hefei University of Technology, Danxia Road 485#, Hefei City, 230601, Anhui Province, China
| | - Naihong Ding
- China Tobacco Anhui Industrial Co., Ltd., Huangshan Road 606#, Hefei City, 230088, Anhui Province, China
| | - Yaqi Shi
- China Tobacco Anhui Industrial Co., Ltd., Huangshan Road 606#, Hefei City, 230088, Anhui Province, China
| | - Jinlong Zhou
- China Tobacco Anhui Industrial Co., Ltd., Huangshan Road 606#, Hefei City, 230088, Anhui Province, China
| | - Eryong Zhao
- Key Laboratory for Agricultural Products Processing, School of Food and Biological Engineering, Hefei University of Technology, Danxia Road 485#, Hefei City, 230601, Anhui Province, China
| | - Xingjiang Li
- Key Laboratory for Agricultural Products Processing, School of Food and Biological Engineering, Hefei University of Technology, Danxia Road 485#, Hefei City, 230601, Anhui Province, China.
| |
Collapse
|
10
|
Ma L, Wang Y, Wang X, Lü X. Solid-State Fermentation Improves Tobacco Leaves Quality via the Screened Bacillus subtilis of Simultaneously Degrading Starch and Protein Ability. Appl Biochem Biotechnol 2024; 196:506-521. [PMID: 37148443 DOI: 10.1007/s12010-023-04486-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2023] [Indexed: 05/08/2023]
Abstract
The process of tobacco aging plays a significant role in enhancing the smoking experience by improving the flavor and quality of tobacco leaves. During natural aging, the metabolic activity of the microbes on the surface of tobacco leaves will be greatly changed. Besides, starch and protein are two of the main macromolecular compounds causing the poor smoking quality of tobacco leaves which to be degraded for better tobacco quality. In this study, a bacterium with the simultaneously degrading ability of starch (degradation rate of 33.87%) and protein (degradation rate of 20%) has been screened out from high-class tobacco leaf and then inoculated into low-class tobacco leaf by solid-state fermentation for quality improvement. The changes in components related to carbon and nitrogen showed that the strain had an obvious effect on the quality improvement of tobacco leaves. After that, GC-MS analyses displayed the volatile flavor compounds which become rich and the flavor has been improved. It has been proved that inoculation solid-state fermentation by dominant strain could improve tobacco quality, as well as instead of the traditional natural aging process which greatly shortens the aging process. The work also offers a helpful strategy for solid-state products for deep fermentation.
Collapse
Affiliation(s)
- Lingling Ma
- Laboratory of Bioresources, College of Food Science and Engineering, Northwest A&F University, Shaanxi Province, 712100, Yangling, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu Province, 214122, China
| | - Ying Wang
- Laboratory of Bioresources, College of Food Science and Engineering, Northwest A&F University, Shaanxi Province, 712100, Yangling, China
- Technology Center, China Tobacco Shaanxi Industrial Co., Ltd., Baoji, 721013, Shaanxi Province, China
| | - Xin Wang
- Laboratory of Bioresources, College of Food Science and Engineering, Northwest A&F University, Shaanxi Province, 712100, Yangling, China
| | - Xin Lü
- Laboratory of Bioresources, College of Food Science and Engineering, Northwest A&F University, Shaanxi Province, 712100, Yangling, China.
| |
Collapse
|
11
|
Si H, Cui B, Liu F, Zhao M. Microbial community and chemical composition of cigar tobacco ( Nicotiana tabacum L.) leaves altered by tobacco wildfire disease. PLANT DIRECT 2023; 7:e551. [PMID: 38099080 PMCID: PMC10719477 DOI: 10.1002/pld3.551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/08/2023] [Accepted: 11/16/2023] [Indexed: 12/17/2023]
Abstract
Tobacco wildfire disease caused by Pseudomonas syringae pv. tabaci is one of the most destructive foliar bacterial diseases occurring worldwide. However, the effect of wildfire disease on cigar tobacco leaves has not been clarified in detail. In this study, the differences in microbiota and chemical factors between wildfire disease-infected leaves and healthy leaves were characterized using high-throughput Illumina sequencing and a continuous-flow analytical system, respectively. The results demonstrated significant alterations in the structure of the phyllosphere microbial community in response to wildfire disease, and the infection of P. syringae pv. tabaci led to a decrease in bacterial richness and diversity. Furthermore, the content of nicotine, protein, total nitrogen, and Cl- in diseased leaves significantly increased by 47.86%, 17.46%, 20.08%, and 72.77% in comparison to healthy leaves, while the levels of total sugar and reducing sugar decreased by 59.59% and 70.0%, respectively. Notably, the wildfire disease had little effect on the content of starch and K+. Redundancy analysis revealed that Pseudomonas, Staphylococcus, Cladosporium, and Wallemia displayed positive correlations with nicotine, protein, total nitrogen, Cl- and K+ contents, while Pantoea, Erwinia, Sphingomonas, Terrisporobacter, Aspergillus, Alternaria, Sampaiozyma, and Didymella displayed positive correlations with total sugar and reducing sugar contents. Brevibacterium, Brachybacterium, and Janibacter were found to be enriched in diseased leaves, suggesting their potential role in disease suppression. Co-occurrence network analysis indicated that positive correlations were prevalent in microbial networks, and the bacterial network of healthy tobacco leaves exhibited greater complexity compared to diseased tobacco leaves. This study revealed the impact of wildfire disease on the microbial community and chemical compositions of tobacco leaves and provides new insights for the biological control of tobacco wildfire disease.
Collapse
Affiliation(s)
- Hongyang Si
- Flavors and Fragrance Engineering and Technology Research Center of Henan Province, College of Tobacco ScienceHenan Agricultural UniversityZhengzhouHenanChina
| | - Bing Cui
- Flavors and Fragrance Engineering and Technology Research Center of Henan Province, College of Tobacco ScienceHenan Agricultural UniversityZhengzhouHenanChina
| | - Fang Liu
- Flavors and Fragrance Engineering and Technology Research Center of Henan Province, College of Tobacco ScienceHenan Agricultural UniversityZhengzhouHenanChina
| | - Mingqin Zhao
- Flavors and Fragrance Engineering and Technology Research Center of Henan Province, College of Tobacco ScienceHenan Agricultural UniversityZhengzhouHenanChina
| |
Collapse
|
12
|
Zhang G, Zhao L, Li W, Yao H, Lu C, Zhao G, Wu Y, Li Y, Kong G. Changes in physicochemical properties and microbial community succession during leaf stacking fermentation. AMB Express 2023; 13:132. [PMID: 37991629 PMCID: PMC10665287 DOI: 10.1186/s13568-023-01642-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 11/17/2023] [Indexed: 11/23/2023] Open
Abstract
Leaf stacking fermentation involves enzymatic actions of many microorganisms and is an efficient and environmentally benign process for degrading macromolecular organic compounds. We investigated the dynamics of metabolite profiles, bacterial and fungal communities and their interactions during fermentation using cigar leaves from three geographic regions. The results showed that the contents of total sugar, reducing sugar, starch, cellulose, lignin, pectin, polyphenol and protein in cigar tobacco leaves was significantly decreased during fermentation. Notably, the furfural, neophytadiene, pyridine, benzyl alcohol, geranylacetone, 3-hydroxy-2-butanone, N-hexanal, 3-Methyl-1-butanol and 2,3-pentanedione were important features volatile aroma compounds during fermentation. The α-diversity of fungi and bacteria initially increased and then decreased during fermentation. An analysis of variance showed that microbial diversity was influenced by fermentation stages and growing locations, in which the all stages had greater impacts on α- and β-diversity than all regions. Microbiome profiling had identified several core bacteria including Sphingomonas, Bacillus, Staphylococcus, Pseudomonas, Ralstonia, Massilia and Fibrobacter. Fungal biomarkers included Aspergillus, Penicillium, Fusarium, Cladosporium and Trichomonascus. Interestingly, the molecular ecological networks showed that the core taxa had significant correlations with metabolic enzymes and physicochemical properties; bacteria and fungi jointly participated in the carbohydrate and nitrogen compound degrading and volatile aroma compound chemosynthesis processes during fermentation. These studies provide insights into the coupling of material conversion and microbial community succession during leaf fermentation.
Collapse
Affiliation(s)
- Guanghai Zhang
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, Yunnan, 650021, China
| | - Lu Zhao
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, Yunnan, 650021, China
| | - Wei Li
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, Yunnan, 650021, China
| | - Heng Yao
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, Yunnan, 650021, China
| | - Canhua Lu
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, Yunnan, 650021, China
| | - Gaokun Zhao
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, Yunnan, 650021, China
| | - Yuping Wu
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, Yunnan, 650021, China
| | - Yongping Li
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, Yunnan, 650021, China
| | - Guanghui Kong
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, Yunnan, 650021, China.
| |
Collapse
|
13
|
Zhang Q, Yang S, Yang Z, Zheng T, Li P, Zhou Q, Cai W, Wang Y, Zhang J, Ji X, Li D. Effects of a novel microbial fermentation medium produced by Tremella aurantialba SCT-F3 on cigar filler leaf. Front Microbiol 2023; 14:1267916. [PMID: 37808308 PMCID: PMC10556473 DOI: 10.3389/fmicb.2023.1267916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 09/01/2023] [Indexed: 10/10/2023] Open
Abstract
Introduction Adding a fermentation medium is an effective way to improve the quality of cigar tobacco leaves. Methods A novel microbial fermentation medium produced by an edible medicinal fungus, Tremella aurantialba SCT-F3 (CGMCC No.23831) was used to improve the quality of cigar filler leaves (CFLs). Changes in sensory quality, chemical components, volatile flavor compounds (VFCs), and the structure and function of microbes were investigated during the fermentation process. Results The sensory quality of CFLs supplemented with the T. aurantialba SCT-F3 fermentation medium significantly improved. Adding the fermentation medium increased the total alkaloid, reducing sugar, total sugar, and 12 VFCs significantly. A total of 31 microbial genera were significantly enriched, which increased the microbial community's richness and diversity. Microbial functions increased, including nucleotide biosynthesis, amino acid biosynthesis, fatty acid and lipid biosynthesis, nicotine degradation, and nicotinate degradation. During fermentation, the total alkaloid, reducing sugar, and total sugar content decreased. The richness and diversity of the microbial community decreased, whereas bacterial enzyme activity increased. At the end of fermentation, the sensory quality was excellent. The microbial structure gradually stabilized, and functional genes were low. The contents of the four Maillard reaction products and three nicotine degradation products increased significantly. 2-Ethyl-6-methylpyrazine, methylpyrazine, D,L-anatabine, β-nicotyrine, nicotinic degradation products, and total nitrogen were significantly and positively correlated with sensory quality. Methylpyrazine, D,L-anatabine, and β-nicotyrine were negatively correlated with Luteimonas, Mitochondria, Paracoccus, Stemphylium, and Stenotrophomonas. Conclusion This research provides not only a new microbial fermentation medium that utilizes edible and medicinal fungi to improve the quality of fermented CFLs, but also new ideas for the development and application of other edible medicinal fungi to improve the quality of cigar tobacco leaves.
Collapse
Affiliation(s)
- Qianying Zhang
- Cigar Fermentation Technology Key Laboratory of China Tobacco (China Tobacco Sichuan Industrial Co., Ltd.), Cigar Technology Innovation Center of China Tobacco, Chengdu, China
- Industrial Efficient Utilization of Domestic Cigar Tobacco Key Laboratory of Sichuan Province, Shifang, China
| | - Shuanghong Yang
- Cigar Fermentation Technology Key Laboratory of China Tobacco (China Tobacco Sichuan Industrial Co., Ltd.), Cigar Technology Innovation Center of China Tobacco, Chengdu, China
- Industrial Efficient Utilization of Domestic Cigar Tobacco Key Laboratory of Sichuan Province, Shifang, China
| | - Zhen Yang
- Cigar Fermentation Technology Key Laboratory of China Tobacco (China Tobacco Sichuan Industrial Co., Ltd.), Cigar Technology Innovation Center of China Tobacco, Chengdu, China
- Industrial Efficient Utilization of Domestic Cigar Tobacco Key Laboratory of Sichuan Province, Shifang, China
| | - Tianfei Zheng
- Science Center for Future Foods, Jiangnan University, Wuxi, China
| | - Pinhe Li
- Cigar Fermentation Technology Key Laboratory of China Tobacco (China Tobacco Sichuan Industrial Co., Ltd.), Cigar Technology Innovation Center of China Tobacco, Chengdu, China
- Industrial Efficient Utilization of Domestic Cigar Tobacco Key Laboratory of Sichuan Province, Shifang, China
| | - Quanwei Zhou
- Cigar Fermentation Technology Key Laboratory of China Tobacco (China Tobacco Sichuan Industrial Co., Ltd.), Cigar Technology Innovation Center of China Tobacco, Chengdu, China
- Industrial Efficient Utilization of Domestic Cigar Tobacco Key Laboratory of Sichuan Province, Shifang, China
| | - Wen Cai
- Cigar Fermentation Technology Key Laboratory of China Tobacco (China Tobacco Sichuan Industrial Co., Ltd.), Cigar Technology Innovation Center of China Tobacco, Chengdu, China
- Industrial Efficient Utilization of Domestic Cigar Tobacco Key Laboratory of Sichuan Province, Shifang, China
| | - Yue Wang
- Cigar Fermentation Technology Key Laboratory of China Tobacco (China Tobacco Sichuan Industrial Co., Ltd.), Cigar Technology Innovation Center of China Tobacco, Chengdu, China
- Industrial Efficient Utilization of Domestic Cigar Tobacco Key Laboratory of Sichuan Province, Shifang, China
| | - Juan Zhang
- Science Center for Future Foods, Jiangnan University, Wuxi, China
| | - Xiaoying Ji
- Cigar Fermentation Technology Key Laboratory of China Tobacco (China Tobacco Sichuan Industrial Co., Ltd.), Cigar Technology Innovation Center of China Tobacco, Chengdu, China
- Industrial Efficient Utilization of Domestic Cigar Tobacco Key Laboratory of Sichuan Province, Shifang, China
| | - Dongliang Li
- Cigar Fermentation Technology Key Laboratory of China Tobacco (China Tobacco Sichuan Industrial Co., Ltd.), Cigar Technology Innovation Center of China Tobacco, Chengdu, China
- Industrial Efficient Utilization of Domestic Cigar Tobacco Key Laboratory of Sichuan Province, Shifang, China
| |
Collapse
|
14
|
Yang Y, Xu R, Yang M, Xu Q, Miao C, Guo J, Mou W, Du H, Wei G, Hu L, Hu Z. Characterization of bacterial community in tobacco leaves at flue-curing and redrying processing stages. Sci Rep 2023; 13:13333. [PMID: 37587237 PMCID: PMC10432385 DOI: 10.1038/s41598-023-40502-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 08/11/2023] [Indexed: 08/18/2023] Open
Abstract
During the processing of tobacco leaves, flue-curing and redrying can affect the structure of bacterial community, having an effect on the aging quality of tobacco leaves. In order to characterize the effects of flue-curing and redrying on the bacterial community of tobacco leaves, the bacterial community of samples at different processing stages (before flue-curing, after flue-curing, before redrying and after redrying) was analyzed using Illumina sequencing. A total of 33 phyla, 79 classes, 195 orders, 344 families, 826 genera and 7922 ASVs were obtained from 36 samples. There was no significant difference in the core bacterial groups of tobacco leaf at four processing stages. Proteobacteria dominated at the phylum level. Sphingomonas, Pseudomonas and Methylobacterium were the main genera shared by all samples. The functional prediction by PICRUSt showed an increase in the relative abundance of pathway related to metabolism after flue-curing and pathway related to environmental information processing after redrying. This study, we analyzed the changes of bacterial community and structural composition of tobacco leaves from flue-curing to redrying, and found that flue-curing had a greater effect on the microbial community than redrying. This is conducive for the exploration of microbial resources and improvement of tobacco leaf quality.
Collapse
Affiliation(s)
- Yue Yang
- China Tobacco Jiangsu Industrial Co., Ltd., Nanjing, 210000, Jiangsu, China
| | - Ruyan Xu
- China Tobacco Jiangsu Industrial Co., Ltd., Nanjing, 210000, Jiangsu, China
| | - Mengmeng Yang
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, Henan, China
| | - Qiang Xu
- China Tobacco Jiangsu Industrial Co., Ltd., Nanjing, 210000, Jiangsu, China
| | - Chenlin Miao
- China Tobacco Jiangsu Industrial Co., Ltd., Nanjing, 210000, Jiangsu, China
| | - Jianhua Guo
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, Henan, China
| | - Wenjun Mou
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, Henan, China
| | - Hang Du
- China Tobacco Jiangsu Industrial Co., Ltd., Nanjing, 210000, Jiangsu, China
| | - Gang Wei
- China Tobacco Jiangsu Industrial Co., Ltd., Nanjing, 210000, Jiangsu, China
| | - Liwei Hu
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, Henan, China.
| | - Zongyu Hu
- China Tobacco Jiangsu Industrial Co., Ltd., Nanjing, 210000, Jiangsu, China.
| |
Collapse
|
15
|
Zhang Q, Zheng T, Yang Z, Yang S, Cai W, Li P, Huang Y, Zhang J, Li D. Analysis of the structure and metabolic function of microbial community in cigar tobacco leaves in agricultural processing stage. Front Microbiol 2023; 14:1230547. [PMID: 37637128 PMCID: PMC10448963 DOI: 10.3389/fmicb.2023.1230547] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 07/31/2023] [Indexed: 08/29/2023] Open
Abstract
The agricultural fermentation processing of cigar tobacco leaves (CTLs), including air-curing and agricultural fermentation, carried out by tobacco farmers has rarely been studied. In this study, we have investigated the microbial community in the CTLs during air-curing and agricultural fermentation by 16S rRNA and ITS gene high-throughput sequencing. The results showed that the richness of microbial communities gradually increased with the development of agricultural fermentation, which means that not all microorganisms in CTLs come from the fields where tobacco grows, but gradually accumulate into CTLs during the fermentation process. Enterobacteriaceae, Chloroplast, and Alternaria were the dominant genera in the air-cured CTLs. Aquabacterium, unclassified Burkholderiaceae, Caulobacter, Brevundimonas, and Aspergillus were the dominant genera in the agriculturally fermented CTLs. Acinetobacter, Methylobacterium, Sampaiozyma, and Plectosphaerella first significantly increased, and then significantly decreased during agricultural processing. The changes in microbial communities are mainly related to their different functions during fermentation. This means that when the fermentation effect of the original microbial community in cigar tobacco leaves is not ideal, we can optimize or design the microbial community based on the fermentation function that the microbial community needs to achieve. These results may help adjust and optimize the agricultural fermentation process of CTLs, and help develop the quality of CTLs and increase the income of tobacco farmers.
Collapse
Affiliation(s)
- Qianying Zhang
- Cigar Fermentation Technology Key Laboratory of China Tobacco, Cigar Technology Innovation Center of China Tobacco, China Tobacco Sichuan Industrial Co., Ltd., Chengdu, China
| | - Tianfei Zheng
- School of Biotechnology, Jiangnan University, Wuxi, China
| | - Zhen Yang
- Cigar Fermentation Technology Key Laboratory of China Tobacco, Cigar Technology Innovation Center of China Tobacco, China Tobacco Sichuan Industrial Co., Ltd., Chengdu, China
| | - Shuanghong Yang
- Cigar Fermentation Technology Key Laboratory of China Tobacco, Cigar Technology Innovation Center of China Tobacco, China Tobacco Sichuan Industrial Co., Ltd., Chengdu, China
| | - Wen Cai
- Cigar Fermentation Technology Key Laboratory of China Tobacco, Cigar Technology Innovation Center of China Tobacco, China Tobacco Sichuan Industrial Co., Ltd., Chengdu, China
| | - Pinhe Li
- Cigar Fermentation Technology Key Laboratory of China Tobacco, Cigar Technology Innovation Center of China Tobacco, China Tobacco Sichuan Industrial Co., Ltd., Chengdu, China
| | - Yang Huang
- Cigar Fermentation Technology Key Laboratory of China Tobacco, Cigar Technology Innovation Center of China Tobacco, China Tobacco Sichuan Industrial Co., Ltd., Chengdu, China
| | - Juan Zhang
- School of Biotechnology, Jiangnan University, Wuxi, China
| | - Dongliang Li
- Cigar Fermentation Technology Key Laboratory of China Tobacco, Cigar Technology Innovation Center of China Tobacco, China Tobacco Sichuan Industrial Co., Ltd., Chengdu, China
| |
Collapse
|
16
|
Zhang Y, Xu Q, Yang M, Yang Y, Fu J, Miao C, Wang G, Hu L, Hu Z. Analysis of differences in tobacco leaf microbial communities after redrying in Chinese provinces and from abroad. AMB Express 2023; 13:80. [PMID: 37528261 PMCID: PMC10393934 DOI: 10.1186/s13568-023-01580-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 07/03/2023] [Indexed: 08/03/2023] Open
Abstract
Microorganisms play an important role in the tobacco aging process. Before the aging process, raw tobacco leaves must be threshed and redried. In order to explore the differences of microbial community structure of threshed and redried tobacco leaves from different origins at home and abroad, 14 groups of tobacco leaves from 8 different countries were tested by high-throughput DNA sequencing and microbiology analysis. Then, through amplicon sequence variants (ASV) cluster analysis, Venn diagram and species labeling and other microbial diversity analysis, the dominant bacteria and fungi on the surface of threshed and redried tobacco leaves were obtained. The results showed that there were significant differences in the composition of tobacco bacteria and fungi after threshing and redrying from different geographical areas. The relative abundance of Microbacterium and Sphingomonas in domestic tobacco leaves was significantly higher than that of foreign tobacco leaves. The relative abundance of Pseudomonas in foreign tobacco bacterial colonies was significantly higher than that of domestic tobacco leaves. In terms of fungi, the relative abundance of Aspergillus and Alternaria in domestic tobacco leaves was significantly higher than that of foreign tobacco leaves. Septoria, Sampaiozyma, Cladosporium and Phoma account for significantly higher proportions of foreign tobacco leaves. These microorganisms may be indispensable in aging process to form different flavors of tobacco leaves. It provides an important theoretical basis for the further use of microorganisms to promote tobacco leaf aging.
Collapse
Affiliation(s)
- Yifan Zhang
- China Tobacco Jiangsu Industrial Co., Ltd., Nanjing, 210000, Jiangsu, China
| | - Qiang Xu
- China Tobacco Jiangsu Industrial Co., Ltd., Nanjing, 210000, Jiangsu, China
| | - Mengmeng Yang
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, Henan, China
| | - Yue Yang
- China Tobacco Jiangsu Industrial Co., Ltd., Nanjing, 210000, Jiangsu, China
| | - Jincun Fu
- China Tobacco Jiangsu Industrial Co., Ltd., Nanjing, 210000, Jiangsu, China
| | - Chenlin Miao
- China Tobacco Jiangsu Industrial Co., Ltd., Nanjing, 210000, Jiangsu, China
| | - Guiyao Wang
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, Henan, China
| | - Liwei Hu
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, Henan, China.
| | - Zongyu Hu
- China Tobacco Jiangsu Industrial Co., Ltd., Nanjing, 210000, Jiangsu, China.
| |
Collapse
|
17
|
Xue F, Yang J, Luo C, Li D, Shi G, Song G, Li Y. Metagenomic insight into the biodegradation of biomass and alkaloids in the aging process of cigar. BIORESOUR BIOPROCESS 2023; 10:45. [PMID: 38647787 PMCID: PMC10992288 DOI: 10.1186/s40643-023-00667-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 07/16/2023] [Indexed: 04/25/2024] Open
Abstract
A significant distinction between cigar production and tobacco lies in the necessary aging process, where intricate microbial growth, metabolic activities, enzymatic catalysis, and chemical reactions interact. Despite its crucial role in determining the final quality of cigars, our comprehension of the underlying chemical and biological mechanisms within this process remains insufficient. Biomass and alkaloids are the primary constituents that influence the flavor of cigars. Consequently, investigating the entire aging process could begin by exploring the involvement of microbes and enzymes in their biodegradation. In this study, handmade cigars were aged under different conditions. Metagenomic sequencing was employed to identify the microbes and enzymes responsible for the degradation of biomass and alkaloids derived from tobacco leaves. The results revealed that various environmental factors, including temperature, humidity, duration time, and turning frequency, yielded varying contents of total sugar and alkaloids in the cigars. Significant correlations were observed between microbial communities and starch, reducing sugars, total sugars, and alkaloids. Key species involved in the breakdown of biomass constituents, such as starch (Bacillus pumilus, Pseudomonas sp. 286, and Aspergillus cristatus), reducing sugars and total sugars (Aspergillus cristatus and Nitrolancea hollandica), were identified. Furthermore, Corynespora cassiicola and Pseudomonas fulva were found to potentially contribute to the degradation of alkaloid compounds, specifically nornicotine and neonicotinoid. Our work contributes to a deeper understanding of the microbial roles in the aging of cigars. Moreover, the selection of specific microbial strains or starter cultures can be employed to control and manipulate the aging process, thereby further refining the flavor development in cigar products.
Collapse
Affiliation(s)
- Fang Xue
- Key Laboratory of Chinese Cigar Fermentation, Cigar Technology Innovation Center of China Tobacco, China Tobacco Sichuan Industrial Co., Ltd, Chengdu, 610000, China
| | - Juan Yang
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu, People's Republic of China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu, People's Republic of China
| | - Cheng Luo
- Key Laboratory of Chinese Cigar Fermentation, Cigar Technology Innovation Center of China Tobacco, China Tobacco Sichuan Industrial Co., Ltd, Chengdu, 610000, China
| | - Dongliang Li
- Key Laboratory of Chinese Cigar Fermentation, Cigar Technology Innovation Center of China Tobacco, China Tobacco Sichuan Industrial Co., Ltd, Chengdu, 610000, China
| | - Guiyang Shi
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu, People's Republic of China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu, People's Republic of China
| | - Guangfu Song
- Key Laboratory of Chinese Cigar Fermentation, Cigar Technology Innovation Center of China Tobacco, China Tobacco Sichuan Industrial Co., Ltd, Chengdu, 610000, China
| | - Youran Li
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu, People's Republic of China.
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu, People's Republic of China.
| |
Collapse
|
18
|
Gong Y, Li J, Deng X, Chen Y, Chen S, Huang H, Ni L, Long T, He W, Zhang J, Jiang Z, Fan J, Zhang W. Application of starch degrading bacteria from tobacco leaves in improving the flavor of flue-cured tobacco. Front Microbiol 2023; 14:1211936. [PMID: 37440887 PMCID: PMC10335769 DOI: 10.3389/fmicb.2023.1211936] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 06/07/2023] [Indexed: 07/15/2023] Open
Abstract
Starch is an essential factor affecting the quality of flue-cured tobacco, and high starch content can affect the sensory quality and safety. Recently, the degradation of macromolecules in tobacco raw materials by using additional microorganisms to improve their intrinsic quality and safety has become a new research hotspot in the tobacco industry. However, the technical maturity and application scale are limited. Our study analyzed the correlation between microbial community composition and volatile components on the surface of tobacco leaves from 14 different grades in Fujian tobacco-producing areas. The PICRUSt software was utilized to predict the function of the microbial community present in tobacco leaves. Furthermore, dominant strains that produced amylase were screened out, and an enzyme solution was prepared to enhance the flue-cured tobacco flavor. Changes in the content of macromolecules and volatile components were determined, and sensory evaluations were conducted to assess the overall quality of the tobacco leaves. The results showed that the dominant bacterial genera on the surface of Fujian tobacco leaves were Variovorax, Sphingomonas, Bacillus, etc. Bacillus was positively correlated with various volatile components, which contributed to the sweet and aromatic flavors of Fujian flue-cured tobacco. The main genetic functions of Fujian flue-cured tobacco surface bacteria were carbohydrate metabolism and amino acid metabolism. After treating flue-cured tobacco with an enzyme preparation prepared by the fermentation of Paenibacillus amylolyticus A17 #, the content of starch, pectin, and cellulose in flue-cured tobacco decreased significantly compared with the control group. Meanwhile, the content of total soluble sugar and reducing sugar was significantly increased, and the volatile aroma components, such as 3-hydroxy--damascone, 2,3-dihydro-3,5-dihydroxy-6-methyl-4 H-Pyran-4-one, ethyl palmitate, ethyl linolenic acid, etc., were significantly increased. The aroma quality and quantity of flue-cured tobacco were enhanced, while impurities were reduced. The smoke characteristics were improved, with increased fineness, concentration, and moderate strength. The taste characteristics were also improved, with reduced irritation and a better aftertaste. In conclusion, Bacillus, as the dominant genus in the abundance of bacterial communities on tobacco surfaces in Fujian, had an essential impact on the flavor of tobacco leaves by participating in carbohydrate metabolism and finally forming the unique flavor style of flue-cured tobacco in Fujian tobacco-producing areas. Paenibacillus amylolyticus A17 #, a target strain with amylase-producing ability, was screened from the surface of Fujian flue-cured tobacco. The enzyme preparation, produced by the fermentation of Paenibacillus amylolyticus A17 #, was utilized to reduce the content of macromolecules, increase the content of water-soluble total sugar and reducing sugar, and produce a variety of crucial volatile aroma components, which had a significant improvement on the quality of tobacco leaves.
Collapse
Affiliation(s)
- Yinuo Gong
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, China
| | - Jingjing Li
- Technology Center, China Tobacco Fujian Industrial Co., Ltd., Xiamen, Fujian, China
| | - Xiaohua Deng
- Technology Center, China Tobacco Fujian Industrial Co., Ltd., Xiamen, Fujian, China
| | - Yiqiang Chen
- Technology Center, China Tobacco Fujian Industrial Co., Ltd., Xiamen, Fujian, China
| | - Shanyi Chen
- Technology Center, China Tobacco Fujian Industrial Co., Ltd., Xiamen, Fujian, China
| | - Hemin Huang
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, China
| | - Li Ni
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, China
| | - Teng Long
- Technology Center, China Tobacco Fujian Industrial Co., Ltd., Xiamen, Fujian, China
| | - Wei He
- Technology Center, China Tobacco Fujian Industrial Co., Ltd., Xiamen, Fujian, China
| | - Jianping Zhang
- Technology Center, China Tobacco Fujian Industrial Co., Ltd., Xiamen, Fujian, China
| | - Zhenkun Jiang
- Technology Center, China Tobacco Fujian Industrial Co., Ltd., Xiamen, Fujian, China
| | - Jianqiang Fan
- Technology Center, China Tobacco Fujian Industrial Co., Ltd., Xiamen, Fujian, China
| | - Wen Zhang
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, China
| |
Collapse
|
19
|
Ning Y, Mai J, Hu BB, Lin ZL, Chen Y, Jiang YL, Wei MY, Zhu MJ. Study on the effect of enzymatic treatment of tobacco on HnB cigarettes and microbial succession during fermentation. Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12577-2. [PMID: 37209161 DOI: 10.1007/s00253-023-12577-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/17/2023] [Accepted: 05/09/2023] [Indexed: 05/22/2023]
Abstract
Starch and cellulose are the fundamental components of tobacco, while their excessive content will affect the quality of tobacco. Enzymatic treatment with different enzymes is a promising method to modulate the chemical composition and improve the sensory quality of tobacco leaves. In this study, enzymatic treatments, such as amylase, cellulase, and their mixed enzymes, were used to improve tobacco quality, which could alter the content of total sugar, reducing sugar, starch, and cellulose in tobacco leaves. The amylase treatment changed surface structure of tobacco leaves, increased the content of neophytadiene in tobacco by 16.48%, and improved the total smoking score of heat-not-burn (HnB) cigarette products by 5.0 points compared with the control. The Bacillus, Rubrobacter, Brevundimonas, Methylobacterium, Stenotrophomonas, Acinetobacter, Pseudosagedia-chlorotica, and Sclerophora-peronella were found to be significant biomarkers in the fermentation process by LEfSe analysis. The Basidiomycota and Agaricomycetes were significantly correlated with aroma and flavor, taste, and total score of HnB. The results showed that microbial community succession occurred due to amylase treatment, which promoted the formation of aroma compounds, and regulated the chemical composition of tobacco, and improved tobacco quality during tobacco fermentation. This study provides a method for enzymatic treatment to upgrade the quality of tobacco raw materials, thereby improving the quality of HnB cigarettes, and the potential mechanism is also revealed by chemical composition and microbial community analysis. KEY POINTS: Enzymatic treatment can change the chemical composition of tobacco leaves. The microbial community was significantly affected by enzymatic treatment. The quality of HnB cigarettes was significantly improved by amylase treatment.
Collapse
Affiliation(s)
- Ying Ning
- School of Biology and Biological Engineering, Guangdong Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Panyu, Guangzhou, 510006, People's Republic of China
| | - Jing Mai
- School of Biology and Biological Engineering, Guangdong Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Panyu, Guangzhou, 510006, People's Republic of China
| | - Bin-Bin Hu
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, 650021, People's Republic of China.
| | - Zhong-Long Lin
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, 650021, People's Republic of China
| | - Yi Chen
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, 650021, People's Republic of China
| | - Yong-Lei Jiang
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, 650021, People's Republic of China
| | - Ming-Yang Wei
- School of Molecular Sciences, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Ming-Jun Zhu
- School of Biology and Biological Engineering, Guangdong Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Panyu, Guangzhou, 510006, People's Republic of China.
- College of Life and Geographic Sciences, The Key Laboratory of Biological Resources and Ecology of Pamirs Plateau in Xinjiang Uygur Autonomous Region, The Key Laboratory of Ecology and Biological Resources in Yarkand Oasis at Colleges & Universities Under the Department of Education of Xinjiang Uygur Autonomous Region, Kashi University, Kashi, 844006, People's Republic of China.
| |
Collapse
|
20
|
Li J, Zhao Y, Yang H, Yang X, Wang J, Zhou J, Shi H. Identification of Bacteria Associated with Tobacco Mildew and Tobacco-Specific Nitrosamines During Tobacco Fermentation. Curr Microbiol 2023; 80:218. [PMID: 37204530 DOI: 10.1007/s00284-023-03314-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 04/25/2023] [Indexed: 05/20/2023]
Abstract
Tobacco mildew and tobacco-specific nitrosamines (TSNAs) affect the quality of tobacco products during fermentation. Microbes are thought to play key roles in the development of specific properties of fermented tobacco; however, little is known about the bacteria involved in the fermentation process. This study aims to identify key microbes related to mildew and TSNA formation. Tobacco was fermented at 25 °C, 35 °C, and 45 °C for 2, 4, and 6 weeks, with unfermented samples used as controls. Our preliminary exploration found that TSNAs content elevated with the increase of temperature and period, and mildew was easy to occur at low temperature with short period. Hence, samples were divided into three groups: the temperature gradient group (25 °C, 35 °C, and 45 °C for 6 weeks); the low-temperature group (control, 25 °C for 2, 4, and 6 weeks); and the high-temperature group (control, 45 °C for 2, 4, and 6 weeks). After collecting fermented tobacco leaves, 16S rRNA gene sequencing was used to explore the structure and dynamic changes of bacterial community during fermentation. Methylobacterium and Deinococcus were shared between the temperature gradient and high-temperature groups and showed a linear downward trend; these might play a role in the production of TSNAs. Massilia, Ruminiclostridium, and Cellulosilyticum species increased with prolonged fermentation time in the low-temperature group; this might be associated with tobacco mildew. In summary, the microbial diversity of fermented tobacco was explored under different conditions. These findings might provide data and material support to improve the quality of fermented tobacco products; however, further omics based studies are warranted to analysis the gene and protein expression patter in the identified bacteria.
Collapse
Affiliation(s)
- Jingjing Li
- College of Tobacco Science/Tobacco Harm Reduction Research Center, Henan Agricultural University, No. 95 Wenhua Road, Zhengzhou, 450002, Henan, China
| | - Yuanyuan Zhao
- College of Tobacco Science/Tobacco Harm Reduction Research Center, Henan Agricultural University, No. 95 Wenhua Road, Zhengzhou, 450002, Henan, China
| | - Huijuan Yang
- College of Tobacco Science/Tobacco Harm Reduction Research Center, Henan Agricultural University, No. 95 Wenhua Road, Zhengzhou, 450002, Henan, China
| | - Xingyou Yang
- College of Tobacco Science/Tobacco Harm Reduction Research Center, Henan Agricultural University, No. 95 Wenhua Road, Zhengzhou, 450002, Henan, China
| | - Jun Wang
- Deyang Branch of Sichuan Tobacco Company, Deyang, 618000, Sichuan, China
| | - Jun Zhou
- Shanghai Tobacco Group, No. 717 Changyang Road, Yangpu District, Shanghai, 200082, China
| | - Hongzhi Shi
- College of Tobacco Science/Tobacco Harm Reduction Research Center, Henan Agricultural University, No. 95 Wenhua Road, Zhengzhou, 450002, Henan, China.
| |
Collapse
|
21
|
Ning Y, Zhang LY, Mai J, Su JE, Cai JY, Chen Y, Jiang YL, Zhu MJ, Hu BB. Tobacco microbial screening and application in improving the quality of tobacco in different physical states. BIORESOUR BIOPROCESS 2023; 10:32. [PMID: 38647749 PMCID: PMC10992236 DOI: 10.1186/s40643-023-00651-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 04/09/2023] [Indexed: 04/25/2024] Open
Abstract
The first-cured tobacco contains macromolecular substances with negative impacts on tobacco products quality, and must be aged and fermented to mitigate their effects on the tobacco products quality. However, the natural fermentation takes a longer cycle with large coverage area and low economic efficiency. Microbial fermentation is a method to improve tobacco quality. The change of chemical composition of tobacco during the fermentation is often correlated with shapes of tobacco. This study aimed to investigate the effects of tobacco microorganisms on the quality of different shapes of tobacco. Specifically, Bacillus subtilis B1 and Cytobacillus oceanisediminis C4 with high protease, amylase, and cellulase were isolated from the first-cured tobacco, followed by using them for solid-state fermentation of tobacco powder (TP) and tobacco leaves (TL). Results showed that strains B1 and C4 could significantly improve the sensory quality of TP, enabling it to outperform TL in overall texture and skeleton of tobacco products during cigarette smoking. Compared with the control, microbial fermentation could increase reducing sugar; regulate protein, starch, and cellulose, reduce nicotine, improve total aroma substances, and enable the surface of fermented TP and TL to be more loose, wrinkled, and porous. Microbial community analysis indicated that strains B1 and C4 could change the native structure of microbial community in TP and TL. LEfSe analysis revealed that the potential key biomarkers in TP and TL were Bacilli, Pseudonocardia, Pantoea, and Jeotgalicoccus, which may have cooperative effects with other microbial taxa in improving tobacco quality. This study provides a theoretical basis for improving tobacco fermentation process for better cigarettes quality.
Collapse
Affiliation(s)
- Ying Ning
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, 650021, People's Republic of China
- School of Biology and Biological Engineering, Guangdong Key Laboratory of Fermentation and Enzyme Engineering, Guangzhou Higher Education Mega Center, South China University of Technology, Panyu, Guangzhou, 510006, People's Republic of China
| | - Li-Yuan Zhang
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, 650021, People's Republic of China
- School of Biology and Biological Engineering, Guangdong Key Laboratory of Fermentation and Enzyme Engineering, Guangzhou Higher Education Mega Center, South China University of Technology, Panyu, Guangzhou, 510006, People's Republic of China
| | - Jing Mai
- School of Biology and Biological Engineering, Guangdong Key Laboratory of Fermentation and Enzyme Engineering, Guangzhou Higher Education Mega Center, South China University of Technology, Panyu, Guangzhou, 510006, People's Republic of China
| | - Jia-En Su
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, 650021, People's Republic of China
| | - Jie-Yun Cai
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, 650021, People's Republic of China
| | - Yi Chen
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, 650021, People's Republic of China
| | - Yong-Lei Jiang
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, 650021, People's Republic of China
| | - Ming-Jun Zhu
- School of Biology and Biological Engineering, Guangdong Key Laboratory of Fermentation and Enzyme Engineering, Guangzhou Higher Education Mega Center, South China University of Technology, Panyu, Guangzhou, 510006, People's Republic of China.
- College of Life and Geographic Sciences, The Key Laboratory of Biological Resources and Ecology of Pamirs Plateau in Xinjiang Uygur Autonomous Region, The Key Laboratory of Ecology and Biological Resources in Yarkand Oasis at Colleges & Universities Under the Department of Education of Xinjiang Uygur Autonomous Region, Kashi University, Kashi, 844006, China.
| | - Bin-Bin Hu
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, 650021, People's Republic of China.
| |
Collapse
|
22
|
Shi Q, Tang H, Mei Y, Chen J, Wang X, Liu B, Cai Y, Zhao N, Yang M, Li H. Effects of endogenous capsaicin stress and fermentation time on the microbial succession and flavor compounds of chili paste (a Chinese fermented chili pepper). Food Res Int 2023; 168:112763. [PMID: 37120214 DOI: 10.1016/j.foodres.2023.112763] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023]
Abstract
Chili paste, is a popular traditional product derived from chili pepper, and its fermentation system is affected by the variable concentration of capsaicin, which originates from the peppers. In the present study, the effects of capsaicin and fermentation time on the microbial community and flavor compounds of chili paste were investigated. After capsaicin supplementation, the total acid was significantly decreased (p < 0.05) along with lower total bacteria, especially lactic acid bacteria. Lactiplantibacillus, Lactobacillus, Weissella, Issatchenkia, Trichoderma, and Pichia were the shared and predominant genera; whereas, the Bacteroides and Kazachstania abundance was significantly increased due to the selection effect of capsaicin over time. Additionally, alterations of the microbial interaction networks and their metabolic preferences led to less lactic acid content with greater accumulation of ethyl nonanoate, methyl nonanoate, etc. This study will provide a perspective for selecting chili pepper varieties and improving the quality of fermented chili paste.
Collapse
|
23
|
Runge P, Ventura F, Kemen E, Stam R. Distinct Phyllosphere Microbiome of Wild Tomato Species in Central Peru upon Dysbiosis. MICROBIAL ECOLOGY 2023; 85:168-183. [PMID: 35041070 PMCID: PMC9849306 DOI: 10.1007/s00248-021-01947-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 12/15/2021] [Indexed: 06/14/2023]
Abstract
Plants are colonized by myriads of microbes across kingdoms, which affect host development, fitness, and reproduction. Hence, plant microbiomes have been explored across a broad range of host species, including model organisms, crops, and trees under controlled and natural conditions. Tomato is one of the world's most important vegetable crops; however, little is known about the microbiota of wild tomato species. To obtain insights into the tomato microbiota occurring in natural environments, we sampled epiphytic microbes from leaves of four tomato species, Solanum habrochaites, S. corneliomulleri, S. peruvianum, and S. pimpinellifolium, from two geographical locations within the Lima region of Peru over 2 consecutive years. Here, a high-throughput sequencing approach was applied to investigate microbial compositions including bacteria, fungi, and eukaryotes across tomato species and geographical locations. The phyllosphere microbiome composition varies between hosts and location. Yet, we identified persistent microbes across tomato species that form the tomato microbial core community. In addition, we phenotypically defined healthy and dysbiotic samples and performed a downstream analysis to reveal the impact on microbial community structures. To do so, we compared microbial diversities, unique OTUs, relative abundances of core taxa, and microbial hub taxa, as well as co-occurrence network characteristics in healthy and dysbiotic tomato leaves and found that dysbiosis affects the phyllosphere microbial composition in a host species-dependent manner. Yet, overall, the present data suggests an enrichment of plant-promoting microbial taxa in healthy leaves, whereas numerous microbial taxa containing plant pathogens occurred in dysbiotic leaves.Concluding, we identify the core phyllosphere microbiome of wild tomato species, and show that the overall phyllosphere microbiome can be impacted by sampling time point, geographical location, host genotype, and plant health. Future studies in these components will help understand the microbial contribution to plant health in natural systems and can be of use in cultivated tomatoes.
Collapse
Affiliation(s)
- Paul Runge
- Department of Microbial Interactions, IMIT/ZMBP, University of Tübingen, Auf der Morgenstelle 32, 72076, Tübingen, Germany
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Carl-von-Linne-Weg 10, 50829, Köln, Germany
| | - Freddy Ventura
- Plant Pathology and Bacteriology, International Potato Centre, Avenida La Molina 1895, La Molina, Lima, Peru
| | - Eric Kemen
- Department of Microbial Interactions, IMIT/ZMBP, University of Tübingen, Auf der Morgenstelle 32, 72076, Tübingen, Germany
| | - Remco Stam
- Chair of Phytopathology, TUM School of Life Science, Emil-Ramann-Str. 2, 85354, Freising-Weihenstephan, Germany.
| |
Collapse
|
24
|
Huang S, Liu D, Chen M, Xi G, Yang P, Jia C, Mao D. Effects of Bacillus subtilis subsp. on the microbial community and aroma components of flue-cured tobacco leaves based on metagenome analysis. Arch Microbiol 2022; 204:726. [DOI: 10.1007/s00203-022-03347-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 11/27/2022]
|
25
|
Liu T, Guo S, Wu C, Zhang R, Zhong Q, Shi H, Zhou R, Qin Y, Jin Y. Phyllosphere microbial community of cigar tobacco and its corresponding metabolites. Front Microbiol 2022; 13:1025881. [PMID: 36439836 PMCID: PMC9691965 DOI: 10.3389/fmicb.2022.1025881] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/17/2022] [Indexed: 08/29/2023] Open
Abstract
Cigar is made of a typical fermented tobacco where the microbiota inhabits within an alkaline environment. Our current understanding on cigar fermentation is far from thorough. This work employed both high-throughput sequencing and chromatography-mass spectrometric technologies to provide new scientific reference for this specific fermented system. Typical cigar samples from different regions (the Caribbeans, South America, East Asia, and Southeast Asia) were investigated. The results show that Firmicutes, Actinobacteria, Proteobacteria, Ascomycota, and Basidiomycota were the predominant phyla in the cigar samples. Rather than the fungal community, it was the bacterial community structures that played vital roles to differentiate the cigar from different regions: Staphylococcus was the dominant genus in the Americas; Bacillus was the dominant genus in Southeast Asia; while in East Asia, there was no dominant genus. Such differences in community structure then affected the microflora metabolism. The correlation between microbiota and metabolites revealed that Aspergillaceae, Cercospora, and Staphylococcus were significantly correlated with sclareolide; Bacillus were positively associated with isophorone. Alcaligenaceae was significantly and positively correlated with L-nicotine and hexadecanoic acid, methyl ester. GRAPHICAL ABSTRACT.
Collapse
Affiliation(s)
- Tiantian Liu
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
- Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu, China
| | - Shiping Guo
- R&D Department, Sichuan Provincial Branch of China National Tobacco Crop Tobacco Science Institute, Chengdu, China
| | - Chongde Wu
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
- Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu, China
| | - Ruina Zhang
- R&D Department, Deyang Tobacco Company of Sichuan Province, Sichuan, Deyang, China
| | - Qiu Zhong
- R&D Department, Deyang Tobacco Company of Sichuan Province, Sichuan, Deyang, China
| | - Hongzhi Shi
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, China
| | - Rongqing Zhou
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
- Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu, China
| | - Yanqing Qin
- R&D Department, Sichuan Provincial Branch of China National Tobacco Crop Tobacco Science Institute, Chengdu, China
| | - Yao Jin
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
- Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu, China
| |
Collapse
|
26
|
Succession of Bacterial and Fungal Communities during Fermentation of Medicinal Plants. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8080383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The fermentation of medicinal plants has been studied very little, as compared to the fermentation of food and beverages. One approach applies fermentation by single bacterial or fungal strains and targets the production of specific compounds or preservation of the fermented material. Spontaneous fermentation by an autochthonous starter community may lead to a more diverse blend of fermentation products because co-occurring microbes may activate the biosynthetic potentials and formation of compounds not produced in single strain approaches. We applied the community approach and studied the fermentation of four medicinal plants (Achillea millefolium, Taraxacum officinale, Mercurialis perennis, and Euphrasia officinalis), according to a standardized pharmaceutical fermentation method. It is based on the spontaneous fermentation by plant-specific bacterial and fungal communities under a distinct temperature regime, with a recurrent cooling during the first week and further fermentation for at least six months. The results revealed both general and plant-specific patterns in the composition and succession of microbial communities during fermentation. Lactic acid bacteria increasingly dominated in all preparations, whereas the fungal communities retained more plant-specific features. Three distinct fermentation phases with characteristic bacterial communities were identified, i.e., early, middle, and late phases. Co-occurrence network analyses revealed the plant-specific features of the microbial communities.
Collapse
|
27
|
Dai YF, Wu XM, Wang HC, Li WH, Cai LT, Li JX, Wang F, Sehar S, Shamsi IH. Spatio-Temporal Variation in the Phyllospheric Microbial Biodiversity of Alternaria Alternata-Infected Tobacco Foliage. Front Microbiol 2022; 13:920109. [PMID: 35966692 PMCID: PMC9370072 DOI: 10.3389/fmicb.2022.920109] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/22/2022] [Indexed: 11/13/2022] Open
Abstract
Phyllospheric microbial composition of tobacco (Nicotiana tabacum L.) is contingent upon certain factors, such as the growth stage of the plant, leaf position, and cultivar and its geographical location, which influence, either directly or indirectly, the growth, overall health, and production of the tobacco plant. To better understand the spatiotemporal variation of the community and the divergence of phyllospheric microflora, procured from healthy and diseased tobacco leaves infected by Alternaria alternata, the current study employed microbe culturing, high-throughput technique, and BIOLOG ECO. Microbe culturing resulted in the isolation of 153 culturable fungal isolates belonging to 33 genera and 99 bacterial isolates belonging to 15 genera. High-throughput sequencing revealed that the phyllosphere of tobacco was dominantly colonized by Ascomycota and Proteobacteria, whereas, the most abundant fungal and bacterial genera were Alternaria and Pseudomonas. The relative abundance of Alternaria increased in the upper and middle healthy groups from the first collection time to the third, whereas, the relative abundance of Pseudomonas, Sphingomonas, and Methylobacterium from the same positions increased during gradual leaf aging. Non-metric multi-dimensional scaling (NMDs) showed clustering of fungal communities in healthy samples, while bacterial communities of all diseased and healthy groups were found scattered. FUNGuild analysis, from the first collection stage to the third one in both groups, indicated an increase in the relative abundance of Pathotroph-Saprotroph, Pathotroph-Saprotroph-Symbiotroph, and Pathotroph-Symbiotroph. Inclusive of all samples, as per the PICRUSt analysis, the predominant pathway was metabolism function accounting for 50.03%. The average values of omnilog units (OUs) showed relatively higher utilization rates of carbon sources by the microbial flora of healthy leaves. According to the analysis of genus abundances, leaf growth and leaf position were the important drivers of change in structuring the microbial communities. The current findings revealed the complex ecological dynamics that occur in the phyllospheric microbial communities over the course of a spatiotemporal varying environment with the development of tobacco brown spots, highlighting the importance of community succession.
Collapse
Affiliation(s)
- Yuan-feng Dai
- Department of Plant Protection, Institute of Crop Protection, College of Agriculture, Guizhou University, Guiyang, China
- Guizhou Provincial Academician Workstation of Microbiology and Health, Guizhou Academy of Tobacco Science, Guiyang, China
- Bijie Tobacco Company, Bijie, China
| | - Xiao-mao Wu
- Department of Plant Protection, Institute of Crop Protection, College of Agriculture, Guizhou University, Guiyang, China
- *Correspondence: Xiao-mao Wu
| | - Han-cheng Wang
- Guizhou Provincial Academician Workstation of Microbiology and Health, Guizhou Academy of Tobacco Science, Guiyang, China
- Han-cheng Wang
| | - Wen-hong Li
- Guizhou Institute of Plant Protection, Guizhou Academy of Agricultural Sciences, Guiyang, China
| | - Liu-ti Cai
- Guizhou Provincial Academician Workstation of Microbiology and Health, Guizhou Academy of Tobacco Science, Guiyang, China
| | - Ji-xin Li
- Guizhou Tobacco Company of CNTC, China National Tobacco Corporation, Guiyang, China
| | - Feng Wang
- Guizhou Provincial Academician Workstation of Microbiology and Health, Guizhou Academy of Tobacco Science, Guiyang, China
- Feng Wang
| | - Shafaque Sehar
- Zhejiang Key Laboratory of Crop Germplasm Resource, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Imran Haider Shamsi
- Zhejiang Key Laboratory of Crop Germplasm Resource, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Imran Haider Shamsi
| |
Collapse
|
28
|
Liu H, Jiang J, An M, Li B, Xie Y, Xu C, Jiang L, Yan F, Wang Z, Wu Y. Bacillus velezensis SYL-3 suppresses Alternaria alternata and tobacco mosaic virus infecting Nicotiana tabacum by regulating the phyllosphere microbial community. Front Microbiol 2022; 13:840318. [PMID: 35966697 PMCID: PMC9366745 DOI: 10.3389/fmicb.2022.840318] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 07/05/2022] [Indexed: 11/13/2022] Open
Abstract
The occurrence of plant diseases is closely associated with the imbalance of plant tissue microecological environment. The regulation of the phyllosphere microbial communities has become a new and alternative approach to the biological control of foliar diseases. In this study, Bacillus velezensis SYL-3 isolated from Luzhou exhibited an effective inhibitory effect against Alternaria alternata and tobacco mosaic virus (TMV). The analysis of phyllosphere microbiome by PacBio sequencing indicated that SYL-3 treatment significantly altered fungal and bacterial communities on the leaves of Nicotiana tabacum plants and reduced the disease index caused by A. alternata and TMV. Specifically, the abundance of P. seudomo, Sphingomonas, Massilia, and Cladosporium in the SYL-3 treatment group increased by 19.00, 9.49, 3.34, and 12.29%, respectively, while the abundances of Pantoea, Enterobacter, Sampaiozyma, and Rachicladosporium were reduced. Moreover, the abundance of beneficial bacteria, such as Pseudomonas and Sphingomonas, was negatively correlated with the disease indexes of A. alternata and TMV. The PICRUSt data also predicted the composition of functional genes, with significant differences being apparent between SYL-3 and the control treatment group. Further functional analysis of the microbiome also showed that SYL-3 may induce host disease resistance by motivating host defense-related pathways. These results collectively indicate that SYL-3 may suppress disease progression caused by A. alternata or TMV by improving the microbial community composition on tobacco leaves.
Collapse
Affiliation(s)
- He Liu
- Liaoning Key Laboratory of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Jun Jiang
- Liaoning Key Laboratory of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Mengnan An
- Liaoning Key Laboratory of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Bin Li
- Sichuan Province Tobacco Company, Chengdu, China
| | - Yunbo Xie
- Sichuan Province Tobacco Company, Chengdu, China
| | - Chuantao Xu
- Liaoning Key Laboratory of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, Shenyang, China
- Sichuan Province Tobacco Company, Luzhou, China
| | | | - Fangfang Yan
- Sichuan Province Tobacco Company, Panzhihua, China
| | - Zhiping Wang
- Liaoning Key Laboratory of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, Shenyang, China
- *Correspondence: Zhiping Wang,
| | - Yuanhua Wu
- Liaoning Key Laboratory of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, Shenyang, China
- Yuanhua Wu,
| |
Collapse
|
29
|
Pathogenic potential of bacteria isolated from commercial biostimulants. Arch Microbiol 2022; 204:162. [PMID: 35119529 PMCID: PMC8816496 DOI: 10.1007/s00203-022-02769-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 01/13/2022] [Accepted: 01/17/2022] [Indexed: 11/08/2022]
Abstract
Microbial-based products are a promising alternative to agrochemicals in sustainable agriculture. However, little is known about their impact on human health even if some of them, i.e., Bacillus and Paenibacillus species, have been increasingly implicated in different human diseases. In this study, 18 bacteria were isolated from 2 commercial biostimulants, and they were genotypically and phenotypically characterized to highlight specific virulence properties. Some isolated bacteria were identified as belonging to the genus Bacillus by BLAST and RDP analyses, a genus in-depth studied for plant growth-promoting ability. Moreover, 16S rRNA phylogenetic analysis showed that seven isolates grouped with Bacillus species while two and four clustered, respectively, with Neobacillus and Peribacillus. Unusually, bacterial strains belonging to Franconibacter and Stenotrophomonas were isolated from biostimulants. Although Bacillus species are generally considered nonpathogenic, most of the species have shown to swim, swarm, and produced biofilms, that can be related to bacterial virulence. The evaluation of toxins encoding genes revealed that five isolates had the potential ability to produce the enterotoxin T. In conclusion, the pathogenic potential of microorganisms included in commercial products should be deeply verified, in our opinion. The approach proposed in this study could help in this crucial step.
Collapse
|
30
|
Ye J, Ding Y, Qi X, Xu J, Yang X, Zhang Z. Geographic and position-based variations in phyllospheric bacterial communities present on flue-cured tobacco. Appl Microbiol Biotechnol 2021; 105:9297-9308. [PMID: 34792639 DOI: 10.1007/s00253-021-11671-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/27/2021] [Accepted: 10/28/2021] [Indexed: 10/19/2022]
Abstract
Although tobacco leaves (TLs) contain abundant bacteria, how the geography and leaf position of TLs affect these bacteria is unclear. Here, TLs at different positions from Henan (HN, strong flavor style) and Yunnan (YN, fresh flavor style) provinces were collected, and the bacteria were characterized by Illumina sequencing at harvest and 1 year of storage. Bacterial communities were very different between TLs originating from different geographical areas and positions, and beta diversity analysis showed that leaf position was the most important factor for phyllospheric bacterial communities, followed by geographical area and storage time. At the genus level, Subdoligranulum, Thermus, and Acinetobacter were obviously more abundant in HN than in YN, while Blautia and Ruminococcus were significantly more abundant in YN. These differences in bacterial communities decreased after 1 year of storage, indicating that the microbiota tends to become similar during tobacco processing. Storage time also affected the phyllospheric bacteria of TLs, as the bacterial communities shifted significantly on both HN and YN TLs after 1 year of storage. Significant differences in the predicted genes were also observed between the different geographic locations and leaf positions. Potential human pathogens, including Acinetobacter, Methylobacterium, and Escherichia-Shigella, were greatly different between TLs originating from different areas and positions. These data suggested that geographic variations and positions were associated with phyllospheric bacterial communities on TLs, which may be related to not only the flavor style and quality of TLs but also the potential health risks to humans. KEY POINTS: • Tobacco leaf position and tobacco growth location affected bacterial communities. • Microbial communities of TLs shifted significantly after one year of storage. • Potential human pathogens differed at different leaf positions and growth locations.
Collapse
Affiliation(s)
- Jianbin Ye
- Key Laboratory of Translational Tumor Medicine in Fujian Province, Putian University, Putian City, 351100, Fujian Province, China
| | - Yilang Ding
- School of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450002, Henan Province, China
| | - Xiaona Qi
- School of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450002, Henan Province, China
| | - Jia Xu
- Key Laboratory of Translational Tumor Medicine in Fujian Province, Putian University, Putian City, 351100, Fujian Province, China
| | - Xuepeng Yang
- School of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450002, Henan Province, China.
| | - Zhan Zhang
- Techonology Center, China Tobacco Henan Industrial Co., Ltd.,, Zhengzhou, 450001, China.
| |
Collapse
|
31
|
Yang J, Yu P, Liu X, Zhao J, Zhang H, Chen W. Shifts in diversity and function of bacterial community during manufacture of Rushan. J Dairy Sci 2021; 104:12375-12393. [PMID: 34482971 DOI: 10.3168/jds.2021-20654] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 07/19/2021] [Indexed: 01/04/2023]
Abstract
Rushan is a traditional dairy product consumed by the Bai people in the Yunnan Province of China, and its production still follows the traditional procedure of backslopping. However, how the microbial composition of raw materials and processing shape the microorganisms in Rushan have not been systemically reported. In this study, high-throughput sequencing technique was applied to analyze the microbial compositions of raw milk, fresh Rushan, curd whey, acid whey, and dry Rushan at the phylum, family, genus, and Lactobacillus species levels. The results indicated that Lactobacillus, Lactococcus, and Streptococcus were dominant genera in Rushan, whereas Lactobacillus kefiranofaciens and Lactobacillus helveticus were the 2 abundant species at the Lactobacillus species level. The network analysis indicated that raw milk mainly contributed to the microbial diversity of Rushan, whereas acid whey made a great contribution to shaping the relative abundance of microbes in Rushan and dramatically increased acid-producing genera, such as Lactobacillus and Acetobacter. The variation in microbial composition led to an increase in the relative abundance of pathways related to energy supply, acid production, fatty acid accumulation, cysteine, methionine, and lysine accumulation. The volatile profile of Rushan was rich in esters and acids, and the high relative abundance of Lactobacillus might be associated with reduction of amino acid metabolism, degradation of unpleasant flavored xylene, and accumulation of decanoic, dodecanoic, and tetradecanoic acids in the products. The accumulation of medium long-chain fatty acids might result from the relative abundance of FabF, FabZ, and FabI, particularly from Lactobacillus amylolyticus and Lacticaseibacillus paracasei.
Collapse
Affiliation(s)
- Jiang Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Peng Yu
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xiaoming Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Research Laboratory for Pharmabiotics and Antibiotic Resistance, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; National Engineering Research Centre for Functional Food, Wuxi, Jiangsu 214122, China
| |
Collapse
|
32
|
Pan Z, Munir S, Li Y, He P, He P, Wu Y, Xie Y, Fu Z, Cai Y, He Y. Deciphering the Bacillus amyloliquefaciens B9601-Y2 as a Potential Antagonist of Tobacco Leaf Mildew Pathogen During Flue-Curing. Front Microbiol 2021; 12:683365. [PMID: 34335509 PMCID: PMC8317063 DOI: 10.3389/fmicb.2021.683365] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 05/17/2021] [Indexed: 11/20/2022] Open
Abstract
Tobacco leaf mildew caused by Rhizopus oryzae (Mucorales, Zygomycota) is an important and devastating post-harvest disease during flue-cured tobacco period, and also is known to cause diseases of fruits and vegetables. In this study, assessment of several candidate biological control agents were first tested in vitro to determine their antifungal activities and potential strains were further applied to tobacco leaves to prevent pathogen colonization during the tobacco-curing process. In vitro screening of 36 bacteria and the isolates of one fungus were performed for their antifungal activities against R. oryzae using dual culture method. Potential five isolates viz. Bacillus amyloliquefaciens B9601-Y2 (Y2), B. amyloliquefaciens YN201728 (YN28), Pseudomonas sp. (Pb), and B. amyloliquefaciens YN201732 (YN32) and T. harzianum B (Th-B) from total screened isolates have shown remarkable results for controlling the mycelial growth of R. oryzae. Finally, out of these five isolates, B. amyloliquefaciens B9601-Y2 potentially reduced the mycelial growth of fungal pathogen with great inhibitory effect. In order to get a better understanding of the biocontrol effect of B9601-Y2 in a flue-curing barn, various suspension density tests with two application methods involving spraying and soaking were examined. Two application methods of B. amyloliquefaciens B9601-Y2 had 98.60 and 98.15% control effects, respectively. In curing barn, the incidence in the treatment group was significantly reduced and tobacco leaves did not get mildew. Altogether, the study demonstrated that candidate bacterial strain B. amyloliquefaciens B9601-Y2 is a potential antagonist for the management of tobacco leaf mildew during flue-curing.
Collapse
Affiliation(s)
- Zuxian Pan
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan Agricultural University, Kunming, China
| | - Shahzad Munir
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan Agricultural University, Kunming, China
| | - Yongmei Li
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan Agricultural University, Kunming, China
| | - Pengbo He
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan Agricultural University, Kunming, China
| | - Pengfei He
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan Agricultural University, Kunming, China
| | - Yixin Wu
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan Agricultural University, Kunming, China
| | - Yan Xie
- Qujing Branch of Yunnan Provincial Tobacco Company, Qujing, China
| | - Zongwei Fu
- Qujing Branch of Yunnan Provincial Tobacco Company, Qujing, China
| | - Yongzhan Cai
- Qujing Branch of Yunnan Provincial Tobacco Company, Qujing, China
| | - Yueqiu He
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
33
|
Rivera AJ, Tyx RE. Microbiology of the American Smokeless Tobacco. Appl Microbiol Biotechnol 2021; 105:4843-4853. [PMID: 34110473 PMCID: PMC8190171 DOI: 10.1007/s00253-021-11382-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/17/2021] [Accepted: 05/28/2021] [Indexed: 12/23/2022]
Abstract
Smokeless tobacco products (STP) contain diverse microbial communities that contribute to the formation of harmful chemical byproducts. This is concerning since 300 million individuals around the globe are users of smokeless tobacco. Significant evidence has shown that microbial metabolic activities mediate the formation of carcinogens during manufacturing. In recent years, studies have revealed a series of additional health impacts that include lesions and inflammation of the oral mucosa and the gastrointestinal tract, as well as alterations of the endogenous microbiota. These findings are due to recent developments in molecular technologies that allowed researchers to better examine the microbial component of these products. This new information illustrates the scale of the STP microbiota and its diversity in the finished product that is sold for consumption. Additionally, the application of metagenomics and metatranscriptomics has provided the tools to look at phylogenies across bacterial, viral, and eukaryotic groups, their functional capacities, and viability. Here we present key examples of tobacco microbiology research that utilizes newer approaches and strategies to define the microbial component of smokeless tobacco products. We also highlight challenges in these approaches, the knowledge gaps being filled, and those gaps that warrant further study. A better understanding of the microbiology of STP brings vast public health benefits. It will provide important information for the product consumer, impact manufacturing practices, and provide support for the development of attainable and more meaningful regulatory goals. KEY POINTS: Newer technologies allowed quicker and more comprehensive identification of microbes in tobacco samples, encapsulating microorganisms difficult or impossible to culture. Current research in smokeless tobacco microbiology is filling knowledge gaps previously unfilled due to the lack of suitable approaches. The microbial ecology of smokeless tobacco presents a clearer picture of diversity and variability not considered before.
Collapse
Affiliation(s)
- A J Rivera
- Centers for Disease Control and Prevention, 4770 Buford Highway, NE M.S. S110-03, Atlanta, GA, 30341-3717, USA.
| | - R E Tyx
- Centers for Disease Control and Prevention, 4770 Buford Highway, NE M.S. S110-03, Atlanta, GA, 30341-3717, USA
| |
Collapse
|
34
|
Zhang Q, Geng Z, Li D, Ding Z. Characterization and discrimination of microbial community and co-occurrence patterns in fresh and strong flavor style flue-cured tobacco leaves. Microbiologyopen 2020; 9:e965. [PMID: 31808296 PMCID: PMC7002102 DOI: 10.1002/mbo3.965] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 10/22/2019] [Accepted: 10/28/2019] [Indexed: 11/24/2022] Open
Abstract
Fermentation, also known as aging, is vital for enhancing the quality of flue-cured tobacco leaves (FTLs). Aged FTLs demonstrate high-quality sensory characteristics, while unaged FTLs do not. Microbes play important roles in the FTL fermentation process. However, the eukaryotic microbial community diversity is poorly understood, as are microbial associations within FTLs. We aimed to characterize and compare the microbiota associated with two important categories, fresh and strong flavor style FTLs, and to reveal correlations between the microbial taxa within them. Based on 16S and 18S rRNA Illumina MiSeq sequencing, the community richness and diversity of prokaryotes were almost as high as that of eukaryotes. The dominant microbes of FTLs belonged to seven genera, including Pseudomonas, Bacillus, Methylobacterium, Acinetobacter, Sphingomonas, Neophaeosphaeria, and Cladosporium, of the Proteobacteria, Firmicutes, and Ascomycota phyla. According to partial least square discriminant analysis (PLS-DA), Xanthomonas, Franconibacter, Massilia, Quadrisphaera, Staphylococcus, Cladosporium, Lodderomyces, Symmetrospora, Golovinomyces, and Dioszegia were significantly positively correlated with fresh flavor style FTLs, while Xenophilus, Fusarium, unclassified Ustilaginaceae, Tilletiopsis, Cryphonectria, Colletotrichum, and Cyanodermella were significantly positively correlated with strong flavor style FTLs. Network analysis identified seven hubs, Aureimonas, Kocuria, Massilia, Brachybacterium, Clostridium, Dietzia, and Vishniacozyma, that may play important roles in FTL ecosystem stability, which may be destroyed by Myrmecridium. FTL microbiota was found to be correlated with flavor style. Species present in lower numbers than the dominant microbes might be used as microbial markers to discriminate different flavor style samples and to stabilize FTL microbial communities. This research advances our understanding of FTL microbiota and describes a means of discriminating between fresh and strong flavor FTLs based on their respective stable microbiota.
Collapse
Affiliation(s)
- Qianying Zhang
- Technical Research CenterChina Tobacco Sichuan Industrial Co., Ltd.ChengduChina
- National Engineering Laboratory for Cereal Fermentation TechnologySchool of BiotechnologyJiangnan UniversityWuxiChina
| | - Zongze Geng
- Technical Research CenterChina Tobacco Sichuan Industrial Co., Ltd.ChengduChina
| | - Dongliang Li
- Technical Research CenterChina Tobacco Sichuan Industrial Co., Ltd.ChengduChina
| | - Zhongyang Ding
- National Engineering Laboratory for Cereal Fermentation TechnologySchool of BiotechnologyJiangnan UniversityWuxiChina
| |
Collapse
|