1
|
Ahmadi-Hadad A, de Queiroz PCC, Schettini F, Giuliano M. Reawakening the master switches in triple-negative breast cancer: A strategic blueprint for confronting metastasis and chemoresistance via microRNA-200/205: A systematic review. Crit Rev Oncol Hematol 2024; 204:104516. [PMID: 39306311 DOI: 10.1016/j.critrevonc.2024.104516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
Triple-negative breast cancer (TNBC) exhibits a proclivity for early recurrence and development of metastasis. Moreover, drug resistance tends to arise few months following chemotherapeutic regimen with agents such as Doxorubicin, Paclitaxel, Docetaxel, and Cisplatin. miR-200 family and miR-205 are considered key regulators of metastasis by regulating the Epithelial-to-mesenchymal transition (EMT) via inhibiting ZEB1. Therefore, these microRNAs may offer therapeutic applications. Moreover, they hold potential for inhibiting chemoresistance and increasing chemosensitivity. These microRNAs are suppressed in TNBC cells. Increasing their levels, however, can inhibit EMT and improve progression-free survival (PFS). Besides using direct miRNA therapy via viral vectors, some drugs like Acetaminophen, or Tamoxifen are deemed useful for TNBC due to their ability to upregulate these miRNAs. In this review, by conducting an advanced search on PubMed, Embase, and Medline and selecting pertinent studies, we aimed to explore the potential applications of these microRNAs in controlling EMT and overcoming chemoresistance.
Collapse
Affiliation(s)
- Armia Ahmadi-Hadad
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy.
| | | | - Francesco Schettini
- Faculty of Medicine, University of Barcelona, Barcelona, Spain; Department of Medical Oncology, Hospital Clínic of Barcelona, Barcelona, Spain; Translational Genomics and Targeted Therapies in Solid Tumors, August Pi I Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain, University of Barcelona, Barcelona, Spain.
| | - Mario Giuliano
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy.
| |
Collapse
|
2
|
Chen B, Wang L, Li L, Zhou M, Pan S, Wang Q, Hou Y, Zhou X. N 6-methyladenosine facilitates arsenic-induced neoplastic phenotypes of human bronchial epithelial cells by promoting miR-106b-5p maturation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 283:116803. [PMID: 39094460 DOI: 10.1016/j.ecoenv.2024.116803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 06/16/2024] [Accepted: 07/24/2024] [Indexed: 08/04/2024]
Abstract
Arsenic is a widespread carcinogen and an important etiological factor for lung cancer. Dysregulated miRNAs have been implicated in arsenic carcinogenesis and the mechanisms of arsenic-induced dysregulated miRNAs have not been fully elucidated. N6-methyladenosine (m6A) modification is known to modulate pri-miRNA processing. However, whether m6A-mediated pri-miRNA processing is involved in arsenic carcinogenesis is poorly understood. Here, we found that m6A modification was significantly increased in arsenite-transformed human bronchial epithelial BEAS-2B cells (0.5 µM arsenite, 16 weeks). Meanwhile, METTL3 was significantly upregulated at week 12 and 16 during cell transformation. The proliferation, migration, invasion, and anchorage-independent growth of arsenite-transformed cells were inhibited by the reduction of m6A levels through METTL3 knockdown. Further experiments suggest that the oncogene miR-106b-5p is a potentially essential m6A target mediating arsenic-induced lung cancer. miR-106b-5p was observed to be upregulated after exposure to arsenite for 12 and 16 weeks, and the reduction of m6A levels caused by METTL3 knockdown inhibited miR-106b-5p maturation in arsenite-transformed cells. What's more, miR-106b-5p overexpression successfully rescued METTL3 knockdown-induced inhibition of the neoplastic phenotypes of transformed cells. Additionally, Basonuclin 2 (BNC2) was uncovered as a potential target of miR-106b-5p and downregulated by METTL3 via enhancing miR-106b-5p maturation. Additionally, the METTL3 inhibitor STM2457 suppressed neoplastic phenotypes of arsenite-transformed BEAS-2B cells by blocking pri-miR-106b methylation. These results demonstrate that m6A modification promotes the neoplastic phenotypes of arsenite-transformed BEAS-2B cells through METTL3/miR-106b-5p/BNC2 pathway, providing a new prospective for understanding arsenic carcinogenesis.
Collapse
Affiliation(s)
- Biyun Chen
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei 430030, China
| | - Lujiao Wang
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei 430030, China
| | - Luyao Li
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei 430030, China
| | - Mei Zhou
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei 430030, China
| | - Shuya Pan
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei 430030, China
| | - Qin Wang
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei 430030, China
| | - Yaxuan Hou
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei 430030, China
| | - Xue Zhou
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei 430030, China.
| |
Collapse
|
3
|
Howe CG, Armstrong DA, Muse ME, Gilbert-Diamond D, Gui J, Hoen AG, Palys TJ, Barnaby RL, Stanton BA, Jackson BP, Christensen BC, Karagas MR. Periconceptional and Prenatal Exposure to Metals and Extracellular Vesicle and Particle miRNAs in Human Milk: A Pilot Study. EXPOSURE AND HEALTH 2023; 15:731-743. [PMID: 38074282 PMCID: PMC10707483 DOI: 10.1007/s12403-022-00520-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 10/17/2022] [Accepted: 10/21/2022] [Indexed: 06/30/2024]
Abstract
Human milk is a rich source of microRNAs (miRNAs), which can be transported by extracellular vesicles and particles (EVPs) and are hypothesized to contribute to maternal-offspring communication and child development. Environmental contaminant impacts on EVP miRNAs in human milk are largely unknown. In a pilot study of 54 mother-child pairs from the New Hampshire Birth Cohort Study, we examined relationships between five metals (arsenic, lead, manganese, mercury, and selenium) measured in maternal toenail clippings, reflecting exposures during the periconceptional and prenatal periods, and EVP miRNA levels in human milk. 798 miRNAs were profiled using the NanoString nCounter platform; 200 miRNAs were widely detectable and retained for downstream analyses. Metal-miRNA associations were evaluated using covariate-adjusted robust linear regression models. Arsenic exposure during the periconceptional and prenatal periods was associated with lower total miRNA content in human milk EVPs (PBonferroni < 0.05). When evaluating miRNAs individually, 13 miRNAs were inversely associated with arsenic exposure, two in the periconceptional period and 11 in the prenatal period (PBonferroni < 0.05). Other metal-miRNA associations were not statistically significant after multiple testing correction (PBonferroni ≥ 0.05). Many of the arsenic-associated miRNAs are involved in lactation and have anti-inflammatory properties in the intestine and tumor suppressive functions in breast cells. Our findings raise the possibility that periconceptional and prenatal arsenic exposure may reduce levels of multiple miRNAs in human milk EVPs. However, larger confirmatory studies, which can apply environmental mixture approaches, evaluate potential effect modifiers of these relationships, and examine possible downstream consequences for maternal and child health and breastfeeding outcomes, are needed.
Collapse
Affiliation(s)
- Caitlin G. Howe
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, 1 Medical Center Dr, Lebanon, NH, USA
| | - David A. Armstrong
- Department of Dermatology, Dartmouth-Hitchcock Medical Center, 1 Medical Center Dr, Lebanon, NH, USA
- Research Service, VA Medical Center, 215 N Main St, White River Junction, VT, USA
| | - Meghan E. Muse
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, 1 Medical Center Dr, Lebanon, NH, USA
| | - Diane Gilbert-Diamond
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, 1 Medical Center Dr, Lebanon, NH, USA
| | - Jiang Gui
- Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, 1 Medical Center Dr, Lebanon, NH, USA
| | - Anne G. Hoen
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, 1 Medical Center Dr, Lebanon, NH, USA
| | - Thomas J. Palys
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, 1 Medical Center Dr, Lebanon, NH, USA
| | - Roxanna L. Barnaby
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, 66 College St, Hanover, NH, USA
| | - Bruce A. Stanton
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, 66 College St, Hanover, NH, USA
| | - Brian P. Jackson
- Department of Earth Sciences, Dartmouth College, 6105 Sherman Fairchild Hall, Hanover, NH, USA
| | - Brock C. Christensen
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, 1 Medical Center Dr, Lebanon, NH, USA
| | - Margaret R. Karagas
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, 1 Medical Center Dr, Lebanon, NH, USA
| |
Collapse
|
4
|
Crosstalk between Methylation and ncRNAs in Breast Cancer: Therapeutic and Diagnostic Implications. Int J Mol Sci 2022; 23:ijms232415759. [PMID: 36555400 PMCID: PMC9779155 DOI: 10.3390/ijms232415759] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/05/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
Breast cancer, as a highly heterogeneous malignant tumor, is one of the primary causes of death among females worldwide. The etiology of breast cancer involves aberrant epigenetic mechanisms and abnormal expression of certain non-coding RNA (ncRNAs). DNA methylation, N6-methyladenosine(m6A), and histone methylation are widely explored epigenetic regulation types in breast cancer. ncRNAs are a group of unique RNA transcripts, mainly including microRNA (miRNAs), long non-coding RNA (lncRNAs), circular RNA (circRNAs), small interfering RNA (siRNAs), piwi-interacting RNA (piRNAs), etc. Different types of methylation and ncRNAs mutually regulate and interact to form intricate networks to mediate precisely breast cancer genesis. In this review, we elaborate on the crosstalk between major methylation modifications and ncRNAs and discuss the role of their interaction in promoting breast cancer oncogenesis. This review can provide novel insights into establishing a new diagnostic marker system on methylation patterns of ncRNAs and therapeutic perspectives of combining ncRNA oligonucleotides and phytochemical drugs for breast cancer therapy.
Collapse
|
5
|
El Omari N, Bakha M, Imtara H, Guaouguaoua FE, Balahbib A, Zengin G, Bouyahya A. Anticancer mechanisms of phytochemical compounds: focusing on epigenetic targets. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:47869-47903. [PMID: 34308524 DOI: 10.1007/s11356-021-15594-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 07/19/2021] [Indexed: 06/13/2023]
Abstract
It has recently been proven that epigenetic dysregulation is importantly involved in cell transformation and therefore induces cancerous diseases. The development of molecules called epidrugs, which target specifically different epigenetic modifications to restore cellular memory and therefore the treatment, became a real challenge currently. Currently, bioactive compounds of medicinal plants as epidrugs have been can identified and explored in cancer therapy. Indeed, these molecules can target specifically different epigenetic modulators including DNMT, HDAC, HAT, and HMT. Moreover, some compounds exhibit stochastic epigenetic actions on different pathways regulating cell memory. In this work, pharmacodynamic actions of natural epidrugs belonging to cannabinoids, carotenoids, chalcones, fatty acids, lignans, polysaccharides, saponins, secoiridoids, steroids, tannins, tanshinones, and other chemical classes we reported and highlighted. In this review, the effects of several natural bioactive compounds of epigenetic medications on cancerous diseases were highlighted. Numerous active molecules belonging to different chemical classes such as cannabinoids, carotenoids, fatty acids, lignans, polysaccharides, saponins, secoiridoids, steroids, tannins, and tanshinones are discussed in this review.
Collapse
Affiliation(s)
- Nasreddine El Omari
- Laboratory of Histology, Embryology, and Cytogenetic, Faculty of Medicine and Pharmacy, Mohammed V University, Rabat, Morocco
| | - Mohamed Bakha
- Biotechnology and Applied Microbiology Team, Department of Biology, Faculty of Science, Abdelmalek Essaadi University, BP2121, 93002, Tetouan, Morocco
| | - Hamada Imtara
- Faculty of Arts and Sciences, Arab American University, Jenin, 240, Palestine
| | | | - Abdelaali Balahbib
- Laboratory of Biodiversity, Ecology, and Genome, Faculty of Sciences, Mohammed V University, Rabat, Morocco
| | - Gokhan Zengin
- Physiology and Biochemistry Research Laboratory, Department of Biology, Science Faculty, Selcuk University, Konya, Turkey.
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, and Genomic Center of Human Pathologies, Mohammed V University, Rabat, Morocco.
| |
Collapse
|
6
|
Wahiduzzaman M, Ota A, Hosokawa Y. Novel Mechanistic Insights into the Anti-cancer Mode of Arsenic Trioxide. Curr Cancer Drug Targets 2021; 20:115-129. [PMID: 31736446 DOI: 10.2174/1568009619666191021122006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 08/23/2019] [Accepted: 09/19/2019] [Indexed: 12/19/2022]
Abstract
Arsenic, a naturally-occurring toxic element, and a traditionally-used drug, has received a great deal of attention worldwide due to its curative anti-cancer properties in patients with acute promyelocytic leukemia. Among the arsenicals, arsenic trioxide has been most widely used as an anti-cancer drug. Recent advances in cancer therapeutics have led to a paradigm shift away from traditional cytotoxic drugs towards the targeting of proteins closely associated with driving the cancer phenotype. Due to the diverse anti-cancer effects of ATO on different types of malignancies, numerous studies have made efforts to uncover the mechanisms of ATO-induced tumor suppression. From in vitro cellular models to studies in clinical settings, ATO has been extensively studied. The outcomes of these studies have opened doors to establishing improved molecular-targeted therapies for cancer treatment. The efficacy of ATO has been augmented by combination with other drugs. In this review, we discuss recent arsenic-based cancer therapies and summarize the novel underlying molecular mechanisms of the anti-cancer effects of ATO.
Collapse
Affiliation(s)
- Md Wahiduzzaman
- Department of Biochemistry, School of Medicine, Aichi Medical University, Nagakute, Aichi 480-1195, Japan
| | - Akinobu Ota
- Department of Biochemistry, School of Medicine, Aichi Medical University, Nagakute, Aichi 480-1195, Japan
| | - Yoshitaka Hosokawa
- Department of Biochemistry, School of Medicine, Aichi Medical University, Nagakute, Aichi 480-1195, Japan
| |
Collapse
|
7
|
Maimaitiyiming Y, Wang QQ, Hsu CH, Naranmandura H. Arsenic induced epigenetic changes and relevance to treatment of acute promyelocytic leukemia and beyond. Toxicol Appl Pharmacol 2020; 406:115212. [PMID: 32882258 DOI: 10.1016/j.taap.2020.115212] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 08/18/2020] [Accepted: 08/22/2020] [Indexed: 12/13/2022]
Abstract
Epigenetic alterations regulate gene expression without changes in the DNA sequence. It is well-demonstrated that aberrant epigenetic changes contribute to the leukemogenesis of acute promyelocytic leukemia (APL). Arsenic trioxide (ATO) is one of the most common drugs used in the frontline treatment of APL that act through targeting and destabilizing the PML/RARα oncofusion protein. ATO together with all-trans retinoic acid (ATRA) lead to durable remission of more than 90% non-high-risk APL patients, turning APL treatment into a paradigm of oncoprotein targeted cure. Although relapse and drug resistance in APL are yet to be resolved in the clinic, epigenetic machineries might hold the key to address this issue. Further, ATO also showed promising anticancer activities against a variety of malignancies, but its application is particularly restricted due to limited understanding of the mechanism. Thus, a thorough understanding of epigenetic mechanism behind anti-leukemic effects of ATO would benefit the development of ATO-based anticancer strategy. Role of ATRA on APL associated epigenetic alterations has been extensively studied and reviewed. Recently, accumulating evidence suggest that ATO also induces some epigenetic changes that might favor APL eradication. In this article, we comprehensively discuss arsenic induced epigenetic changes and its relevance in APL treatment and beyond, so as to provide novel insights into overcoming arsenic resistance in APL and promote application of this drug to other malignancies.
Collapse
Affiliation(s)
- Yasen Maimaitiyiming
- Department of Hematology of First Affiliated Hospital, Department of Public Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Qian Qian Wang
- Department of Hematology of First Affiliated Hospital, Department of Public Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Chih-Hung Hsu
- Department of Public Health, and Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| | - Hua Naranmandura
- Department of Hematology of First Affiliated Hospital, Department of Public Health, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
8
|
Shen Z, Jiao K, Teng M, Li Z. Activation of STAT-3 signalling by RECK downregulation via ROS is involved in the 27-hydroxycholesterol-induced invasion in breast cancer cells. Free Radic Res 2020; 54:126-136. [PMID: 31933392 DOI: 10.1080/10715762.2020.1715965] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Breast cancer is an important and common tumour among women worldwide. We previously showed that 27-hydroxycholesterol (27HC) promoted the invasion and migration of breast cancer cells and activated signal transducer and activator of transcription 3 (STAT-3) signalling through reactive oxygen species (ROS). However, the regulation of STAT-3 signalling by ROS needs to be further explored. Here, we showed that 27HC caused the accumulation of cellular ROS, which upregulated matrix metalloproteinase 9 (MMP9) and increased the invasive ability of MCF7 and T47D cells. 27HC decreased the protein and mRNA levels of reversion-inducing-cysteine-rich protein with Kazal motifs (RECK) in a time- and dose-dependent manner in MCF7 and T47D cells. RECK downregulation was mediated by 27HC-induced DNA methylation via ROS in MCF7 cells. RECK knockdown increased the activity and mRNA levels of MMP9, and promoted the invasion of MCF7 cells. We also found RECK knockdown upregulated the level of p-STAT-3 in MCF7 cells. Furthermore, overexpression of RECK attenuated 27HC-induced invasion in MCF7 cells. RECK overexpression also inhibited p-STAT-3 upregulation induced by 27HC. Collectively, the results showed that DNA methylation induced by 27HC via ROS downregulated RECK, thereby activating the STAT-3 signalling pathway. RECK could serve as a novel target mediating the effect of 27HC on breast cancer.
Collapse
Affiliation(s)
- Zhaoxia Shen
- Department of Child Health, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Kailin Jiao
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Mengying Teng
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Zhong Li
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing, China
| |
Collapse
|
9
|
Wang Y, Jiang F, Jiao K, Ju L, Liu Q, Li Y, Miao L, Li Z. De-methylation of miR-148a by arsenic trioxide enhances sensitivity to chemotherapy via inhibiting the NF-κB pathway and CSC like properties. Exp Cell Res 2020; 386:111739. [PMID: 31759055 DOI: 10.1016/j.yexcr.2019.111739] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 10/22/2019] [Accepted: 11/17/2019] [Indexed: 02/08/2023]
Abstract
Chemo-resistance to conventional therapy is a major barrier requiring further investigation in hepatocellular carcinoma (HCC). Cancer stem like cells (CSCs) contribute to the tumorigenicity, progression, and chemo-resistance of malignancies. Studies have implicated the anti-cancer effects of arsenic trioxide (ATO) and have explored the underlying mechanisms. However, whether ATO might reverse chemo-resistance by inhibiting the CSC like properties remains under investigation. Here, we explored the potential of ATO in chemotherapy in constructed multiple drug resistant (MDR) liver cancer cells. ATO re-sensitized the MDR Bel-7402 cells (BelMDR) cells to chemotherapeutic drugs, an effect mediated by the inhibition of NF-κB pathway and CSCs properties. For the molecular mechanisms, via inducing the DNA de-methylation, ATO activated the microRNA-148a (miR-148a), leading to the repression of NF-κB pathway by targeting the 3'-UTR of p65. In summary, epigenetic regulation of miR-148a by ATO is an important mechanism in drug resistance that decreases the expression of NF-κB and hence represses CSC like phenotype. These findings may suggest a novel mechanism for HCC treatment.
Collapse
Affiliation(s)
- Yuting Wang
- The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China
| | - Fei Jiang
- Department of Occupational and Environmental Health, School of Public Health, Medical College of Soochow University, 199 Renai Road, Suzhou, 215123, China
| | - Kailin Jiao
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Liang Ju
- The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China
| | - Qinqiang Liu
- The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China
| | - Yuan Li
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Lin Miao
- The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China.
| | - Zhong Li
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
10
|
Zimta AA, Schitcu V, Gurzau E, Stavaru C, Manda G, Szedlacsek S, Berindan-Neagoe I. Biological and molecular modifications induced by cadmium and arsenic during breast and prostate cancer development. ENVIRONMENTAL RESEARCH 2019; 178:108700. [PMID: 31520827 DOI: 10.1016/j.envres.2019.108700] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 08/07/2019] [Accepted: 08/26/2019] [Indexed: 06/10/2023]
Abstract
Breast and prostate cancer are two of the most common malignancies worldwide. Both cancers can develop into hormone -dependent or -independent subtypes and are associated to environmental exposure in the context of an inherited predisposition. As and Cd have been linked to the onset of both cancers, with the exception of As, which lacks a definitive association with breast carcinogenesis. The two elements exert an opposite effect dependent on acute versus chronic exposure. High doses of As or Cd were shown to induce cell death in acute experimental exposure, while chronic exposure triggers cell proliferation and viability, which is no longer limited by telomere shortening and apoptosis. The chronically exposed cells also increase their invasion capacity and tumorigenic potential. At molecular level, malignant transformation is evidenced mainly by up-regulation of BCL-2, MMP-2, MMP-9, VIM, Snail, Twist, MT, MLH and down-regulation of Casp-3, PTEN, E-CAD, and BAX. The signaling pathways most commonly activated are KRAS, p53, TGF-β, TNF-α, WNT, NRF2 and AKT. This knowledge could potentially raise public awareness over the health risks faced by the human population living or working in a polluted environment and smokers. Human exposure to As and Cd should be minimize as much as possible. Healthcare policies targeting people belonging to these risk categories should include analysis of: DNA damage, oxidative stress, molecular alterations, and systemic level of heavy metals and of essential minerals. In this review, we present the literature regarding cellular and molecular alterations caused by exposure to As or Cd, focusing on the malignant transformation of normal epithelial cells after long-term intoxication with these two carcinogens.
Collapse
Affiliation(s)
- Alina-Andreea Zimta
- MEDFUTURE - Research Center for Advanced Medicine, "Iuliu-Hatieganu" University of Medicine and Pharmacy, 23 Gheorghe Marinescu Street, 400337, Cluj-Napoca, Romania
| | - Vlad Schitcu
- The Oncology Institute "Prof. Dr. Ion Chiricuta", Republicii 34-36 Street, 400015, Cluj-Napoca, Romania; "Iuliu Hatieganu" University of Medicine and Pharmacy, 8 Victor Babes Street, 400012, Cluj-Napoca, Romania
| | - Eugen Gurzau
- Cluj School of Public Health, College of Political, Administrative and Communication Sciences, Babes-Bolyai University, 7 Pandurilor Street, Cluj-Napoca, Romania; Environmental Health Center, 58 Busuiocului Street, 400240, Cluj-Napoca, Romania; Faculty of Environmental Science and Engineering, Babes-Bolyai University, 30 Fantanele Street, Cluj- Napoca, Romania
| | - Crina Stavaru
- Cantacuzino National Institute of Research and Development for Microbiology, 103 Splaiul Independentei Street, Bucharest, 050096, Romania
| | - Gina Manda
- "Victor Babes" National Institute of Pathology, 99-101 Splaiul Independentei Street, 050096, Bucharest, Romania
| | - Stefan Szedlacsek
- Department of Enzymology, Institute of Biochemistry of the Romanian Academy, 296 Splaiul Independentei Street, Bucharest, 060031, Romania
| | - Ioana Berindan-Neagoe
- MEDFUTURE - Research Center for Advanced Medicine, "Iuliu-Hatieganu" University of Medicine and Pharmacy, 23 Gheorghe Marinescu Street, 400337, Cluj-Napoca, Romania; Research Center for Functional Genomics, Biomedicine and Translational Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, Marinescu 23 Street, 400337, Cluj-Napoca, Romania; Department of Functional Genomics and Experimental Pathology, The Oncology Institute "Prof. Dr. Ion Chiricuta", Republicii 34-36 Street, Cluj-Napoca, Romania.
| |
Collapse
|
11
|
Jiang F, Li Y, Si L, Zhang Z, Li Z. Interaction of EZH2 and P65 is involved in the arsenic trioxide-induced anti-angiogenesis in human triple-negative breast cancer cells. Cell Biol Toxicol 2019; 35:361-371. [DOI: 10.1007/s10565-018-09458-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 12/19/2018] [Indexed: 01/09/2023]
|
12
|
Shi Y, Cao T, Huang H, Lian C, Yang Y, Wang Z, Ma J, Xia J. Arsenic trioxide inhibits cell growth and motility via up-regulation of let-7a in breast cancer cells. Cell Cycle 2017; 16:2396-2403. [PMID: 28980872 DOI: 10.1080/15384101.2017.1387699] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Arsenic trioxide (ATO) has been reported to exert its anti-cancer activities in human cancers. However, the molecular mechanism of ATO-triggered anti-tumor activity has not been fully elucidated. Recently, multiple studies demonstrated that ATO could regulate miRNAs in human cancers. Therefore, in this study, we investigated whether ATO regulated let-7a in breast cancer cells. We found that ATO upregulated let-7a level in breast cancer cells. We also found that up-regulation of let-7a inhibited cell growth and induced apoptosis and retarded cell migration and invasion. We also observed that up-regulation of let-7a enhanced cell growth inhibition and invasion suppression induced by ATO treatment. Our findings suggest that ATO suppressed cell growth, stimulated apoptosis, and retarded cell invasion partly via upregulation of let-7a in breast cancer cells. Our study provides a new anti-tumor mechanism of ATO treatment in breast cancer.
Collapse
Affiliation(s)
- Ying Shi
- a Department of Biochemistry and Molecular Biology , Bengbu Medical College, Bengbu , Anhui , China
| | - Tong Cao
- b Research Center of Clinical Laboratory Science , Bengbu Medical College , Bengbu , Anhui , China
| | - Hua Huang
- a Department of Biochemistry and Molecular Biology , Bengbu Medical College, Bengbu , Anhui , China
| | - Chaoqun Lian
- a Department of Biochemistry and Molecular Biology , Bengbu Medical College, Bengbu , Anhui , China
| | - Ying Yang
- a Department of Biochemistry and Molecular Biology , Bengbu Medical College, Bengbu , Anhui , China
| | - Zhiwei Wang
- a Department of Biochemistry and Molecular Biology , Bengbu Medical College, Bengbu , Anhui , China.,c Department of Pathology , Beth Israel Deaconess Medical Center , Harvard Medical School , Boston , MA , USA.,d The Cyrus Tang Hematology Center and Collaborative Innovation Center of Hematology , Soochow University , Suzhou , Jiangsu , China
| | - Jia Ma
- a Department of Biochemistry and Molecular Biology , Bengbu Medical College, Bengbu , Anhui , China
| | - Jun Xia
- a Department of Biochemistry and Molecular Biology , Bengbu Medical College, Bengbu , Anhui , China
| |
Collapse
|
13
|
Shen Z, Zhu D, Liu J, Chen J, Liu Y, Hu C, Li Z, Li Y. 27-Hydroxycholesterol induces invasion and migration of breast cancer cells by increasing MMP9 and generating EMT through activation of STAT-3. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2017; 51:1-8. [PMID: 28257824 DOI: 10.1016/j.etap.2017.02.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 01/25/2017] [Accepted: 02/02/2017] [Indexed: 06/06/2023]
Abstract
Breast carcinoma plays a vital role in the reasons of global women's death. ER-related invasion and migration play an important part in the development and prognosis of breast cancer. Here, we found that 27-Hydroxycholesterol (27HC) could induce epithelial-mesenchymal transition (EMT) and increase the expression of the matrix metalloproteinase 9 (MMP9) at mRNA level and the active form. Meanwhile, interestingly, we found 27HC activated signal transducer and activator of transcription 3 (STAT-3) in ER positive cells except activation of ER signaling. Furthermore, inhibition of STAT-3 by siRNA attenuated the 27HC-induced improvement of MMP9 and decreased the invasion and migration ability in MCF7 and T47D cells. In addition, 27HC could also promote MMP9, vimentin and active STAT-3 in the ER negative cells MDA-MB-231. All these results not only raise a mechanism whereby 27HC enhances the invasion and metastasis, but also is helpful to realize 27HC as a potential endogenous detrimental factor in breast tumor patients.
Collapse
Affiliation(s)
- Zhaoxia Shen
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing 211166, China; The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Dongmei Zhu
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing 211166, China; The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Jiao Liu
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing 211166, China; The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Juan Chen
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing 211166, China; The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yun Liu
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing 211166, China; The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Chunyan Hu
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing 211166, China; The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Zhong Li
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing 211166, China; The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| | - Yuan Li
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing 211166, China; The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
14
|
Huang Z, Huang Q, Ji L, Wang Y, Qi X, Liu L, Liu Z, Lu L. Epigenetic regulation of active Chinese herbal components for cancer prevention and treatment: A follow-up review. Pharmacol Res 2016; 114:1-12. [PMID: 27697644 DOI: 10.1016/j.phrs.2016.09.023] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 08/13/2016] [Accepted: 09/20/2016] [Indexed: 12/21/2022]
Abstract
Epigenetic modifications include DNA methylation, histone modification, and other patterns. These processes are associated with carcinogenesis and cancer progression. Thus, epigenetic modification-related enzymes, such as DNA methyltransferases (DNMTs), histone methyltransferases (HMTs), histone demethylases (HDMTs), histone acetyltransferases (HATs), and histone deacetylases (HDACs), as well as some related proteins, including methyl-CpG binding proteins (MBPs) and DNMT1-associated protein (DMAP 1), are considered as potential targets for cancer prevention and therapy. Numerous natural compounds, mainly derived from Chinese herbs and chemically ranging from polyphenols and flavonoids to mineral salts, inhibit the growth and development of various cancers by targeting multiple genetic and epigenetic alterations. This review summarizes the epigenetic mechanisms by which active compounds from Chinese herbs exert their anti-cancer effect. A subset of these compounds, such as curcumin and resveratrol, affect multiple epigenetic processes, including DNMT inhibition, HDAC inactivation, MBP suppression, HAT activation, and microRNA modulation. Other compounds also regulate epigenetic modification processes, but the underlying mechanisms and clear targets remain unknown. Accordingly, further studies are required.
Collapse
Affiliation(s)
- Zhiying Huang
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Qiuju Huang
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Liyan Ji
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Ying Wang
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Xiaoxiao Qi
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Liang Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau (SAR), China
| | - Zhongqiu Liu
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau (SAR), China.
| | - Linlin Lu
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau (SAR), China.
| |
Collapse
|
15
|
Bao X, Ren T, Huang Y, Wang S, Zhang F, Liu K, Zheng B, Guo W. Induction of the mesenchymal to epithelial transition by demethylation-activated microRNA-125b is involved in the anti-migration/invasion effects of arsenic trioxide on human chondrosarcoma. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2016; 35:129. [PMID: 27576314 PMCID: PMC5006509 DOI: 10.1186/s13046-016-0407-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 08/11/2016] [Indexed: 12/15/2022]
Abstract
Background In addition to treating acute promyelocytic leukemia, arsenic trioxide (ATO) suppresses other solid tumors, including chondrosarcoma. However, the effects of ATO on metastasis in chondrosarcoma cells, and the underlying molecular mechanisms remain unclear. Methods The effects of ATO on the migratory and invasive capacities of chondrosarcoma cells were investigated by Wound healing, Transwell and EMT assays. The expression of miR-125b in human chondrosarcoma tissues and cell lines was detected by real-time PCR analysis. Bisulfite sequencing analysis (BSP) was used to detect the effects of ATO on the expression of miR-125b. The gain-of-function and loss-of-function experiments were performed on chondrosarcoma cell lines to investigate the effects of miR-125b on chondrosarcoma invasion, and to determine whether signal transducer and activator of transcription 3(Stat3) mediates these effects. Dual-luciferase reporter assay was used to identify whether Stat3 is a direct target of miR-125b. Results MiR-125b was significantly downregulated in human metastatic chondrosarcoma tissues and cell lines but not in non-metastatic chondrosarcoma tissues. ATO up-regulates the expression of miR-125b by the demethylation of DNA. ATO induces MET and attenuates the invasive capacities of chondrosarcoma cells through miR-125b. Stat3 was verified as a direct target of miR-125b, which is involved in ATO regulating EMT-associated traits. Conclusions These findings, for the first time, provides evidence that the miR-125b-mediated inhibition of Stat3 is involved in the ATO-induced attenuation of metastasis in chondrosarcoma cells.
Collapse
Affiliation(s)
- Xing Bao
- Musculoskeletal Tumor Center, Peking University People's Hospital, No.11 Xizhimen South Street, Beijing, 100044, People's Republic of China.,Beijing Key Laboratory of Musculoskeletal Tumor, Beijing, 100044, People's Republic of China
| | - Tingting Ren
- Musculoskeletal Tumor Center, Peking University People's Hospital, No.11 Xizhimen South Street, Beijing, 100044, People's Republic of China.,Beijing Key Laboratory of Musculoskeletal Tumor, Beijing, 100044, People's Republic of China
| | - Yi Huang
- Musculoskeletal Tumor Center, Peking University People's Hospital, No.11 Xizhimen South Street, Beijing, 100044, People's Republic of China.,Beijing Key Laboratory of Musculoskeletal Tumor, Beijing, 100044, People's Republic of China
| | - Shidong Wang
- Musculoskeletal Tumor Center, Peking University People's Hospital, No.11 Xizhimen South Street, Beijing, 100044, People's Republic of China.,Beijing Key Laboratory of Musculoskeletal Tumor, Beijing, 100044, People's Republic of China
| | - Fan Zhang
- Musculoskeletal Tumor Center, Peking University People's Hospital, No.11 Xizhimen South Street, Beijing, 100044, People's Republic of China.,Beijing Key Laboratory of Musculoskeletal Tumor, Beijing, 100044, People's Republic of China
| | - Kuisheng Liu
- Musculoskeletal Tumor Center, Peking University People's Hospital, No.11 Xizhimen South Street, Beijing, 100044, People's Republic of China.,Beijing Key Laboratory of Musculoskeletal Tumor, Beijing, 100044, People's Republic of China
| | - Bingxin Zheng
- Musculoskeletal Tumor Center, Peking University People's Hospital, No.11 Xizhimen South Street, Beijing, 100044, People's Republic of China.,Beijing Key Laboratory of Musculoskeletal Tumor, Beijing, 100044, People's Republic of China
| | - Wei Guo
- Musculoskeletal Tumor Center, Peking University People's Hospital, No.11 Xizhimen South Street, Beijing, 100044, People's Republic of China. .,Beijing Key Laboratory of Musculoskeletal Tumor, Beijing, 100044, People's Republic of China.
| |
Collapse
|
16
|
Zhang S, Ma C, Pang H, Zeng F, Cheng L, Fang B, Ma J, Shi Y, Hong H, Chen J, Wang Z, Xia J. Arsenic trioxide suppresses cell growth and migration via inhibition of miR-27a in breast cancer cells. Biochem Biophys Res Commun 2016; 469:55-61. [DOI: 10.1016/j.bbrc.2015.11.071] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 11/16/2015] [Indexed: 12/19/2022]
|
17
|
Chen Z, Luo J, Ma L, Wang H, Cao W, Xu H, Zhu J, Sun Y, Li J, Yao D, Kang K, Gou D. MiR130b-Regulation of PPARγ Coactivator- 1α Suppresses Fat Metabolism in Goat Mammary Epithelial Cells. PLoS One 2015; 10:e0142809. [PMID: 26579707 PMCID: PMC4651502 DOI: 10.1371/journal.pone.0142809] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 10/27/2015] [Indexed: 12/11/2022] Open
Abstract
Fat metabolism is a complicated process regulated by a series of factors. microRNAs (miRNAs) are a class of negative regulator of proteins and play crucial roles in many biological processes; including fat metabolism. Although there have been some researches indicating that miRNAs could influence the milk fat metabolism through targeting some factors, little is known about the effect of miRNAs on goat milk fat metabolism. Here we utilized an improved miRNA detection assay, S-Poly-(T), to profile the expression of miRNAs in the goat mammary gland in different periods, and found that miR-130b was abundantly and differentially expressed in goat mammary gland. Additionally, overexpressing miR-130b impaired adipogenesis while inhibiting miR-130b enhanced adipogenesis in goat mammary epithelial cells. Utilizing 3'-UTR assay and Western Blot analusis, the protein peroxisome proliferator-activated receptor coactivator-1α (PGC1α), a major regulator of fat metabolism, was demonstrated to be a potential target of miR-130b. Interestingly, miR-130b potently repressed PGC1α expression by targeting both the PGC1α mRNA coding and 3' untranslated regions. These findings have some insight of miR-130b in mediating adipocyte differentiation by repressing PGC1α expression and this contributes to further understanding about the functional significance of miRNAs in milk fat synthesis.
Collapse
Affiliation(s)
- Zhi Chen
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Jun Luo
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - LiuAn Ma
- College of Life Sciences, Shenzhen University, Shenzhen, Guangzhou, China
| | - Hui Wang
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - WenTing Cao
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - HuiFei Xu
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - JiangJiang Zhu
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - YuTing Sun
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Jun Li
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - DaWei Yao
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Kang Kang
- College of Medicine, Shenzhen University, Shenzhen, Guangdong, China
| | - Deming Gou
- College of Life Sciences, Shenzhen University, Shenzhen, Guangzhou, China
| |
Collapse
|
18
|
Ji H, Li Y, Jiang F, Wang X, Zhang J, Shen J, Yang X. Inhibition of transforming growth factor beta/SMAD signal by MiR-155 is involved in arsenic trioxide-induced anti-angiogenesis in prostate cancer. Cancer Sci 2014; 105:1541-9. [PMID: 25283513 PMCID: PMC4317958 DOI: 10.1111/cas.12548] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 09/24/2014] [Accepted: 09/30/2014] [Indexed: 12/17/2022] Open
Abstract
Prostate cancer is the most common cause of cancer-related deaths in men. Current practices for treatment of prostate cancer are less than satisfactory because of metastasis and recurrence, which are primarily attributed to angiogenesis. Hence, anti-angiogenesis treatment is becoming a promising new approach for prostate cancer therapy. In addition to treating acute promyelocytic leukemia, arsenic trioxide (As2O3) suppresses other solid tumors, including prostate cancer. However, the effects of As2O3 on angiogenesis in prostate cancer cells, and the underlying molecular mechanisms remain unclear. In the present study, As2O3 attenuated angiogenic ability through microRNA-155 (miR-155)-mediated inhibition of transforming growth factor beta (TGF-β)/SMAD signal pathway in human prostate cancer PC-3 and LNCaP cells in vitro and in vivo. Briefly, As2O3 inhibited the activations/expressions of both TGFβ-induced and endogenous SMAD2/3. Furthermore, As2O3 improved the expression of miR-155 via DNA-demethylation. MiR-155, which targeted the SMAD2-3′UTR, decreased the expression and function of SMAD2. Knockdown of miR-155 abolished the As2O3-induced inhibitions of the TGF-β/SMAD2 signaling, the vascular endothelial growth factor secretion and angiogenesis. Through understanding a novel mechanism whereby As2O3 inhibits angiogenic potential of prostate cancer cells, our study would help in the development of As2O3 as a potential chemopreventive agent when used alone or in combination with other current anticancer drugs.
Collapse
Affiliation(s)
- Hui Ji
- Affiliated Nanjing Maternity and Child Health Care Hospital, Nanjing Medical University, Nanjing, China
| | | | | | | | | | | | | |
Collapse
|