1
|
Xu Y, Li J, Luo Y, Ma J, Huang P, Chen Y, He Z. Carvedilol exhibits anti-acute T lymphoblastic leukemia effect in vitro and in vivo via inhibiting β-ARs signaling pathway. Biochem Biophys Res Commun 2023; 639:150-160. [PMID: 36495764 DOI: 10.1016/j.bbrc.2022.11.093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 11/28/2022] [Accepted: 11/28/2022] [Indexed: 12/02/2022]
Abstract
An increasing number of studies have focus upon β-adrenergic receptor blockers and their anti-tumor effects. However, the use of Carvedilol (CVD), the third generation β-AR blocker, has not been explored for use against T-ALL. In this study, the level of β-ARs was explored in pediatric T-ALL patients. Moreover, the antitumor effects of CVD against T-ALL were assessed in vitro and in vivo, and the underlying mechanisms were investigated. The viability of T-ALL cells following CVD treatment was detected using a CCK-8 assay, and the apoptotic and cell cycle effects were measured using flow cytometry. The protein levels of β-ARs, cAMP, Epac, JAK2, STAT3, p-STAT3, PI3K, p-PI3K, AKT, p-AKT, mTOR, cyclin D1, PCNA, and cleaved caspase-3 were assessed by Western blotting. In vivo experiments were used to investigate the effect of CVD on T-ALL growth in mice. The results indicated that β-ARs were highly expressed in the newly diagnosed T-ALL cells when compared to those in the control group (P < 0.05). In vitro, CVD significantly inhibited T-ALL cell viability, promoted apoptosis and blocked the G0/G1 phase of cell cycle. After CVD treatment, the protein levels of β-ARs, cAMP, Epac, PI3K, p-PI3K, AKT, p-AKT, mTOR, JAK2, STAT3, p-STAT3, cyclin D1 and PCNA were significantly downregulated (P < 0.05); whereas cleaved caspase-3 was significantly upregulated (P < 0.05). In vivo, the volume and weight of the xenograft tumors were significantly decreased in the CVD group (P < 0.05). CVD promoted xenograft tumor apoptosis and reduced the proportion of CEM-C1 cells in murine peripheral blood and bone marrow (P < 0.05). Our results demonstrate that β-ARs are expressed in T-ALL. CVD has a strong antitumor effect against T-ALL and inhibits β-AR associated signaling pathways. Therefore, CVD may provide a potential therapy for T-ALL.
Collapse
Affiliation(s)
- Yanpeng Xu
- Suzhou Medical College of Soochow University, Suzhou, People's Republic of China; Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zun Yi, People's Republic of China; Department of Pediatrics, Guizhou Children's Hospital, Zun Yi, People's Republic of China; Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi Medical University, Zunyi, People's Republic of China
| | - Jiahuan Li
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zun Yi, People's Republic of China
| | - Yan Luo
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zun Yi, People's Republic of China; Department of Pediatrics, Guizhou Children's Hospital, Zun Yi, People's Republic of China
| | - Jinhua Ma
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zun Yi, People's Republic of China; Department of Pediatrics, Guizhou Children's Hospital, Zun Yi, People's Republic of China
| | - Pei Huang
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zun Yi, People's Republic of China; Department of Pediatrics, Guizhou Children's Hospital, Zun Yi, People's Republic of China; Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi Medical University, Zunyi, People's Republic of China
| | - Yan Chen
- Suzhou Medical College of Soochow University, Suzhou, People's Republic of China; Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zun Yi, People's Republic of China; Department of Pediatrics, Guizhou Children's Hospital, Zun Yi, People's Republic of China.
| | - Zhixu He
- Suzhou Medical College of Soochow University, Suzhou, People's Republic of China; Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zun Yi, People's Republic of China; Department of Pediatrics, Guizhou Children's Hospital, Zun Yi, People's Republic of China; Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi Medical University, Zunyi, People's Republic of China.
| |
Collapse
|
2
|
Verdugo-Sivianes EM, Carnero A. Role of the Holoenzyme PP1-SPN in the Dephosphorylation of the RB Family of Tumor Suppressors During Cell Cycle. Cancers (Basel) 2021; 13:cancers13092226. [PMID: 34066428 PMCID: PMC8124259 DOI: 10.3390/cancers13092226] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/29/2021] [Accepted: 05/03/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Cell cycle progression is highly regulated by modulating the phosphorylation status of retinoblastoma (RB) family proteins. This process is controlled by a balance in the action of kinases, such as the complexes formed by cyclin-dependent kinases (CDKs) and cyclins, and phosphatases, mainly the protein phosphatase 1 (PP1). However, while the phosphorylation of the RB family has been largely studied, its dephosphorylation is less known. Recently, the PP1-Spinophilin (SPN) holoenzyme has been described as the main phosphatase responsible for the dephosphorylation of RB proteins during the G0/G1 transition and at the end of G1. Here, we describe the regulation of the phosphorylation status of RB family proteins, giving importance not only to their inactivation by phosphorylation but also to their dephosphorylation to restore the cell cycle. Abstract Cell cycle progression is highly regulated by modulating the phosphorylation status of the retinoblastoma protein (pRB) and the other two members of the RB family, p107 and p130. This process is controlled by a balance in the action of kinases, such as the complexes formed by cyclin-dependent kinases (CDKs) and cyclins, and phosphatases, mainly the protein phosphatase 1 (PP1). However, while the phosphorylation of the RB family has been largely studied, its dephosphorylation is less known. Phosphatases are holoenzymes formed by a catalytic subunit and a regulatory protein with substrate specificity. Recently, the PP1-Spinophilin (SPN) holoenzyme has been described as the main phosphatase responsible for the dephosphorylation of RB proteins during the G0/G1 transition and at the end of G1. Moreover, SPN has been described as a tumor suppressor dependent on PP1 in lung and breast tumors, where it promotes tumorigenesis by increasing the cancer stem cell pool. Therefore, a connection between the cell cycle and stem cell biology has also been proposed via SPN/PP1/RB proteins.
Collapse
Affiliation(s)
- Eva M. Verdugo-Sivianes
- Instituto de Biomedicina de Sevilla, IBIS, Hospital Universitario Virgen del Rocio, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, Avda. Manuel Siurot s/n, 41013 Seville, Spain;
- CIBERONC, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Amancio Carnero
- Instituto de Biomedicina de Sevilla, IBIS, Hospital Universitario Virgen del Rocio, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, Avda. Manuel Siurot s/n, 41013 Seville, Spain;
- CIBERONC, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Correspondence: ; Tel.: +34-955-92-31-11
| |
Collapse
|
3
|
Protein phosphatase 1 in tumorigenesis: is it worth a closer look? Biochim Biophys Acta Rev Cancer 2020; 1874:188433. [PMID: 32956763 DOI: 10.1016/j.bbcan.2020.188433] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 08/26/2020] [Accepted: 09/12/2020] [Indexed: 02/06/2023]
Abstract
Cancer cells take advantage of signaling cascades to meet their requirements for sustained growth and survival. Cell signaling is tightly controlled by reversible protein phosphorylation mechanisms, which require the counterbalanced action of protein kinases and protein phosphatases. Imbalances on this system are associated with cancer development and progression. Protein phosphatase 1 (PP1) is one of the most relevant protein phosphatases in eukaryotic cells. Despite the widely recognized involvement of PP1 in key biological processes, both in health and disease, its relevance in cancer has been largely neglected. Here, we provide compelling evidence that support major roles for PP1 in tumorigenesis.
Collapse
|
4
|
Sathe G, Pinto SM, Syed N, Nanjappa V, Solanki HS, Renuse S, Chavan S, Khan AA, Patil AH, Nirujogi RS, Nair B, Mathur PP, Prasad TSK, Gowda H, Chatterjee A. Phosphotyrosine profiling of curcumin-induced signaling. Clin Proteomics 2016; 13:13. [PMID: 27307780 PMCID: PMC4908701 DOI: 10.1186/s12014-016-9114-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Accepted: 05/04/2016] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Curcumin, derived from the rhizome Curcuma longa, is a natural anti-cancer agent and has been shown to inhibit proliferation and survival of tumor cells. Although the anti-cancer effects of curcumin are well established, detailed understanding of the signaling pathways altered by curcumin is still lacking. In this study, we carried out SILAC-based quantitative proteomic analysis of a HNSCC cell line (CAL 27) to investigate tyrosine signaling in response to curcumin. RESULTS Using high resolution Orbitrap Fusion Tribrid Fourier transform mass spectrometer, we identified 627 phosphotyrosine sites mapping to 359 proteins. We observed alterations in the level of phosphorylation of 304 sites corresponding to 197 proteins upon curcumin treatment. We report here for the first time, curcumin-induced alterations in the phosphorylation of several kinases including TNK2, FRK, AXL, MAPK12 and phosphatases such as PTPN6, PTPRK, and INPPL1 among others. Pathway analysis revealed that the proteins differentially phosphorylated in response to curcumin are known to be involved in focal adhesion kinase signaling and actin cytoskeleton reorganization. CONCLUSIONS The study indicates that curcumin may regulate cellular processes such as proliferation and migration through perturbation of the focal adhesion kinase pathway. This is the first quantitative phosphoproteomics-based study demonstrating the signaling events that are altered in response to curcumin. Considering the importance of curcumin as an anti-cancer agent, this study will significantly improve the current knowledge of curcumin-mediated signaling in cancer.
Collapse
Affiliation(s)
- Gajanan Sathe
- Institute of Bioinformatics, Unit I, 7th Floor, Discoverer Building, International Tech Park, Bangalore, 560066 India.,Manipal University, Madhav Nagar, Manipal, 576104 India
| | - Sneha M Pinto
- Institute of Bioinformatics, Unit I, 7th Floor, Discoverer Building, International Tech Park, Bangalore, 560066 India.,YU-IOB Center for Systems Biology and Molecular Medicine, Yenepoya University, Mangalore, 575018 India
| | - Nazia Syed
- Institute of Bioinformatics, Unit I, 7th Floor, Discoverer Building, International Tech Park, Bangalore, 560066 India.,Department of Biochemistry and Molecular Biology, Pondicherry University, Puducherry, 605014 India
| | - Vishalakshi Nanjappa
- Institute of Bioinformatics, Unit I, 7th Floor, Discoverer Building, International Tech Park, Bangalore, 560066 India.,Amrita School of Biotechnology, Amrita University, Kollam, 690525 India
| | - Hitendra S Solanki
- Institute of Bioinformatics, Unit I, 7th Floor, Discoverer Building, International Tech Park, Bangalore, 560066 India.,School of Biotechnology, KIIT University, Bhubaneswar, 751024 India
| | - Santosh Renuse
- Institute of Bioinformatics, Unit I, 7th Floor, Discoverer Building, International Tech Park, Bangalore, 560066 India.,Amrita School of Biotechnology, Amrita University, Kollam, 690525 India
| | - Sandip Chavan
- Institute of Bioinformatics, Unit I, 7th Floor, Discoverer Building, International Tech Park, Bangalore, 560066 India.,Manipal University, Madhav Nagar, Manipal, 576104 India
| | - Aafaque Ahmad Khan
- Institute of Bioinformatics, Unit I, 7th Floor, Discoverer Building, International Tech Park, Bangalore, 560066 India.,School of Biotechnology, KIIT University, Bhubaneswar, 751024 India
| | - Arun H Patil
- Institute of Bioinformatics, Unit I, 7th Floor, Discoverer Building, International Tech Park, Bangalore, 560066 India.,School of Biotechnology, KIIT University, Bhubaneswar, 751024 India
| | - Raja Sekhar Nirujogi
- Institute of Bioinformatics, Unit I, 7th Floor, Discoverer Building, International Tech Park, Bangalore, 560066 India.,Centre of Excellence in Bioinformatics, School of Life Sciences, Pondicherry University, Puducherry, 605014 India
| | - Bipin Nair
- Amrita School of Biotechnology, Amrita University, Kollam, 690525 India
| | | | - T S Keshava Prasad
- Institute of Bioinformatics, Unit I, 7th Floor, Discoverer Building, International Tech Park, Bangalore, 560066 India.,YU-IOB Center for Systems Biology and Molecular Medicine, Yenepoya University, Mangalore, 575018 India.,NIMHANS-IOB Proteomics and Bioinformatics Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences, Bangalore, 560029 India
| | - Harsha Gowda
- Institute of Bioinformatics, Unit I, 7th Floor, Discoverer Building, International Tech Park, Bangalore, 560066 India.,YU-IOB Center for Systems Biology and Molecular Medicine, Yenepoya University, Mangalore, 575018 India
| | - Aditi Chatterjee
- Institute of Bioinformatics, Unit I, 7th Floor, Discoverer Building, International Tech Park, Bangalore, 560066 India.,YU-IOB Center for Systems Biology and Molecular Medicine, Yenepoya University, Mangalore, 575018 India
| |
Collapse
|
5
|
Nuclear Protein Phosphatase 1 α (PP1A) Expression is Associated with Poor Prognosis in p53 Expressing Glioblastomas. Pathol Oncol Res 2015; 22:287-92. [PMID: 26253838 DOI: 10.1007/s12253-015-9928-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 03/05/2015] [Indexed: 01/21/2023]
Abstract
BACKGROUND Protein phosphatase 1 α (PP1A) is an enzyme intimately associated with cell cycle, the over expression of which has been demonstrated in glioblastoma (GBM). Further, the nuclear expression of PP1A has been shown to be highly specific to GBM. In addition, PP1A has been shown to be a connecting molecule in the p53 containing GBM sub network. In view of these, we evaluated the prognostic relevance of PP1A. METHODS GBM tissues were examined for protein expression of PP1A by immunohistochemistry (IHC). Nuclear expression of PP1A was scored in all tumor tissue samples. Survival analyses were performed by Cox-Regression and Kaplan-Meier survival analysis with Log Rank tests. IDH1, ATRX and p53 IHC and stratification of all GBM cases were performed and subgroup specific evaluation of nuclear PP1A correlation with overall and progression free survival was performed. RESULTS PP1A protein expression showed no correlation with prognosis in all cases of GBM or on stratification based on IDH1 or ATRX expression. However on p53 stratification nuclear PP1A expression emerged as strong independent predictor of poor overall survival only in p53 positive GBMs both in univariate and multivariate analysis. CONCLUSIONS While PP1A expression uniquely associates with poor prognosis only in p53 expressing GBMs, there is a notable absence of such correlation in p53 negative GBMs; thus skewing the overall relation of this molecule with prognosis in GBM. PP1A emerging as a strong prognostic marker in p53 expressing GBMs, enables us to foresee this molecule as a potential therapeutic target.
Collapse
|
6
|
Roy SK, Carey GB, Daino H. The natural tumorcide Manumycin-A targets protein phosphatase 1α and reduces hydrogen peroxide to induce lymphoma apoptosis. Exp Cell Res 2015; 332:136-45. [PMID: 25556058 PMCID: PMC9976551 DOI: 10.1016/j.yexcr.2014.12.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 12/17/2014] [Accepted: 12/19/2014] [Indexed: 01/11/2023]
Abstract
Numerous compounds for treating human disease have been discovered in nature. Manumycin-A (Man-A) is a natural, well-tolerated microbial metabolite and a potent experimental tumoricide. We recently showed that Man-A stimulated reactive oxygen species (ROS) which were upstream of serine/threonine (Ser/Thr) dephosphorylation and caspase-dependent cleavage of MEK and Akt in lymphoma apoptosis. Conversely, activation-specific, Ser/Thr phosphorylation of MEK and Akt proteins was stable in Man-A-resistant tumors suggesting that stimulation of Ser/Thr PPase activity might be required for Man-A tumoricidal activity. Pre-treatment with Calyculin-A, an equipotent inhibitor of PP1 and PP2A, blocked all downstream effects of Man-A whereas, the PP2A-selective inhibitor, Okadaic acid did not, suggesting that PP1 and not PP2A played a role in Man-A action. Phosphorylation of PP1α on Thr320 inhibits its activity. Hence, we posited that if PP1α was important for Man-A action, then Man-A treatment should promote dephosphorylation of PP1α on Thr320. Indeed, T320 was only dephosphorylated in the tumors that underwent apoptosis. Lastly, stable over-expression of a constitutively active PP1α mimetic (PP1αT320A mutant), elevated basal ROS levels and enhanced Man-A-stimulated apoptosis. Taken together, we conclude that PP1α is an important proximal effector of Man-A mediated lymphoma apoptosis and that the mechanisms of Man-A action warrant further investigation.
Collapse
Affiliation(s)
- Sanjit K. Roy
- Department of Microbiology and Immunology, University of Maryland, Baltimore, MD 21201,Center for Vascular and Inflammatory Diseases, University of Maryland, Baltimore, MD 21201
| | - Gregory B. Carey
- Department of Microbiology and Immunology, University of Maryland, Baltimore, MD 21201,Program in Oncology, Marlene and Stewart Greenebaum Cancer Center, University of Maryland, Baltimore, MD 21201,Center for Vascular and Inflammatory Diseases, University of Maryland, Baltimore, MD 21201,To Whom Correspondence Should Be Addressed: Gregory B. Carey, Rm. 313, Biopark 1, 800 W. Baltimore St., Center for Vascular and Inflammatory Diseases, Dept. of Microbiology and Immunology, University of Maryland, School of Medicine, Baltimore, MD 21201. ; Fax:410-706-8243
| | - Hanako Daino
- Center for Vascular and Inflammatory Diseases, University of Maryland, Baltimore, MD 21201
| |
Collapse
|
7
|
Abstract
Non-surgical therapies for human malignancies must negotiate complex cell signaling pathways to impede cancer cell growth, ideally promoting death of cancer cells while sparing healthy tissue. For most of the past half century, medical approaches for treating cancer have relied primarily on cytotoxic chemotherapeutics that interfere with DNA replication and cell division, susceptibilities of rapidly dividing cancer cells. As a consequence, these therapies exert considerable cell stress, promoting the generation of ceramide through de novo synthesis and recycling of complex glycosphingolipids and sphingomyelin into apoptotic ceramide. Radiotherapy of cancer exerts similar geno- and cytotoxic cell stresses, and generation of ceramide following ionizing radiation therapy is a well-described feature of radiation-induced cell death. Emerging evidence now describes sphingolipids as mediators of death in response to newer targeted therapies, cementing ceramide generation as a common mechanism of cell death in response to cancer therapy. Many studies have now shown that dysregulation of ceramide accumulation-whether by reduced generation or accelerated metabolism-is a common mechanism of resistance to standard cancer therapies. The aims of this chapter will be to discuss described mechanisms of cancer resistance to therapy related to dysregulation of sphingolipid metabolism and to explore clinical and preclinical approaches to interdict sphingolipid metabolism to improve outcomes of standard cancer therapies.
Collapse
|
8
|
Involvement of CaM kinase II in the impairment of endothelial function and eNOS activity in aortas of Type 2 diabetic rats. Clin Sci (Lond) 2012; 123:375-86. [PMID: 22494112 DOI: 10.1042/cs20110621] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
In the present sutdy, we have examined the relationship between the CaMKII (Ca(2+)/calmodulin-dependent protein kinase II) pathway and endothelial dysfunction in aortas from GK (Goto-Kakizaki) Type 2 diabetic rats. The ACh (acetylcholine)-induced relaxation and NO production were each attenuated in diabetic aortas (compared with those from age-matched control rats). ACh-stimulated Ser(1177)-eNOS (endothelial NO synthase) phosphorylation was significantly decreased in diabetic aortas (compared with their controls). ACh markedly increased the CaMKII phosphorylation level within endothelial cells only in control aortas (as assessed by immunohistochemistry and Western blotting). ACh-stimulated Thr(286)-CaMKII phosphorylation within endothelial cells was significantly decreased in diabetic aortas (compared with their controls). The ACh-induced relaxations, NO production, eNOS phosphorylation, and CaMKII phosphorylation were inhibited by KN93 and/or by lavendustin C (inhibitors of CaMKII) in control aortas, but not in diabetic ones. Pre-incubation of aortic strips with a PP (protein phosphatase)-1 inhibitor, PPI2 (protein phosphatase inhibitor 2), or with a PP2A inhibitor, CA (cantharidic acid), corrected the above abnormalities in diabetic aortas. The expression of PP2A type A subunit was increased in diabetic aortas. The ACh-stimulated Thr(320)-phosphorylation level of PP1α was lower in diabetic aortas than in their controls, but the total PP1α protein level was not different. These results suggest that the aortic relaxation responses, NO production, and eNOS activity mediated by CaMKII phosphorylation are decreased in this Type 2 diabetic model, and that these impairments of CaMKII signalling may be, at least in part, due to enhancements of PP1α activity and PP2A expression.
Collapse
|
9
|
Li C, Liang YY, Feng XH, Tsai SY, Tsai MJ, O'Malley BW. Essential phosphatases and a phospho-degron are critical for regulation of SRC-3/AIB1 coactivator function and turnover. Mol Cell 2008; 31:835-49. [PMID: 18922467 DOI: 10.1016/j.molcel.2008.07.019] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2008] [Revised: 05/30/2008] [Accepted: 07/18/2008] [Indexed: 11/26/2022]
Abstract
SRC-3/AIB1 is a master growth coactivator and oncogene, and phosphorylation activates it into a powerful coregulator. Dephosphorylation is a potential regulatory mechanism for SRC-3 function, but the identity of such phosphatases remains unexplored. Herein, we report that, using functional genomic screening of human Ser/Thr phosphatases targeting SRC-3's known phosphorylation sites, the phosphatases PDXP, PP1, and PP2A were identified to be key negative regulators of SRC-3 transcriptional coregulatory activity in steroid receptor signalings. PDXP and PP2A dephosphorylate SRC-3 and inhibit its ligand-dependent association with estrogen receptor. PP1 stabilizes SRC-3 protein by blocking its proteasome-dependent turnover through dephosphorylation of two previously unidentified phosphorylation sites (Ser101 and S102) required for activity. These two sites are located within a degron of SRC-3 and are primary determinants of SRC-3 turnover. Moreover, PP1 regulates the oncogenic cell proliferation and invasion functions of SRC-3 in breast cancer cells.
Collapse
Affiliation(s)
- Chao Li
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | | | | | | | | | | |
Collapse
|
10
|
Kiss A, Lontay B, Bécsi B, Márkász L, Oláh E, Gergely P, Erdodi F. Myosin phosphatase interacts with and dephosphorylates the retinoblastoma protein in THP-1 leukemic cells: its inhibition is involved in the attenuation of daunorubicin-induced cell death by calyculin-A. Cell Signal 2008; 20:2059-70. [PMID: 18755268 DOI: 10.1016/j.cellsig.2008.07.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2008] [Revised: 07/18/2008] [Accepted: 07/18/2008] [Indexed: 10/21/2022]
Abstract
Reversible phosphorylation of the retinoblastoma protein (pRb) is an important regulatory mechanism in cell cycle progression. The role of protein phosphatases is less understood in this process, especially concerning the regulatory/targeting subunits involved. It is shown that pretreatment of THP-1 leukemic cells with calyculin-A (CL-A), a cell-permeable phosphatase inhibitor, attenuated daunorubicin (DNR)-induced cell death and resulted in increased pRb phosphorylation and protection against proteolytic degradation. Protein phosphatase-1 catalytic subunits (PP1c) dephosphorylated the phosphorylated C-terminal fragment of pRb (pRb-C) slightly, whereas when PP1c was complexed to myosin phosphatase target subunit-1 (MYPT1) in myosin phosphatase (MP) holoenzyme dephosphorylation was stimulated. The pRb-C phosphatase activity of MP was partially inhibited by anti-MYPT1(1-296) implicating MYPT1 in targeting PP1c to pRb. MYPT1 became phosphorylated on both inhibitory sites (Thr695 and Thr850) upon CL-A treatment of THP-1 cells resulting in the inhibition of MP activity. MYPT1 and pRb coprecipitated from cell lysates by immunoprecipitation with either anti-MYPT1 or anti-pRb antibodies implying that pRb-MYPT1 interaction occurred at cellular levels. Surface plasmon resonance-based experiments confirmed binding of pRb-C to both PP1c and MYPT1. In control and DNR-treated cells, MYPT1 and pRb were predominantly localized in the nucleus exhibiting partial colocalization as revealed by immunofluorescence using confocal microscopy. Upon CL-A treatment, nucleo-cytoplasmic shuttling of both MYPT1 and pRb, but not PP1c, was observed. The above data imply that MP, with the targeting role of MYPT1, may regulate the phosphorylation level of pRb, thereby it may be involved in the control of cell cycle progression and in the mediation of chemoresistance of leukemic cells.
Collapse
Affiliation(s)
- Andrea Kiss
- Department of Medical Chemistry, University of Debrecen Medical and Health Science Center, Debrecen, Nagyerdei krt. 98, Hungary
| | | | | | | | | | | | | |
Collapse
|
11
|
Wang X, Liu B, Li N, Li H, Qiu J, Zhang Y, Cao X. IPP5, a novel protein inhibitor of protein phosphatase 1, promotes G1/S progression in a Thr-40-dependent manner. J Biol Chem 2008; 283:12076-84. [PMID: 18310074 DOI: 10.1074/jbc.m801571200] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein phosphatase 1 (PP1) is a major serine/threonine phosphatase that controls gene expression and cell cycle progression. Here we describe the characterization of a novel inhibitory molecule for PP1, human inhibitor-5 of protein phosphatase 1 (IPP5). We find that IPP5, containing the PP1 inhibitory subunits, specifically interacts with the PP1 catalytic subunit and inhibits PP1 phosphatase activity. Furthermore, the mutation of Thr-40 within the inhibitory subunit of IPP5 into Ala eliminates the phosphorylation of IPP5 by protein kinase A and its inhibitor activity to PP1, whereas the mutation of Thr-40 within a truncated form of IPP5 into Asp can serve as a dominant active form of IPP5 in inhibiting PP1 activity. In IPP5-negative SW480 and IPP5-highly positive SW620 human colon cancer cells, we find that overexpression of IPP5 promotes the growth and accelerates the G(1)-S transition of SW480 cells in a Thr-40-dependent manner, which could be reversed by downregulation of the PP1 expression. Moreover, silencing of IPP5 inhibits the growth of SW620 cells both in vitro and in nude mice possibly by inducing G(0)/G(1) arrest but not by promoting apoptosis. According to its role in the promotion of cell cycle progression and cell growth, IPP5 up-regulates the expression of cyclin E and the phosphorylated form of retinoblastoma protein. Our findings suggest that IPP5, by acting as an inhibitory molecule for PP1, can promote tumor cell growth and cell cycle progression, and may be a promising target in cancer therapeutics in IPP5-highly expressing tumor cells.
Collapse
Affiliation(s)
- Xiaojian Wang
- Institute of Immunology and National Key Laboratory of Medical Immunology, Second Military Medical University, Shanghai 200433, China
| | | | | | | | | | | | | |
Collapse
|
12
|
Bollig A, Xu L, Thakur A, Wu J, Kuo TH, Liao JD. Regulation of intracellular calcium release and PP1α in a mechanism for 4-hydroxytamoxifen-induced cytotoxicity. Mol Cell Biochem 2007; 305:45-54. [PMID: 17646931 DOI: 10.1007/s11010-007-9526-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2007] [Accepted: 05/23/2007] [Indexed: 02/06/2023]
Abstract
Treatment with tamoxifen, or its metabolite 4-hydroxytamoxifen (4OHT), has cytostatic and cytotoxic effects on breast cancer cells in vivo and in culture. Although the effectiveness of 4OHT as an anti-breast cancer agent is due to its action as an estrogen receptor-alpha (ERalpha) antagonist, evidences show that 4OHT is also cytotoxic for ERalpha-negative breast cancer cells and can be effective therapy against tumors that lack estrogen receptors. These findings underscore 4OHT signaling complexities and belie the most basic understandings of 4OHT action and resistance. Here, we have investigated the effects of 4OHT on Ca2+ homeostasis and cell death in breast cancer cells in culture. Measurement of Ca2+ signaling in breast cancer cells showed that 4OHT treatment altered Ca2+ homeostasis and was cytotoxic for both an ERalpha+ and an ERalpha- cell line, MCF-7 and MDA-MB-231, respectively. Further investigation lead us to the novel discovery that 4OHT-induced increase of ATP-dependent Ca2+ release from the endoplasmic reticulum correlated with 4OHT-induced upregulation of protein phosphatase 1alpha (PP1alpha) and the inositol 1,4,5-trisphosphate receptor (IP3R). Blocking 4OHT-induced PP1alpha upregulation by siRNA strategy reduced the effects of 4OHT on both Ca2+ signaling and cytotoxicity. Results from these investigations strongly suggest a role for PP1alpha upregulation in a mechanism for 4OHT-induced changes to Ca2+ signaling that ultimately contribute to the cytotoxic effects of 4OHT.
Collapse
Affiliation(s)
- Aliccia Bollig
- Karmanos Cancer Institute, Wayne State University, 110 E Warren, HWCRC room 731, Detroit, MI 48201, USA
| | | | | | | | | | | |
Collapse
|