1
|
Aguzzi C, Zeppa L, Morelli MB, Marinelli O, Giangrossi M, Amantini C, Santoni G, Sazzad H, Nabissi M. Anticancer effect of minor phytocannabinoids in preclinical models of multiple myeloma. Biofactors 2024; 50:1208-1219. [PMID: 38760945 PMCID: PMC11627469 DOI: 10.1002/biof.2078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 04/24/2024] [Indexed: 05/20/2024]
Abstract
Multiple myeloma (MM) is a blood cancer caused by uncontrolled growth of clonal plasmacells. Bone disease is responsible for the severe complications of MM and is caused by myeloma cells infiltrating the bone marrow and inducing osteoclast activation. To date, no treatment for MM is truly curative since patients relapse and become refractory to all drug classes. Cannabinoids are already used as palliative in cancer patients. Furthermore, their proper anticancer effect was demonstrated in many cancer models in vitro, in vivo, and in clinical trials. Anyway, few information was reported on the effect of cannabinoids on MM and no data has been provided on minor phytocannabinoids such as cannabigerol (CBG), cannabichromene (CBC), cannabinol (CBN), and cannabidivarin (CBDV). Scientific literature also reported cannabinoids beneficial effect against bone disease. Here, we examined the cytotoxic activity of CBG, CBC, CBN, and CBDV in vitro in MM cell lines, their effect in modulating MM cells invasion toward bone cells and the bone resorption. Subsequently, according to the in vitro results, we selected CBN for in vivo study in a MM xenograft mice model. Results showed that the phytocannabinoids inhibited MM cell growth and induced necrotic cell death. Moreover, the phytocannabinoids reduced the invasion of MM cells toward osteoblast cells and bone resorption in vitro. Lastly, CBN reduced in vivo tumor mass. Together, our results suggest that CBG, CBC, CBN, and CBDV can be promising anticancer agents for MM.
Collapse
Affiliation(s)
- Cristina Aguzzi
- School of PharmacyUniversity of CamerinoCamerinoMCItaly
- Integrative Therapy Discovery LabUniversity of CamerinoCamerinoMCItaly
| | - Laura Zeppa
- School of PharmacyUniversity of CamerinoCamerinoMCItaly
- Integrative Therapy Discovery LabUniversity of CamerinoCamerinoMCItaly
| | - Maria Beatrice Morelli
- School of PharmacyUniversity of CamerinoCamerinoMCItaly
- Integrative Therapy Discovery LabUniversity of CamerinoCamerinoMCItaly
| | - Oliviero Marinelli
- School of PharmacyUniversity of CamerinoCamerinoMCItaly
- Integrative Therapy Discovery LabUniversity of CamerinoCamerinoMCItaly
| | | | - Consuelo Amantini
- School of Bioscience and Veterinary MedicineUniversity of CamerinoCamerinoMCItaly
| | | | | | - Massimo Nabissi
- School of PharmacyUniversity of CamerinoCamerinoMCItaly
- Integrative Therapy Discovery LabUniversity of CamerinoCamerinoMCItaly
| |
Collapse
|
2
|
Mannino F, Pallio G, Corsaro R, Minutoli L, Altavilla D, Vermiglio G, Allegra A, Eid AH, Bitto A, Squadrito F, Irrera N. Beta-Caryophyllene Exhibits Anti-Proliferative Effects through Apoptosis Induction and Cell Cycle Modulation in Multiple Myeloma Cells. Cancers (Basel) 2021; 13:5741. [PMID: 34830893 PMCID: PMC8616110 DOI: 10.3390/cancers13225741] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/12/2021] [Accepted: 11/15/2021] [Indexed: 12/11/2022] Open
Abstract
Cannabinoid receptors, which are widely distributed in the body, have been considered as possible pharmacological targets for the management of several tumors. Cannabinoid type 2 receptors (CB2Rs) belong to the G protein-coupled receptor family and are mainly expressed in hematopoietic and immune cells, such as B-cells, T-cells, and macrophages; thus, CB2R activation might be useful for treating cancers affecting plasma cells, such as multiple myeloma (MM). Previous studies have shown that CB2R stimulation may have anti-proliferative effects; therefore, the purpose of the present study was to explore the antitumor effect of beta-caryophyllene (BCP), a CB2R agonist, in an in vitro model of MM. Dexamethasone-resistant (MM.1R) and sensitive (MM.1S) human multiple myeloma cell lines were used in this study. Cells were treated with different concentrations of BCP for 24 h, and a group of cells was pre-incubated with AM630, a specific CB2R antagonist. BCP treatment reduced cell proliferation through CB2R stimulation; notably, BCP considerably increased the pro-apoptotic protein Bax and decreased the anti-apoptotic molecule Bcl-2. Furthermore, an increase in caspase 3 protein levels was detected following BCP incubation, thus demonstrating its anti-proliferative effect through apoptosis activation. In addition, BCP regulated AKT, Wnt1, and beta-catenin expression, showing that CB2R stimulation may decrease cancer cell proliferation by modulating Wnt/β-catenin signaling. These effects were counteracted by AM630 co-incubation, thus confirming that BCP's mechanism of action is mainly related to CB2R modulation. A decrease in β-catenin regulated the impaired cell cycle and especially promoted cyclin D1 and CDK 4/6 reduction. Taken together, these data revealed that BCP might have significant and effective anti-cancer and anti-proliferative effects in MM cells by activating apoptosis, modulating different molecular pathways, and downregulating the cell cycle.
Collapse
Affiliation(s)
- Federica Mannino
- Department of Clinical and Experimental Medicine, University of Messina, Via C. Valeria Gazzi, 98125 Messina, Italy; (F.M.); (G.P.); (R.C.); (L.M.); (N.I.)
| | - Giovanni Pallio
- Department of Clinical and Experimental Medicine, University of Messina, Via C. Valeria Gazzi, 98125 Messina, Italy; (F.M.); (G.P.); (R.C.); (L.M.); (N.I.)
| | - Roberta Corsaro
- Department of Clinical and Experimental Medicine, University of Messina, Via C. Valeria Gazzi, 98125 Messina, Italy; (F.M.); (G.P.); (R.C.); (L.M.); (N.I.)
| | - Letteria Minutoli
- Department of Clinical and Experimental Medicine, University of Messina, Via C. Valeria Gazzi, 98125 Messina, Italy; (F.M.); (G.P.); (R.C.); (L.M.); (N.I.)
| | - Domenica Altavilla
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, Via C. Valeria Gazzi, 98125 Messina, Italy; (D.A.); (G.V.)
| | - Giovanna Vermiglio
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, Via C. Valeria Gazzi, 98125 Messina, Italy; (D.A.); (G.V.)
| | - Alessandro Allegra
- Department of Human Pathology in Adulthood and Childhood, University of Messina, Via C. Valeria Gazzi, 98125 Messina, Italy;
| | - Ali H. Eid
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, 2713 Doha, Qatar;
- Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, 2713 Doha, Qatar
| | - Alessandra Bitto
- Department of Clinical and Experimental Medicine, University of Messina, Via C. Valeria Gazzi, 98125 Messina, Italy; (F.M.); (G.P.); (R.C.); (L.M.); (N.I.)
| | - Francesco Squadrito
- Department of Clinical and Experimental Medicine, University of Messina, Via C. Valeria Gazzi, 98125 Messina, Italy; (F.M.); (G.P.); (R.C.); (L.M.); (N.I.)
| | - Natasha Irrera
- Department of Clinical and Experimental Medicine, University of Messina, Via C. Valeria Gazzi, 98125 Messina, Italy; (F.M.); (G.P.); (R.C.); (L.M.); (N.I.)
| |
Collapse
|
3
|
Marino S, Carrasco G, Li B, Shah KM, Lath DL, Sophocleous A, Lawson MA, Idris AI. JZL184, A Monoacylglycerol Lipase Inhibitor, Induces Bone Loss in a Multiple Myeloma Model of Immunocompetent Mice. Calcif Tissue Int 2020; 107:72-85. [PMID: 32285169 PMCID: PMC7271071 DOI: 10.1007/s00223-020-00689-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 03/26/2020] [Indexed: 02/06/2023]
Abstract
Multiple myeloma (MM) patients develop osteolysis characterised by excessive osteoclastic bone destruction and lack of osteoblast bone formation. Pharmacological manipulation of monoacylglycerol lipase (MAGL), an enzyme responsible for the degradation of the endocannabinoid 2-arachidonoyl glycerol (2-AG), reduced skeletal tumour burden and osteolysis associated with osteosarcoma and advanced breast and prostate cancers. MM and hematopoietic, immune and bone marrow cells express high levels of type 2 cannabinoid receptor and osteoblasts secrete 2-AG. However, the effects of MAGL manipulation on MM have not been investigated. Here, we report that treatment of pre-osteoclasts with non-cytotoxic concentrations of JZL184, a verified MAGL inhibitor, enhanced MM- and RANKL-induced osteoclast formation and size in vitro. Exposure of osteoblasts to JZL184 in the presence of MM cell-derived factors reduced osteoblast growth but had no effect on the ability of these cells to mature or form bone nodules. In vivo, administration of JZL184 induced a modest, yet significant, bone loss at both trabecular and cortical compartments of long bones of immunocompetent mice inoculated with the syngeneic 5TGM1-GFP MM cells. Notably, JZL184 failed to inhibit the in vitro growth of a panel of mouse and human MM cell lines, or reduce tumour burden in mice. Thus, MAGL inhibitors such as JZL184 can exacerbate MM-induced bone loss.
Collapse
Affiliation(s)
- Silvia Marino
- Department of Oncology and Metabolism, Medical School, University of Sheffield, Beech Hill Road, Sheffield, S10 2RX, UK
- IU School of Medicine, Division of Hematology/Oncology, Indiana University, Indianapolis, USA
| | - Giovana Carrasco
- Department of Oncology and Metabolism, Medical School, University of Sheffield, Beech Hill Road, Sheffield, S10 2RX, UK
| | - Boya Li
- Department of Oncology and Metabolism, Medical School, University of Sheffield, Beech Hill Road, Sheffield, S10 2RX, UK
| | - Karan M Shah
- Department of Oncology and Metabolism, Medical School, University of Sheffield, Beech Hill Road, Sheffield, S10 2RX, UK
| | - Darren L Lath
- Department of Oncology and Metabolism, Medical School, University of Sheffield, Beech Hill Road, Sheffield, S10 2RX, UK
| | - Antonia Sophocleous
- Department of Life Sciences, School of Sciences, European University Cyprus, 6 Diogenes Street, Nicosia, 1516, Cyprus
| | - Michelle A Lawson
- Department of Oncology and Metabolism, Medical School, University of Sheffield, Beech Hill Road, Sheffield, S10 2RX, UK
| | - Aymen I Idris
- Department of Oncology and Metabolism, Medical School, University of Sheffield, Beech Hill Road, Sheffield, S10 2RX, UK.
| |
Collapse
|
4
|
Hohmann T, Feese K, Ghadban C, Dehghani F, Grabiec U. On the influence of cannabinoids on cell morphology and motility of glioblastoma cells. PLoS One 2019; 14:e0212037. [PMID: 30753211 PMCID: PMC6372232 DOI: 10.1371/journal.pone.0212037] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 01/25/2019] [Indexed: 12/20/2022] Open
Abstract
The mechanisms behind the anti-tumoral effects of cannabinoids by impacting the migratory activity of tumor cells are only partially understood. Previous studies demonstrated that cannabinoids altered the organization of the actin cytoskeleton in various cell types. As actin is one of the main contributors to cell motility and is postulated to be linked to tumor invasion, we tested the following hypothesizes: 1) Can cannabinoids alter cell motility in a cannabinoid receptor dependent manner? 2) Are these alterations associated with reorganizations in the actin cytoskeleton? 3) If so, what are the underlying molecular mechanisms? Three different glioblastoma cell lines were treated with specific cannabinoid receptor 1 and 2 agonists and antagonists. Afterwards, we measured changes in cell motility using live cell imaging and alterations of the actin structure in fixed cells. Additionally, the protein amount of phosphorylated p44/42 mitogen-activated protein kinase (MAPK), focal adhesion kinases (FAK) and phosphorylated FAK (pFAK) over time were measured. Cannabinoids induced changes in cell motility, morphology and actin organization in a receptor and cell line dependent manner. No significant changes were observed in the analyzed signaling molecules. Cannabinoids can principally induce changes in the actin cytoskeleton and motility of glioblastoma cell lines. Additionally, single cell motility of glioblastoma is independent of their morphology. Furthermore, the observed effects seem to be independent of p44/42 MAPK and pFAK pathways.
Collapse
Affiliation(s)
- Tim Hohmann
- Institute of Anatomy and Cell Biology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Kerstin Feese
- Institute of Anatomy and Cell Biology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Chalid Ghadban
- Institute of Anatomy and Cell Biology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Faramarz Dehghani
- Institute of Anatomy and Cell Biology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Urszula Grabiec
- Institute of Anatomy and Cell Biology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
5
|
Franks LN, Ford BM, Fujiwara T, Zhao H, Prather PL. The tamoxifen derivative ridaifen-B is a high affinity selective CB 2 receptor inverse agonist exhibiting anti-inflammatory and anti-osteoclastogenic effects. Toxicol Appl Pharmacol 2018; 353:31-42. [PMID: 29906493 PMCID: PMC6487498 DOI: 10.1016/j.taap.2018.06.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 05/25/2018] [Accepted: 06/11/2018] [Indexed: 12/15/2022]
Abstract
Selective estrogen receptor modulators (SERMs) target estrogen receptors (ERs) to treat breast cancer and osteoporosis. Several SERMs exhibit anti-cancer activity not related to ERs. To discover novel anti-cancer drugs acting via ER-independent mechanisms, derivatives of the SERM tamoxifen, known as the "ridaifen" compounds, have been developed that exhibit reduced or no ER affinity, while maintaining cytotoxicity. Tamoxifen and other SERMs bind to cannabinoid receptors with moderate affinity. Therefore, ER-independent effects of SERMs might be mediated via cannabinoid receptors. This study determined whether RID-B, a first generation ridaifen compound, exhibits affinity and/or activity at CB1 and/or CB2 cannabinoid receptors. RID-B binds with high affinity (Ki = 43.7 nM) and 17-fold selectivity to CB2 over CB1 receptors. RID-B acts as an inverse agonist at CB2 receptors, modulating G-protein and adenylyl cyclase activity with potency values predicted by CB2 affinity. Characteristic of an antagonist, RID-B co-incubation produces a parallel-rightward shift in the concentration-effect curve of CB2 agonist WIN-55,212-2 to inhibit adenylyl cyclase activity. CB2 inverse agonists are reported to exhibit anti-inflammatory and anti-ostoeclastogenic effects. In LPS-activated macrophages, RID-B exhibits anti-inflammatory effects by reducing levels of nitric oxide (NO), IL-6 and IL-1α, but not TNFα. Only reduction of NO concentration by RID-B is mediated by cannabinoid receptors. RID-B also exhibits pronounced anti-osteoclastogenic effects, reducing the number of osteoclasts differentiating from primary bone marrow macrophages in a cannabinoid receptor-dependent manner. In summary, the tamoxifen derivative RID-B, developed with reduced affinity for ERs, is a high affinity selective CB2 inverse agonist with anti-inflammatory and anti-osteoclastogenic properties.
Collapse
MESH Headings
- Adenylyl Cyclase Inhibitors/pharmacology
- Animals
- Anti-Inflammatory Agents, Non-Steroidal/pharmacology
- Benzoxazines/pharmacology
- Binding, Competitive/drug effects
- Bone Marrow Cells/drug effects
- CHO Cells
- Cell Differentiation/drug effects
- Cricetinae
- Cricetulus
- Drug Inverse Agonism
- Mice
- Mice, Inbred C57BL
- Morpholines/pharmacology
- Naphthalenes/pharmacology
- Osteoclasts/drug effects
- Pyrrolidines/metabolism
- Pyrrolidines/pharmacology
- Receptor, Cannabinoid, CB1/drug effects
- Receptor, Cannabinoid, CB1/metabolism
- Receptor, Cannabinoid, CB2/agonists
- Receptor, Cannabinoid, CB2/metabolism
- Selective Estrogen Receptor Modulators/metabolism
- Selective Estrogen Receptor Modulators/pharmacology
- Tamoxifen/analogs & derivatives
- Tamoxifen/metabolism
- Tamoxifen/pharmacology
Collapse
Affiliation(s)
- Lirit N Franks
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Benjamin M Ford
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Toshifumi Fujiwara
- Department of Internal Medicine, Endocrinology Division, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Haibo Zhao
- Department of Internal Medicine, Endocrinology Division, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| | - Paul L Prather
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| |
Collapse
|
6
|
Hohmann T, Grabiec U, Ghadban C, Feese K, Dehghani F. The influence of biomechanical properties and cannabinoids on tumor invasion. Cell Adh Migr 2017; 11:54-67. [PMID: 27149140 PMCID: PMC5308229 DOI: 10.1080/19336918.2016.1183867] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 03/10/2016] [Accepted: 04/25/2016] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Cannabinoids are known to have an anti-tumorous effect, but the underlying mechanisms are only sparsely understood. Mechanical characteristics of tumor cells represent a promising marker to distinguish between tumor cells and the healthy tissue. We tested the hypothesis whether cannabinoids influence the tumor cell specific mechanical and migratory properties and if these factors are a prognostic marker for the invasiveness of tumor cells. METHODS 3 different glioblastoma cell lines were treated with cannabinoids and changes of mechanical and migratory properties of single cells were measured using atomic force microscopy and time lapse imaging. The invasiveness of cell lines was determined using a co-culture model with organotypic hippocampal slice cultures. RESULTS We found that cannabinoids are capable of influencing migratory and mechanical properties in a cell line specific manner. A network analysis revealed a correlation between a "generalized stiffness" and the invasiveness for all tumor cell lines after 3 and 4 d of invasion time: r3d = -0.88 [-0.52;-0.97]; r4d = -0.90 [-0.59;-0.98]. CONCLUSIONS Here we could show that a "generalized stiffness" is a profound marker for the invasiveness of a tumor cell population in our model and thus might be of high clinical relevance for drug testing. Additionally cannabinoids were shown to be of potential use for therapeutic approaches of glioblastoma.
Collapse
Affiliation(s)
- Tim Hohmann
- Department of Anatomy and Cell Biology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Urszula Grabiec
- Department of Anatomy and Cell Biology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Chalid Ghadban
- Department of Anatomy and Cell Biology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Kerstin Feese
- Department of Anatomy and Cell Biology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Faramarz Dehghani
- Department of Anatomy and Cell Biology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
7
|
Barbado MV, Medrano M, Caballero-Velázquez T, Álvarez-Laderas I, Sánchez-Abarca LI, García-Guerrero E, Martín-Sánchez J, Rosado IV, Piruat JI, Gonzalez-Naranjo P, Campillo NE, Páez JA, Pérez-Simón JA. Cannabinoid derivatives exert a potent anti-myeloma activity both in vitro and in vivo. Int J Cancer 2016; 140:674-685. [PMID: 27778331 DOI: 10.1002/ijc.30483] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 09/17/2016] [Accepted: 10/13/2016] [Indexed: 01/02/2023]
Abstract
Although hematopoietic and immune system show high levels of the cannabinoid receptor CB2, the potential effect of cannabinoids on hematologic malignancies has been poorly determined. Here we have investigated their anti-tumor effect in multiple myeloma (MM). We demonstrate that cannabinoids induce a selective apoptosis in MM cell lines and in primary plasma cells of MM patients, while sparing normal cells from healthy donors, including hematopoietic stem cells. This effect was mediated by caspase activation, mainly caspase-2, and was partially prevented by a pan-caspase inhibitor. Their pro-apoptotic effect was correlated with an increased expression of Bax and Bak, a decrease of Bcl-xL and Mcl-1, a biphasic response of Akt/PKB and an increase in the levels of ceramide in MM cells. Inhibition of ceramide synthesis partially prevented apoptosis, indicating that these sphingolipids play a key role in the pro-apoptotic effect of cannabinoids in MM cells. Remarkably, blockage of the CB2 receptor also inhibited cannabinoid-induced apoptosis. Cannabinoid derivative WIN-55 enhanced the anti-myeloma activity of dexamethasone and melphalan overcoming resistance to melphalan in vitro. Finally, administration of cannabinoid WIN-55 to plasmacytoma-bearing mice significantly suppressed tumor growth in vivo. Together, our data suggest that cannabinoids may be considered as potential therapeutic agents in the treatment of MM.
Collapse
Affiliation(s)
- M Victoria Barbado
- Department of Hematology, Institute of Biomedicine of Sevilla (IBIS/CSIC), University Hospital Virgen del Rocío, Universidad de Sevilla, Spain
| | - Mayte Medrano
- Department of Hematology, Institute of Biomedicine of Sevilla (IBIS/CSIC), University Hospital Virgen del Rocío, Universidad de Sevilla, Spain
| | - Teresa Caballero-Velázquez
- Department of Hematology, Institute of Biomedicine of Sevilla (IBIS/CSIC), University Hospital Virgen del Rocío, Universidad de Sevilla, Spain
| | - Isabel Álvarez-Laderas
- Department of Hematology, Institute of Biomedicine of Sevilla (IBIS/CSIC), University Hospital Virgen del Rocío, Universidad de Sevilla, Spain
| | - Luis Ignacio Sánchez-Abarca
- Department of Hematology, Institute of Biomedicine of Sevilla (IBIS/CSIC), University Hospital Virgen del Rocío, Universidad de Sevilla, Spain
| | - Estefania García-Guerrero
- Department of Hematology, Institute of Biomedicine of Sevilla (IBIS/CSIC), University Hospital Virgen del Rocío, Universidad de Sevilla, Spain
| | - Jesús Martín-Sánchez
- Department of Hematology, Institute of Biomedicine of Sevilla (IBIS/CSIC), University Hospital Virgen del Rocío, Universidad de Sevilla, Spain
| | - Iván Valle Rosado
- Department of Hematology, Institute of Biomedicine of Sevilla (IBIS/CSIC), University Hospital Virgen del Rocío, Universidad de Sevilla, Spain
| | - José Ignacio Piruat
- Department of Hematology, Institute of Biomedicine of Sevilla (IBIS/CSIC), University Hospital Virgen del Rocío, Universidad de Sevilla, Spain
| | | | | | | | - José Antonio Pérez-Simón
- Department of Hematology, Institute of Biomedicine of Sevilla (IBIS/CSIC), University Hospital Virgen del Rocío, Universidad de Sevilla, Spain
| |
Collapse
|