1
|
Al Subait A, Alghamdi RH, Ali R, Alsharidah A, Huwaizi S, Alkhodier RA, Almogren AS, Alzomia BA, Alaskar A, Boudjelal M. Discovery of PPAR Alpha Lipid Pathway Modulators That Do Not Bind Directly to the Receptor as Potential Anti-Cancer Compounds. Int J Mol Sci 2025; 26:736. [PMID: 39859448 PMCID: PMC11766124 DOI: 10.3390/ijms26020736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/17/2024] [Accepted: 12/17/2024] [Indexed: 01/30/2025] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) are considered good drug targets for breast cancer because of their involvement in fatty acid metabolism that induces cell proliferation. In this study, we used the KAIMRC1 breast cancer cell line. We showed that the PPARE-Luciferase reporter gets highly activated without adding any exogenous ligand when PPAR alpha is co-transfected, and the antagonist GW6471 can inhibit the activity. Using this reporter system, we screened 240 compounds representing kinase inhibitors, epigenetic modulators, and stem cell differentiators and identified compounds that inhibit the PPARα-activated PPARE-Luciferase reporter in the KAIMRC1 cell. We selected 11 compounds (five epigenetic modulators, two stem cell differentiators, and four kinase inhibitors) that inhibited the reporter by at least 40% compared to the controls (DMSO-treated cells). We tested them in a dose-dependent manner and measured the KAIMRC1 cell viability after 48 h. All 11 compounds induced the cell killing at different IC50 values. We selected two compounds, PHA665752 and NSC3852, to dissect how they kill KAIMRC1 cells compared to the antagonist GW6741. First, molecular docking and a TR-FRET PPARα binding assay showed that compared to GW6471, these two compounds could not bind to PPARα. This means they inhibit the PPARα pathway independently rather than binding to the receptor. We further confirmed that PHA665752 and NSC3852 induce cell killing depending on the level of PPARα expression, and as such, their potency for killing the SW620 colon cancer cell line that expresses the lowest level of PPARα was less potent than for the KAIMRC1 and MDA-MB-231 cell lines. Further, using an apoptosis array and fatty acid gene expression panel, we found that both compounds regulate the PPARα pathway by controlling the genes involved in the fatty acid oxidation process. Our findings suggest that these two compounds have opposite effects involving fatty acid oxidation in the KAIMRC1 breast cancer cell line. Although we do not fully understand their mechanism of action, our data provide new insights into the potential role of these compounds in targeting breast cancer cells.
Collapse
Affiliation(s)
- Arwa Al Subait
- Medical Research Core Facility and Platforms (MRCFP)-Drug Discovery Platform, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs (MNGHA), Riyadh 11481, Saudi Arabia; (A.A.S.)
- Clinical Laboratory Sciences Department, College of Applied Medical Sciences, King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs (MNGHA), Riyadh 11481, Saudi Arabia
| | - Raghad H. Alghamdi
- King Abdulaziz and His Companions Foundation for Giftedness and Creativity (MAWHIBA), Riyadh 11481, Saudi Arabia;
| | - Rizwan Ali
- Medical Research Core Facility and Platforms (MRCFP)-Drug Discovery Platform, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs (MNGHA), Riyadh 11481, Saudi Arabia; (A.A.S.)
| | - Amani Alsharidah
- College of Science, King Saud University, Riyadh 11459, Saudi Arabia;
| | - Sarah Huwaizi
- Medical Research Core Facility and Platforms (MRCFP)-Drug Discovery Platform, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs (MNGHA), Riyadh 11481, Saudi Arabia; (A.A.S.)
| | - Reem A. Alkhodier
- Department of Pharmaceutical Sciences, College of Pharmacy, King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs (MNGHA), Riyadh 11481, Saudi Arabia
| | - Aljawharah Saud Almogren
- Medical Research Core Facility and Platforms (MRCFP)-Drug Discovery Platform, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs (MNGHA), Riyadh 11481, Saudi Arabia; (A.A.S.)
| | - Barrak A. Alzomia
- Medical Research Core Facility and Platforms (MRCFP)-Drug Discovery Platform, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs (MNGHA), Riyadh 11481, Saudi Arabia; (A.A.S.)
| | - Ahmad Alaskar
- Medical Research Core Facility and Platforms (MRCFP)-Drug Discovery Platform, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs (MNGHA), Riyadh 11481, Saudi Arabia; (A.A.S.)
| | - Mohamed Boudjelal
- Medical Research Core Facility and Platforms (MRCFP)-Drug Discovery Platform, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs (MNGHA), Riyadh 11481, Saudi Arabia; (A.A.S.)
| |
Collapse
|
2
|
Azzam HN, El-Derany MO, Wahdan SA, Faheim RM, Helal GK, El-Demerdash E. The role of mitochondrial/metabolic axis in development of tamoxifen resistance in breast cancer. Hum Cell 2023; 36:1877-1886. [PMID: 37646973 PMCID: PMC10587280 DOI: 10.1007/s13577-023-00977-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 08/20/2023] [Indexed: 09/01/2023]
Abstract
Only a few investigations, to our knowledge, have examined the bioenergetics of Tamoxifen (TMX) resistant individuals and reported altered mitochondrial activity and metabolic profile. The primary cause of TMX resistance is firmly suggested to be metabolic changes. Metabolic variations and hypoxia have also been linked in a bidirectional manner. Increased hypoxic levels correlate with early recurrence and proliferation and have a negative therapeutic impact on breast cancer (BC) patients. Hypoxia, carcinogenesis, and patient death are all correlated, resulting in more aggressive traits, a higher chance of metastasis, and TMX resistance. Consequently, we sought to investigate the possible role of the metabolic/hypoxial axis Long non-coding RNA (LncRNA) Taurine up-regulated 1 (TUG-1), Micro-RNA 186-5p (miR-186), Sirtuin-3 (SIRT3), Peroxisome Proliferator Activator Receptor alpha (PPAR-α), and Hypoxia-Inducible Factor-1 (HIF-1) in the development of TMX resistance in BC patients and to correlate this axis with tumor progression. Interestingly, this will be the first time to explore epigenetic regulation of this axis in BC.
Collapse
Affiliation(s)
- Hany N Azzam
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Heliopolis University, Cairo, Egypt
| | - Marwa O El-Derany
- Department of Biochemistry, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Sara A Wahdan
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Reham M Faheim
- Department of Clinical Oncology and Nuclear Medicine, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Gouda K Helal
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Heliopolis University, Cairo, Egypt
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Ebtehal El-Demerdash
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
- Preclinical & Translational Research Center, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
| |
Collapse
|
3
|
He L, Zhou X, Liu J, Yao Y, Lin J, Chen J, Qiu S, Liu Z, He Y, Yi Y, Zhou X, Zou F. RAE1 promotes nitrosamine-induced malignant transformation of human esophageal epithelial cells through PPARα-mediated lipid metabolism. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 265:115513. [PMID: 37774541 DOI: 10.1016/j.ecoenv.2023.115513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 09/11/2023] [Accepted: 09/21/2023] [Indexed: 10/01/2023]
Abstract
Esophageal cancer (EC) is the sixth cause of cancer-related deaths and still is a significant public health problem globally. Nitrosamines exposure represents a major health concern increasing EC risks. Exploring the mechanisms induced by nitrosamines may contribute to the prevention and early detection of EC. However, the mechanism of nitrosamine carcinogenesis remains unclear. Ribonucleic acid export 1 (RAE1), has an important role in mediating diverse cancer types, but, to date, there has been no study for any functional role of RAE1 in esophageal carcinogenesis. Here, we successfully verified the nitrosamine-induced malignant transformation cell (MNNG-M) by xenograft tumor model, based on which it was found that RAE1 was upregulation in the early stage of nitrosamine-induced esophageal carcinogenesis and EC tissues. RAE1 knockdown led to severe blockade in G2/M phase and significant inhibition of proliferation of MNNG-M cells, whereas RAE1 overexpression had the opposite effect. In addition, peroxisome proliferator-activated receptor-alpha (PPARα), was demonstrated as a downstream target gene of RAE1, and its down-regulation reduced lipid accumulation, resulting in causing cells accumulation in the G2/M phase. Mechanistically, we found that RAE1 regulates the lipid metabolism by maintaining the stability of PPARα mRNA. Taken together, our study reveals that RAE1 promotes malignant transformation of human esophageal epithelial cells (Het-1A) by regulating PPARα-mediated lipid metabolism to affect cell cycle progression, and offers a new explanation of the mechanisms underlying esophageal carcinogenesis.
Collapse
Affiliation(s)
- Ling He
- Department of Occupational Health and Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, 1838 Guangzhou Road North, Guangzhou 510515, China
| | - Xiangjun Zhou
- Department of Occupational Health and Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, 1838 Guangzhou Road North, Guangzhou 510515, China
| | - Jia Liu
- Department of Occupational Health and Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, 1838 Guangzhou Road North, Guangzhou 510515, China
| | - Yina Yao
- Department of Occupational Health and Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, 1838 Guangzhou Road North, Guangzhou 510515, China
| | - Junyuan Lin
- Department of Occupational Health and Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, 1838 Guangzhou Road North, Guangzhou 510515, China
| | - Jialong Chen
- Department of Preventive Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Shizhen Qiu
- Department of Occupational Health and Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, 1838 Guangzhou Road North, Guangzhou 510515, China
| | - Zeyu Liu
- Department of Occupational Health and Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, 1838 Guangzhou Road North, Guangzhou 510515, China
| | - Yingzheng He
- Department of Occupational Health and Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, 1838 Guangzhou Road North, Guangzhou 510515, China
| | - Yujie Yi
- Department of Occupational Health and Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, 1838 Guangzhou Road North, Guangzhou 510515, China
| | - Xueqiong Zhou
- Department of Occupational Health and Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, 1838 Guangzhou Road North, Guangzhou 510515, China.
| | - Fei Zou
- Department of Occupational Health and Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, 1838 Guangzhou Road North, Guangzhou 510515, China.
| |
Collapse
|
4
|
Sun J, Yu L, Qu X, Huang T. The role of peroxisome proliferator-activated receptors in the tumor microenvironment, tumor cell metabolism, and anticancer therapy. Front Pharmacol 2023; 14:1184794. [PMID: 37251321 PMCID: PMC10213337 DOI: 10.3389/fphar.2023.1184794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 05/05/2023] [Indexed: 05/31/2023] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) have been extensively studied for over 3 decades and consist of three isotypes, including PPARα, γ, and β/δ, that were originally considered key metabolic regulators controlling energy homeostasis in the body. Cancer has become a leading cause of human mortality worldwide, and the role of peroxisome proliferator-activated receptors in cancer is increasingly being investigated, especially the deep molecular mechanisms and effective cancer therapies. Peroxisome proliferator-activated receptors are an important class of lipid sensors and are involved in the regulation of multiple metabolic pathways and cell fate. They can regulate cancer progression in different tissues by activating endogenous or synthetic compounds. This review emphasizes the significance and knowledge of peroxisome proliferator-activated receptors in the tumor microenvironment, tumor cell metabolism, and anti-cancer treatment by summarizing recent research on peroxisome proliferator-activated receptors. In general, peroxisome proliferator-activated receptors either promote or suppress cancer in different types of tumor microenvironments. The emergence of this difference depends on various factors, including peroxisome proliferator-activated receptor type, cancer type, and tumor stage. Simultaneously, the effect of anti-cancer therapy based on drug-targeted PPARs differs or even opposes among the three peroxisome proliferator-activated receptor homotypes and different cancer types. Therefore, the current status and challenges of the use of peroxisome proliferator-activated receptors agonists and antagonists in cancer treatment are further explored in this review.
Collapse
Affiliation(s)
- Jiaao Sun
- Department of Urology, First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Liyan Yu
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital, Dalian Medical University, Dalian, Liaoning, China
| | - Xueling Qu
- Dalian Women and Children’s Medical Center(Group), Dalian, Liaoning, China
| | - Tao Huang
- Department of Urology, First Affiliated Hospital, Dalian Medical University, Dalian, China
| |
Collapse
|
5
|
Qian Z, Chen L, Liu J, Jiang Y, Zhang Y. The emerging role of PPAR-alpha in breast cancer. Biomed Pharmacother 2023; 161:114420. [PMID: 36812713 DOI: 10.1016/j.biopha.2023.114420] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/05/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Breast cancer has been confirmed to have lipid disorders in the tumour microenvironment. Peroxisome proliferator-activated receptor alpha (PPARα) is a ligand-activated transcriptional factor that belongs to the family of nuclear receptors. PPARα regulates the expression of genes involved in fatty acid homeostasis and is a major regulator of lipid metabolism. Because of its effects on lipid metabolism, an increasing number of studies have investigated the relationship of PPARα with breast cancer. PPARα has been shown to impact the cell cycle and apoptosis in normal cells and tumoral cells through regulating genes of the lipogenic pathway, fatty acid oxidation, fatty acid activation, and uptake of exogenous fatty acids. Besides, PPARα is involved in the regulation of the tumour microenvironment (anti-inflammation and inhibition of angiogenesis) by modulating different signal pathways such as NF-κB and PI3K/AKT/mTOR. Some synthetic PPARα ligands are used in adjuvant therapy for breast cancer. PPARα agonists are reported to reduce the side effects of chemotherapy and endocrine therapy. In addition, PPARα agonists enhance the curative effects of targeted therapy and radiation therapy. Interestingly, with the emerging role of immunotherapy, attention has been focused on the tumour microenvironment. The dual functions of PPARα agonists in immunotherapy need further research. This review aims to consolidate the operations of PPARα in lipid-related and other ways, as well as discuss the current and potential applications of PPARα agonists in tackling breast cancer.
Collapse
Affiliation(s)
- Zhiwen Qian
- Department of Oncology, Wuxi Maternal and Child Health Hospital Affiliated to Nanjing Medical University, Wuxi 214002, China.
| | - Lingyan Chen
- Department of Oncology, Wuxi Maternal and Child Health Hospital Affiliated to Nanjing Medical University, Wuxi 214002, China.
| | - Jiayu Liu
- Wuxi Maternal and Child Health Hospital, Wuxi School of Medicine, Jiangnan University, Wuxi 214000, China.
| | - Ying Jiang
- Wuxi Maternal and Child Health Hospital, Wuxi School of Medicine, Jiangnan University, Wuxi 214000, China.
| | - Yan Zhang
- Department of Oncology, Wuxi Maternal and Child Health Hospital Affiliated to Nanjing Medical University, Wuxi 214002, China; Wuxi Maternal and Child Health Hospital, Wuxi School of Medicine, Jiangnan University, Wuxi 214000, China.
| |
Collapse
|
6
|
PPARs and the Kynurenine Pathway in Melanoma-Potential Biological Interactions. Int J Mol Sci 2023; 24:ijms24043114. [PMID: 36834531 PMCID: PMC9960262 DOI: 10.3390/ijms24043114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/28/2023] [Accepted: 02/01/2023] [Indexed: 02/08/2023] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) are ligand-activated transcription factors involved in various physiological and pathological processes within the skin. PPARs regulate several processes in one of the most aggressive skin cancers, melanoma, including proliferation, cell cycle, metabolic homeostasis, cell death, and metastasis. In this review, we focused not only on the biological activity of PPAR isoforms in melanoma initiation, progression, and metastasis but also on potential biological interactions between the PPAR signaling and the kynurenine pathways. The kynurenine pathway is a major pathway of tryptophan metabolism leading to nicotinamide adenine dinucleotide (NAD+) production. Importantly, various tryptophan metabolites exert biological activity toward cancer cells, including melanoma. Previous studies confirmed the functional relationship between PPAR and the kynurenine pathway in skeletal muscles. Despite the fact this interaction has not been reported in melanoma to date, some bioinformatics data and biological activity of PPAR ligands and tryptophan metabolites may suggest a potential involvement of these metabolic and signaling pathways in melanoma initiation, progression, and metastasis. Importantly, the possible relationship between the PPAR signaling pathway and the kynurenine pathway may relate not only to the direct biological effect on melanoma cells but also to the tumor microenvironment and the immune system.
Collapse
|
7
|
Gallorini M, Di Valerio V, Bruno I, Carradori S, Amoroso R, Cataldi A, Ammazzalorso A. Phenylsulfonimide PPARα Antagonists Enhance Nrf2 Activation and Promote Oxidative Stress-Induced Apoptosis/Pyroptosis in MCF7 Breast Cancer Cells. Int J Mol Sci 2023; 24:ijms24021316. [PMID: 36674831 PMCID: PMC9864319 DOI: 10.3390/ijms24021316] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/04/2023] [Accepted: 01/09/2023] [Indexed: 01/12/2023] Open
Abstract
The NF-E2-related factor 2 transcription factor (Nrf2) orchestrates the basal and stress-inducible activation of a vast array of antioxidant genes. A high amount of reactive oxygen species (ROS) promotes carcinogenesis in cells with defective redox-sensitive signaling factors such as Nrf2. In breast cancer (BC), emerging evidence indicates that increased Nrf2 activity enhances cell metastatic potential. An interconnection between peroxisome proliferator-activated receptors (PPARs) and Nrf2 pathways in cancer has been shown. In this light, newly synthesized PPARα antagonists, namely IB42, IB44, and IB66, were tested in the BC cell line MCF7 in parallel with GW6471 as the reference compound. Our results show that the most promising compound of this phenylsulfonimide series (IB66) is able to decrease MCF7 proliferation by blocking cells at the G2/M checkpoint. The underlying mechanism has been investigated, disclosing a caspase 3/Akt-dependent apoptotic/pyroptotic pathway induced by the increased generation of oxidative stress. Moreover, the involvement of Nrf2 and COX2 in IB66-treated MCF7 cell response has been highlighted. The reported data lay the groundwork for the development of alternative targeted therapy involving the Nrf2/PPARα molecular axis, able to overcome BC cell chemoresistance and cause better clinical outcomes, promoting other forms of programmed cell death, such as pyroptosis.
Collapse
Affiliation(s)
- Marialucia Gallorini
- Department of Pharmacy, G. d’ Annunzio University, Via dei Vestini 31, 66100 Chieti, Italy
- Correspondence: (M.G.); (A.A.)
| | - Valentina Di Valerio
- Department of Medicine and Aging Sciences, G. d’ Annunzio University, Via dei Vestini 31, 66100 Chieti, Italy
| | - Isabella Bruno
- Department of Pharmacy, G. d’ Annunzio University, Via dei Vestini 31, 66100 Chieti, Italy
| | - Simone Carradori
- Department of Pharmacy, G. d’ Annunzio University, Via dei Vestini 31, 66100 Chieti, Italy
| | - Rosa Amoroso
- Department of Pharmacy, G. d’ Annunzio University, Via dei Vestini 31, 66100 Chieti, Italy
| | - Amelia Cataldi
- Department of Pharmacy, G. d’ Annunzio University, Via dei Vestini 31, 66100 Chieti, Italy
| | - Alessandra Ammazzalorso
- Department of Pharmacy, G. d’ Annunzio University, Via dei Vestini 31, 66100 Chieti, Italy
- Correspondence: (M.G.); (A.A.)
| |
Collapse
|
8
|
Hu Y, Wu C, Chen Q, Zhang Y, Chen Z. Hydrogen Peroxide Enhances Fatty Acid 2-Hydroxylase Expression to Impede the Lipopolysaccharides-Triggered Apoptosis of Human Mesenchymal Stem Cells. J BIOMATER TISS ENG 2022. [DOI: 10.1166/jbt.2022.3155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
As a type of stem cells that mainly exist in the connective tissue or interstitium, mesenchymal stem cells (MSCs) exhibit great potential in self-renewal and multi-directional differentiation. They have been clinically utilized for the treatment of various diseases including cancer.
This study aims to provide solid evidence for the further development and application of MSCs in human diseases. MSCs were assigned into 5 groups: control group, LPS group, low-, medium- and high-dose hydrogen peroxide groups. After one-hour treatment with LPS, MSCs were exposed to H2O2
for 12 hours followed by analysis of cell apoptosis, viability via EdU staining, TUNEL assay and flow cytometry, FA2H expression by qPCR and Western blotting. The hydrogen peroxide treatment reduced proportion of apoptotic cells induced by LPS, along with enhanced viability and milder DNA
damage. In addition, hydrogen peroxide impeded the LPS-triggered apoptosis of human MSCs. The results above proved that hydrogen peroxide significantly impeded the LPS-triggered apoptosis of MSCs, and further increased cell viability. This protective effect of hydrogen peroxide was mainly
achieved by upregulation of FA2H expression. In conclusion, hydrogen peroxide can enhance FA2H expression to impede the LPS-triggered apoptosis of human MSCs. This finding helps to improve the further development and application of MSCs in treating human diseases.
Collapse
Affiliation(s)
- Yunli Hu
- Department of Cardiovascular Division, Chongqing Jiangjin District Central Hospital, Chongqing, 402260, China
| | - Chunfeng Wu
- Department of Cardiovascular Division, Chongqing Jiangjin District Central Hospital, Chongqing, 402260, China
| | - Qingmei Chen
- Department of Cardiovascular Division, Chongqing Jiangjin District Central Hospital, Chongqing, 402260, China
| | - Yu Zhang
- Department of Cardiovascular Division, Chongqing Jiangjin District Central Hospital, Chongqing, 402260, China
| | - Zhongxia Chen
- Department of Cardiovascular Division, Chongqing Jiangjin District Central Hospital, Chongqing, 402260, China
| |
Collapse
|
9
|
Wagner N, Wagner KD. Peroxisome Proliferator-Activated Receptors and the Hallmarks of Cancer. Cells 2022; 11:cells11152432. [PMID: 35954274 PMCID: PMC9368267 DOI: 10.3390/cells11152432] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/02/2022] [Accepted: 08/04/2022] [Indexed: 12/11/2022] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) function as nuclear transcription factors upon the binding of physiological or pharmacological ligands and heterodimerization with retinoic X receptors. Physiological ligands include fatty acids and fatty-acid-derived compounds with low specificity for the different PPAR subtypes (alpha, beta/delta, and gamma). For each of the PPAR subtypes, specific pharmacological agonists and antagonists, as well as pan-agonists, are available. In agreement with their natural ligands, PPARs are mainly focused on as targets for the treatment of metabolic syndrome and its associated complications. Nevertheless, many publications are available that implicate PPARs in malignancies. In several instances, they are controversial for very similar models. Thus, to better predict the potential use of PPAR modulators for personalized medicine in therapies against malignancies, it seems necessary and timely to review the three PPARs in relation to the didactic concept of cancer hallmark capabilities. We previously described the functions of PPAR beta/delta with respect to the cancer hallmarks and reviewed the implications of all PPARs in angiogenesis. Thus, the current review updates our knowledge on PPAR beta and the hallmarks of cancer and extends the concept to PPAR alpha and PPAR gamma.
Collapse
Affiliation(s)
- Nicole Wagner
- Correspondence: (N.W.); (K.-D.W.); Tel.: +33-489-153-713 (K.-D.W.)
| | | |
Collapse
|
10
|
Crobeddu B, Jutras-Carignan A, Kolasa É, Mounier C, Robaire B, Plante I. Gestational and lactational exposure to the emergent alternative plasticizer 1,2-cyclohexane dicarboxylic acid diisononyl ester (DINCH) impairs lipid metabolism to a greater extent than the commonly used Di(2-ethylhexyl) phthalate (DEHP) in the adult rat mammary gland. Toxicol Sci 2022; 189:268-286. [PMID: 35861430 DOI: 10.1093/toxsci/kfac076] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Due to their endocrine disruption properties, phthalate plasticizers such as di(2-ethylhexyl) phthalate (DEHP) can affect the hormone-dependent development of the mammary gland. Over the past few years, DEHP has been partially replaced by 1,2-cyclohexane dicarboxylic acid diisononyl ester (DINCH) which also have potential endocrine disrupting properties. The goal of the present study is to understand the impact of a gestational and lactational exposure to DEHP and DINCH on mammary gland development using Sprague-Dawley rats. Both plasticizers altered the adipocytes of the mammary gland fat pad of adult progeny, as demonstrated by a decrease in their size, folding of their membrane and modulations of the lipid profiles. DEHP treatments decreased the expression of Rxrα and Scd1 at the low and high dose, respectively, but did not affect any of the other genes studied. DINCH modulation of lipid metabolism could be observed at puberty by a decreased expression of genes implicated in triglyceride synthesis, lipid transport and lipolysis, but by an increased expression of genes of the β-oxidation pathway and of genes involved in lipid storage and fatty acid synthesis at adulthood, compared to control and DEHP-treated rats. A strong upregulation of different inflammatory markers was observed following DINCH exposure only. Together, our results indicate that a gestational and lactational exposure to DINCH has earlier and more significant effects on lipid homeostasis, adipogenesis and the inflammatory state of the adult mammary gland than DEHP exposure. The long-term consequence of these effects on mammary gland health remained to be determined.
Collapse
Affiliation(s)
- Bélinda Crobeddu
- INRS-Centre Armand-Frappier Santé Biotechnologie, 531 boul. des Prairies, Laval, Québec, H7V 1B7, Canada
| | - Antoine Jutras-Carignan
- Laboratoire du métabolisme des lipides, CERMO-FC, Département des sciences biologiques, Université du Québec à Montréal, Case postale 8888, succursale Centre-Ville, Montréal, Québec, H3C 3P8, Canada
| | - Élise Kolasa
- INRS-Centre Armand-Frappier Santé Biotechnologie, 531 boul. des Prairies, Laval, Québec, H7V 1B7, Canada
| | - Catherine Mounier
- Laboratoire du métabolisme des lipides, CERMO-FC, Département des sciences biologiques, Université du Québec à Montréal, Case postale 8888, succursale Centre-Ville, Montréal, Québec, H3C 3P8, Canada
| | - Bernard Robaire
- Department of Pharmacology & Therapeutics, McGill University, Montreal, Quebec, H3G 1Y6, Canada.,Department of Obstetrics & Gynecology, McGill University, Montreal, Quebec, H4A 3J1, Canada
| | - Isabelle Plante
- INRS-Centre Armand-Frappier Santé Biotechnologie, 531 boul. des Prairies, Laval, Québec, H7V 1B7, Canada
| |
Collapse
|
11
|
Modulatory Effects of Estradiol and Its Mixtures with Ligands of GPER and PPAR on MAPK and PI3K/Akt Signaling Pathways and Tumorigenic Factors in Mouse Testis Explants and Mouse Tumor Leydig Cells. Biomedicines 2022; 10:biomedicines10061390. [PMID: 35740412 PMCID: PMC9219706 DOI: 10.3390/biomedicines10061390] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/02/2022] [Accepted: 06/07/2022] [Indexed: 11/16/2022] Open
Abstract
The present study was designed to evaluate how estradiol alone or in combination with G protein-coupled estrogen receptor (GPER) agonists and GPER and peroxisome proliferator-activated receptor (PPAR) antagonists alter the expression of tumor growth factor β (TGF-β), cyclooxygenase-2 (COX-2), hypoxia inducible factor 1-alpha (HIF-1α), and vascular endothelial growth factor (VEGF) in mouse testis explants and MA-10 mouse tumor Leydig cells. In order to define the hormone-associated signaling pathway, the expression of MAPK and PI3K/Akt was also examined. Tissue explants and cells were treated with estradiol as well as GPER agonist (ICI 182,780), GPER antagonist (G-15), PPARα antagonist (GW6471), and PPARγ antagonist (T00709072) in various combinations. First, we showed that in testis explants GPER and PPARα expressions were activated by the GPER agonist and estradiol (either alone or in mixtures), whereas PPARγ expression was activated only by GPER agonist. Second, increased TGF-β expression and decreased COX-2 expression were found in all experimental groups of testicular explants and MA-10 cells, except for up-regulated COX-2 expression in estradiol-treated cells, compared to respective controls. Third, estradiol treatment led to elevated expression of HIF-1α and VEGF, while their lower levels versus control were noted in the remaining groups of explants. Finally, we demonstrated the up-regulation of MAPK and PI3Kp85/Akt expressions in estradiol-treated groups of both ex vivo and in vitro models, whereas estradiol in mixtures with compounds of agonistic or antagonistic properties either up-regulated or down-regulated signaling kinase expression levels. Our results suggest that a balanced estrogen level and its action together with proper GPER and PPAR signaling play a key role in the maintenance of testis homeostasis. Moreover, changes in TGF-β and COX-2 expressions (that disrupted estrogen pathway) as well as disturbed GPER-PPAR signaling observed after estradiol treatment may be involved in testicular tumorigenesis.
Collapse
|
12
|
Pierozan P, Cattani D, Karlsson O. Tumorigenic activity of alternative per- and polyfluoroalkyl substances (PFAS): Mechanistic in vitro studies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 808:151945. [PMID: 34843762 DOI: 10.1016/j.scitotenv.2021.151945] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/29/2021] [Accepted: 11/20/2021] [Indexed: 06/13/2023]
Abstract
Environmental contaminants including long-chain per- and polyfluoroalkyl substances (PFAS) have been linked to cancer, which is a central cause of mortality in humans and many wildlife species. Today shorter-chain PFAS are extensively used as replacement compounds and commonly found in the environment. Mechanistic studies are important for a better understanding of their toxicological potential and possible role in cancer etiology. Here, we treated normal human breast epithelial cells (MCF-10A) with 500 pM to 500 μM of perfluorohexane sulfonate (PFHxS), undecafluorohexanoic acid (PFHxA), hexafluoropropylene oxide-dimer acid (GenX), perfluoro 3,6 dioxaoctanoic acid (PFO2OA), heptafluorobutyric acid (HFBA) and perfluorobutanesulfonic acid (PFBS) for 72 h to investigate potential effects on cell proliferation and neoplastic transformation. PFHxA, GenX, PFO2OA, HFBA and PFBS induced no alterations compared to controls at any of the concentrations tested. Exposure to 100 μM PFHxS on the other hand was shown to affect important regulatory cell-cycle proteins (cyclin D1, CDK6, p27, p53 and ERK) and induced cell proliferation, at least in part through activation of the constitutive androstane receptor (CAR) and the peroxisome proliferator-activated receptor alpha (PPARα). PFHxS also altered histone modifications and induced cell malignance by reducing the levels of adhesion proteins (E-cadherin and β-integrin) and promoting cell migration and invasion. These results demonstrate that five out of six alternative PFAS tested are clearly less harmful to MCF-10A cells than previously studied PFOS and PFOA, but raise concerns about PFHxS that also has been associated with breast cancer in epidemiological studies.
Collapse
Affiliation(s)
- Paula Pierozan
- Science for Life Laboratory, Department of Environmental Science, Stockholm University, Stockholm 114 18, Sweden
| | - Daiane Cattani
- Science for Life Laboratory, Department of Environmental Science, Stockholm University, Stockholm 114 18, Sweden
| | - Oskar Karlsson
- Science for Life Laboratory, Department of Environmental Science, Stockholm University, Stockholm 114 18, Sweden.
| |
Collapse
|
13
|
Concentration-dependent effects of chlorpyrifos oxon on peroxisome proliferator-activated receptor signaling in MCF-7 cells. Toxicol In Vitro 2022; 78:105268. [PMID: 34756920 PMCID: PMC8710288 DOI: 10.1016/j.tiv.2021.105268] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 09/21/2021] [Accepted: 10/25/2021] [Indexed: 02/03/2023]
Abstract
Chlorpyrifos oxon (CPO) is the active metabolite of the organophosphorus pesticide, chlorpyrifos. CPO is a potent inhibitor of acetylcholinesterase (AChE) and other serine hydrolases including fatty acid amide hydrolase (FAAH). AChE is critical in regulating cholinergic signaling while FAAH catalyzes the inactivation of fatty acid signaling lipids including the endocannabinoid (eCB) N-arachidonylethanolamine (anandamide, AEA) and eCB-like metabolites (e.g., oleoylethanolamide, OEA). AEA and OEA are both peroxisome proliferator-activated receptor (PPAR) agonists that regulate numerous genes involved in lipid metabolism and energy homeostasis. We used the MCF-7 human breast cancer cell line, which expresses AChE, FAAH and PPAR alpha and gamma subtypes, to evaluate the potential effects of CPO on PPAR-related gene expression in an in vitro human cell system. CPO elicited relatively similar concentration-dependent inhibition of both AChE and FAAH. Marked concentration- and time-dependent changes in the expression of four selected PPAR-related genes, LXRα, ACOX1, ABCG2 and AGPAT2, were noted. These findings suggest chlorpyrifos may influence lipid metabolism through blocking the degradation of eCBs or eCB-like metabolites and in turn affecting PPAR receptor activation. The results highlight the potential for non-cholinesterase actions of this common insecticide metabolite through disruption of PPAR signaling including effects on lipid metabolism, immune function and inflammation.
Collapse
|
14
|
Sakai G, Hirao-Suzuki M, Koga T, Kobayashi T, Kamishikiryo J, Tanaka M, Fujii K, Takiguchi M, Sugihara N, Toda A, Takeda S. Perfluorooctanoic acid (PFOA) as a stimulator of estrogen receptor-negative breast cancer MDA-MB-231 cell aggressiveness: Evidence for involvement of fatty acid 2-hydroxylase (FA2H) in the stimulated cell migration. J Toxicol Sci 2022; 47:159-168. [DOI: 10.2131/jts.47.159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Genki Sakai
- Laboratory of Molecular Life Sciences, Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University
| | - Masayo Hirao-Suzuki
- Laboratory of Xenobiotic Metabolism and Environmental Toxicology, Faculty of Pharmaceutical Sciences, Hiroshima International University
| | - Takayuki Koga
- Department of Hygienic Chemistry, Daiichi University of Pharmacy
| | | | - Jun Kamishikiryo
- Department of Biochemistry, Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University
| | - Michitaka Tanaka
- Laboratory of Xenobiotic Metabolism and Environmental Toxicology, Faculty of Pharmaceutical Sciences, Hiroshima International University
| | - Kiyonaga Fujii
- Laboratory of Analytical Chemistry, Daiichi University of Pharmacy
| | - Masufumi Takiguchi
- Laboratory of Xenobiotic Metabolism and Environmental Toxicology, Faculty of Pharmaceutical Sciences, Hiroshima International University
| | - Narumi Sugihara
- Laboratory of Molecular Life Sciences, Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University
| | - Akihisa Toda
- Department of Hygienic Chemistry, Daiichi University of Pharmacy
| | - Shuso Takeda
- Laboratory of Molecular Life Sciences, Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University
| |
Collapse
|
15
|
Lin C, Lai SW, Shen CK, Chen CW, Tsai CF, Liu YS, Lu DY, Huang BR. Fenofibrate inhibits hypoxia-inducible factor-1 alpha and carbonic anhydrase expression through activation of AMP-activated protein kinase/HO-1/Sirt1 pathway in glioblastoma cells. ENVIRONMENTAL TOXICOLOGY 2021; 36:2551-2561. [PMID: 34520103 DOI: 10.1002/tox.23369] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 08/27/2021] [Accepted: 08/29/2021] [Indexed: 06/13/2023]
Abstract
Cancer and its associated conditions have significant impacts on public health at many levels worldwide, and cancer is the leading cause of death among adults. Peroxisome proliferator-activated receptor α (PPARα)-specific agonists, fibrates, have been approved by the Food and Drug Administration for managing hyperlipidemia. PPARα-specific agonists exert anti-cancer effects in many human cancer types, including glioblastoma (GBM). Recently, we have reported that the hypoxic state in GBM stabilizes hypoxia-inducible factor-1 alpha (HIF-1α), thus contributing to tumor escape from immune surveillance by activating the expression of the pH-regulating protein carbonic anhydrase IX (CA9). In this study, we aimed to study the regulatory effects of the PPARα agonist fibrate on the regulation of HIF-1α expression and its downstream target protein in GBM. Our findings showed that fenofibrate is the high potency compound among the various fibrates that inhibit hypoxia-induced HIF-1α and CA9 expression in GBM. Moreover, fenofibrate-inhibited HIF-1α expression is mediated by HO-1 activation in GBM cells through the AMP-activated protein kinase (AMPK) pathway. In addition, fenofibrate-enhanced HO-1 upregulation activates SIRT1 and leads to subsequent accumulation of SIRT1 in the nucleus, which further promotes HIF-1α deacetylation and inhibits CA9 expression. Using a protein synthesis inhibitor, cycloheximide, we also observed that fenofibrate inhibited HIF-1α protein synthesis. In addition, the administration of the proteasome inhibitor MG132 showed that fenofibrate promoted HIF-1α protein degradation in GBM. Hence, our results indicate that fenofibrate is a useful anti-GBM agent that modulates hypoxia-induced HIF-1α expression through multiple cellular pathways.
Collapse
Affiliation(s)
- Chingju Lin
- Department of Physiology, School of Medicine, China Medical University, Taichung, Taiwan
| | - Sheng-Wei Lai
- Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan
| | - Ching-Kai Shen
- Graduate Institute of Biomedical Science, China Medical University, Taichung, Taiwan
| | - Chao-Wei Chen
- Institute of New Drug Development, China Medical University, Taichung, Taiwan
| | - Cheng-Fang Tsai
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, Taiwan
| | - Yu-Shu Liu
- Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan
| | - Dah-Yuu Lu
- Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan
- Department of Photonics and Communication Engineering, Asia University, Taichung, Taiwan
| | - Bor-Ren Huang
- Department of Neurosurgery, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, Taiwan
- School of Medicine, Tzu Chi University, Hualien, Taiwan
| |
Collapse
|
16
|
Gorji-Bahri G, Moradtabrizi N, Hashemi A. Uncovering the stability status of the reputed reference genes in breast and hepatic cancer cell lines. PLoS One 2021; 16:e0259669. [PMID: 34752497 PMCID: PMC8577734 DOI: 10.1371/journal.pone.0259669] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 10/22/2021] [Indexed: 11/28/2022] Open
Abstract
Accurate and reliable relative gene expression analysis via the Reverse Transcription-quantitative Real Time PCR (RT-qPCR) method strongly depends on employing several stable reference genes as normalizers. Utilization of the reference genes without analyzing their expression stability under each experimental condition causes RT-qPCR analysis error as well as false output. Similar to cancerous tissues, cancer cell lines also exhibit various gene expression profiles. It is crucial to recognize stable reference genes for well-known cancer cell lines to minimize RT-qPCR analysis error. In this study, we showed the expression level and investigated the expression stability of eight common reference genes that are ACTB, YWHAZ, HPRT1, RNA18S, TBP, GAPDH, UBC, and B2M, in two sets of cancerous cell lines. One set contains MCF7, SKBR3, and MDA-MB231 as breast cancer cell lines. Another set includes three hepatic cancer cell lines, including Huh7, HepG2, and PLC-PRF5. Three excel-based softwares comprising geNorm, BestKeeper, and NormFinder, and an online tool, namely RefFinder were used for stability analysis. Although all four algorithms did not show the same stability ranking of nominee genes, the overall results showed B2M and ACTB as the least stable reference genes for the studied breast cancer cell lines. While TBP had the lowest expression stability in the three hepatic cancer cell lines. Moreover, YWHAZ, UBC, and GAPDH showed the highest stability in breast cancer cell lines. Besides that, a panel of five nominees, including ACTB, HPRT1, UBC, YWHAZ, and B2M showed higher stability than others in hepatic cancer cell lines. We believe that our results would help researchers to find and to select the best combination of the reference genes for their own experiments involving the studied breast and hepatic cancer cell lines. To further analyze the reference genes stability for each experimental condition, we suggest researchers to consider the provided stability ranking emphasizing the unstable reference genes.
Collapse
Affiliation(s)
- Gilar Gorji-Bahri
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Niloofar Moradtabrizi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atieh Hashemi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
17
|
Cizkova K, Foltynkova T, Hanyk J, Kamencak Z, Tauber Z. When Activator and Inhibitor of PPARα Do the Same: Consequence for Differentiation of Human Intestinal Cells. Biomedicines 2021; 9:biomedicines9091255. [PMID: 34572440 PMCID: PMC8472525 DOI: 10.3390/biomedicines9091255] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/13/2021] [Accepted: 09/13/2021] [Indexed: 12/27/2022] Open
Abstract
Peroxisome proliferator-activated receptor α (PPARα) is a ligand-dependent transcription factor that plays a role in various processes including differentiation of several cell types. We investigated the role of PPARα in the differentiation of intestinal cells using HT-29 and Caco2 cell lines as a model as well as human normal colon and colorectal carcinoma tissues. We detected a significant increase in PPARα expression in differentiated HT-29 cells as well as in normal surface colon epithelium where differentiated cells are localised. Thus, it seems that PPARα may play a role in differentiation of intestinal cells. Interestingly, we found that both PPARα activators (fenofibrate and WY-14643) as well as its inhibitor (GW6471) regulated proliferation and differentiation of HT-29 cells in vitro in the same way. Both compounds led to a decrease in proliferation accompanied by a significant increase in expression of villin, intestinal alkaline phosphatase (differentiation markers). Moreover, the same trend in villin expression was observed in Caco2 cells. Furthermore, villin expression was independent of subcellular localisation of PPARα. In addition, we found similar levels of PPARα expression in colorectal carcinomas in comparison to adjacent normal epithelium. All these findings support the hypothesis that differentiation of intestinal epithelium is PPARα-independent.
Collapse
Affiliation(s)
| | | | | | | | - Zdenek Tauber
- Correspondence: ; Tel.: +420-585-632-283; Fax: +420-585-632-966
| |
Collapse
|
18
|
Emad A, Sinha S. Inference of phenotype-relevant transcriptional regulatory networks elucidates cancer type-specific regulatory mechanisms in a pan-cancer study. NPJ Syst Biol Appl 2021; 7:9. [PMID: 33558504 PMCID: PMC7870953 DOI: 10.1038/s41540-021-00169-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 01/05/2021] [Indexed: 01/30/2023] Open
Abstract
Reconstruction of transcriptional regulatory networks (TRNs) is a powerful approach to unravel the gene expression programs involved in healthy and disease states of a cell. However, these networks are usually reconstructed independent of the phenotypic (or clinical) properties of the samples. Therefore, they may confound regulatory mechanisms that are specifically related to a phenotypic property with more general mechanisms underlying the full complement of the analyzed samples. In this study, we develop a method called InPheRNo to identify "phenotype-relevant" TRNs. This method is based on a probabilistic graphical model that models the simultaneous effects of multiple transcription factors (TFs) on their target genes and the statistical relationship between the target genes' expression and the phenotype. Extensive comparison of InPheRNo with related approaches using primary tumor samples of 18 cancer types from The Cancer Genome Atlas reveals that InPheRNo can accurately reconstruct cancer type-relevant TRNs and identify cancer driver TFs. In addition, survival analysis reveals that the activity level of TFs with many target genes could distinguish patients with poor prognosis from those with better prognosis.
Collapse
Affiliation(s)
- Amin Emad
- Department of Electrical and Computer Engineering, McGill University, Montreal, QC, Canada.
| | - Saurabh Sinha
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
19
|
Castelli V, Catanesi M, Alfonsetti M, Laezza C, Lombardi F, Cinque B, Cifone MG, Ippoliti R, Benedetti E, Cimini A, d’Angelo M. PPARα-Selective Antagonist GW6471 Inhibits Cell Growth in Breast Cancer Stem Cells Inducing Energy Imbalance and Metabolic Stress. Biomedicines 2021; 9:biomedicines9020127. [PMID: 33525605 PMCID: PMC7912302 DOI: 10.3390/biomedicines9020127] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 01/24/2021] [Accepted: 01/26/2021] [Indexed: 12/11/2022] Open
Abstract
Breast cancer is the most frequent cancer and the second leading cause of death among women. Triple-negative breast cancer is the most aggressive subtype of breast cancer and is characterized by the absence of hormone receptors and human epithelial growth factor receptor 2. Cancer stem cells (CSCs) represent a small population of tumor cells showing a crucial role in tumor progression, metastasis, recurrence, and drug resistance. The presence of CSCs can explain the failure of conventional therapies to completely eradicate cancer. Thus, to overcome this limit, targeting CSCs may constitute a promising approach for breast cancer treatment, especially in the triple-negative form. To this purpose, we isolated and characterized breast cancer stem cells from a triple-negative breast cancer cell line, MDA-MB-231. The obtained mammospheres were then treated with the specific PPARα antagonist GW6471, after which, glucose, lipid metabolism, and invasiveness were analyzed. Notably, GW6471 reduced cancer stem cell viability, proliferation, and spheroid formation, leading to apoptosis and metabolic impairment. Overall, our findings suggest that GW6471 may be used as a potent adjuvant for gold standard therapies for triple-negative breast cancer, opening the possibility for preclinical and clinical trials for this class of compounds.
Collapse
Affiliation(s)
- Vanessa Castelli
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (V.C.); (M.C.); (M.A.); (F.L.); (B.C.); (M.G.C.); (R.I.); (E.B.)
| | - Mariano Catanesi
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (V.C.); (M.C.); (M.A.); (F.L.); (B.C.); (M.G.C.); (R.I.); (E.B.)
| | - Margherita Alfonsetti
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (V.C.); (M.C.); (M.A.); (F.L.); (B.C.); (M.G.C.); (R.I.); (E.B.)
| | - Chiara Laezza
- Institute of Endocrinology and Experimental Oncology G. Salvatore, CNR, 80131 Naples, Italy;
| | - Francesca Lombardi
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (V.C.); (M.C.); (M.A.); (F.L.); (B.C.); (M.G.C.); (R.I.); (E.B.)
| | - Benedetta Cinque
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (V.C.); (M.C.); (M.A.); (F.L.); (B.C.); (M.G.C.); (R.I.); (E.B.)
| | - Maria Grazia Cifone
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (V.C.); (M.C.); (M.A.); (F.L.); (B.C.); (M.G.C.); (R.I.); (E.B.)
| | - Rodolfo Ippoliti
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (V.C.); (M.C.); (M.A.); (F.L.); (B.C.); (M.G.C.); (R.I.); (E.B.)
| | - Elisabetta Benedetti
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (V.C.); (M.C.); (M.A.); (F.L.); (B.C.); (M.G.C.); (R.I.); (E.B.)
| | - Annamaria Cimini
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (V.C.); (M.C.); (M.A.); (F.L.); (B.C.); (M.G.C.); (R.I.); (E.B.)
- Sbarro Institute for Cancer Research and Molecular Medicine, Department of Biology, Temple University, Philadelphia, PA 19122, USA
- Correspondence: (A.C.); (M.d.)
| | - Michele d’Angelo
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (V.C.); (M.C.); (M.A.); (F.L.); (B.C.); (M.G.C.); (R.I.); (E.B.)
- Correspondence: (A.C.); (M.d.)
| |
Collapse
|
20
|
Stewart TA, Hughes K, Stevenson AJ, Marino N, Ju AL, Morehead M, Davis FM. Mammary mechanobiology - investigating roles for mechanically activated ion channels in lactation and involution. J Cell Sci 2021; 134:jcs248849. [PMID: 33262312 DOI: 10.1242/jcs.248849] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 11/06/2020] [Indexed: 01/14/2023] Open
Abstract
The ability of a mother to produce a nutritionally complete neonatal food source has provided a powerful evolutionary advantage to mammals. Milk production by mammary epithelial cells is adaptive, its release is exquisitely timed, and its own glandular stagnation with the permanent cessation of suckling triggers the cell death and tissue remodeling that enables female mammals to nurse successive progeny. Chemical and mechanical signals both play a role in this process. However, despite this duality of input, much remains unknown about the nature and function of mechanical forces in this organ. Here, we characterize the force landscape in the functionally mature gland and the capacity of luminal and basal cells to experience and exert force. We explore molecular instruments for force-sensing, in particular channel-mediated mechanotransduction, revealing increased expression of Piezo1 in mammary tissue in lactation and confirming functional expression in luminal cells. We also reveal, however, that lactation and involution proceed normally in mice with luminal-specific Piezo1 deletion. These findings support a multifaceted system of chemical and mechanical sensing in the mammary gland, and a protective redundancy that ensures continued lactational competence and offspring survival.
Collapse
Affiliation(s)
- Teneale A Stewart
- Mater Research Institute-The University of Queensland, Faculty of Medicine, Woolloongabba, Queensland, 4102, Australia
- Translational Research Institute, Woolloongabba, Queensland, 4102, Australia
| | - Katherine Hughes
- Department of Veterinary Medicine, University of Cambridge, Cambridge, CB3 0ES, UK
| | - Alexander J Stevenson
- Mater Research Institute-The University of Queensland, Faculty of Medicine, Woolloongabba, Queensland, 4102, Australia
- Translational Research Institute, Woolloongabba, Queensland, 4102, Australia
| | - Natascia Marino
- Department of Medicine, Indiana University School of Medicine, Indianapolis, 46202, USA
- Susan G. Komen Tissue Bank at Indiana University Simon Cancer Center, Indianapolis, 46202, USA
| | - Adler L Ju
- Translational Research Institute, Woolloongabba, Queensland, 4102, Australia
| | - Michael Morehead
- Lane Department of Computer Science and Electrical Engineering, West Virginia University, Morgantown, 26506, USA
| | - Felicity M Davis
- Mater Research Institute-The University of Queensland, Faculty of Medicine, Woolloongabba, Queensland, 4102, Australia
- Translational Research Institute, Woolloongabba, Queensland, 4102, Australia
| |
Collapse
|
21
|
Hirao-Suzuki M, Takeda S, Koga T, Takiguchi M, Toda A. Cannabidiolic acid dampens the expression of cyclooxygenase-2 in MDA-MB-231 breast cancer cells: Possible implication of the peroxisome proliferator-activated receptor β/δ abrogation. J Toxicol Sci 2020; 45:227-236. [PMID: 32238697 DOI: 10.2131/jts.45.227] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
A growing body of experimental evidence strongly suggests that cannabidiolic acid (CBDA), a major component of the fiber-type cannabis plant, exerts a variety of biological activities. We have reported that CBDA can abrogate cyclooxygenase-2 (COX-2) expression and its enzymatic activity. It is established that aberrant expression of COX-2 correlates with the degree of malignancy in breast cancer. Although the reduction of COX-2 expression by CBDA offers an attractive medicinal application, the molecular mechanisms underlying these effects have not fully been established. It has been reported that COX-2 expression is positively controlled by peroxisome proliferator-activated receptor β/δ (PPARβ/δ) in some cancerous cells, although there is "no" modulatory element for PPARβ/δ on the COX-2 promoter. No previous studies have examined whether an interaction between PPARβ/δ-mediated signaling and COX-2 expression exists in MDA-MB-231 cells. We confirmed, for the first time, that COX-2 expression is positively modulated by PPARβ/δ-mediated signaling in MDA-MB-231 cells. CBDA inhibits PPARβ/δ-mediated transcriptional activation stimulated by the PPARβ/δ-specific agonist, GW501516. Furthermore, the disappearance of cellular actin stress fibers, a hallmark of PPARβ/δ and COX-2 pathway activation, as evoked by the GW501516, was effectively reversed by CBDA. Activator protein-1 (AP-1)-driven transcriptional activity directly involved in the regulation of COX-2 was abrogated by the PPARβ/δ-specific inverse agonists (GSK0660/ST-247). Thus, it is implicated that there is positive interaction between PPARβ/δ and AP-1 in regulation of COX-2. These data support the concept that CBDA is a functional down-regulator of COX-2 through the abrogation of PPARβ/δ-related signaling, at least in part, in MDA-MB-231 cells.
Collapse
Affiliation(s)
- Masayo Hirao-Suzuki
- Laboratory of Xenobiotic Metabolism and Environmental Toxicology, Faculty of Pharmaceutical Sciences, Hiroshima International University (HIU)
| | - Shuso Takeda
- Laboratory of Xenobiotic Metabolism and Environmental Toxicology, Faculty of Pharmaceutical Sciences, Hiroshima International University (HIU)
| | - Takayuki Koga
- Department of Hygienic Chemistry, Daiichi University of Pharmacy
| | - Masufumi Takiguchi
- Laboratory of Xenobiotic Metabolism and Environmental Toxicology, Faculty of Pharmaceutical Sciences, Hiroshima International University (HIU)
| | - Akihisa Toda
- Department of Hygienic Chemistry, Daiichi University of Pharmacy
| |
Collapse
|
22
|
Hirao-Suzuki M, Koga T, Sakai G, Kobayashi T, Ishii Y, Miyazawa H, Takiguchi M, Sugihara N, Toda A, Ohara M, Takeda S. Fatty acid 2-hydroxylase (FA2H) as a stimulatory molecule responsible for breast cancer cell migration. Biochem Biophys Res Commun 2020; 531:215-222. [PMID: 32798015 DOI: 10.1016/j.bbrc.2020.07.043] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 07/09/2020] [Indexed: 01/22/2023]
Abstract
The functional role of fatty acid 2-hydroxylase (FA2H) is controversial in the field of cancer biology due to the dual role of FA2H, particularly related to its interaction with triple-negative breast cancer (TNBC). A previous biochemical- and clinical-focused study suggested that FA2H could dampen TNBC aggressiveness. However, another epidemiological study demonstrated that FA2H expression is associated with shorter disease-free survival in TNBC cases. We reported that FA2H is a peroxisome proliferator-activated receptor α (PPARα)-regulated gene in human breast cancer MDA-MB-231 cells, in vitro experimental models for TNBC analysis. PPARα activation by its ligand reportedly results in an aggressive MDA-MB-231 cell phenotype, as well as estrogen receptor α (ERα)-positive MCF-7 cells. The results of this study show that i) MDA-MB-231 cells express very low levels of FA2H compared to the MCF-7 cells, reflecting a low basal-level PPARα-driven transcriptional activity compared to the MCF-7 cells, and ii) the increased FA2H expression stimulates the MDA-MB-231 and MCF-7 breast cancer cell migration without affecting proliferation. Taken together, our findings indicate that FA2H might be a breast cancer cell migration stimulator, independently of the ERα expression status.
Collapse
Affiliation(s)
- Masayo Hirao-Suzuki
- Laboratory of Xenobiotic Metabolism and Environmental Toxicology, Faculty of Pharmaceutical Sciences, Hiroshima International University (HIU), 5-1-1 Hiro-koshingai, Kure, Hiroshima, 737-0112, Japan
| | - Takayuki Koga
- Labaratory of Hygienic Chemistry, Daiichi University of Pharmacy, 22-1 Tamagawa-cho, Minami-ku, Fukuoka, 815-8511, Japan
| | - Genki Sakai
- Laboratory of Xenobiotic Metabolism and Environmental Toxicology, Faculty of Pharmaceutical Sciences, Hiroshima International University (HIU), 5-1-1 Hiro-koshingai, Kure, Hiroshima, 737-0112, Japan; Laboratory of Molecular Life Sciences, Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, Sanzou 1, Gakuen-cho, Fukuyama, Hiroshima, 729-0292, Japan
| | - Takanobu Kobayashi
- Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, 1314-1, Shido, Sanuki, Kagawa, 769-2193, Japan
| | - Yuji Ishii
- Laboratory of Molecular Life Sciences, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Hiroshi Miyazawa
- Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, 1314-1, Shido, Sanuki, Kagawa, 769-2193, Japan
| | - Masufumi Takiguchi
- Laboratory of Xenobiotic Metabolism and Environmental Toxicology, Faculty of Pharmaceutical Sciences, Hiroshima International University (HIU), 5-1-1 Hiro-koshingai, Kure, Hiroshima, 737-0112, Japan
| | - Narumi Sugihara
- Laboratory of Molecular Life Sciences, Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, Sanzou 1, Gakuen-cho, Fukuyama, Hiroshima, 729-0292, Japan
| | - Akihisa Toda
- Labaratory of Hygienic Chemistry, Daiichi University of Pharmacy, 22-1 Tamagawa-cho, Minami-ku, Fukuoka, 815-8511, Japan
| | - Masahiro Ohara
- Department of Breast Surgery, JA Hiroshima General Hospital, 1-3-3 Jigozen Hatsukaichi Hiroshima, 738-8503, Japan
| | - Shuso Takeda
- Laboratory of Xenobiotic Metabolism and Environmental Toxicology, Faculty of Pharmaceutical Sciences, Hiroshima International University (HIU), 5-1-1 Hiro-koshingai, Kure, Hiroshima, 737-0112, Japan; Laboratory of Molecular Life Sciences, Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, Sanzou 1, Gakuen-cho, Fukuyama, Hiroshima, 729-0292, Japan.
| |
Collapse
|
23
|
Peroxisome proliferator-activated receptor ɑ (PPARɑ)–cytochrome P450 epoxygenases-soluble epoxide hydrolase axis in ER + PR + HER2− breast cancer. Med Mol Morphol 2019; 53:141-148. [DOI: 10.1007/s00795-019-00240-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 12/03/2019] [Indexed: 12/12/2022]
|
24
|
WY-14643 Regulates CYP1B1 Expression through Peroxisome Proliferator-Activated Receptor α-Mediated Signaling in Human Breast Cancer Cells. Int J Mol Sci 2019; 20:ijms20235928. [PMID: 31775380 PMCID: PMC6928855 DOI: 10.3390/ijms20235928] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 11/21/2019] [Accepted: 11/22/2019] [Indexed: 12/14/2022] Open
Abstract
Human cytochrome P450 1B1 (CYP1B1)-mediated biotransformation of endobiotics and xenobiotics plays an important role in the progression of human breast cancer. In this study, we investigated the effects of WY-14643, a peroxisome proliferator-activated receptor α (PPARα) agonist, on CYP1B1 expression and the related mechanism in MCF7 breast cancer cells. We performed quantitative reverse transcription-polymerase chain reaction, transient transfection, and chromatin immunoprecipitation to evaluate the effects of PPARα on peroxisome proliferator response element (PPRE)-mediated transcription. WY-14643 increased the protein and mRNA levels of CYP1B1, as well as promoter activity, in MCF-7 cells. Moreover, WY-14643 plus GW6471, a PPARα antagonist, significantly inhibited the WY-14643-mediated increase in CYP1B1 expression. PPARα knockdown by a small interfering RNA markedly suppressed the induction of CYP1B1 expression by WY-14643, suggesting that WY-14643 induces CYP1B1 expression via a PPARα-dependent mechanism. Bioinformatics analysis identified putative PPREs (−833/−813) within the promoter region of the CYP1B1 gene. Inactivation of these putative PPREs by deletion mutagenesis suppressed the WY-14643-mediated induction of CYP1B1 promoter activation. Furthermore, WY-14643 induced PPARα to assume a form capable of binding specifically to the PPRE-binding site in the CYP1B1 promoter. Our findings suggest that WY-14643 induces the expression of CYP1B1 through activation of PPARα.
Collapse
|
25
|
Koronowicz AA, Master A, Banks P, Piasna-Słupecka E, Domagała D, Drozdowska M, Leszczyńska T. PPAR Receptors Expressed from Vectors Containing CMV Promoter Can Enhance Self-Transcription in the Presence of Fatty Acids from CLA-Enriched Egg Yolks-A Novel Method for Studies of PPAR Ligands. Nutr Cancer 2019; 72:892-902. [PMID: 31403341 DOI: 10.1080/01635581.2019.1652332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
PPAR receptors are ligand-dependent transcription factors activated in response to various small lipophilic ligands controlling the expression of different genes involved in cellular differentiation, development, metabolism, and tumorigenesis. Unexpectedly, our previous studies have shown that single plasmid-based expression of PPARs under the control of CMV promoter/enhancer was significantly elevated in the presence of PPAR agonists. Here we show that the PPAR reporters controlled by the CMV promoter/enhancer, that was shown to contain three internal non-canonical PPRE elements, can be used as a fast screening system for more effective PPAR ligands. This model allowed us to confirm our previous results indicating that fatty acids of CLA-enriched egg yolks (EFA-CLAs) are efficient PPAR ligands that can specifically upregulate the expression of PPARα and PPARγ leading to downregulation of MCF-7 cancer cell proliferation. We also show that synthetic cis9,trans11CLA is more effective in transactivation of PPARγ, while trans10,cis12CLA of PPARα receptor indicating the selectivity of the CLA isomers. This report presents a novel, fast, and reliable strategy for simple testing of PPAR ligands using PPAR expressing plasmids containing the CMV promoter/enhancer that can trigger the positive feedback loop of PPAR self-transcription in the presence of PPAR ligands.
Collapse
Affiliation(s)
- Aneta A Koronowicz
- Department of Human Nutrition, Faculty of Food Technology, University of Agriculture, Krakow, Poland
| | - Adam Master
- Division of Cancer Prevention, Health Science Center T17, The State University of New York at Stony Brook, Stony Brook, NY, USA.,DNAi - The Center of Genetic Information, Laboratory of Molecular Medical Biology, Krakow, Poland
| | - Paula Banks
- Department of Human Nutrition, Faculty of Food Technology, University of Agriculture, Krakow, Poland
| | - Ewelina Piasna-Słupecka
- Department of Human Nutrition, Faculty of Food Technology, University of Agriculture, Krakow, Poland
| | - Dominik Domagała
- Department of Human Nutrition, Faculty of Food Technology, University of Agriculture, Krakow, Poland
| | - Mariola Drozdowska
- Department of Human Nutrition, Faculty of Food Technology, University of Agriculture, Krakow, Poland
| | - Teresa Leszczyńska
- Department of Human Nutrition, Faculty of Food Technology, University of Agriculture, Krakow, Poland
| |
Collapse
|
26
|
Lucarelli G, Loizzo D, Franzin R, Battaglia S, Ferro M, Cantiello F, Castellano G, Bettocchi C, Ditonno P, Battaglia M. Metabolomic insights into pathophysiological mechanisms and biomarker discovery in clear cell renal cell carcinoma. Expert Rev Mol Diagn 2019; 19:397-407. [PMID: 30983433 DOI: 10.1080/14737159.2019.1607729] [Citation(s) in RCA: 155] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Clear cell renal cell carcinoma (ccRCC) is a metabolic disease, of which the incidence rate is increasing worldwide. Renal carcinoma is characterized by mutations in target genes involved in metabolic pathways. Metabolic reprogramming covers different processes such as aerobic glycolysis, fatty acid metabolism, and the utilization of tryptophan, glutamine, and arginine. In the era of the multi-omics approach (with integrated transcriptomics, proteomics, and metabolomics), discovering biomarkers for early diagnosis is gaining renewed importance. Areas covered: In this review, we discuss the pathophysiological mechanisms underlying ccRCC metabolic reprogramming. In addition, we describe the emerging metabolomics-based biomarkers differentially expressed in ccRCC and the rationale for the recently developed drugs specifically targeting the ccRCC metabolome. Expert opinion: A number of metabolic pathways will be explored in future years, and many of these pathways are potential therapeutic targets and may serve as diagnostic and prognostic biomarkers of ccRCC.
Collapse
Affiliation(s)
- Giuseppe Lucarelli
- a Department of Emergency and Organ Transplantation - Urology, Andrology and Kidney Transplantation Unit , University of Bari , Bari , Italy
| | - Davide Loizzo
- a Department of Emergency and Organ Transplantation - Urology, Andrology and Kidney Transplantation Unit , University of Bari , Bari , Italy
| | - Rossana Franzin
- a Department of Emergency and Organ Transplantation - Urology, Andrology and Kidney Transplantation Unit , University of Bari , Bari , Italy
| | - Stefano Battaglia
- a Department of Emergency and Organ Transplantation - Urology, Andrology and Kidney Transplantation Unit , University of Bari , Bari , Italy
| | - Matteo Ferro
- b Division of Urology , European Institute of Oncology , Milan , Italy
| | - Francesco Cantiello
- c Department of Urology , Magna Graecia University of Catanzaro , Catanzaro , Italy
| | - Giuseppe Castellano
- d Department of Emergency and Organ Transplantation - Nephrology and Dialysis Unit , University of Bari , Bari , Italy
| | - Carlo Bettocchi
- a Department of Emergency and Organ Transplantation - Urology, Andrology and Kidney Transplantation Unit , University of Bari , Bari , Italy
| | - Pasquale Ditonno
- a Department of Emergency and Organ Transplantation - Urology, Andrology and Kidney Transplantation Unit , University of Bari , Bari , Italy
| | - Michele Battaglia
- a Department of Emergency and Organ Transplantation - Urology, Andrology and Kidney Transplantation Unit , University of Bari , Bari , Italy
| |
Collapse
|
27
|
Rajarajan D, Selvarajan S, Charan Raja MR, Kar Mahapatra S, Kasiappan R. Genome-wide analysis reveals miR-3184-5p and miR-181c-3p as a critical regulator for adipocytes-associated breast cancer. J Cell Physiol 2019; 234:17959-17974. [PMID: 30847933 DOI: 10.1002/jcp.28428] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 02/03/2019] [Accepted: 02/14/2019] [Indexed: 12/14/2022]
Abstract
Obesity is considered as an independent risk factor for breast cancer (BCa) and plays a major role in the breast tumor microenvironment. The etiology and mechanisms by which obesity contributes to BCa development is not yet understood. Herein, we show that in vitro coculture of BCa cells with mature adipocytes (MA-BCa) increased proliferation, migration, and invasive phenotype of BCa cells. MA-BCa coculture led to increased production of proinflammatory cytokines and chemokines. To identify microRNAs (miRNAs) in BCa cells that are modulated by the presence of adipocytes, we used small RNA sequencing analysis. Sequencing data revealed that 98 miRNAs were differentially expressed in MA-BCa. Among them, miR-3184-5p and miR-181c-3p were found to be the most upregulated and downregulated miRNAs, and direct targets are FOXP4 and PPARα, respectively. In vitro functional assays using a combination of miR-3184-5p inhibitor and miR-181c-3p mimic synergistically decreased adipocytes-induced cell proliferation and invasive capacity of BCa cells. Gene Set Enrichment analysis indicated that transcription factors were highly enriched followed by protein kinases, oncogene, and protein regulators in MA-BCa. GeneGo Metacore pathway analysis uncovered "NOTCH-induced EMT pathway" was found to be the most abundant in MA-BCa. Consistently, epithelial-mesenchymal transition-associated markers were also increased in MA-BCa. The disease enrichment analysis of the predict target genes revealed that diabetes mellitus was significantly affected disease in MA-BCa. Taken together, our data suggest that miRNA-based regulatory mechanism associated with deregulation of pathways and biological functions orchestrated by adipocytes-secreted factors might drive the BCa progression and metastasis in obese patients.
Collapse
Affiliation(s)
- Dheeran Rajarajan
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysuru, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Sweetha Selvarajan
- Department of Biochemistry, The Graduate Centre of the City University of New York (CUNY), New York
| | - Mamilla R Charan Raja
- Department of Biotechnology, Centre for Research in Infectious Diseases (CRID), School of Chemical & Biotechnology, SASTRA Deemed To Be University, Thanjavur, India
| | - Santanu Kar Mahapatra
- Department of Biotechnology, Centre for Research in Infectious Diseases (CRID), School of Chemical & Biotechnology, SASTRA Deemed To Be University, Thanjavur, India
| | - Ravi Kasiappan
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysuru, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
28
|
Hirao-Suzuki M, Takeda S, Watanabe K, Takiguchi M, Aramaki H. Δ 9-Tetrahydrocannabinol upregulates fatty acid 2-hydroxylase (FA2H) via PPARα induction: A possible evidence for the cancellation of PPARβ/δ-mediated inhibition of PPARα in MDA-MB-231 cells. Arch Biochem Biophys 2018; 662:219-225. [PMID: 30553767 DOI: 10.1016/j.abb.2018.12.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 12/04/2018] [Accepted: 12/08/2018] [Indexed: 01/30/2023]
Abstract
Peroxisome proliferator-activated receptors (PPARs) are a family of ligand-activated nuclear transcription factors, with three characterized subtypes: PPARα, PPARβ/δ, and PPARγ. The biological correlation between the two PPAR subtypes PPARα and γ and carcinogenesis is well-characterized; however, substantially less is known about the biological functions of PPARβ/δ. PPARβ/δ has been reported to repress transcription when PPARβ/δ and PPARα or PPARγ are simultaneously expressed in some cells, and MDA-MB-231 cells express functional levels of PPARβ/δ. We have previously reported that Δ9-tetrahydrocannabinol (Δ9-THC), a major cannabinoid component of the drug-type cannabis plant, can stimulate the expression of fatty acid 2-hydroxylase (FA2H) via upregulation of PPARα expression in human breast cancer MDA-MB-231 cells. Although the possibility of an inhibitory interaction between PPARα and PPARβ/δ has not been demonstrated in MDA-MB-231 cells, we reasoned if this interaction were to exist, Δ9-THC should make PPARα free to achieve FA2H induction. Here, we show that a PPARβ/δ-mediated suppression of PPARα function, but not of PPARγ, exists in MDA-MB-231 cells and Δ9-THC causes FA2H induction via mechanisms underlying the cancellation of PPARβ/δ-mediated inhibition of PPARα, in addition to the upregulation of PPARα.
Collapse
Affiliation(s)
- Masayo Hirao-Suzuki
- Laboratory of Xenobiotic Metabolism and Environmental Toxicology, Faculty of Pharmaceutical Sciences, Hiroshima International University (HIU), 5-1-1 Hiro-koshingai, Kure, Hiroshima, 737-0112, Japan
| | - Shuso Takeda
- Laboratory of Xenobiotic Metabolism and Environmental Toxicology, Faculty of Pharmaceutical Sciences, Hiroshima International University (HIU), 5-1-1 Hiro-koshingai, Kure, Hiroshima, 737-0112, Japan.
| | - Kazuhito Watanabe
- Center for Supporting Pharmaceutical Education, Daiichi University of Pharmacy, 22-1 Tamagawa-cho, Minami-ku, Fukuoka, 815-8511, Japan
| | - Masufumi Takiguchi
- Laboratory of Xenobiotic Metabolism and Environmental Toxicology, Faculty of Pharmaceutical Sciences, Hiroshima International University (HIU), 5-1-1 Hiro-koshingai, Kure, Hiroshima, 737-0112, Japan
| | - Hironori Aramaki
- Department of Molecular Biology, Daiichi University of Pharmacy, 22-1 Tamagawa-cho, Minami-ku, Fukuoka, 815-8511, Japan
| |
Collapse
|
29
|
The Involvement of PPARs in the Peculiar Energetic Metabolism of Tumor Cells. Int J Mol Sci 2018; 19:ijms19071907. [PMID: 29966227 PMCID: PMC6073339 DOI: 10.3390/ijms19071907] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 06/10/2018] [Accepted: 06/24/2018] [Indexed: 12/13/2022] Open
Abstract
Energy homeostasis is crucial for cell fate, since all cellular activities are strongly dependent on the balance between catabolic and anabolic pathways. In particular, the modulation of metabolic and energetic pathways in cancer cells has been discussed in some reports, but subsequently has been neglected for a long time. Meanwhile, over the past 20 years, a recovery of the study regarding cancer metabolism has led to an increasing consideration of metabolic alterations in tumors. Cancer cells must adapt their metabolism to meet their energetic and biosynthetic demands, which are associated with the rapid growth of the primary tumor and colonization of distinct metastatic sites. Cancer cells are largely dependent on aerobic glycolysis for their energy production, but are also associated with increased fatty acid synthesis and increased rates of glutamine consumption. In fact, emerging evidence has shown that therapeutic resistance to cancer treatment may arise from the deregulation of glucose metabolism, fatty acid synthesis, and glutamine consumption. Cancer cells exhibit a series of metabolic alterations induced by mutations that lead to a gain-of-function of oncogenes, and a loss-of-function of tumor suppressor genes, including increased glucose consumption, reduced mitochondrial respiration, an increase of reactive oxygen species, and cell death resistance; all of these are responsible for cancer progression. Cholesterol metabolism is also altered in cancer cells and supports uncontrolled cell growth. In this context, we discuss the roles of peroxisome proliferator-activated receptors (PPARs), which are master regulators of cellular energetic metabolism in the deregulation of the energetic homeostasis, which is observed in cancer. We highlight the different roles of PPAR isotypes and the differential control of their transcription in various cancer cells.
Collapse
|
30
|
Xiao YB, Cai SH, Liu LL, Yang X, Yun JP. Decreased expression of peroxisome proliferator-activated receptor alpha indicates unfavorable outcomes in hepatocellular carcinoma. Cancer Manag Res 2018; 10:1781-1789. [PMID: 29983595 PMCID: PMC6027701 DOI: 10.2147/cmar.s166971] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Introduction Hepatocellular carcinoma (HCC) has a close relationship with lipid metabolism. Peroxisome proliferator-activated receptor α (PPARα) plays a crucial role in the regulation of fatty acid oxidation in the liver. However, the role of PPARα in HCC remains unclear. Methods A total of 804 HCC specimens were collected to construct a tissue microarray and for immunohistochemical analysis. The relationship between PPARα expression and clinical features of HCC patients was analyzed. Kaplan–Meier analysis was conducted to assess the prognostic value of PPARα expression levels. Results The expression of PPARα in HCC was noticeably decreased in HCC tissues. HCC patients with high levels of PPARα expression in cytoplasm had smaller tumors (P=0.027), less vascular invasion (P=0.049), and a higher proportion of complete involucrum (P=0.038). Kaplan–Meier analysis showed that HCC patients with low PPARα expression in the cytoplasm had significantly worse outcomes in terms of overall survival (P<0.001), disease-free survival (P=0.024), and the probability of recurrence (P=0.037). Similarly, overall survival was significantly shorter in HCC patients with negative PPARα expression in the nucleus (P=0.034). Multivariate Cox analyses indicated that tumor size (P=0.001), TNM stage (P<0.001), vascular invasion (P<0.001), and PPARα expression in the cytoplasm (P<0.001) were found to be independent prognostic variables for overall survival. Conclusion Our data revealed that PPARα expression was decreased in HCC samples. High PPARα expression was correlated with longer survival times in HCC patients, and served as an independent factor for better outcomes. Our study therefore provides a promising biomarker for prognostic prediction and a potential therapeutic target for HCC.
Collapse
Affiliation(s)
- Yong-Bo Xiao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China, .,Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China,
| | - Shao-Hang Cai
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China, .,Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China,
| | - Li-Li Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China, .,Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China,
| | - Xia Yang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China, .,Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China,
| | - Jing-Ping Yun
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China, .,Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China,
| |
Collapse
|
31
|
Yang W, Li Y, Song X, Xu J, Xie J. Genome-wide analysis of long noncoding RNA and mRNA co-expression profile in intrahepatic cholangiocarcinoma tissue by RNA sequencing. Oncotarget 2018; 8:26591-26599. [PMID: 28427159 PMCID: PMC5432281 DOI: 10.18632/oncotarget.15721] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 02/13/2017] [Indexed: 01/17/2023] Open
Abstract
Long noncoding RNAs (lncRNAs), which are pervasively transcribed in the genome, are emerging in molecular biology as crucial regulators of cancer. RNA-seq data were downloaded from GEO of NCBI and further analyzed to identify novel targets in intrahepatic cholangiocarcinoma (iCCA). We investigated differences in lncRNA and mRNA profiles between 7 pairs of iCCA and adjacent normal tissues. 230 lncRNAs were differentially expressed more than four-fold change in iCCA tissues. Among these, 97 were upregulated and 133 downregulated relatively to normal tissues. Moreover, 169 lncRNAs and 597 mRNAs formed the lncRNA-mRNA co-expression network which consist 766 network nodes and 769 connection edges. Bioinformatics analysis identified these dysregulated lncRNAs were associated with cholesterol homeostasis, insoluble fraction and lipid binding activity and were enriched in complement and coagulation cascades and PPAR signaling pathway. These results uncovered the landscape of iCCA-associated lncRNAs and co-expression network, providing insightful information about dysregulated lncRNAs in iCCA.
Collapse
Affiliation(s)
- Wenhui Yang
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, Shanxi, China.,Shanxi Province Cancer Hospital, Affiliated Cancer Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yuan Li
- Department of Thoracic Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xia Song
- Shanxi Province Cancer Hospital, Affiliated Cancer Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Jun Xu
- Shanxi Province Cancer Hospital, Affiliated Cancer Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Jun Xie
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, Shanxi, China
| |
Collapse
|
32
|
Shi Y, Tao T, Liu N, Luan W, Qian J, Li R, Hu Q, Wei Y, Zhang J, You Y. PPARα, a predictor of patient survival in glioma, inhibits cell growth through the E2F1/miR-19a feedback loop. Oncotarget 2018; 7:84623-84633. [PMID: 27835866 PMCID: PMC5356686 DOI: 10.18632/oncotarget.13170] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Accepted: 10/28/2016] [Indexed: 12/04/2022] Open
Abstract
Nuclear receptors such as peroxisome proliferator-activated receptor α (PPARα) are potential therapeutic targets. In this study, we found that PPARα expression was lower in high grade gliomas and PPARα was an independent prognostic factor in GBM patients. PPARα agonism or overexpression inhibited glioma cell proliferation, invasion, and aerobic glycolysis as well as suppressed glioma growth in an orthotopic model. Bioinformatic analysis and luciferase reporter assays showed that miR-19a decreased PPARα expression. E2F1 knockdown up-regulated PPARα and inhibited cell proliferation, invasion, and aerobic glycolysis, but this activity was blocked by miR-19a. Knockdown of E2F1 decreased miR-19a by inhibiting the miR-19a promoter. Moreover, PPARα repressed E2F1 via the p21 pathwayby modulating the transcriptional complexes containing E2F1 and pRB proteins. These results suggest that the E2F1/miR19a/PPARα feedback loop is critical for glioma progression.
Collapse
Affiliation(s)
- Yan Shi
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Tao Tao
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ning Liu
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - WenKang Luan
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jin Qian
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Department of Neurosurgery, People's Hospital of Xuancheng City, Anhui, China
| | - Rui Li
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qi Hu
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yan Wei
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Junxia Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yongping You
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
33
|
Jeng LB, Velmurugan BK, Hsu HH, Wen SY, Shen CY, Lin CH, Lin YM, Chen RJ, Kuo WW, Huang CY. Fenofibrate induced PPAR alpha expression was attenuated by oestrogen receptor alpha overexpression in Hep3B cells. ENVIRONMENTAL TOXICOLOGY 2018; 33:234-247. [PMID: 29134746 DOI: 10.1002/tox.22511] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 10/25/2017] [Accepted: 10/25/2017] [Indexed: 06/07/2023]
Abstract
The physiological regulation of Oestrogen receptor α (ERα) and peroxisome proliferator-activated receptor alpha (PPARα) in Hepatocellular carcinoma (HCC) remains unknown. The present study we first treat the cells with fenofibrate and further investigated the possible mechanisms of 17β-estradiol (E2 ) and/or ERα on regulating PPARα expression. We also found higher PPARα expression in the tumor area than adjacent areas and subsequently compared PPARα expression in four different hepatic cancer cell lines. Hep3B cells were found to express more PPARα than the other cell lines. Using the PPARα agonist fenofibrate, we found that fenofibrate increased Hep3B cell proliferation efficiency by increasing cell cycle proteins, such as cyclin D1 and PCNA, and inhibiting p27 and caspase 3 expressions. Next, we performed transient transfections and immuno-precipitation studies using the pTRE2/ERα plasmid to evaluate the interaction between ERα and PPARα. ERα interacted directly with PPARα and negatively regulated its function. Moreover, in Tet-on ERα over-expressed Hep3B cells, E2 treatment inhibited PPARα, its downstream gene acyl-CoA oxidase (ACO), cyclin D1 and PCNA expression and further increased p27 and caspase 3 expressions. However, over-expressed ERα plus 17-β-estradiol (10-8 M) reversed the fenofibrate effect and induced apoptosis, which was blocked in ICI/melatonin/fenofibrate-treated cells. This study illustrates that PPARα expression and function were negatively regulated by ERα expression in Hep3B cells.
Collapse
Affiliation(s)
- Long-Bin Jeng
- Department of Surgery and Organ Transplantation Centre, China Medical University Hospital, Taichung, 40447, Taiwan
| | - Bharath Kumar Velmurugan
- Faculty of Applied Sciences, Ton Duc Thang University, Tan Phong Ward, District 7, Ho Chi Minh City, 700000, Vietnam
| | - Hsi-Hsien Hsu
- Division of Colorectal Surgery, Mackay Memorial Hospital, Taipei, Taiwan
- Nursing and Management College, Mackay Medicine, Taipei, Taiwan
| | - Su-Ying Wen
- Department of Dermatology, Taipei City Hospital, Renai Branch, Taipei, Taiwan
| | - Chia-Yao Shen
- Department of Nursing, MeiHo University, Pingtung, Taiwan
| | - Chih-Hao Lin
- Department of Information Science and Applications, Asia University, Taiwan
| | - Yueh-Min Lin
- Department of Pathology, Changhua Christian Hospital, Changhua
- Department of Medical Technology, Jen-Teh Junior College of Medicine, Nursing and Management, Miaoli, Taiwan
| | - Ray-Jade Chen
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Wei-Wen Kuo
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Chih-Yang Huang
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
- Graduate Institute of Chinese Medical Science, China Medical University, Taichung, Taiwan
- Department of Biological Science and Technology, Asia University, Taichung, Taiwan
| |
Collapse
|
34
|
Lipid-sensors, enigmatic-orphan and orphan nuclear receptors as therapeutic targets in breast-cancer. Oncotarget 2018; 7:42661-42682. [PMID: 26894976 PMCID: PMC5173165 DOI: 10.18632/oncotarget.7410] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 01/29/2016] [Indexed: 12/28/2022] Open
Abstract
Breast-cancer is heterogeneous and consists of various groups with different biological characteristics. Innovative pharmacological approaches accounting for this heterogeneity are needed. The forty eight human Nuclear-Hormone-Receptors are ligand-dependent transcription-factors and are classified into Endocrine-Receptors, Adopted-Orphan-Receptors (Lipid-sensors and Enigmatic-Orphans) and Orphan-receptors. Nuclear-Receptors represent ideal targets for the design/synthesis of pharmacological ligands. We provide an overview of the literature available on the expression and potential role played by Lipid-sensors, Enigmatic-Orphans and Orphan-Receptors in breast-cancer. The data are complemented by an analysis of the expression levels of each selected Nuclear-Receptor in the PAM50 breast-cancer groups, following re-elaboration of the data publicly available. The major aim is to support the idea that some of the Nuclear-Receptors represent largely unexploited therapeutic-targets in breast-cancer treatment/chemo-prevention. On the basis of our analysis, we conclude that the Lipid-Sensors, NR1C3, NR1H2 and NR1H3 are likely to be onco-suppressors in breast-cancer. The Enigmatic-Orphans, NR1F1 NR2A1 and NR3B3 as well as the Orphan-Receptors, NR0B1, NR0B2, NR1D1, NR2F1, NR2F2 and NR4A3 exert a similar action. These Nuclear-Receptors represent candidates for the development of therapeutic strategies aimed at increasing their expression or activating them in tumor cells. The group of Nuclear-Receptors endowed with potential oncogenic properties consists of the Lipid-Sensors, NR1C2 and NR1I2, the Enigmatic-Orphans, NR1F3, NR3B1 and NR5A2, as well as the Orphan-Receptors, NR2E1, NR2E3 and NR6A1. These oncogenic Nuclear-Receptors should be targeted with selective antagonists, reverse-agonists or agents/strategies capable of reducing their expression in breast-cancer cells.
Collapse
|
35
|
De Lellis L, Cimini A, Veschi S, Benedetti E, Amoroso R, Cama A, Ammazzalorso A. The Anticancer Potential of Peroxisome Proliferator-Activated Receptor Antagonists. ChemMedChem 2018; 13:209-219. [PMID: 29276815 DOI: 10.1002/cmdc.201700703] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Revised: 12/17/2017] [Indexed: 12/13/2022]
Abstract
The effects on cancer-cell proliferation and differentiation mediated by peroxisome proliferator-activated receptors (PPARs) have been widely studied, and pleiotropic outcomes in different cancer models and under different experimental conditions have been obtained. Interestingly, few studies report and little preclinical evidence supports the potential antitumor activity of PPAR antagonists. This review focuses on recent findings on the antitumor in vitro and in vivo effects observed for compounds able to inhibit the three PPAR subtypes in different tumor models, providing a rationale for the use of PPAR antagonists in the treatment of tumors expressing the corresponding receptors.
Collapse
Affiliation(s)
- Laura De Lellis
- Department of Pharmacy, University of Chieti, Via dei Vestini 31, 66100, Chieti, Italy.,Unit of General Pathology, CeSI-MeT, University of Chieti, Chieti, Italy
| | - Annamaria Cimini
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy.,National Institute for Nuclear Physics (INFN), Gran Sasso National Laboratory (LNGS), Assergi (Aq), Italy.,Sbarro Institute for Cancer Research and Molecular Medicine and Center for Biotechnology, Temple University, 1900 N. 12th Street, Philadelphia, PA, 19122, USA
| | - Serena Veschi
- Department of Pharmacy, University of Chieti, Via dei Vestini 31, 66100, Chieti, Italy.,Unit of General Pathology, CeSI-MeT, University of Chieti, Chieti, Italy
| | - Elisabetta Benedetti
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Rosa Amoroso
- Department of Pharmacy, University of Chieti, Via dei Vestini 31, 66100, Chieti, Italy
| | - Alessandro Cama
- Department of Pharmacy, University of Chieti, Via dei Vestini 31, 66100, Chieti, Italy.,Unit of General Pathology, CeSI-MeT, University of Chieti, Chieti, Italy
| | | |
Collapse
|
36
|
Fidoamore A, Cristiano L, Laezza C, Galzio R, Benedetti E, Cinque B, Antonosante A, d'Angelo M, Castelli V, Cifone MG, Ippoliti R, Giordano A, Cimini A. Energy metabolism in glioblastoma stem cells: PPARα a metabolic adaptor to intratumoral microenvironment. Oncotarget 2017; 8:108430-108450. [PMID: 29312541 PMCID: PMC5752454 DOI: 10.18632/oncotarget.19086] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Accepted: 06/10/2017] [Indexed: 12/27/2022] Open
Abstract
Glioblastoma (GB), the most-common cancer in the adult brain, despite surgery and radio/ chemotherapy, is to date almost incurable. Many hypoxic tumors, including GB, show metabolic reprogramming to sustain uncontrolled proliferation, hypoxic conditions and angiogenesis. Peroxisome Proliferator-activated Receptors (PPAR), particularly the α isotype, have been involved in the control of energetic metabolism. Herein, we characterized patient-derived GB neurospheres focusing on their energetic metabolism and PPARα expression. Moreover, we used a specific PPARα antagonist and studied its effects on the energetic metabolism and cell proliferation/survival of GB stem cells. The results obtained demonstrate that tumor neurospheres are metabolically reprogrammed up-regulating glucose transporter, glucose uptake and glycogen and lipid storage, mainly under hypoxic culture conditions. Treatment with the PPARα antagonist GW6471 resulted in decreased cell proliferation and neurospheres formation. Therefore, PPARα antagonism arises as a potent new strategy as adjuvant to gold standard therapies for GB for counteracting recurrences and opening the way for pre-clinical trials for this class of compounds. When tumor neurospheres were grown in hypoxic conditions in the presence of different glucose concentrations, the most diluted one (0.25g/L) mimicking the real concentration present in the neurosphere core, PPARα increase/PPARγ decrease, increased proliferation and cholesterol content, decreased glycogen particles and LDs were observed. All these responses were reverted by the 72 h treatment with the PPARα antagonist.
Collapse
Affiliation(s)
- Alessia Fidoamore
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Loredana Cristiano
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Chiara Laezza
- Institute of Endocrinology and Experimental Oncology, IEOS, CNR, Naples, Italy
| | - Renato Galzio
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Elisabetta Benedetti
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Benedetta Cinque
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Andrea Antonosante
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Michele d'Angelo
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Vanessa Castelli
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Maria Grazia Cifone
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Rodolfo Ippoliti
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Antonio Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine, Department of Biology, Temple University, Philadelphia, Pennsylvania, USA.,Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Annamaria Cimini
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy.,Sbarro Institute for Cancer Research and Molecular Medicine, Department of Biology, Temple University, Philadelphia, Pennsylvania, USA.,National Institute for Nuclear Physics (INFN), Gran Sasso National Laboratory (LNGS), Assergi, Italy
| |
Collapse
|
37
|
Florio R, De Lellis L, di Giacomo V, Di Marcantonio MC, Cristiano L, Basile M, Verginelli F, Verzilli D, Ammazzalorso A, Prasad SC, Cataldi A, Sanna M, Cimini A, Mariani-Costantini R, Mincione G, Cama A. Effects of PPARα inhibition in head and neck paraganglioma cells. PLoS One 2017; 12:e0178995. [PMID: 28594934 PMCID: PMC5464765 DOI: 10.1371/journal.pone.0178995] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 05/22/2017] [Indexed: 01/21/2023] Open
Abstract
Head and neck paragangliomas (HNPGLs) are rare tumors that may cause important morbidity, because of their tendency to infiltrate the skull base. At present, surgery is the only therapeutic option, but radical removal may be difficult or impossible. Thus, effective targets and molecules for HNPGL treatment need to be identified. However, the lack of cellular models for this rare tumor hampers this task. PPARα receptor activation was reported in several tumors and this receptor appears to be a promising therapeutic target in different malignancies. Considering that the role of PPARα in HNPGLs was never studied before, we analyzed the potential of modulating PPARα in a unique model of HNPGL cells. We observed an intense immunoreactivity for PPARα in HNPGL tumors, suggesting that this receptor has an important role in HNPGL. A pronounced nuclear expression of PPARα was also confirmed in HNPGL-derived cells. The specific PPARα agonist WY14643 had no effect on HNPGL cell viability, whereas the specific PPARα antagonist GW6471 reduced HNPGL cell viability and growth by inducing cell cycle arrest and caspase-dependent apoptosis. GW6471 treatment was associated with a marked decrease of CDK4, cyclin D3 and cyclin B1 protein expression, along with an increased expression of p21 in HNPGL cells. Moreover, GW6471 drastically impaired clonogenic activity of HNPGL cells, with a less marked effect on cell migration. Notably, the effects of GW6471 on HNPGL cells were associated with the inhibition of the PI3K/GSK3β/β-catenin signaling pathway. In conclusion, the PPARα antagonist GW6471 reduces HNPGL cell viability, interfering with cell cycle and inducing apoptosis. The mechanisms affecting HNPGL cell viability involve repression of the PI3K/GSK3β/β-catenin pathway. Therefore, PPARα could represent a novel therapeutic target for HNPGL.
Collapse
Affiliation(s)
- Rosalba Florio
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
- Unit of General Pathology, CeSI-MeT, “G. d’Annunzio” University, Chieti, Italy
| | - Laura De Lellis
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
- Unit of General Pathology, CeSI-MeT, “G. d’Annunzio” University, Chieti, Italy
- * E-mail: (LDL); (AC)
| | - Viviana di Giacomo
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Maria Carmela Di Marcantonio
- Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Loredana Cristiano
- Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila, Italy
| | - Mariangela Basile
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Fabio Verginelli
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
- Unit of General Pathology, CeSI-MeT, “G. d’Annunzio” University, Chieti, Italy
| | - Delfina Verzilli
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | | | | | - Amelia Cataldi
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Mario Sanna
- Department of Otology and Skull Base Surgery, Gruppo Otologico, Piacenza, Italy
| | - Annamaria Cimini
- Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila, Italy
- Sbarro Institute for Cancer Research and Molecular Medicine, Temple University, Philadelphia, United States of America
- Gran Sasso National Laboratory (LNGS), National Institute for Nuclear Physics (INFN), Assergi, Italy
| | - Renato Mariani-Costantini
- Unit of General Pathology, CeSI-MeT, “G. d’Annunzio” University, Chieti, Italy
- Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Gabriella Mincione
- Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Alessandro Cama
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
- Unit of General Pathology, CeSI-MeT, “G. d’Annunzio” University, Chieti, Italy
- * E-mail: (LDL); (AC)
| |
Collapse
|
38
|
A CD47-associated super-enhancer links pro-inflammatory signalling to CD47 upregulation in breast cancer. Nat Commun 2017; 8:14802. [PMID: 28378740 PMCID: PMC5382276 DOI: 10.1038/ncomms14802] [Citation(s) in RCA: 171] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 01/27/2017] [Indexed: 02/06/2023] Open
Abstract
CD47 is a cell surface molecule that inhibits phagocytosis of cells that express it by binding to its receptor, SIRPα, on macrophages and other immune cells. CD47 is expressed at different levels by neoplastic and normal cells. Here, to reveal mechanisms by which different neoplastic cells generate this dominant 'don't eat me' signal, we analyse the CD47 regulatory genomic landscape. We identify two distinct super-enhancers (SEs) associated with CD47 in certain cancer cell types. We show that a set of active constituent enhancers, located within the two CD47 SEs, regulate CD47 expression in different cancer cell types and that disruption of CD47 SEs reduces CD47 gene expression. Finally we report that the TNF-NFKB1 signalling pathway directly regulates CD47 by interacting with a constituent enhancer located within a CD47-associated SE specific to breast cancer. These results suggest that cancers can evolve SE to drive CD47 overexpression to escape immune surveillance.
Collapse
|
39
|
Perricone U, Wieder M, Seidel T, Langer T, Padova A, Almerico AM, Tutone M. A Molecular Dynamics-Shared Pharmacophore Approach to Boost Early-Enrichment Virtual Screening: A Case Study on Peroxisome Proliferator-Activated Receptor α. ChemMedChem 2017; 12:1399-1407. [PMID: 28135036 DOI: 10.1002/cmdc.201600526] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 01/26/2017] [Indexed: 12/21/2022]
Abstract
Molecular dynamics (MD) simulations can be used, prior to virtual screening, to add flexibility to proteins and study them in a dynamic way. Furthermore, the use of multiple crystal structures of the same protein containing different co-crystallized ligands can help elucidate the role of the ligand on a protein's active conformation, and then explore the most common interactions between small molecules and the receptor. In this work, we evaluated the contribution of the combined use of MD on crystal structures containing the same protein but different ligands to examine the crucial ligand-protein interactions within the complexes. The study was carried out on peroxisome proliferator-activated receptor α (PPARα). Findings derived from the dynamic analysis of interactions were then used as features for pharmacophore generation and constraints for generating the docking grid for use in virtual screening. We found that information derived from short multiple MD simulations using different molecules within the binding pocket of the target can improve the early enrichment of active ligands in the virtual screening process for this receptor. In the end we adopted a consensus scoring based on docking score and pharmacophore alignment to rank our dataset. Our results showed an improvement in virtual screening performance in early recognition when screening was performed with the Molecular dYnamics SHAred PharmacophorE (MYSHAPE) approach.
Collapse
Affiliation(s)
- Ugo Perricone
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, Via Archirafi 32, 90123, Palermo, Italy.,Department of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, Althanstraße 14, 1090, Vienna, Austria.,Fondazione Ri.MED, Via Bandiera 11, 90133, Palermo, Italy
| | - Marcus Wieder
- Department of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, Althanstraße 14, 1090, Vienna, Austria.,Department of Computational Biological Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 42, 1090, Vienna, Austria
| | - Thomas Seidel
- Department of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, Althanstraße 14, 1090, Vienna, Austria
| | - Thierry Langer
- Department of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, Althanstraße 14, 1090, Vienna, Austria
| | | | - Anna Maria Almerico
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, Via Archirafi 32, 90123, Palermo, Italy
| | - Marco Tutone
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, Via Archirafi 32, 90123, Palermo, Italy
| |
Collapse
|
40
|
Benedetti E, d'Angelo M, Ammazzalorso A, Gravina GL, Laezza C, Antonosante A, Panella G, Cinque B, Cristiano L, Dhez AC, Astarita C, Galzio R, Cifone MG, Ippoliti R, Amoroso R, Di Cesare E, Giordano A, Cimini A. PPARα Antagonist AA452 Triggers Metabolic Reprogramming and Increases Sensitivity to Radiation Therapy in Human Glioblastoma Primary Cells. J Cell Physiol 2016; 232:1458-1466. [PMID: 27736000 DOI: 10.1002/jcp.25648] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 10/11/2016] [Indexed: 02/01/2023]
Abstract
Glioblastoma (GB) is the most common cancer in the brain and with an increasing incidence. Despite major advances in the field, there is no curative therapy for GB to date. Many solid tumors, including GB, experienced metabolic reprogramming in order to sustain uncontrolled proliferation, hypoxic conditions, and angiogenesis. PPARs, member of the steroid hormone receptor superfamily, are particularly involved in the control of energetic metabolism, particularly lipid metabolism, which has been reported deregulated in gliomas. PPARα was previously indicated by us as a potential therapeutic target for this neoplasm, due to the malignancy grade dependency of its expression, being particularly abundant in GB. In this work, we used a new PPARα antagonist on patient-derived GB primary cells, with particular focus on the effects on lipid metabolism and response to radiotherapy. The results obtained demonstrated that blocking PPARα results in cell death induction, increase of radiosensitivity, and decrease of migration. Therefore, AA452 is proposed as a new adjuvant for the gold standard therapies for GB, opening the possibility for preclinical and clinical trials for this class of compounds. J. Cell. Physiol. 232: 1458-1466, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Elisabetta Benedetti
- Depatment of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Michele d'Angelo
- Depatment of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | | | - Giovanni Luca Gravina
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Chiara Laezza
- Institute of Endocrinology and Experimental Oncology (IEOS), CNR, Naples, Italy
| | - Andrea Antonosante
- Depatment of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Gloria Panella
- Depatment of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Benedetta Cinque
- Depatment of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Loredana Cristiano
- Depatment of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Anne Chloè Dhez
- Depatment of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Carlo Astarita
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Temple University, Philadelphia, Pennsylvania.,Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Renato Galzio
- Depatment of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Maria Grazia Cifone
- Depatment of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Rodolfo Ippoliti
- Depatment of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Rosa Amoroso
- Department of Pharmacy, G. d'Annunzio University, Chieti, Italy
| | - Ernesto Di Cesare
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Antonio Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Temple University, Philadelphia, Pennsylvania.,Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Annamaria Cimini
- Depatment of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy.,Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Temple University, Philadelphia, Pennsylvania.,Gran Sasso National Laboratory (LNGS), National Institute for Nuclear Physics (INFN), Assergi, Italy
| |
Collapse
|
41
|
Cizkova K, Steigerova J, Gursky J, Ehrmann J. Stimulating effect of normal-dosing of fibrates on cell proliferation: word of warning. Lipids Health Dis 2016; 15:164. [PMID: 27658584 PMCID: PMC5034623 DOI: 10.1186/s12944-016-0335-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 09/14/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Fibrates are widely used hypolipidemic drugs, which serve as ligand of peroxisome proliferator-activated receptor α (PPARα). Recently, they have also been considered as potential anticancer agents. We studied effect of fibrates treatment on cell proliferation, expression of CYP2J2 and concomitant changes in expression of cell cycle regulatory proteins in three different human cell lines: HEK293, HepG2, and HT-29. METHODS We used WST-1 viability test, western blot and immunocytochemistry for detection of proteins of interests and analysis of cell cycle. RESULTS Our results showed that at lower concentrations of all tested fibrates, viability of all tested cell lines is increased, whereas at higher concentrations, repression is apparent. Unfortunately, the viability of tested cells is predominantly increased in a range of concentration which is reached in patient plasma. This phenomenon is accompanyed by elevation of CYP2J2, increased number of cyclin E-positive cells and decreased number of Cdc25A-positive cells in all tested cell lines, and elevated cyclin A expression in HepG2 and HT-29. These changes are concentration-dependent. We suppose that increased level of CYP2J2 could explain enhanced cell proliferation in lower concentration of fibrates. CONCLUSION Based on our results, we suggested there is no anti-cancer effect of fibrates in tested carcinoma cell lines.
Collapse
Affiliation(s)
- Katerina Cizkova
- Department of Histology and Embryology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hnevotinska 3, 775 15, Olomouc, Czech Republic.
| | - Jana Steigerova
- Department of Clinical and Molecular Pathology & Laboratory of Molecular Pathology, Faculty of Medicine and Dentistry, Palacky University, Hnevotinska 3, 775 15, Olomouc, Czech Republic
| | - Jan Gursky
- Institute of Molecular and Translation Medicine, Faculty of Medicine and Dentistry, Palacky University, Hnevotinska 5, 775 15, Olomouc, Czech Republic
| | - Jiri Ehrmann
- Department of Histology and Embryology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hnevotinska 3, 775 15, Olomouc, Czech Republic.,Department of Clinical and Molecular Pathology & Laboratory of Molecular Pathology, Faculty of Medicine and Dentistry, Palacky University, Hnevotinska 3, 775 15, Olomouc, Czech Republic
| |
Collapse
|
42
|
PMCA2 silencing potentiates MDA-MB-231 breast cancer cell death initiated with the Bcl-2 inhibitor ABT-263. Biochem Biophys Res Commun 2016; 478:1792-7. [PMID: 27613092 DOI: 10.1016/j.bbrc.2016.09.030] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 09/06/2016] [Indexed: 12/15/2022]
Abstract
PMCA2 overexpression in some breast cancers suggests that this calcium pump isoform may play a role in breast pathophysiology. To investigate PMCA2 as a potential drug target for breast cancer therapy, we assessed the functional consequence of PMCA2 silencing on cell death pathways and calcium signals in the basal-like MDA-MB-231 breast cancer cell line. Silencing PMCA2 expression alone has no effect on MDA-MB-231 cell viability, however, PMCA2 silencing promotes calcium-induced cell death initiated with the calcium ionophore ionomycin. Assessment of cytoplasmic calcium responses generated with various agents including ionomycin demonstrates that in MDA-MB-231 cells, PMCA2 does not play a major role in shaping global calcium signals. We also examined the ability of PMCA2 silencing to modulate caspase-dependent cell death triggered by a Bcl-2 inhibitor that is in clinical development for the treatment of various cancers, ABT-263 (Navitoclax). Despite the lack of effect on global calcium responses, PMCA2 silencing augmented Bcl-2 inhibitor (ABT-263)-mediated MDA-MB-231 breast cancer cell death. These studies provide evidence that PMCA2 inhibitors could sensitize PMCA2-positive breast cancers to cell death initiators that work through mechanisms involving the Bcl-2 survival pathway.
Collapse
|
43
|
Differential effects of two-pore channel protein 1 and 2 silencing in MDA-MB-468 breast cancer cells. Biochem Biophys Res Commun 2016; 477:731-736. [PMID: 27353380 DOI: 10.1016/j.bbrc.2016.06.127] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 06/25/2016] [Indexed: 11/22/2022]
Abstract
Two-pore channel proteins, TPC1 and TPC2, are calcium permeable ion channels found localized to the membranes of endolysosomal calcium stores. There is increasing interest in the role of TPC-mediated intracellular signaling in various pathologies; however their role in breast cancer has not been extensively evaluated. TPC1 and TPC2 mRNA was present in all non-tumorigenic and tumorigenic breast cell lines assessed. Silencing of TPC2 but not TPC1 attenuated epidermal growth factor-induced vimentin expression in MDA-MB-468 breast cancer cells. This effect was not due to a general inhibition of epithelial to mesenchymal transition (EMT) as TPC2 silencing had no effect on epidermal growth factor (EGF)-induced changes on E-cadherin expression. TPC1 and TPC2 were also shown to differentially regulate cyclopiazonic acid (CPA)-mediated changes in cytosolic free Ca(2+). These findings indicate potential differential regulation of signaling processes by TPC1 and TPC2 in breast cancer cells.
Collapse
|
44
|
Stewart TA, Azimi I, Brooks AJ, Thompson EW, Roberts-Thomson SJ, Monteith GR. Janus kinases and Src family kinases in the regulation of EGF-induced vimentin expression in MDA-MB-468 breast cancer cells. Int J Biochem Cell Biol 2016; 76:64-74. [PMID: 27163529 DOI: 10.1016/j.biocel.2016.05.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 04/07/2016] [Accepted: 05/06/2016] [Indexed: 12/20/2022]
Abstract
Epithelial-mesenchymal transition (EMT) is an important process associated with the metastasis of breast cancer cells. Members of the Janus kinases (JAKs) and Src family kinases (SFKs) are implicated in the regulation of an invasive phenotype in various cancer cell types. Using the pharmacological inhibitors JAK Inhibitor I (a pan-JAK inhibitor) and PP2 we investigated the role of the JAKs and SFKs, respectively, in the regulation of EMT markers in the MDA-MB-468 breast cancer cell line model of epidermal growth factor (EGF)-induced EMT. We identified selective inhibition of EGF induction of the mesenchymal marker vimentin by PP2 and JAK Inhibitor I. The effect of JAK Inhibitor I on vimentin protein induction occurred at a concentration lower than that required to significantly inhibit EGF-mediated signal transducer and activator of transcription 3 (STAT3)-phosphorylation, suggesting involvement of a STAT3-independent mechanism of EGF-induced vimentin regulation by JAKs. Despite our identification of a role for the JAK family in EGF-induced vimentin protein expression, siRNA-mediated silencing of each member of the JAK family was unable to phenocopy pharmacological inhibition, indicating potential redundancy among the JAK family members in this pathway. While SFKs and JAKs do not represent global regulators of the EMT phenotype, our findings have identified a role for members of these signaling pathways in the regulation of EGF-induced vimentin expression in the MDA-MB-468 breast cancer cell line.
Collapse
Affiliation(s)
- Teneale A Stewart
- School of Pharmacy, The University of Queensland, Brisbane, QLD, Australia
| | - Iman Azimi
- School of Pharmacy, The University of Queensland, Brisbane, QLD, Australia; Mater Research, Translational Research Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Andrew J Brooks
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia; The University of Queensland, Translational Research Institute, Brisbane, QLD, Australia
| | - Erik W Thompson
- Institute of Health and Biomedical Innovation and School of Biomedical Sciences, Queensland University of Technology, Kelvin Grove, QLD, Australia; Australia and Translational Research Institute, Brisbane, QLD, Australia
| | | | - Gregory R Monteith
- School of Pharmacy, The University of Queensland, Brisbane, QLD, Australia; Mater Research, Translational Research Institute, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
45
|
Pera E, Kaemmerer E, Milevskiy MJG, Yapa KTDS, O'Donnell JS, Brown MA, Simpson F, Peters AA, Roberts-Thomson SJ, Monteith GR. The voltage gated Ca(2+)-channel Cav3.2 and therapeutic responses in breast cancer. Cancer Cell Int 2016; 16:24. [PMID: 27034617 PMCID: PMC4815142 DOI: 10.1186/s12935-016-0299-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 03/22/2016] [Indexed: 01/10/2023] Open
Abstract
Background Understanding the cause of therapeutic resistance and identifying new biomarkers in breast cancer to predict therapeutic responses will help optimise patient care. Calcium (Ca2+)-signalling is important in a variety of processes associated with tumour progression, including breast cancer cell migration and proliferation. Ca2+-signalling is also linked to the acquisition of multidrug resistance. This study aimed to assess the expression level of proteins involved in Ca2+-signalling in an in vitro model of trastuzumab-resistance and to assess the ability of identified targets to reverse resistance and/or act as potential biomarkers for prognosis or therapy outcome. Methods Expression levels of a panel of Ca2+-pumps, channels and channel regulators were assessed using RT-qPCR in resistant and sensitive age-matched SKBR3 breast cancer cells, established through continuous culture in the absence or presence of trastuzumab. The role of Cav3.2 in the acquisition of trastuzumab-resistance was assessed through pharmacological inhibition and induced overexpression. Levels of Cav3.2 were assessed in a panel of non-malignant and malignant breast cell lines using RT-qPCR and in patient samples representing different molecular subtypes (PAM50 cohort). Patient survival was also assessed in samples stratified by Cav3.2 expression (METABRIC and KM-Plotter cohort). Results Increased mRNA of Cav3.2 was a feature of both acquired and intrinsic trastuzumab-resistant SKBR3 cells. However, pharmacological inhibition of Cav3.2 did not restore trastuzumab-sensitivity nor did Cav3.2 overexpression induce the expression of markers associated with resistance, suggesting that Cav3.2 is not a driver of trastuzumab-resistance. Cav3.2 levels were significantly higher in luminal A, luminal B and HER2-enriched subtypes compared to the basal subtype. High levels of Cav3.2 were associated with poor outcome in patients with oestrogen receptor positive (ER+) breast cancers, whereas Cav3.2 levels were correlated positively with patient survival after chemotherapy in patients with HER2-positive breast cancers. Conclusion Our study identified elevated levels of Cav3.2 in trastuzumab-resistant SKBR3 cell lines. Although not a regulator of trastuzumab-resistance in HER2-positive breast cancer cells, Cav3.2 may be a potential differential biomarker for survival and treatment response in specific breast cancer subtypes. These studies add to the complex and diverse role of Ca2+-signalling in breast cancer progression and treatment. Electronic supplementary material The online version of this article (doi:10.1186/s12935-016-0299-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Elena Pera
- The School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, 20 Cornwall St, Woolloongabba, Brisbane, QLD Australia
| | - Elke Kaemmerer
- The School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, 20 Cornwall St, Woolloongabba, Brisbane, QLD Australia.,Mater Research Institute, The University of Queensland, Brisbane, QLD Australia.,Translational Research Institute, Brisbane, QLD Australia
| | - Michael J G Milevskiy
- The School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD Australia
| | - Kunsala T D S Yapa
- The School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, 20 Cornwall St, Woolloongabba, Brisbane, QLD Australia
| | - Jake S O'Donnell
- Translational Research Institute, Brisbane, QLD Australia.,Diamantina Institute, The University of Queensland, Brisbane, QLD Australia
| | - Melissa A Brown
- The School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD Australia
| | - Fiona Simpson
- Translational Research Institute, Brisbane, QLD Australia.,Diamantina Institute, The University of Queensland, Brisbane, QLD Australia
| | - Amelia A Peters
- The School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, 20 Cornwall St, Woolloongabba, Brisbane, QLD Australia
| | - Sarah J Roberts-Thomson
- The School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, 20 Cornwall St, Woolloongabba, Brisbane, QLD Australia
| | - Gregory R Monteith
- The School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, 20 Cornwall St, Woolloongabba, Brisbane, QLD Australia.,Mater Research Institute, The University of Queensland, Brisbane, QLD Australia.,Translational Research Institute, Brisbane, QLD Australia
| |
Collapse
|
46
|
Papi A, Orlandi M. Role of nuclear receptors in breast cancer stem cells. World J Stem Cells 2016; 8:62-72. [PMID: 27022437 PMCID: PMC4807310 DOI: 10.4252/wjsc.v8.i3.62] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 12/17/2015] [Accepted: 01/27/2016] [Indexed: 02/06/2023] Open
Abstract
The recapitulation of primary tumour heterogenity and the existence of a minor sub-population of cancer cells, capable of initiating tumour growth in xenografts on serial passages, led to the hypothesis that cancer stem cells (CSCs) exist. CSCs are present in many tumours, among which is breast cancer. Breast CSCs (BCSCs) are likely to sustain the growth of the primary tumour mass, as well as to be responsible for disease relapse and metastatic spreading. Consequently, BCSCs represent the most significant target for new drugs in breast cancer therapy. Both the hypoxic condition in BCSCs biology and pro-inflammatory cytokine network has gained increasing importance in the recent past. Breast stromal cells are crucial components of the tumours milieu and are a major source of inflammatory mediators. Recently, the anti-inflammatory role of some nuclear receptors ligands has emerged in several diseases, including breast cancer. Therefore, the use of nuclear receptors ligands may be a valid strategy to inhibit BCSCs viability and consequently breast cancer growth and disease relapse.
Collapse
Affiliation(s)
- Alessio Papi
- Alessio Papi, Marina Orlandi, Department of Biological, Geological and Environmental Science (BiGea), University of Bologna, 40126 Bologna, Italy
| | - Marina Orlandi
- Alessio Papi, Marina Orlandi, Department of Biological, Geological and Environmental Science (BiGea), University of Bologna, 40126 Bologna, Italy
| |
Collapse
|
47
|
Li J, Bushel PR. EPIG-Seq: extracting patterns and identifying co-expressed genes from RNA-Seq data. BMC Genomics 2016; 17:255. [PMID: 27004791 PMCID: PMC4804494 DOI: 10.1186/s12864-016-2584-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 03/11/2016] [Indexed: 11/29/2022] Open
Abstract
Background RNA sequencing (RNA-Seq) measures genome-wide gene expression. RNA-Seq data is count-based rendering normal distribution models for analysis inappropriate. Normalization of RNA-Seq data to transform the data has limitations which can adversely impact the analysis. Furthermore, there are a few count-based methods for analysis of RNA-Seq data but they are essentially for pairwise analysis of treatment groups or multiclasses but not pattern-based to identify co-expressed genes. Results We adapted our extracting patterns and identifying genes methodology for RNA-Seq (EPIG-Seq) count data. The software uses count-based correlation to measure similarity between genes, quasi-Poisson modelling to estimate dispersion in the data and a location parameter to indicate magnitude of differential expression. EPIG-Seq is different than any other software currently available for pattern analysis of RNA-Seq data in that EPIG-Seq 1) uses count level data and supports cases of inflated zeros, 2) identifies statistically significant clusters of genes that are co-expressed across experimental conditions, 3) takes into account dispersion in the replicate data and 4) provides reliable results even with small sample sizes. EPIG-Seq operates in two steps: 1) extract the pattern profiles from data as seeds for clustering co-expressed genes and 2) cluster the genes to the pattern seeds and compute statistical significance of the pattern of co-expressed genes. EPIG-Seq provides a table of the genes with bootstrapped p-values and profile plots of the patterns of co-expressed genes. In addition, EPIG-Seq provides a heat map and principal component dimension reduction plot of the clustered genes as visual aids. We demonstrate the utility of EPIG-Seq through the analysis of toxicogenomics and cancer data sets to identify biologically relevant co-expressed genes. EPIG-Seq is available at: sourceforge.net/projects/epig-seq. Conclusions EPIG-Seq is unlike any other software currently available for pattern analysis of RNA-Seq count level data across experimental groups. Using the EPIG-Seq software to analyze RNA-Seq count data across biological conditions permits the ability to extract biologically meaningful co-expressed genes associated with coordinated regulation. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2584-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jianying Li
- Integrative Bioinformatics Group, National Institute of Environmental Health Sciences, Research Triangle Park, NC, 27709, USA.,Microarray and Genome Informatics Group, National Institute of Environmental Health Sciences, Research Triangle Park, NC, 27709, USA.,Kelly Government Solutions, Research Triangle Park, NC, 27709, USA
| | - Pierre R Bushel
- Microarray and Genome Informatics Group, National Institute of Environmental Health Sciences, Research Triangle Park, NC, 27709, USA. .,Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, 111 T.W. Alexander Drive, P.O. Box 12233, Research Triangle Park, NC, 27709, USA.
| |
Collapse
|
48
|
Wilkinson AS, Taing MW, Pierson JT, Lin CN, Dietzgen RG, Shaw PN, Gidley MJ, Monteith GR, Roberts-Thomson SJ. Estrogen modulation properties of mangiferin and quercetin and the mangiferin metabolite norathyriol. Food Funct 2016; 6:1847-54. [PMID: 25940566 DOI: 10.1039/c5fo00133a] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Mango fruit contain many bioactive compounds, some of which are transcription factor regulators. Estrogen receptor alpha (ERα) and beta (ERβ) are two regulators of gene transcription that are important in a variety of physiological processes and also in diseases including breast cancer. We examined the ability of the mango constituents quercetin, mangiferin, and the aglycone form of mangiferin, norathyriol, to activate both isoforms of the estrogen receptor. Quercetin and norathyriol decreased the viability of MCF-7 breast cancer cells whereas mangiferin had no effect on MCF-7 cells. We also determined that quercetin and mangiferin selectively activated ERα whereas norathyriol activated both ERα and ERβ. Despite quercetin, mangiferin and norathyriol having similar polyphenolic structural motifs, only norathyriol activated ERβ, showing that bioactive agents in mangoes have very specific biological effects. Such specificity may be important given the often-opposing roles of ERα and ERβ in breast cancer proliferation and other cellular processes.
Collapse
Affiliation(s)
- Ashley S Wilkinson
- School of Pharmacy, The University of Queensland, Brisbane, QLD 4072, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Yousefi B, Samadi N, Baradaran B, Shafiei-Irannejad V, Zarghami N. Peroxisome Proliferator-Activated Receptor Ligands and Their Role in Chronic Myeloid Leukemia: Therapeutic Strategies. Chem Biol Drug Des 2016; 88:17-25. [PMID: 26841308 DOI: 10.1111/cbdd.12737] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Imatinib therapy remains the gold standard for treatment of chronic myeloid leukemia; however, the acquired resistance to this therapeutic agent in patients has urged the scientists to devise modalities for overcoming this chemoresistance. For this purpose, initially therapeutic agents with higher tyrosine kinase activity were introduced, which had the potential for inhibiting even mutant forms of Bcr-Abl. Furthermore, coupling imatinib with peroxisome proliferator-activated receptor ligands also showed beneficial effects in chronic myeloid leukemia cell proliferation. These combination protocols inhibited cell growth and induced apoptosis as well as differentiation in chronic myeloid leukemia cell lines. In addition, peroxisome proliferator-activated receptors ligands increased imatinib uptake by upregulating the expression of human organic cation transporter 1. Taken together, peroxisome proliferator-activated receptors ligands are currently being considered as novel promising therapeutic candidates for chronic myeloid leukemia treatment, because they can synergistically enhance the efficacy of imatinib. In this article, we reviewed the potential of peroxisome proliferator-activated receptors ligands for use in chronic myeloid leukemia treatment. The mechanism of action of these therapeutics modalities are also presented in detail.
Collapse
Affiliation(s)
- Bahman Yousefi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nasser Samadi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahid Shafiei-Irannejad
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nosratollah Zarghami
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
50
|
Davis FM, Goulding EH, D'Agostin DM, Janardhan KS, Cummings CA, Bird GS, Eddy EM, Putney JW. Male infertility in mice lacking the store-operated Ca(2+) channel Orai1. Cell Calcium 2016; 59:189-97. [PMID: 26969191 DOI: 10.1016/j.ceca.2016.02.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 02/24/2016] [Accepted: 02/25/2016] [Indexed: 12/14/2022]
Abstract
Store-operated calcium entry (SOCE) is an important Ca(2+) influx pathway in somatic cells. In addition to maintaining endoplasmic reticulum (ER) Ca(2+) stores, Ca(2+) entry through store-operated channels regulates essential signaling pathways in numerous cell types. Patients with mutations in the store-operated channel subunit ORAI1 exhibit defects in store-operated Ca(2+) influx, along with severe immunodeficiency, congenital myopathy and ectodermal dysplasia. However, little is known about the functional role of ORAI1 in germ cells and reproductive function in mice, or in men, since men with loss-of-function or null mutations in ORAI1 rarely survive to reproductive age. In this study, we investigated the role of ORAI1 in male reproductive function. We reveal that Orai1(-/-) male mice are sterile and have severe defects in spermatogenesis, with prominent deficiencies in mid- to late-stage elongating spermatid development. These studies establish an essential in vivo role for store-operated ORAI1 channels in male reproductive function and identify these channels as potential non-steroidal regulators of male fertility.
Collapse
Affiliation(s)
- Felicity M Davis
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Eugenia H Goulding
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Diane M D'Agostin
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | | | | | - Gary S Bird
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Edward M Eddy
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - James W Putney
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA.
| |
Collapse
|