1
|
Nie J, Zhang H, Li X, Qin J, Zhou J, Lu Y, Yang N, Li Y, Li H, Li C. Pachymic acid promotes ferroptosis and inhibits gastric cancer progression by suppressing the PDGFRB-mediated PI3K/Akt pathway. Heliyon 2024; 10:e38800. [PMID: 39512319 PMCID: PMC11541463 DOI: 10.1016/j.heliyon.2024.e38800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/27/2024] [Accepted: 09/30/2024] [Indexed: 11/15/2024] Open
Abstract
Gastric cancer (GC) is a common malignant tumour with high incidence and mortality rates worldwide. Despite current treatment modalities, including surgical resection and chemotherapy, challenges such as postoperative recurrence, metastasis and drug resistance persist. Therefore, investigating the feasibility and mechanism of traditional Chinese medicine in treating gastric cancer is crucial for discovering new anti-gastric cancer drugs or adjuvant therapies. Pachymic acid (PA) is a natural triterpenoid found in the traditional Chinese medicinal herb Poria cocos (PC) (Schw. Wolf). Recent studies have reported its inhibitory effects on various cancer cells, including liver, cervical, breast and gastric cancer. Our in vitro and in vivo experiments confirmed that PA inhibits the proliferation, migration and invasion of gastric cancer cells. The treatment of gastric cancer cells with various death inhibitors revealed that PA may suppress gastric cancer progression by inducing ferroptosis. Malondialdehyde, Fe2+, reactive oxygen species and glutathione assays were performed to validate the effects of PA on ferroptosis in gastric cancer. High-throughput sequencing combined with analysis of the TCGA database identified PDGFRB as a potential downstream target of PA. In vivo experiments indicated that the PDGFRB overexpression could counteract the antitumour effects of PA, while ferroptosis induced by the PI3K/Akt signalling pathway may play a key role in this process. This study provides initial evidence that PA, through its interaction with PDGFRB, alters the PI3K/Akt signalling pathway, leading to ferroptosis in gastric cancer cells, thus manifesting its antitumour properties. This discovery holds promise for the development of novel therapeutic strategies for gastric cancer patients.
Collapse
Affiliation(s)
- Jinlin Nie
- Department of Hepatobiliary Pancreatic Hernia Surgery, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, 510317, People's Republic of China
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, People's Republic of China
| | - Haoran Zhang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, People's Republic of China
| | - Xiaofeng Li
- Department of Hepatobiliary Pancreatic Hernia Surgery, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, 510317, People's Republic of China
| | - Jiawei Qin
- Department of Hepatobiliary Pancreatic Hernia Surgery, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, 510317, People's Republic of China
| | - Jiawei Zhou
- Department of Hepatobiliary Pancreatic Hernia Surgery, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, 510317, People's Republic of China
| | - Yuhui Lu
- Department of Hepatobiliary Pancreatic Hernia Surgery, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, 510317, People's Republic of China
| | - Nengjia Yang
- Department of Hepatobiliary Pancreatic Hernia Surgery, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, 510317, People's Republic of China
| | - Yanan Li
- Department of Hepatobiliary Pancreatic Hernia Surgery, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, 510317, People's Republic of China
| | - Hailiang Li
- Department of Hepatobiliary Pancreatic Hernia Surgery, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, 510317, People's Republic of China
| | - Cheng Li
- Department of Hepatobiliary Pancreatic Hernia Surgery, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, 510317, People's Republic of China
| |
Collapse
|
2
|
Jarocka-Karpowicz I, Dobrzyńska I, Stasiewicz A, Skrzydlewska E. 3-O-Ethyl Ascorbic Acid and Cannabigerol in Modulating the Phospholipid Metabolism of Keratinocytes. Antioxidants (Basel) 2024; 13:1285. [PMID: 39594427 PMCID: PMC11591156 DOI: 10.3390/antiox13111285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/19/2024] [Accepted: 10/22/2024] [Indexed: 11/28/2024] Open
Abstract
Phospholipids and their metabolites play an important role in maintaining the membrane integrity and the metabolic functions of keratinocytes under physiological conditions and in the regeneration process after exposure to high-energy UVB radiation. Therefore, in the search for compounds with a protective and regenerative effect on keratinocyte phospholipids, the effectiveness of two antioxidant compounds has been tested: a stable derivative of ascorbic acid, 3-O-ethyl ascorbic acid (EAA) and cannabigerol (CBG), both of which are primarily located in the membrane structures of keratinocytes. In addition, this study has demonstrated that EAA and CBG, especially in a two-component combination, enhance the antioxidant properties of keratinocytes and reduce lipid peroxidation assessed at the level of MDA (malondialdehyde)/neuroprostanes. Moreover, by reducing the activity of enzymes that metabolise phospholipids, free PUFAs (polyunsaturated fatty acids) and endocannabinoids (PLA2; phospholipase A2, COX1/2; cyclooxygenases 1/2, LOX-5; lipoxygenase 5, FAAH; fatty acid amide hydrolase, MAGL; monoacylglycerol lipase), antioxidants have been found to regulate the levels of endocannabinoids (AEA; anandamide, 2-AG; 2-arachidonoylglycerol, PEA; palmitoylethanolamide) and eicosanoids (PGD2; prostaglandin D2, PGE2; prostaglandin E2, 15-d-PGJ2; 15-deoxy-Δ12,14-prostaglandin J2, 15-HETE; 15-hydroxyeicosatetraenoic acid), that are enhanced by UVB radiation. The metabolic effect of both groups of PUFA metabolites is mainly related to the activation of G protein-related receptors (CB1/2; cannabinoid receptor 1 and 2, PPARγ; peroxisome proliferator-activated receptor gamma, TRPV1; transient receptor potential cation channel subfamily V member 1), the expression of which is reduced under the influence of EAA, CBG, and especially the two-component combination. It promotes the regeneration of keratinocyte metabolism disrupted by UVB, particularly in relation to redox balance and inflammation.
Collapse
Affiliation(s)
- Iwona Jarocka-Karpowicz
- Department of Analytical Chemistry, Medical University of Białystok, Mickiewicza 2D, 15-222 Białystok, Poland; (I.J.-K.); (A.S.)
| | - Izabela Dobrzyńska
- Laboratory of Bioanalysis, Faculty of Chemistry, University in Białystok, Ciołkowskiego 1K, 15-245 Białystok, Poland;
| | - Anna Stasiewicz
- Department of Analytical Chemistry, Medical University of Białystok, Mickiewicza 2D, 15-222 Białystok, Poland; (I.J.-K.); (A.S.)
| | - Elżbieta Skrzydlewska
- Department of Analytical Chemistry, Medical University of Białystok, Mickiewicza 2D, 15-222 Białystok, Poland; (I.J.-K.); (A.S.)
| |
Collapse
|
3
|
Su B, Mao Q, Li D, Wu Y, Wang B, Wang X. Mechanism of Fuzheng Qudu prescription in the treatment of lung cancer based on network pharmacology and experimental validation. Heliyon 2024; 10:e37546. [PMID: 39309919 PMCID: PMC11416244 DOI: 10.1016/j.heliyon.2024.e37546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 09/02/2024] [Accepted: 09/04/2024] [Indexed: 09/25/2024] Open
Abstract
Objective This research utilized network pharmacology to investigate the potential of Fuzheng Qudu prescription (FZQDP) in treating lung cancer (LC). Methods The components and their targets of FZQDP were analyzed for their relationship with LC-related targets using bioinformatics tools. Mouse Lewis lung carcinoma (LLC) cells were cultured in vitro and treated with FZQDP or cisplatin (DDP) before applying the MTT assay to determine FZQDP concentrations, and the IC50 value. According to the IC50 value, the effect of FZQDP on apoptosis and cell cycle was detected by flow cytometry. Mouse tumor growth was recorded using live animal imaging, and measurements of tumor and spleen weight were used to calculate the tumor inhibition rate and spleen index. The effects on mouse liver and kidneys were observed by analyzing levels of AST, ALT, BUN, and CRE in blood and hematoxylin and eosin (H & E) stained sections. Additionally, levels of IL-2, IL-10, IL-6, and IFN-γ in serum, along with the frequencies of CD4+ and CD8+ T cells in the spleen, were measured using Mouse multiple Cytokine Assay and flow cytometry, respectively. Results SRC, STAT3, MAPK3, and MAPK1 could be crucial targets of FZQDP in the treatment of LC. FZQDP demonstrated inhibition of LC cell proliferation and tumor growth, as well as enhancement of apoptosis and induction of G2 phase cell cycle arrest. Furthermore, FZQDP led to elevated levels of IL-2 and IFN-γ, increased frequencies of CD4+ T cells and decreased levels of IL-6 and IL-10. Importantly, FZQDP did not exhibit any noticeable hepatotoxic or nephrotoxic effects in mice. Conclusion FZQDP may target multiple signaling pathways to treat LC. In a LC mouse model, FZQDP was found to inhibit tumor growth and improve immune function.
Collapse
Affiliation(s)
- Binjie Su
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China
| | - Qiyuan Mao
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Daorui Li
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Yingyi Wu
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China
| | - Bo Wang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China
- Experimental Animal Center, Xinjiang Medical University, Urumqi, 830017, Xinjiang China
| | - Xueqian Wang
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| |
Collapse
|
4
|
Xiao Y, Hu Z, Liu H, Jiang X, Zhou T, Wang H, Long H, Li M. A review on antitumor effect of pachymic acid. Medicine (Baltimore) 2024; 103:e39752. [PMID: 39312302 PMCID: PMC11419566 DOI: 10.1097/md.0000000000039752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 08/29/2024] [Indexed: 09/25/2024] Open
Abstract
Poria cocos, also known as Jade Ling and Songbai taro, is a dry fungus core for Wolfiporia cocos, which is parasitic on the roots of pine trees. The ancients called it "medicine of four seasons" because of its extensive effect and ability to be combined with many medicines. Pachymic acid (PA) is one of the main biological compounds of Poria cocos. Research has shown that PA has various pharmacological properties, including anti-inflammatory and antioxidant. PA has recently attracted much attention due to its anticancer properties. Researchers have found that PA showed anticancer activity by regulating apoptosis and the cell cycle in vitro and in vivo. Using PA with anticancer drugs, radiotherapy, and biomaterials could also improve the sensitivity of cancer cells and delay the progression of cancer. The purpose of this review was to summarize the anticancer mechanism of PA by referencing the published documents. A review of the collected data indicated that PA had the potential to be developed into an effective anticancer agent.
Collapse
Affiliation(s)
- Yubo Xiao
- School of Public Health and Laboratory Medicine, Hunan University of Medicine, Huaihua, China
| | - Zhaotun Hu
- Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province College of Biological and Food Engineering, Huaihua University, Huaihua, China
| | - Hang Liu
- School of Public Health and Laboratory Medicine, Hunan University of Medicine, Huaihua, China
| | - Xinglin Jiang
- School of Public Health and Laboratory Medicine, Hunan University of Medicine, Huaihua, China
| | - Taimei Zhou
- School of Public Health and Laboratory Medicine, Hunan University of Medicine, Huaihua, China
| | - Haiying Wang
- School of Public Health and Laboratory Medicine, Hunan University of Medicine, Huaihua, China
| | - Heng Long
- Department of Breast and Thyroid Surgery, First People’s Hospital of Huaihua City, Huaihua, China
| | - Ming Li
- Department of Histology and Embryology, Hunan University of Medicine, Huaihua, China
| |
Collapse
|
5
|
Li YN, Su JL, Tan SH, Chen XL, Cheng TL, Jiang Z, Luo YZ, Zhang LM. Machine learning based on metabolomics unveils neutrophil extracellular trap-related metabolic signatures in non-small cell lung cancer patients undergoing chemoimmunotherapy. World J Clin Cases 2024; 12:4091-4107. [PMID: 39015934 PMCID: PMC11235537 DOI: 10.12998/wjcc.v12.i20.4091] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 05/10/2024] [Accepted: 05/28/2024] [Indexed: 06/30/2024] Open
Abstract
BACKGROUND Non-small cell lung cancer (NSCLC) is the primary form of lung cancer, and the combination of chemotherapy with immunotherapy offers promising treatment options for patients suffering from this disease. However, the emergence of drug resistance significantly limits the effectiveness of these therapeutic strategies. Consequently, it is imperative to devise methods for accurately detecting and evaluating the efficacy of these treatments. AIM To identify the metabolic signatures associated with neutrophil extracellular traps (NETs) and chemoimmunotherapy efficacy in NSCLC patients. METHODS In total, 159 NSCLC patients undergoing first-line chemoimmunotherapy were enrolled. We first investigated the characteristics influencing clinical efficacy. Circulating levels of NETs and cytokines were measured by commercial kits. Liquid chromatography tandem mass spectrometry quantified plasma metabolites, and differential metabolites were identified. Least absolute shrinkage and selection operator, support vector machine-recursive feature elimination, and random forest algorithms were employed. By using plasma metabolic profiles and machine learning algorithms, predictive metabolic signatures were established. RESULTS First, the levels of circulating interleukin-8, neutrophil-to-lymphocyte ratio, and NETs were closely related to poor efficacy of first-line chemoimmunotherapy. Patients were classed into a low NET group or a high NET group. A total of 54 differential plasma metabolites were identified. These metabolites were primarily involved in arachidonic acid and purine metabolism. Three key metabolites were identified as crucial variables, including 8,9-epoxyeicosatrienoic acid, L-malate, and bis(monoacylglycerol)phosphate (18:1/16:0). Using metabolomic sequencing data and machine learning methods, key metabolic signatures were screened to predict NET level as well as chemoimmunotherapy efficacy. CONCLUSION The identified metabolic signatures may effectively distinguish NET levels and predict clinical benefit from chemoimmunotherapy in NSCLC patients.
Collapse
Affiliation(s)
- Yu-Ning Li
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan 411201, Hunan Province, China
- Department of Thoracic Medicine, Hunan Cancer Hospital, Changsha 410013, Hunan Province, China
| | - Jia-Lin Su
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan 411201, Hunan Province, China
- Department of Thoracic Medicine, Hunan Cancer Hospital, Changsha 410013, Hunan Province, China
| | - Shu-Hua Tan
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan 411201, Hunan Province, China
| | - Xing-Long Chen
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan 411201, Hunan Province, China
- Department of Thoracic Medicine, Hunan Cancer Hospital, Changsha 410013, Hunan Province, China
| | - Tian-Li Cheng
- Department of Thoracic Medicine, Hunan Cancer Hospital, Changsha 410013, Hunan Province, China
| | - Zhou Jiang
- Department of Thoracic Medicine, Hunan Cancer Hospital, Changsha 410013, Hunan Province, China
| | - Yong-Zhong Luo
- Department of Thoracic Medicine, Hunan Cancer Hospital, Changsha 410013, Hunan Province, China
| | - Le-Meng Zhang
- Department of Thoracic Medicine, Hunan Cancer Hospital, Changsha 410013, Hunan Province, China
| |
Collapse
|
6
|
Mattioli LB, Frosini M, Corazza I, Fiorino S, Zippi M, Micucci M, Budriesi R. Long COVID-19 gastrointestinal related disorders and traditional Chinese medicine: A network target-based approach. Phytother Res 2024; 38:2323-2346. [PMID: 38421118 DOI: 10.1002/ptr.8163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 01/30/2024] [Accepted: 02/03/2024] [Indexed: 03/02/2024]
Abstract
The significant number of individuals impacted by the pandemic makes prolonged symptoms after COVID-19 a matter of considerable concern. These are numerous and affect multiple organ systems. According to the World Health Organization (WHO), prolonged gastrointestinal issues are a crucial part of post-COVID-19 syndrome. The resulting disruption of homeostasis underscores the need for a therapeutic approach based on compounds that can simultaneously affect more than one target/node. The present review aimed to check for nutraceuticals possessing multiple molecular mechanisms helpful in relieving Long COVID-19-specific gastrointestinal symptoms. Specific plants used in Keywords Chinese Medicine (TCM) expected to be included in the WHO Global Medical Compendium were selected based on the following criteria: (1) they are widely used in the Western world as natural remedies and complementary medicine adjuvants; (2) their import and trade are regulated by specific laws that ensure quality and safety (3) have the potential to be beneficial in alleviating intestinal issues associated with Long COVID-19. Searches were performed in PubMed, Elsevier, Google Scholar, Scopus, Science Direct, and ResearchGate up to 2023. Cinnamomum cassia, Glycyrrhiza uralensis, Magnolia officinalis, Poria cocos, Salvia miltiorrhiza, Scutellaria baicalensis, and Zingiber officinalis were identified as the most promising for their potential impact on inflammation and oxidative stress. Based on the molecular mechanisms of the phytocomplexes and isolated compounds of the considered plants, their clinical use may lead to benefits in gastrointestinal diseases associated with Long COVID-19, thanks to a multiorgan and multitarget approach.
Collapse
Affiliation(s)
- Laura Beatrice Mattioli
- Department of Pharmacy and Biotechnology, Food Chemistry and Nutraceutical Lab, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Maria Frosini
- Department of Life Sciences, University of Siena, Siena, Italy
| | - Ivan Corazza
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Sirio Fiorino
- Internal Medicine Unit, Azienda USL, Budrio Hospital, Bologna, Italy
| | - Maddalena Zippi
- Unit of Gastroenterology & Digestive Endoscopy, Sandro Pertini Hospital, Rome, Italy
| | - Matteo Micucci
- Department of Biomolecular Sciences, Università degli Studi di Urbino "Carlo Bo", Urbino, Italy
| | - Roberta Budriesi
- Department of Pharmacy and Biotechnology, Food Chemistry and Nutraceutical Lab, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| |
Collapse
|
7
|
Tang M, Yin Y, Wang W, Gong K, Dong J, Gao X, Li J, Fang L, Ma J, Hong Y, Li Z, Bi T, Zhang W, Liu W. Exploring the multifaceted effects of Interleukin-1 in lung cancer: From tumor development to immune modulation. Life Sci 2024; 342:122539. [PMID: 38423172 DOI: 10.1016/j.lfs.2024.122539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/21/2024] [Accepted: 02/25/2024] [Indexed: 03/02/2024]
Abstract
Lung cancer, acknowledged as one of the most fatal cancers globally, faces limited treatment options on an international scale. The success of clinical treatment is impeded by challenges such as late diagnosis, restricted treatment alternatives, relapse, and the emergence of drug resistance. This predicament has led to a saturation point in lung cancer treatment, prompting a rapid shift in focus towards the tumor microenvironment (TME) as a pivotal area in cancer research. Within the TME, Interleukin-1 (IL-1) is abundantly present, originating from immune cells, tissue stromal cells, and tumor cells. IL-1's induction of pro-inflammatory mediators and chemokines establishes an inflammatory milieu influencing tumor occurrence, development, and the interaction between tumors and the host immune system. Notably, IL-1 expression in the TME exhibits characteristics such as staging, tissue specificity, and functional pluripotency. This comprehensive review aims to delve into the impact of IL-1 on lung cancer, encompassing aspects of occurrence, invasion, metastasis, immunosuppression, and immune surveillance. The ultimate goal is to propose a novel treatment approach, considering the intricate dynamics of IL-1 within the TME.
Collapse
Affiliation(s)
- Mingbo Tang
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Yipeng Yin
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Wei Wang
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China; Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong 250021, China; Shandong Institute of Endocrine and Metabolic Diseases, Jinan, Shandong 250021, China; "Chuangxin China" Innovation Base of stem cell and Gene Therapy for endocrine Metabolic diseases, Jinan, Shandong 250021, China; Shandong Engineering Laboratory of Prevention and Control for Endocrine and Metabolic Diseases, Jinan, Shandong 250021, China; Shandong Engineering Research Center of Stem Cell and Gene Therapy for Endocrine and Metabolic Diseases, Jinan, Shandong 250021, China
| | - Kejian Gong
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Junxue Dong
- Laboratory of Infection Oncology, Institute of Clinical Molecular Biology, Universitätsklinikum Schleswig-Holstein (UKSH), Christian Albrechts University of Kiel, Kiel, Germany
| | - Xinliang Gao
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Jialin Li
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Linan Fang
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Jianzun Ma
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Yang Hong
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Zhiqin Li
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Taiyu Bi
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Wenyu Zhang
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Wei Liu
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin, 130021, China.
| |
Collapse
|
8
|
Biernacki M, Conde T, Stasiewicz A, Surażyński A, Domingues MR, Domingues P, Skrzydlewska E. Restorative Effect of Microalgae Nannochloropsis oceanica Lipid Extract on Phospholipid Metabolism in Keratinocytes Exposed to UVB Radiation. Int J Mol Sci 2023; 24:14323. [PMID: 37762626 PMCID: PMC10532178 DOI: 10.3390/ijms241814323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/12/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
Ultraviolet B (UVB) radiation induces oxidative stress in skin cells, generating reactive oxygen species (ROS) and perturbing enzyme-mediated metabolism. This disruption is evidenced with elevated concentrations of metabolites that play important roles in the modulation of redox homeostasis and inflammatory responses. Thus, this research sought to determine the impacts of the lipid extract derived from the Nannochloropsis oceanica microalgae on phospholipid metabolic processes in keratinocytes subjected to UVB exposure. UVB-irradiated keratinocytes were treated with the microalgae extract. Subsequently, analyses were performed on cell lysates to ascertain the levels of phospholipid/free fatty acids (GC-FID), lipid peroxidation byproducts (GC-MS), and endocannabinoids/eicosanoids (LC-MS), as well as to measure the enzymatic activities linked with phospholipid metabolism, receptor expression, and total antioxidant status (spectrophotometric methods). The extract from N. oceanica microalgae, by diminishing the activities of enzymes involved in the synthesis of endocannabinoids and eicosanoids (PLA2/COX1/2/LOX), augmented the concentrations of anti-inflammatory and antioxidant polyunsaturated fatty acids (PUFAs), namely DHA and EPA. These concentrations are typically diminished due to UVB irradiation. As a consequence, there was a marked reduction in the levels of pro-inflammatory arachidonic acid (AA) and associated pro-inflammatory eicosanoids and endocannabinoids, as well as the expression of CB1/TRPV1 receptors. The microalgal extract also mitigated the increase in lipid peroxidation byproducts, specifically MDA in non-irradiated samples and 10-F4t-NeuroP in both control and post-UVB exposure. These findings indicate that the lipid extract derived from N. oceanica, by mitigating the deleterious impacts of UVB radiation on keratinocyte phospholipids, assumed a pivotal role in reinstating intracellular metabolic equilibrium.
Collapse
Affiliation(s)
- Michał Biernacki
- Department of Analytical Chemistry, Medical University of Bialystok, Kilinskiego 1, 15-069 Bialystok, Poland; (M.B.); (A.S.)
| | - Tiago Conde
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal; (T.C.); (M.R.D.); (P.D.)
- CESAM—Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal
| | - Anna Stasiewicz
- Department of Analytical Chemistry, Medical University of Bialystok, Kilinskiego 1, 15-069 Bialystok, Poland; (M.B.); (A.S.)
| | - Arkadiusz Surażyński
- Department of Medicinal Chemistry, Medical University of Bialystok, Kilinskiego 1, 15-069 Bialystok, Poland;
| | - Maria Rosário Domingues
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal; (T.C.); (M.R.D.); (P.D.)
- CESAM—Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal
| | - Pedro Domingues
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal; (T.C.); (M.R.D.); (P.D.)
| | - Elżbieta Skrzydlewska
- Department of Analytical Chemistry, Medical University of Bialystok, Kilinskiego 1, 15-069 Bialystok, Poland; (M.B.); (A.S.)
| |
Collapse
|
9
|
Lai X, Liang K, Su Y, Guo K, Wang X, Wan Y, Ye C, Zhou C, Chen R, Gao W, Chen Y, Lin W, Ni W, Lin Y, Ng KM. Serum Lipidomic Fingerprints Encode Early Diagnosis and Staging of Lung Cancer on a Novel PbS/Au-Layered Substrate. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37463316 DOI: 10.1021/acsami.3c03693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Lung cancer (LC) is a major cause of mortality among malignant tumors. Early diagnosis through lipidomic profiling can improve prognostic outcomes. In this study, a uniform PbS/Au-layered substrate that enhances the laser desorption/ionization process, an interfacial process triggered on the substrate surface upon laser excitation, was designed to efficiently characterize the lipidomic profiles of LC patient serum. By controlling the stacking arrangement and particle sizes of PbS QDs and AuNPs, the optimized substrate promotes the generation of excited electrons and creates an enhanced electric field that polarizes analyte molecules, facilitating ion adduction formation ([M + Na]+ and [M + K]+) and enhancing detection sensitivity down to the femtomole level. Combining multivariate statistics and machine learning, a distinct lipidomic biomarker panel is successfully identified for the early diagnosis and staging of LC, with an accurate prediction validated by an area under the curve of 0.9479 and 0.9034, respectively. We also found that 18 biomarkers were significantly correlated with six metabolic pathways associated with LC. These results demonstrate the potential of this innovative PbS/Au-layered substrate as a sensitive platform for accurate diagnosis of LC and facilitate the development of lipidomic-based diagnostic tools for other cancers.
Collapse
Affiliation(s)
- Xiaopin Lai
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, Guangdong 515063, P. R. China
| | - Kaiqing Liang
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, Guangdong 515063, P. R. China
| | - Yang Su
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, Guangdong 515063, P. R. China
| | - Kunbin Guo
- The Cancer Hospital of Shantou University Medical College, Shantou, Guangdong 515041, P. R. China
| | - Xin Wang
- The Cancer Hospital of Shantou University Medical College, Shantou, Guangdong 515041, P. R. China
| | - Yanpei Wan
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, Guangdong 515063, P. R. China
| | - Cuiqiong Ye
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, Guangdong 515063, P. R. China
| | - Chengke Zhou
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, Guangdong 515063, P. R. China
| | - Rongjia Chen
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, Guangdong 515063, P. R. China
| | - Wenhua Gao
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, Guangdong 515063, P. R. China
| | - Yuping Chen
- The Cancer Hospital of Shantou University Medical College, Shantou, Guangdong 515041, P. R. China
| | - Wen Lin
- The Cancer Hospital of Shantou University Medical College, Shantou, Guangdong 515041, P. R. China
| | - Wenxiu Ni
- Department of Medicinal Chemistry, Shantou University Medical College, Shantou, Guangdong 515041, P. R. China
| | - Yan Lin
- The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, P. R. China
| | - Kwan-Ming Ng
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, Guangdong 515063, P. R. China
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, Guangdong 515063, P. R. China
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong S.A.R., P. R. China
| |
Collapse
|
10
|
Thangam C, Cyril R, Sekar R, Jayasree R, Ramachandran V, Langeswaran K, Asir AB, Subbaraj GK. Role of phospholipase A2 in squamous cell carcinoma and breast cancer. PHOSPHOLIPASES IN PHYSIOLOGY AND PATHOLOGY 2023:315-335. [DOI: 10.1016/b978-0-323-95697-0.00010-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
11
|
Jiang F, Zhu T, Yang C, Chen Y, Fu Z, Jiang L, Liu Y. Pachymic Acid Inhibits Growth and Metastatic Potential in Liver Cancer HepG2 and Huh7 Cells. Biol Pharm Bull 2023; 46:35-41. [PMID: 36273899 DOI: 10.1248/bpb.b22-00440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Pachymic acid (PA), exacted from Polyporaceae, has been known for its biological activities including diuretic, dormitive, anti-oxidant, anti-aging, anti-inflammatory and anticancer properties in several types of diseases. Recently, studies have demonstrated that PA could suppress cell growth and induce cell apoptosis in different kinds of cancer cells. But the underlying mechanisms remain poorly elucidated. In the current study, we investigated the effect of pachymic acid on liver cancer cells and its underlying mechanisms. Our results evidenced that pachymic acid effectively inhibited the cell growth and metastatic potential in HepG2 and Huh7 cells. Mechanistically, we revealed that pachymic acid triggered cell apoptosis by increasing caspase 3 and caspase 9 cleavage, upregulating Bax and cytochrome c expression, while reducing the expression of Bcl2. Besides, pachymic acid could markedly inhibit the cell invasion and migration and cell metastatic potential by mediating epithelial-to-mesenchymal transition (EMT) markers and metastasis-associated genes in HepG2 and Huh7 cells. In addition, we demonstrated that FAK-Src-Jun N-terminal kinase (JNK)-matrix metalloproteinase 2 (MMP2) axis was involved in PA-inhibited liver cell EMT. Together, these results contribute to our deeper understanding of the anti-cancer effects of pachymic acid on liver cancer cells. This study also provided compelling evidence that PA might be a potential therapeutic agent for liver cancer treatment.
Collapse
Affiliation(s)
- Feng Jiang
- Department of General Surgery, Affiliated Xiaoshan Hospital, Hangzhou Normal University
| | - Tieming Zhu
- Department of General Surgery, Affiliated Xiaoshan Hospital, Hangzhou Normal University
| | - Chunfeng Yang
- Department of General Surgery, Affiliated Xiaoshan Hospital, Hangzhou Normal University
| | - Yang Chen
- Department of General Surgery, Affiliated Xiaoshan Hospital, Hangzhou Normal University
| | - Zhidong Fu
- Department of General Surgery, Affiliated Xiaoshan Hospital, Hangzhou Normal University
| | - Lihui Jiang
- Department of General Surgery, Affiliated Xiaoshan Hospital, Hangzhou Normal University
| | - Yongzhi Liu
- Department of General Surgery, Affiliated Xiaoshan Hospital, Hangzhou Normal University
| |
Collapse
|
12
|
Wei C, Wang H, Sun X, Bai Z, Wang J, Bai G, Yao Q, Xu Y, Zhang L. Pharmacological profiles and therapeutic applications of pachymic acid (Review). Exp Ther Med 2022; 24:547. [PMID: 35978941 PMCID: PMC9366251 DOI: 10.3892/etm.2022.11484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 06/17/2022] [Indexed: 01/10/2023] Open
Abstract
Poria cocos is a saprophytic fungus that grows in diverse species of Pinus. Its sclerotium, called fu-ling or hoelen, has been used in various traditional Chinese medicines and health foods for thousands of years, and in several modern proprietary traditional Chinese medicinal products. It has extensive clinical indications, including sedative, diuretic, and tonic effects. Pachymic acid (PA) is the main lanostane-type triterpenoid in Poria cocos. Evidence suggests that PA has various biological properties such as cytotoxic, anti-inflammatory, antihyperglycemic, antiviral, antibacterial, sedative-hypnotic, and anti-ischemia/reperfusion activities. Although considerable advancements have been made, some fundamental and intricate issues remain unclear, such as the underlying mechanisms of PA. The present study aimed to summarize the biological properties and therapeutic potential of PA. The biosynthetic, pharmacokinetic, and metabolic pathways of PA, and its underlying mechanisms were also comprehensively summarized.
Collapse
Affiliation(s)
- Chunyong Wei
- Key Laboratory of Basic Pharmacology of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Hezhen Wang
- Key Laboratory of Basic Pharmacology of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Xun Sun
- Key Laboratory of Basic Pharmacology of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Zhixun Bai
- Department of Internal Medicine, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Jing Wang
- Key Laboratory of Basic Pharmacology of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Guohui Bai
- Key Laboratory of Oral Disease Research, School of Stomatology, Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Qizheng Yao
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 210009, P.R. China
| | - Yingshu Xu
- Key Laboratory of Basic Pharmacology of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Lei Zhang
- Key Laboratory of Basic Pharmacology of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| |
Collapse
|
13
|
Montecillo-Aguado M, Tirado-Rodriguez B, Antonio-Andres G, Morales-Martinez M, Tong Z, Yang J, Hammock BD, Hernandez-Pando R, Huerta-Yepez S. Omega-6 Polyunsaturated Fatty Acids Enhance Tumor Aggressiveness in Experimental Lung Cancer Model: Important Role of Oxylipins. Int J Mol Sci 2022; 23:6179. [PMID: 35682855 PMCID: PMC9181584 DOI: 10.3390/ijms23116179] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 01/27/2023] Open
Abstract
Lung cancer is currently the leading cause of cancer death worldwide; it is often diagnosed at an advanced stage and bears poor prognosis. It has been shown that diet is an important environmental factor that contributes to the risk and mortality of several types of cancers. Intake of ω-3 and ω-6 PUFAs plays an important role in cancer risk and progression. Current Western populations have high consumption of ω-6 PUFAs with a ratio of ω-6/ω-3 PUFAs at 15:1 to 16.7:1 This high consumption of ω-6 PUFAs is related to increased cancer risk and progression. However, whether a diet rich in ω-6 PUFAs can contribute to tumor aggressiveness has not been well investigated. We used a murine model of pulmonary squamous cell carcinoma to study the aggressiveness of tumors in mice fed with a diet rich in ω-6 PUFAs and its relationship with oxylipins. Our results shown that the mice fed a diet rich in ω-6 showed a marked increase in proliferation, angiogenesis and pro-inflammatory markers and decreased expression of pro-apoptotic proteins in their tumors. Oxylipin profiling revealed an upregulation of various pro-tumoral oxylipins including PGs, HETEs, DiHETrEs and HODEs. These results demonstrate for the first time that high intake of ω-6 PUFAs in the diet enhances the malignancy of tumor cells by histological changes on tumor dedifferentiation and increases cell proliferation, angiogenesis, pro-inflammatory oxylipins and molecular aggressiveness targets such as NF-κB p65, YY1, COX-2 and TGF-β.
Collapse
Affiliation(s)
- Mayra Montecillo-Aguado
- Programa de Doctorado en Ciencias Biomédicas, Facultad de Medicina, Universidad Nacional Autonoma de Mexico (UNAM), Mexico City 04510, Mexico;
- Unidad de Investigacion en Enfermedades Oncologicas, Hospital Infantil de Mexico, Federico Gomez, Mexico City 06720, Mexico; (B.T.-R.); (G.A.-A.); (M.M.-M.)
| | - Belen Tirado-Rodriguez
- Unidad de Investigacion en Enfermedades Oncologicas, Hospital Infantil de Mexico, Federico Gomez, Mexico City 06720, Mexico; (B.T.-R.); (G.A.-A.); (M.M.-M.)
| | - Gabriela Antonio-Andres
- Unidad de Investigacion en Enfermedades Oncologicas, Hospital Infantil de Mexico, Federico Gomez, Mexico City 06720, Mexico; (B.T.-R.); (G.A.-A.); (M.M.-M.)
| | - Mario Morales-Martinez
- Unidad de Investigacion en Enfermedades Oncologicas, Hospital Infantil de Mexico, Federico Gomez, Mexico City 06720, Mexico; (B.T.-R.); (G.A.-A.); (M.M.-M.)
| | - Zhen Tong
- Molecular Toxicology Interdepartmental Program and Environmental Health Sciences, University of California, Los Angeles, CA 90095, USA;
- Department of Pathology & Laboratory Medicine, University of California, Los Angeles, CA 90095, USA
| | - Jun Yang
- Comprehensive Cancer Center, Department of Entomology and Nematology, University of California, Davis, CA 95616, USA; (J.Y.); (B.D.H.)
| | - Bruce D. Hammock
- Comprehensive Cancer Center, Department of Entomology and Nematology, University of California, Davis, CA 95616, USA; (J.Y.); (B.D.H.)
| | - Rogelio Hernandez-Pando
- Experimental Pathology Section, Department of Pathology, National Institute of Medical Science and Nutrition, Salvador Zubiran (INCNSZ), Mexico City 14080, Mexico;
| | - Sara Huerta-Yepez
- Unidad de Investigacion en Enfermedades Oncologicas, Hospital Infantil de Mexico, Federico Gomez, Mexico City 06720, Mexico; (B.T.-R.); (G.A.-A.); (M.M.-M.)
- Department of Pathology & Laboratory Medicine, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
14
|
Chen HY, Lei JY, Li SL, Guo LQ, Lin JF, Wu GH, Lu J, Ye ZW. Progress in biological activities and biosynthesis of edible fungi terpenoids. Crit Rev Food Sci Nutr 2022; 63:7288-7310. [PMID: 35238261 DOI: 10.1080/10408398.2022.2045559] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The edible fungi have both edible and medicinal functions, in which terpenoids are one of the most important active ingredients. Terpenoids possess a wide range of biological activities and show great potential in the pharmaceutical and healthcare industries. In this review, the diverse biological activities of edible fungi terpenoids were summarized with emphasis on the mechanism of anti-cancer and anti-inflammation. Subsequently, this review focuses on advances in knowledge and understanding of the biosynthesis of terpenoids in edible fungi, especially in the generation of sesquiterpenes, diterpenes, and triterpenes. This paper is aim to provide an overview of biological functions and biosynthesis developed for utilizing the terpenoids in edible fungi.
Collapse
Affiliation(s)
- Hai-Ying Chen
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Jin-Yu Lei
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Shu-Li Li
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Li-Qiong Guo
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Jun-Fang Lin
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Guang-Hong Wu
- College of Food Science, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Jun Lu
- Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, New Zealand
| | - Zhi-Wei Ye
- College of Food Science, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, China
| |
Collapse
|
15
|
The Effect of Terpenoid Natural Chinese Medicine Molecular Compound on Lung Cancer Treatment. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:3730963. [PMID: 34956377 PMCID: PMC8702311 DOI: 10.1155/2021/3730963] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/18/2021] [Accepted: 12/01/2021] [Indexed: 12/18/2022]
Abstract
Among all malignant tumors in the whole universe, the incidence and mortality of lung cancer disease rank first. Especially in the past few years, the occurrence of lung cancer in the urban population has continued to increase, which seriously threatens the lives and health of people. Among the many treatments for lung cancer, chemotherapy is the best one, but traditional chemotherapy has low specificity and drug resistance. To address the above issue, this study reviews the five biological pathways that common terpenoid compounds in medicinal plants interfere with the occurrence and development of lung cancer: cell proliferation, cell apoptosis, cell autophagy, cell invasion, metastasis, and immune mechanism regulation. In addition, the mechanism of the terpenoid natural traditional Chinese medicine monomer compound combined with Western medicine in the multipathway antilung cancer is summarized.
Collapse
|
16
|
Zhang J, Liu L, Li H, Zhang B. Pharmacokinetic study on the interaction between pachymic acid and bavachin and its potential mechanism. PHARMACEUTICAL BIOLOGY 2021; 59:1256-1259. [PMID: 34517743 PMCID: PMC8439242 DOI: 10.1080/13880209.2021.1942924] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/03/2021] [Accepted: 06/09/2021] [Indexed: 06/13/2023]
Abstract
CONTEXT Pachymic acid and bavachin are commonly used drugs in the therapy of lung cancer. OBJECTIVE The co-administration of pachymic acid and bavachin was investigated to evaluate their potential drug-drug interaction. MATERIALS AND METHODS The pharmacokinetics of bavachin (10 mg/kg) was studied in male Sprague-Dawley (SD) rats in the presence of pachymic acid (5 mg/kg) (n = 6). The rats without pre-treatment of pachymic acid were set as the control and the pre-treatment of pachymic acid was conducted for 7 days before the administration of bavachin. The effect of pachymic acid on the activity of CYP2C9 was also estimated in rat liver microsomes with corresponding probe substrates. RESULTS Pachymic acid influenced the pharmacokinetic profile of bavachin with the increased AUC (32.82 ± 4.61 vs. 19.43 ± 3.26 μg/L/h), the prolonged t1/2 (3.21 ± 0.65 vs. 2.32 ± 0.28 h), and the decreased CLz/F (307.25 ± 44.35 vs. 523.81 ± 88.67 L/h/kg) in vivo. The metabolic stability of bavachin was enhanced by pachymic acid and the transport of bavachin was inhibited by pachymic acid. Pachymic acid was found to inhibit the activity of CYP2C9 with the IC50 of 21.25 µM as well as the activity of P-gp. DISCUSSION AND CONCLUSION The interaction between pachymic acid and bavachin results from the inhibition of CYP2C9 and P-gp. The dose of bavachin should be adjusted when combining with pachymic acid. The study design can be generalized to a broader study population with adjustment in the dose.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Medicinal Medicine, The Second Hospital of Shandong University, Jinan, China
| | - Lu Liu
- Department of Endocrinology, Seventh People's Hospital of Shanghai University of TCM, Shanghai, China
| | - Hong Li
- Department of Endocrinology and Metabolism, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Bin Zhang
- Department of Medicinal Medicine, The Second Hospital of Shandong University, Jinan, China
| |
Collapse
|
17
|
Younis NN, Mohamed HE, Shaheen MA, Abdelghafour AM, Hammad SK. Potential therapeutic efficacy of pachymic acid in chronic kidney disease induced in rats: role of Wnt/β-catenin/renin-angiotensin axis. J Pharm Pharmacol 2021; 74:112-123. [PMID: 34549301 DOI: 10.1093/jpp/rgab129] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 08/23/2021] [Indexed: 12/11/2022]
Abstract
OBJECTIVES Chronic kidney disease (CKD) is a major public health problem associated with high mortality. The therapeutic effects of pachymic in CKD management and its underlying mechanisms have not been studied. Therefore, we aimed to investigate the possible inhibitory effect of PA on renal Wnt/β-catenin signalling in CKD. METHODS CKD was induced in rats by doxorubicin (DOX; 3.5 mg/kg i.p., twice weekly for 3 weeks). Rats were treated orally with PA (10 mg/kg/day), LOS (10 mg/kg/day) or their combination (PA + LOS) for 4 weeks starting after the last dose of DOX. KEY FINDINGS DOX-induced renal injury was characterized by high serum cystatin-C, and urine albumin/creatinine ratio, renal content of podocin and klotho were decreased. Tumour necrosis factor-α, interleukin-6, interleukin-1β, Wnt1, active β-catenin/total β-catenin ratio and fibronectin along with mRNA expression of RENIN, ACE and AT1 were increased in renal tissues. Treatment with either PA or LOS ameliorated all DOX-induced changes. The combined treatment was more effective in improving all changes than monotherapy. CONCLUSIONS These results suggest a new therapeutic benefit of PA in ameliorating CKD in rats through its up-regulatory effect on renal klotho thereby preventing Wnt/β-catenin reactivation and RAS gene expression. PA/LOS combination provided an additional inhibition of Wnt/β-catenin signalling and its downstream targets.
Collapse
Affiliation(s)
- Nahla N Younis
- Biochemistry Department, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Hoda E Mohamed
- Biochemistry Department, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Mohamed A Shaheen
- Histology and Cell Biology Department, Faculty of Human Medicine, Zagazig University, Zagazig, Egypt
| | - Asmaa M Abdelghafour
- Biochemistry Department, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Sally K Hammad
- Biochemistry Department, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| |
Collapse
|
18
|
Sun X, Peng Y, Zhao J, Xie Z, Lei X, Tang G. Discovery and development of tumor glycolysis rate-limiting enzyme inhibitors. Bioorg Chem 2021; 112:104891. [PMID: 33940446 DOI: 10.1016/j.bioorg.2021.104891] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/02/2021] [Accepted: 04/03/2021] [Indexed: 12/13/2022]
Abstract
Tumor cells mainly provide necessary energy and substances for rapid cell growth through aerobic perglycolysis rather than oxidative phosphorylation. This phenomenon is called the "Warburg effect". The mechanism of glycolysis in tumor cells is more complicated, which is caused by the comprehensive regulation of multiple factors. Abnormal enzyme metabolism is one of the main influencing factors and inhibiting the three main rate-limiting enzymes in glycolysis is thought to be important strategy for cancer treatment. Therefore, numerous inhibitors of glycolysis rate-limiting enzyme have been developed in recent years, such as the latest HKII inhibitor and PKM2 inhibitor Pachymic acid (PA) and N-(4-(3-(3-(methylamino)-3-oxopropyl)-5-(4'-(trifluoromethyl)-[1,1'-biphenyl]-4-yl)-1H-pyrazol-1-yl)phenyl)propiolamide. The review focuses on source, structure-activity relationship, bioecological activity and mechanism of the three main rate-limiting enzymes inhibitors, and hopes to guide the future research on the design and synthesis of rate-limiting enzyme inhibitors.
Collapse
Affiliation(s)
- Xueyan Sun
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang City, PR China
| | - Yijiao Peng
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang City, PR China
| | - Jingduo Zhao
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang City, PR China
| | - Zhizhong Xie
- Hunan Provincial Key Laboratory of tumor microenvironment responsive drug research, Hengyang City, Hunan Province, PR China
| | - Xiaoyong Lei
- Hunan Provincial Key Laboratory of tumor microenvironment responsive drug research, Hengyang City, Hunan Province, PR China
| | - Guotao Tang
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang City, PR China; Hunan Provincial Key Laboratory of tumor microenvironment responsive drug research, Hengyang City, Hunan Province, PR China.
| |
Collapse
|
19
|
Jiang Y, Fan L. The effect of Poria cocos ethanol extract on the intestinal barrier function and intestinal microbiota in mice with breast cancer. JOURNAL OF ETHNOPHARMACOLOGY 2021; 266:113456. [PMID: 33039631 DOI: 10.1016/j.jep.2020.113456] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 09/14/2020] [Accepted: 10/03/2020] [Indexed: 05/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Poria cocos Wolf has been used in traditional East-Asian medicine for centuries to effectively treat various gastrointestinal disorders such as diarrhea for its tonic, anti-fungal and anti-bacterial activities. Previous studies have revealed that the tumor development would induce intestinal microbiota dysbiosis and intestinal barrier dysfunction to the patients with breast cancer. AIM OF STUDY To investigate the effect and the mechanism of ethanol extract of Poria cocos (PC) on intestinal barrier function and intestinal microbiota in the mice with breast cancer. MATERIALS AND METHODS Thirty-six female BALB/c mice were randomly divided into four groups (the normal control, model, PC and positive control group). Intestinal histopathological was evaluated by H&E staining. The difference of the intestinal microbiota in each group was studied by 16S rDNA high-throughput sequencing. The level of plasma endotoxin, D -lactic acid (D-LA) and diamine oxidase (DAO) were measured by ELISA. The putrescine content in serum and urine were detected by HPLC. Expression of the tight junction (TJ) proteins, phosphorylated p38 MAPK and ERK1/2 were determined by western blotting. RESULTS Our results showed that tumor development prominently induced the intestinal damage and microbiome dysbiosis in mice. PC prominently remit such histologic damage through enhancing the expression of TJ proteins and decreasing the levels of DAO, D-LA and endotoxin via upregulating the expression of phosphorylated ERK1/2 and p38 MAPK. Furthermore, PC increased the diversity of the intestinal microbiota and strikingly changed the structure and composition of the gut microbiota in the mice by increasing the beneficial bacteria Lactobacillus, Bifidobacterium, and decreasing the sulfate-reducing bacteria Desulfovibrio and inflammatory associated bacteria Mucispirillum, S24-7 and Staphylococcus. Moreover, PICRUSt analysis and the putrescine detection might indicate that PC might be involved in the putrescine metabolism in the mice. Correlation analysis indicated that Prevotella, Rikenellaceae and Bacteroidetes were significantly correlated with Claudin-8 and p38-MAPK expression (p < 0.05). CONCLUSION PC could improve the dysbacteriosis and repair the intestinal barrier function in the mice with breast cancer. This study provide more data to support the application of PC in breast cancer treatment.
Collapse
Affiliation(s)
- Yu Jiang
- State Key Laboratory of Food Science & Technology, Jiangnan University, Wuxi, 214122, China
| | - Liuping Fan
- State Key Laboratory of Food Science & Technology, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
20
|
Peng Z, Chang Y, Fan J, Ji W, Su C. Phospholipase A2 superfamily in cancer. Cancer Lett 2020; 497:165-177. [PMID: 33080311 DOI: 10.1016/j.canlet.2020.10.021] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 10/11/2020] [Accepted: 10/14/2020] [Indexed: 12/12/2022]
Abstract
Phospholipase A2 enzymes (PLA2s) comprise a superfamily that is generally divided into six subfamilies known as cytosolic PLA2s (cPLA2s), calcium-independent PLA2s (iPLA2s), secreted PLA2s (sPLA2s), lysosomal PLA2s, platelet-activating factor (PAF) acetylhydrolases, and adipose specific PLA2s. Each subfamily consists of several isozymes that possess PLA2 activity. The first three PLA2 subfamilies play important roles in inflammation-related diseases and cancer. In this review, the roles of well-studied enzymes sPLA2-IIA, cPLA2α and iPLA2β in carcinogenesis and cancer development were discussed. sPLA2-IIA seems to play conflicting roles and can act as a tumor suppressor or a tumor promoter according to the cancer type, but cPLA2α and iPLA2β play protumorigenic role in most cancers. The mechanisms of PLA2-mediated signal transduction and crosstalk between cancer cells and endothelial cells in the tumor microenvironment are described. Moreover, the mechanisms by which PLA2s mediate lipid reprogramming and glycerophospholipid remodeling in cancer cells are illustrated. PLA2s as the upstream regulators of the arachidonic acid cascade are generally high expressed and activated in various cancers. Therefore, they can be considered as potential pharmacological targets and biomarkers in cancer. The detailed information summarized in this review may aid in understanding the roles of PLA2s in cancer, and provide new clues for the development of novel agents and strategies for tumor prevention and treatment.
Collapse
Affiliation(s)
- Zhangxiao Peng
- Department of Molecular Oncology, Eastern Hepatobiliary Surgical Hospital & National Center for Liver Cancer, Navy Military Medical University, Shanghai, 200438, China.
| | - Yanxin Chang
- Department of Biliary Tract Surgery IV, Eastern Hepatobiliary Surgical Hospital, Navy Military Medical University, Shanghai, 200438, China.
| | - Jianhui Fan
- Mengchao Hepatobiliary Hospital, Fujian Medical University, Fuzhou, 350025, Fujian Province, China.
| | - Weidan Ji
- Department of Molecular Oncology, Eastern Hepatobiliary Surgical Hospital & National Center for Liver Cancer, Navy Military Medical University, Shanghai, 200438, China.
| | - Changqing Su
- Department of Molecular Oncology, Eastern Hepatobiliary Surgical Hospital & National Center for Liver Cancer, Navy Military Medical University, Shanghai, 200438, China.
| |
Collapse
|
21
|
Jiang Y, Fan L. Evaluation of anticancer activities of Poria cocos ethanol extract in breast cancer: In vivo and in vitro, identification and mechanism. JOURNAL OF ETHNOPHARMACOLOGY 2020; 257:112851. [PMID: 32283190 DOI: 10.1016/j.jep.2020.112851] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 03/30/2020] [Accepted: 04/04/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Poria cocos Wolf (P. cocos), a well-known traditional East-Asian medicinal and edible fungus, is one of the most important components in Chinese medicine formulas like "Guizhi fuling wan" to treat hyperplasia of mammary glands and breast cancer. AIMING OF STUDY In this study, we attempted to verify the anticancer efficacy of the ethanol extract of P. cocos (PC) on the breast cancer as well as to investigate its most active compound and its underlying molecular mechanism in vivo and in vitro. MATERIALS AND METHODS The key anti-cancer components were separated and purified through chromatography and identified by spectral analyses. The in vivo anti-breast cancer efficacy and side effects of PC were evaluated in BALB/c nude mice that have been subcutaneously injected with breast cancer cells MDA-MB-231. Cytotoxicity, apoptosis and cell cycle arrest of PC were evaluated in vitro by cell viability assays and flow cytometry. The protein levels were examined via western blotting. RESULTS Pachymic acid (PA), separated and identified as the most active compound, induced the significant cytotoxicity on breast cancer cells MDA-MB-231(IC50 value, 2.13 ± 0.24 μg/mL) and was not active against the normal breast epithelium cells MCF-10A. The in vivo experiment revealed that PC could significantly inhibit the tumor development and the final mean tumor weight of the mice in the PC group (0.51 ± 0.12g) was significantly lower than that in the model group (1.22 ± 0.45g). Notably, compared to the first-line anticancer drug cisplatin, PC showed less side effects on the function of the vital organs and the muscle strength of the mice. Among in vitro study, PC significantly inhibited the cell growth of MDA-MB-231 by inducing cell apoptosis and cell cycle arrested at G0/G1 phase in a dose-dependent manner. The expression of cell cycle-associated cyclin D1, cyclin E, CDK2, and CDK4 were downregulated, while p53 and p21 expression were upregulated following the PA treatment. In addition, PA downregulated the apoptotic regulator Bcl-2, increased the expression of pro-apoptotic protein Bax, and promoted the release of cytochrome c and the activation of cleaved caspase-3, -9 and caspase -8 via mitochondria-mediated and death receptor-mediated signaling pathways. CONCLUSION This study verified the anticancer efficacy of PC on breast cancer in vivo and in vitro through induction of cell apoptosis and G0/G1 cell cycle arrest. The data also suggested that PA could be developed as an efficacious agent for breast cancer treatment with less side effects.
Collapse
Affiliation(s)
- Yu Jiang
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Liuping Fan
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
22
|
Oh J, Yoon DH, Han JG, Choi HK, Sung GH. 1H NMR based metabolite profiling for optimizing the ethanol extraction of Wolfiporia cocos. Saudi J Biol Sci 2018; 25:1128-1134. [PMID: 30174512 PMCID: PMC6117373 DOI: 10.1016/j.sjbs.2018.04.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 04/02/2018] [Accepted: 04/04/2018] [Indexed: 02/06/2023] Open
Abstract
Metabolite profiling of Wolfiporia cocos (family: Polyporaceae) had been much advancement in recent days, and its analysis by nuclear magnetic resonance (NMR) spectroscopy has become well established. However, the highly important trait of W. cocos still needs advanced protocols despite some standardization. Partial least squares discriminant analysis (PLS-DA) was used as the multivariate statistical analysis of the 1H NMR data set. The PLS-DA model was validated, and the key metabolites contributing to the separation in the score plots of different ethanol W. cocos extract. 1H NMR spectroscopy of W. cocos identified 33 chemically diverse metabolites in D2O, consisting of 13 amino acids, 11 organic acids 2 sugars, 3 sugar alcohols, 1 nucleoside, and 3 others. Among these metabolites, the levels of tyrosine, proline, methionine, sarcosine, choline, acetoacetate, citrate, 4-aminobutyrate, aspartate, maltose, malate, lysine, xylitol, lactate threonine, leucine, valine, isoleucine, uridine, guanidoacetate, arabitol, mannitol, glucose, and betaine were increased in the 95% ethanol extraction sample compared with the levels in other samples, whereas level of acetate, phenylalanine, alanine, succinate, and fumarate were significantly increased in the 0% ethanol extraction sample. A biological triterpenoid, namely pachymic acid, was detected from different ethanol P. cocos extract using 1H-NMR spectra were found in CDCl3. This is the first report to perform the metabolomics profiling of different ethanol W. cocos extract. These researches suggest that W. cocos can be used to obtain substantial amounts of bioactive ingredients for use as potential pharmacological and nutraceuticals agents.
Collapse
Affiliation(s)
- Junsang Oh
- Institute for Healthcare and Life Science, International St. Mary’s Hospital and College of Medicine, Catholic Kwandong University, Incheon 22711, Republic of Korea
- College of Pharmacy, Chung-Ang University, Republic of Korea
| | - Deok-Hyo Yoon
- Institute for Healthcare and Life Science, International St. Mary’s Hospital and College of Medicine, Catholic Kwandong University, Incheon 22711, Republic of Korea
| | - Jae-Gu Han
- Mushroom Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Republic of Korea
| | - Hyung-Kyoon Choi
- College of Pharmacy, Chung-Ang University, Republic of Korea
- Corresponding authors at: Institute for Healthcare and Life Science, International St. Mary’s Hospital and College of Medicine, Catholic Kwandong University, Incheon 22711, Republic of Korea (G.-H. Sung); College of Pharmacy, Chung-Ang University, Republic of Korea (H.-K. Choi)
| | - Gi-Ho Sung
- Institute for Healthcare and Life Science, International St. Mary’s Hospital and College of Medicine, Catholic Kwandong University, Incheon 22711, Republic of Korea
- Department of Microbiology, College of Medicine, Catholic Kwandong University, Republic of Korea
- Corresponding authors at: Institute for Healthcare and Life Science, International St. Mary’s Hospital and College of Medicine, Catholic Kwandong University, Incheon 22711, Republic of Korea (G.-H. Sung); College of Pharmacy, Chung-Ang University, Republic of Korea (H.-K. Choi)
| |
Collapse
|
23
|
The anti-tumor effect of pachymic acid on osteosarcoma cells by inducing PTEN and Caspase 3/7-dependent apoptosis. J Nat Med 2017; 72:57-63. [DOI: 10.1007/s11418-017-1117-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 06/21/2017] [Indexed: 10/19/2022]
|
24
|
Zhang YH, Zhang Y, Li XY, Feng XD, Jian W, Li RQ. Antitumor activity of the pachymic acid in nasopharyngeal carcinoma cells. Ultrastruct Pathol 2017; 41:245-251. [PMID: 28414554 DOI: 10.1080/01913123.2017.1296522] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Yan-Hua Zhang
- Department of Radiation Oncology, The First Affiliated Hospital of Kunming Medical University, Kunming, P.R. China
| | - Yong Zhang
- Department of Radiation Oncology, The First Affiliated Hospital of Kunming Medical University, Kunming, P.R. China
| | - Xiu-Ying Li
- Department of Radiation Oncology, The First Affiliated Hospital of Kunming Medical University, Kunming, P.R. China
| | - Xu-Dong Feng
- Department of Radiation Oncology, The First Affiliated Hospital of Kunming Medical University, Kunming, P.R. China
| | - Wei Jian
- Department of Radiation Oncology, The First Affiliated Hospital of Kunming Medical University, Kunming, P.R. China
| | - Rong-Qing Li
- Department of Radiation Oncology, The First Affiliated Hospital of Kunming Medical University, Kunming, P.R. China
| |
Collapse
|
25
|
Secondary Metabolites from Higher Fungi. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 106 2017; 106:1-201. [DOI: 10.1007/978-3-319-59542-9_1] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
26
|
Lai KH, Lu MC, Du YC, El-Shazly M, Wu TY, Hsu YM, Henz A, Yang JC, Backlund A, Chang FR, Wu YC. Cytotoxic Lanostanoids from Poria cocos. JOURNAL OF NATURAL PRODUCTS 2016; 79:2805-2813. [PMID: 27808511 DOI: 10.1021/acs.jnatprod.6b00575] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Six new and 16 known lanostanoids were isolated from the sclerotia of Poria cocos. The structures of the new isolates were elucidated to be 16α-hydroxy-3-oxo-24-methyllanosta-5,7,9(11),24(31)-tetraen-21-oic acid (1), 3β,16α,29-trihydroxy-24-methyllanosta-7,9(11),24(31)-trien-21-oic acid (2), 3β,16α,30-trihydroxy-24-methyllanosta-7,9(11),24(31)-trien-21-oic acid (3), 3β-acetoxy-16α,24β-dihydroxylanosta-7,9(11),25-trien-21-oic acid (4), 3β,16α-dihydroxy-7-oxo-24-methyllanosta-8,24(31)-dien-21-oic acid (5), and 3α,16α-dihydroxy-7-oxo-24-methyllanosta-8,24(31)-dien-21-oic acid (6), based on extensive spectroscopic analyses. The absolute configuration of 4 was determined using Mosher's method. The antiproliferative activity of the isolated compounds (except 3 and 4) was evaluated against four leukemic cell lines (Molt 4, CCRF-CEM, HL 60, and K562). Dehydropachymic acid (9), dehydroeburicoic acid (12), pachymic acid (14), and lanosta-7,9(11),24-trien-21-oic acid (20) exhibited an antiproliferative effect on the CCRF-CEM cancer cell line with IC50 values of 2.7, 6.3, 4.9, and 13.1 μM, respectively. Both dehydropachymic acid (9) and dehydroeburicoic acid (12) showed antiproliferative effects against Molt 4 (IC50 13.8 and 14.3 μM) and HL 60 (IC50 7.3 and 6.0 μM) leukemic cell lines. Primary computational analysis using a chemical global positioning system for natural products (ChemGPS-NP) on the active lanostanoids from P. cocos suggested that targets other than topoisomerases may be involved in the antiproliferative activity.
Collapse
Affiliation(s)
- Kuei-Hung Lai
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University , Kaohsiung 807, Taiwan
- Division of Pharmacognosy, Department of Medicinal Chemistry, Uppsala University , Uppsala, Sweden
| | - Mei-Chin Lu
- Graduate Institute of Marine Biology, National Dong Hwa University , Pingtung 944, Taiwan
- National Museum of Marine Biology & Aquarium , Pingtung 944, Taiwan
| | - Ying-Chi Du
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University , Kaohsiung 807, Taiwan
| | - Mohamed El-Shazly
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University , Kaohsiung 807, Taiwan
- Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, Ain-Shams University , Organization of African Unity Street, Abassia, Cairo 11566, Egypt
| | - Tung-Ying Wu
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University , Kaohsiung 807, Taiwan
| | - Yu-Ming Hsu
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University , Kaohsiung 807, Taiwan
| | - Astrid Henz
- Division of Pharmacognosy, Department of Medicinal Chemistry, Uppsala University , Uppsala, Sweden
| | - Juan-Cheng Yang
- School of Pharmacy, College of Pharmacy, China Medical University , Taichung 40402, Taiwan
- Chinese Medicine Research and Development Center, China Medical University Hospital , Taichung 40447, Taiwan
| | - Anders Backlund
- Division of Pharmacognosy, Department of Medicinal Chemistry, Uppsala University , Uppsala, Sweden
| | - Fang-Rong Chang
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University , Kaohsiung 807, Taiwan
- Cancer Center, Kaohsiung Medical University Hospital , Kaohsiung 80708, Taiwan
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University , Kaohsiung 80424, Taiwan
| | - Yang-Chang Wu
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University , Kaohsiung 807, Taiwan
- School of Pharmacy, College of Pharmacy, China Medical University , Taichung 40402, Taiwan
- Chinese Medicine Research and Development Center, China Medical University Hospital , Taichung 40447, Taiwan
- Center for Molecular Medicine, China Medical University Hospital , Taichung 40447, Taiwan
| |
Collapse
|
27
|
An ethanol extract of Poria cocos inhibits the proliferation of non-small cell lung cancer A549 cells via the mitochondria-mediated caspase activation pathway. J Funct Foods 2016. [DOI: 10.1016/j.jff.2016.03.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
|
28
|
Jiang WG, Sanders AJ, Katoh M, Ungefroren H, Gieseler F, Prince M, Thompson SK, Zollo M, Spano D, Dhawan P, Sliva D, Subbarayan PR, Sarkar M, Honoki K, Fujii H, Georgakilas AG, Amedei A, Niccolai E, Amin A, Ashraf SS, Ye L, Helferich WG, Yang X, Boosani CS, Guha G, Ciriolo MR, Aquilano K, Chen S, Azmi AS, Keith WN, Bilsland A, Bhakta D, Halicka D, Nowsheen S, Pantano F, Santini D. Tissue invasion and metastasis: Molecular, biological and clinical perspectives. Semin Cancer Biol 2015; 35 Suppl:S244-S275. [PMID: 25865774 DOI: 10.1016/j.semcancer.2015.03.008] [Citation(s) in RCA: 351] [Impact Index Per Article: 35.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 03/17/2015] [Accepted: 03/18/2015] [Indexed: 12/12/2022]
Abstract
Cancer is a key health issue across the world, causing substantial patient morbidity and mortality. Patient prognosis is tightly linked with metastatic dissemination of the disease to distant sites, with metastatic diseases accounting for a vast percentage of cancer patient mortality. While advances in this area have been made, the process of cancer metastasis and the factors governing cancer spread and establishment at secondary locations is still poorly understood. The current article summarizes recent progress in this area of research, both in the understanding of the underlying biological processes and in the therapeutic strategies for the management of metastasis. This review lists the disruption of E-cadherin and tight junctions, key signaling pathways, including urokinase type plasminogen activator (uPA), phosphatidylinositol 3-kinase/v-akt murine thymoma viral oncogene (PI3K/AKT), focal adhesion kinase (FAK), β-catenin/zinc finger E-box binding homeobox 1 (ZEB-1) and transforming growth factor beta (TGF-β), together with inactivation of activator protein-1 (AP-1) and suppression of matrix metalloproteinase-9 (MMP-9) activity as key targets and the use of phytochemicals, or natural products, such as those from Agaricus blazei, Albatrellus confluens, Cordyceps militaris, Ganoderma lucidum, Poria cocos and Silybum marianum, together with diet derived fatty acids gamma linolenic acid (GLA) and eicosapentanoic acid (EPA) and inhibitory compounds as useful approaches to target tissue invasion and metastasis as well as other hallmark areas of cancer. Together, these strategies could represent new, inexpensive, low toxicity strategies to aid in the management of cancer metastasis as well as having holistic effects against other cancer hallmarks.
Collapse
Affiliation(s)
- W G Jiang
- Cardiff University, Cardiff, United Kingdom.
| | | | - M Katoh
- National Cancer Center, Tokyo, Japan
| | - H Ungefroren
- University Hospital Schleswig-Holstein, Lübeck, Germany
| | - F Gieseler
- University Hospital Schleswig-Holstein, Lübeck, Germany
| | - M Prince
- University of Michigan, Ann Arbor, MI, USA
| | | | - M Zollo
- Department of Molecular Medicine and Medical Biotechnology (DMMBM), University of Naples Federico II, Naples, Italy; CEINGE Biotecnologie Avanzate, Naples, Italy
| | - D Spano
- CEINGE Biotecnologie Avanzate, Naples, Italy
| | - P Dhawan
- University of Nebraska Medical Center, Omaha, USA
| | - D Sliva
- Purdue Research Park, Indianapolis, IN, USA
| | | | - M Sarkar
- University of Miami, Miami, FL, USA
| | - K Honoki
- Nara Medical University, Kashihara, Japan
| | - H Fujii
- Nara Medical University, Kashihara, Japan
| | - A G Georgakilas
- Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens (NTUA), Athens, Greece
| | - A Amedei
- University of Florence, Florence, Italy
| | | | - A Amin
- United Arab Emirates University, Al Ain, United Arab Emirates and Faculty of Science, Cairo University, Egypt
| | - S S Ashraf
- United Arab Emirates University, Al Ain, United Arab Emirates and Faculty of Science, Cairo University, Egypt
| | - L Ye
- Cardiff University, Cardiff, United Kingdom
| | - W G Helferich
- University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - X Yang
- University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | | | - G Guha
- SASTRA University, Thanjavur, India
| | | | - K Aquilano
- University of Rome Tor Vergata, Rome, Italy
| | - S Chen
- Ovarian and Prostate Cancer Research Trust Laboratory, Surrey, United Kingdom
| | - A S Azmi
- Wayne State University, Detroit, MI, USA
| | - W N Keith
- University of Glasgow, Glasgow, United Kingdom
| | - A Bilsland
- University of Glasgow, Glasgow, United Kingdom
| | - D Bhakta
- SASTRA University, Thanjavur, India
| | - D Halicka
- New York Medical College, Valhalla, NY, USA
| | - S Nowsheen
- Mayo Clinic College of Medicine, Rochester, MN, USA
| | - F Pantano
- University Campus Bio-Medico, Rome, Italy
| | - D Santini
- University Campus Bio-Medico, Rome, Italy
| |
Collapse
|
29
|
Pachymic acid induces apoptosis via activating ROS-dependent JNK and ER stress pathways in lung cancer cells. Cancer Cell Int 2015; 15:78. [PMID: 26244039 PMCID: PMC4524283 DOI: 10.1186/s12935-015-0230-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Accepted: 07/21/2015] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Pachymic acid (PA), a lanostane-type triterpenoid from Poria cocos, has been reported to possess anti-emetic, anti-inflammatory, and anti-cancer properties. Nonetheless, the anti-tumor effect of PA in lung cancer cells remains unclear. Herein, we report the chemotherapeutic effects and underlying mechanisms of PA against human lung cancer. METHODS The anti-proliferative ability of PA on lung cancer cells was assessed by MTT, colony formation and EdU proliferation assays. Flow cytometric analysis was used to detect cell cycle changes. Apoptosis was determined by annexin V/PI double-staining and the DNA ladder formation assays. The expressions of the apoptosis-related proteins were analysed by western blot. The in vivo efficacy of PA was measured using a NCI-H23 xenograft model in nude mice. RESULTS PA exhibited anti-tumor effects in vitro accompanied by induction of G2/M phase arrest and apoptosis in NCI-H23 and NCI-H460 lung cancer cells. Mechanistically, our data showed that PA induced reactive oxygen species (ROS) production, resulting in the activation of both c-Jun N-terminal kinase (JNK) and endoplasmic reticulum (ER) stress apoptotic pathways in lung cancer cells. Moreover, blockage of ROS production reversed PA-induced JNK and ER stress activation. Finally, PA inhibited the growth of NCI-H23 xenograft tumors without causing any host toxicity, and inhibited cell proliferation and induction of apoptosis of tumor cells in tumor xenograft tissues. CONCLUSIONS In summary, our study demonstrates that PA induces apoptosis through activation of the JNK and ER stress pathways in human lung cancer cells. Our findings provide a rationale for the potential application of PA in lung cancer therapy.
Collapse
|
30
|
Xu JD, Wu J, Zhou SS, Shen H, Mao Q, Zhu H, Kong M, Li SL. High performance liquid chromatography–electrospray ionization-mass spectrometry with programmed ionization mode switching and time segment scanning approach for quantifying multi-components in traditional complex herbal medicines, Qiong-Yu-Gao as an example. J Pharm Biomed Anal 2015; 112:139-46. [DOI: 10.1016/j.jpba.2015.04.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Revised: 01/27/2015] [Accepted: 04/09/2015] [Indexed: 11/30/2022]
|
31
|
Synthesis, biological activity screening and molecular modeling study of acylaminoacetamide derivatives. Med Chem Res 2015. [DOI: 10.1007/s00044-015-1419-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
32
|
LI FANGFANG, YUAN YUAN, LIU YUAN, WU QINGQING, JIAO RONG, YANG ZHENG, ZHOU MENGQIAO, TANG QIZHU. Pachymic acid protects H9c2 cardiomyocytes from lipopolysaccharide-induced inflammation and apoptosis by inhibiting the extracellular signal-regulated kinase 1/2 and p38 pathways. Mol Med Rep 2015; 12:2807-13. [DOI: 10.3892/mmr.2015.3712] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2014] [Accepted: 02/06/2015] [Indexed: 11/05/2022] Open
|
33
|
Cheng S, Swanson K, Eliaz I, McClintick JN, Sandusky GE, Sliva D. Pachymic acid inhibits growth and induces apoptosis of pancreatic cancer in vitro and in vivo by targeting ER stress. PLoS One 2015; 10:e0122270. [PMID: 25915041 PMCID: PMC4411097 DOI: 10.1371/journal.pone.0122270] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 02/12/2015] [Indexed: 12/17/2022] Open
Abstract
Pachymic acid (PA) is a purified triterpene extracted from medicinal fungus Poria cocos. In this paper, we investigated the anticancer effect of PA on human chemotherapy resistant pancreatic cancer. PA triggered apoptosis in gemcitabine-resistant pancreatic cancer cells PANC-1 and MIA PaCa-2. Comparative gene expression array analysis demonstrated that endoplasmic reticulum (ER) stress was induced by PA through activation of heat shock response and unfolded protein response related genes. Induced ER stress was confirmed by increasing expression of XBP-1s, ATF4, Hsp70, CHOP and phospho-eIF2α. Moreover, ER stress inhibitor tauroursodeoxycholic acid (TUDCA) blocked PA induced apoptosis. In addition, 25 mg kg-1 of PA significantly suppressed MIA PaCa-2 tumor growth in vivo without toxicity, which correlated with induction of apoptosis and expression of ER stress related proteins in tumor tissues. Taken together, growth inhibition and induction of apoptosis by PA in gemcitabine-resistant pancreatic cancer cells were associated with ER stress activation both in vitro and in vivo. PA may be potentially exploited for the use in treatment of chemotherapy resistant pancreatic cancer.
Collapse
Affiliation(s)
- Shujie Cheng
- Cancer Research Laboratory, Methodist Research Institute, Indiana University Health, Indianapolis, Indiana, United States of America
| | - Kristen Swanson
- Cancer Research Laboratory, Methodist Research Institute, Indiana University Health, Indianapolis, Indiana, United States of America
| | - Isaac Eliaz
- Amitabha Medical Clinic and Healing Center, Santa Rosa, California, United States of America
| | - Jeanette N. McClintick
- Departments of Biochemistry and Molecular Biology, School of Medicine, Indiana University, Indianapolis, Indiana, United States of America
| | - George E. Sandusky
- Departments of Pathology, School of Medicine, Indiana University, Indianapolis, Indiana, United States of America
| | - Daniel Sliva
- Cancer Research Laboratory, Methodist Research Institute, Indiana University Health, Indianapolis, Indiana, United States of America
- Departments of Medicine, School of Medicine, Indiana University, Indianapolis, Indiana, United States of America
- DSTest Laboratories, Purdue Research Park, Indianapolis, Indiana, United States of America
| |
Collapse
|
34
|
de Oliveira AM, de Araújo AF, Lyra Lemos RP, Conserva LM, de Souza Ferro JN, Barreto E. Antinociceptive and anti-inflammatory activity of the siaresinolic acid, a triterpene isolated from the leaves of Sabicea grisea Cham. & Schltdl. var. grisea. J Nat Med 2015; 69:232-40. [DOI: 10.1007/s11418-014-0883-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 12/25/2014] [Indexed: 10/24/2022]
|
35
|
Lung myofibroblasts are characterized by down-regulated cyclooxygenase-2 and its main metabolite, prostaglandin E2. PLoS One 2013; 8:e65445. [PMID: 23755232 PMCID: PMC3670886 DOI: 10.1371/journal.pone.0065445] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 04/24/2013] [Indexed: 12/18/2022] Open
Abstract
Background Prostaglandin E2 (PGE2), the main metabolite of cyclooxygenase (COX), is a well-known anti-fibrotic agent. Moreover, myofibroblasts expressing α-smooth muscle actin (α-SMA), fibroblast expansion and epithelial-mesenchymal transition (EMT) are critical to the pathogenesis of idiopathic pulmonary fibrosis (IPF). Our aim was to investigate the expression of COX-2 and PGE2 in human lung myofibroblasts and establish whether fibroblast-myofibroblast transition (FMT) and EMT are associated with COX-2 and PGE2 down-regulation. Methods Fibroblasts obtained from IPF patients (n = 6) and patients undergoing spontaneous pneumothorax (control, n = 6) and alveolar epithelial cell line A549 were incubated with TGF-β1 and FMT and EMT markers were evaluated. COX-2 and α-SMA expression, PGE2 secretion and cell proliferation were measured after IL-1β and PGE2 incubation. Results Myofibroblasts from both control and IPF fibroblast cultures stimulated with IL-1β showed no COX-2 expression. IPF fibroblasts showed increased myofibroblast population and reduced COX-2 expression in response to IL-1β. TGF-β1 increased the number of myofibroblasts in a time-dependent manner. In contrast, TGF-β1 induced slight COX-2 expression at 4 h (without increase in myofibroblasts) and 24 h, but not at 72 h. Both IPF and control cultures incubated with TGF-β1 for 72 h showed diminished COX-2 induction, PGE2 secretion and α-SMA expression after IL-1β addition. The latter decreased proliferation in fibroblasts but not in myofibroblasts. A549 cells incubated with TGF-β1 for 72 h showed down-regulated COX-2 expression and low basal PGE2 secretion in response to IL-1β. Immuno-histochemical analysis of IPF lung tissue showed no COX-2 immuno-reactivity in myofibroblast foci. Conclusions Myofibroblasts are associated with COX-2 down-regulation and reduced PGE2 production, which could be crucial in IPF development and progression.
Collapse
|
36
|
Cheng S, Eliaz I, Lin J, Thyagarajan-Sahu A, Sliva D. Triterpenes from Poria cocos suppress growth and invasiveness of pancreatic cancer cells through the downregulation of MMP-7. Int J Oncol 2013; 42:1869-74. [PMID: 23588713 PMCID: PMC3699575 DOI: 10.3892/ijo.2013.1902] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Accepted: 03/12/2013] [Indexed: 12/13/2022] Open
Abstract
Poria cocos is a medicinal mushroom that is widely used in traditional Asian medicine. Here, we show that a characterized mixture of triterpenes extracted from P. cocos (PTE) and three purified triterpenes: pachymic acid (PA), dehydropachymic acid (DPA) and polyporenic acid C (PPAC) suppress the proliferation of the human pancreatic cancer cell lines Panc-1, MiaPaca-2, AsPc-1 and BxPc-3. Moreover, the most effective compound, PA, only slightly affects the proliferation of HPDE-6 normal pancreatic duct epithelial cells. The anti-proliferative effects of PTE on BxPc-3 cells are mediated by the cell cycle arrest at G0/G1 phase. DNA microarray analysis demonstrated that PTE significantly downregulates the expression of KRAS and matrix metalloproteinase-7 (MMP-7) in BxPc-3 cells. In addition, PTE and PA suppress the invasive behavior of BxPc-3 cells. The inhibition of invasiveness by PTE and PA was associated with the reduction of MMP-7 at the protein level and the role of MMP-7 further confirmed by the gene silencing of MMP-7 which also suppressed the invasiveness of BxPc-3 cells. In conclusion, triterpenes from P. cocos demonstrate anticancer and anti-invasive effects on human pancreatic cancer cells and can be considered as new therapeutic agents in the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Shujie Cheng
- Department of Bioengineering, College of Food Science, South China Agricultural University, Guangzhou, P.R. China
| | | | | | | | | |
Collapse
|
37
|
Ríos JL, Andújar I, Recio MC, Giner RM. Lanostanoids from fungi: a group of potential anticancer compounds. JOURNAL OF NATURAL PRODUCTS 2012; 75:2016-2044. [PMID: 23092389 DOI: 10.1021/np300412h] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Lanostanes are a group of tetracyclic triterpenoids derived from lanosterol. They have relevant biological and pharmacological properties, such as their cytotoxic effects via induction of apoptosis. This review compiles the most relevant lanostanoids studied from 2000 to 2011, principally those isolated from Ganoderma lucidum and other related fungi, such as Poria cocos, Laetiporus sulphureus, Inonotus obliquus, Antrodia camphorata, Daedalea dickinsii, and Elfvingia applanata, which have great potential as anticancer agents because of their cytotoxic or apoptotic effects. The compounds were selected on the basis of their proapoptotic mechanisms, through their ability to modify transcriptional activities via nuclear factors or genes and the activation or inhibition of pro- or antiapoptotic proteins; studies based only on their cytotoxicity were excluded from this review in the absence of complementary studies on their mechanisms of action. A total of 81 compounds from Ganoderma lucidum and other species from this genus are included, as well as 96 compounds isolated from other fungi, principally Poria cocos. Some of these compounds were found to arrest the cell cycle in the G1 phase, increase levels of p53 and Bax, or inhibit the phosphorylation of Erk1/2 or the activation of NF-κB and AP-1. Other lanostanes have inhibitory effects on the growth of androgen prostate carcinoma through increasing the expression of p21, which activates the tumor suppressor protein p53, while other compounds have been shown to selectively inhibit topo II activity without affecting topo I. General considerations concerning the chemical structure-biological activities of these compounds are also discussed.
Collapse
Affiliation(s)
- José-Luis Ríos
- Departament de Farmacologia, Facultat de Farmacia, Universitat de Valencia , Avenida Vicent Andrés Estellés s/n, 46100 Burjassot, Valencia, Spain
| | | | | | | |
Collapse
|
38
|
Huang M, Lu JJ, Huang MQ, Bao JL, Chen XP, Wang YT. Terpenoids: natural products for cancer therapy. Expert Opin Investig Drugs 2012; 21:1801-18. [DOI: 10.1517/13543784.2012.727395] [Citation(s) in RCA: 180] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
39
|
Zhou F, Bi X, Zhang T, Huang J. [Study of the antitumor activity of alveolar macrophages after transfected human INF-γ gene]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2011; 14:452-5. [PMID: 21569654 PMCID: PMC6000334 DOI: 10.3779/j.issn.1009-3419.2011.05.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
背景与目的 活化的肺泡巨噬细胞(alveolar macrophage, AM)具有抗肿瘤功能,γ干扰素(interferon-γ, INF-γ)是巨噬细胞的活化因子之一,其与巨噬细胞体外共同培养可增强巨噬细胞的免疫功能。本研究旨在了解人INF-γ基因体外转染肺癌患者的AM后对其抗肿瘤功能的影响。 方法 经肺泡灌洗获AM,分离纯化,以INF-γ基因转染AM,以RT-PCR方法和ELISA方法检测人INF-γ基因的成功转染;分别检测AM产生TNF-α、NO、IL-1的水平及AM杀伤L1210细胞的活性。 结果 RT-PCR方法和ELISA方法均显示人INF-γ基因已成功转染AM;经人INF-γ基因转染后,肺癌患者AM产生TNF-α、NO、IL-1的水平较对照组明显升高(P < 0.05);AM杀伤L1210细胞的活性较对照组明显增强(P < 0.05)。 结论 INF-γ基因体外转染肺癌患者的AM,能使AM的抗肿瘤活性明显增强。
Collapse
Affiliation(s)
- Fengli Zhou
- Department of Respiratory Medicine, the Third Afiliated Hospital, Zhongshan University, Guangzhou 510630, China.
| | | | | | | |
Collapse
|