1
|
Zhang Y, Wang H, Zhan Z, Gan L, Bai O. Mechanisms of HDACs in cancer development. Front Immunol 2025; 16:1529239. [PMID: 40260239 PMCID: PMC12009879 DOI: 10.3389/fimmu.2025.1529239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Accepted: 03/17/2025] [Indexed: 04/23/2025] Open
Abstract
Histone deacetylases (HDACs) are a class of epigenetic regulators that play pivotal roles in key biological processes such as cell proliferation, differentiation, metabolism, and immune regulation. Based on this, HDAC inhibitors (HDACis), as novel epigenetic-targeted therapeutic agents, have demonstrated significant antitumor potential by inducing cell cycle arrest, activating apoptosis, and modulating the immune microenvironment. Current research is focused on developing highly selective HDAC isoform inhibitors and combination therapy strategies tailored to molecular subtypes, aiming to overcome off-target effects and resistance issues associated with traditional broad-spectrum inhibitors. This review systematically elaborates on the multidimensional regulatory networks of HDACs in tumor malignancy and assesses the clinical translation progress of next-generation HDACis and their prospects in precision medicine, providing a theoretical framework and strategic reference for the development of epigenetic-targeted antitumor drugs.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Hematology, The First Hospital of Jilin University, Changchun, China
| | - Haotian Wang
- Department of Hematology, The First Hospital of Jilin University, Changchun, China
| | - Zhumei Zhan
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Lin Gan
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Out Bai
- Department of Hematology, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
2
|
Tran C, Hamze A. Recent Advancements in the Development of HDAC/Tubulin Dual-Targeting Inhibitors. Pharmaceuticals (Basel) 2025; 18:341. [PMID: 40143119 PMCID: PMC11945613 DOI: 10.3390/ph18030341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/20/2025] [Accepted: 02/25/2025] [Indexed: 03/28/2025] Open
Abstract
Histone deacetylases (HDACs) have become one of the main targets in cancer therapy due to their involvement in various biological processes, including gene regulation, cell proliferation, and differentiation. Microtubules, as key elements of the cell cytoskeleton, also represent important therapeutic targets in anticancer drugs research. These proteins are involved in diverse cellular functions, especially mitosis, cell signaling, and intracellular trafficking. With the emergence of multi-target therapy during the last decades, the combination of HDAC and tubulin inhibitors has been envisioned as a practical approach for optimizing the therapeutic efficacy of antitumor molecules. HDAC/tubulin dual-targeting inhibitors offer the advantages of the synergistic action of both compounds, along with a significant decrease in their respective toxicities and drug resistance. This review will detail the major recent advancements in the development of HDAC/tubulin dual inhibitors over the last decade and their impact on anticancer drugs discovery.
Collapse
Affiliation(s)
- Christine Tran
- BioCIS, CNRS (Centre National de Recherche Scientifique), Université Paris-Saclay, 91400 Orsay, France
| | - Abdallah Hamze
- BioCIS, CNRS (Centre National de Recherche Scientifique), Université Paris-Saclay, 91400 Orsay, France
| |
Collapse
|
3
|
Asaad L, Pepperrell B, McErlean E, Furlong F. Regulation of HDAC6 Catalytic Activity in Cancer: The Role of Post-Translational Modifications and Protein-Protein Interactions. Int J Mol Sci 2025; 26:1274. [PMID: 39941046 PMCID: PMC11818932 DOI: 10.3390/ijms26031274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 01/20/2025] [Accepted: 01/26/2025] [Indexed: 02/16/2025] Open
Abstract
Histone deacetylase 6 (HDAC6) is a large multidomain protein that deacetylates lysine residues on cytoplasmic proteins, influencing numerous cellular processes. Both the catalytic and noncatalytic functions of HDAC6 have been implicated in cancer development and progression. Over a decade of research on catalytic domain inhibitors has shown that these drugs are well tolerated, exhibit anticancer activity, and can alleviate chemotherapy-induced peripheral neuropathies. However, their effectiveness in treating solid tumours remains uncertain. HDAC6 activity is regulated by protein-protein interactions and post-translational modifications, which may allosterically influence its catalytic domains. As a result, effective inhibition of HDAC6 in cancer using small molecule inhibitors requires a more sophisticated understanding of its role within tumour cells, including whether its expression correlates with deacetylase activity. A comprehensive understanding of cancer-specific HDAC6 expression, functional activity, and activation states will be critical for refining the use of HDAC6 inhibitors in cancer therapy.
Collapse
Affiliation(s)
- Leen Asaad
- School of Pharmacy, Queen’s University Belfast, Belfast BT7 1NN, UK
- Department of Pharmacology and Biomedical Sciences, Faculty of Pharmacy and Medical Sciences, University of Petra, Amman 11196, Jordan
| | | | - Emma McErlean
- School of Pharmacy, Queen’s University Belfast, Belfast BT7 1NN, UK
| | - Fiona Furlong
- School of Pharmacy, Queen’s University Belfast, Belfast BT7 1NN, UK
| |
Collapse
|
4
|
Guan Y, Li J, Sun B, Xu K, Zhang Y, Ben H, Feng Y, Liu M, Wang S, Gao Y, Duan Z, Zhang Y, Chen D, Wang Y. HBx-induced upregulation of MAP1S drives hepatocellular carcinoma proliferation and migration via MAP1S/Smad/TGF-β1 loop. Int J Biol Macromol 2024; 281:136327. [PMID: 39374711 DOI: 10.1016/j.ijbiomac.2024.136327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 09/12/2024] [Accepted: 10/03/2024] [Indexed: 10/09/2024]
Abstract
Hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC), has a significantly higher risk of recurrence. However, the exact mechanism by which HBV prompts HCC recurrence remains largely unknown. In this study liver microarray test revealed significant upregulation of microtubule associated protein 1S (MAP1S) in metastatic HCC compared to control. MAP1S knockdown suppressed growth of HCCLM3 cells in vitro and in vivo. Mechanistically, HBV-encoded X protein (HBx) upregulates MAP1S, which enhances microtubule (MT) acetylation by promoting the degradation of histone deacetylase 6 (HDAC6), and facilitates the nuclear translocation of Smad complex, and thereby enhancing downstream TGF-β signaling. Smad complex, in turn, increases MAP1S, establishing a feedback loop of MAP1S/Smad/TGF-β1. Finally, survival analysis of 150 HBV-associated HCC patients demonstrated both increased MAP1S and decreased HDAC6 were significantly associated with shorter relapse-free survival. Collectively, this study reveals a unique mechanism whereby HBx-induced upregulation of MAP1S drives HBV-related HCC proliferation and migration through the MAP1S/Smad/TGF-β1 feedback loop. TEASER: MAP1S is a key link between HBV infection and a higher risk of metastatic recurrence of HCC.
Collapse
Affiliation(s)
- Yuanyue Guan
- Beijing Institute of Hepatology, Beijing You An Hospital, Capital Medical University, Beijing 100069, China; Beijing Engineering Research Center for Precision Medicine and Transformation of Hepatitis and Liver Cancer, Beijing You An Hospital, Capital Medical University, Beijing 100069, China; Beijing Tsinghua Changgung Hospital, School Clinical Medicine, Tsinghua University, Beijing 102218, China
| | - Jiaxi Li
- Beijing Institute of Hepatology, Beijing You An Hospital, Capital Medical University, Beijing 100069, China; Beijing Engineering Research Center for Precision Medicine and Transformation of Hepatitis and Liver Cancer, Beijing You An Hospital, Capital Medical University, Beijing 100069, China
| | - Bin Sun
- Clinical Center for Liver Cancer, Beijing You An Hospital, Capital Medical University, Beijing 100069, China; Intervention Therapy Center of Tumor and Liver Diseases, Beijing You An Hospital, Capital Medical University, Beijing 100069, China
| | - Kaikun Xu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Yonghong Zhang
- Clinical Center for Liver Cancer, Beijing You An Hospital, Capital Medical University, Beijing 100069, China; Intervention Therapy Center of Tumor and Liver Diseases, Beijing You An Hospital, Capital Medical University, Beijing 100069, China
| | - Haijing Ben
- Beijing Institute of Hepatology, Beijing You An Hospital, Capital Medical University, Beijing 100069, China; Beijing Engineering Research Center for Precision Medicine and Transformation of Hepatitis and Liver Cancer, Beijing You An Hospital, Capital Medical University, Beijing 100069, China
| | - Yingmei Feng
- Department of Science and Development, Beijing You An Hospital, Capital Medical University, Beijing 100069, China
| | - Mengcheng Liu
- Beijing Institute of Hepatology, Beijing You An Hospital, Capital Medical University, Beijing 100069, China; Beijing Engineering Research Center for Precision Medicine and Transformation of Hepatitis and Liver Cancer, Beijing You An Hospital, Capital Medical University, Beijing 100069, China
| | - Shanshan Wang
- Beijing Institute of Hepatology, Beijing You An Hospital, Capital Medical University, Beijing 100069, China; Beijing Engineering Research Center for Precision Medicine and Transformation of Hepatitis and Liver Cancer, Beijing You An Hospital, Capital Medical University, Beijing 100069, China
| | - Yuxue Gao
- Beijing Institute of Hepatology, Beijing You An Hospital, Capital Medical University, Beijing 100069, China; Beijing Engineering Research Center for Precision Medicine and Transformation of Hepatitis and Liver Cancer, Beijing You An Hospital, Capital Medical University, Beijing 100069, China
| | - Zhongping Duan
- Clinical Center for Liver Cancer, Beijing You An Hospital, Capital Medical University, Beijing 100069, China; Artificial Liver Center, Beijing You An Hospital, Capital Medical University, Beijing 100069, China
| | - Yang Zhang
- Beijing Institute of Hepatology, Beijing You An Hospital, Capital Medical University, Beijing 100069, China; Beijing Engineering Research Center for Precision Medicine and Transformation of Hepatitis and Liver Cancer, Beijing You An Hospital, Capital Medical University, Beijing 100069, China.
| | - Dexi Chen
- Beijing Institute of Hepatology, Beijing You An Hospital, Capital Medical University, Beijing 100069, China; Beijing Engineering Research Center for Precision Medicine and Transformation of Hepatitis and Liver Cancer, Beijing You An Hospital, Capital Medical University, Beijing 100069, China.
| | - Yanjun Wang
- Beijing Institute of Hepatology, Beijing You An Hospital, Capital Medical University, Beijing 100069, China; Beijing Engineering Research Center for Precision Medicine and Transformation of Hepatitis and Liver Cancer, Beijing You An Hospital, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
5
|
Lin C, Sniezek CM, McGann CD, Karki R, Giglio RM, Garcia BA, McFaline-Figeroa JL, Schweppe DK. Defining the heterogeneous molecular landscape of lung cancer cell responses to epigenetic inhibition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.23.592075. [PMID: 38853901 PMCID: PMC11160595 DOI: 10.1101/2024.05.23.592075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Epigenetic inhibitors exhibit powerful antiproliferative and anticancer activities. However, cellular responses to small-molecule epigenetic inhibition are heterogenous and dependent on factors such as the genetic background, metabolic state, and on-/off-target engagement of individual small-molecule compounds. The molecular study of the extent of this heterogeneity often measures changes in a single cell line or using a small number of compounds. To more comprehensively profile the effects of small-molecule perturbations and their influence on these heterogeneous cellular responses, we present a molecular resource based on the quantification of chromatin, proteome, and transcriptome remodeling due to histone deacetylase inhibitors (HDACi) in non-isogenic cell lines. Through quantitative molecular profiling of 10,621 proteins, these data reveal coordinated molecular remodeling of HDACi treated cancer cells. HDACi-regulated proteins differ greatly across cell lines with consistent (JUN, MAP2K3, CDKN1A) and divergent (CCND3, ASF1B, BRD7) cell-state effectors. Together these data provide valuable insight into cell-type driven and heterogeneous responses that must be taken into consideration when monitoring molecular perturbations in culture models.
Collapse
Affiliation(s)
- Chuwei Lin
- Genome Sciences, University of Washington, Seattle, WA 98105, USA
| | | | | | - Rashmi Karki
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Ross M. Giglio
- Biomedical Engineer, Columbia University, New York, NY 10027, USA
| | - Benjamin A. Garcia
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | - Devin K. Schweppe
- Genome Sciences, University of Washington, Seattle, WA 98105, USA
- Brotman Baty Institute for Precision Medicine, Seattle, Washington, USA
- Institute of Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington, USA
| |
Collapse
|
6
|
Wang B, Tang C, Lin E, Jia X, Xie G, Li P, Li D, Yang Q, Guo X, Cao C, Shi X, Zou B, Cai C, Tian J, Hu Z, Li J. NIR-II fluorescence-guided liver cancer surgery by a small molecular HDAC6 targeting probe. EBioMedicine 2023; 98:104880. [PMID: 38035463 PMCID: PMC10698675 DOI: 10.1016/j.ebiom.2023.104880] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 11/05/2023] [Accepted: 11/05/2023] [Indexed: 12/02/2023] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is the sixth most common malignancy globally and ranks third in terms of both mortality and incidence rates. Surgical resection holds potential as a curative approach for HCC. However, the residual disease contributes to a high 5-year recurrence rate of 70%. Due to their excellent specificity and optical properties, fluorescence-targeted probes are deemed effective auxiliary tools for addressing residual lesions, enabling precise surgical diagnosis and treatment. Research indicates histone deacetylase 6 (HDAC6) overexpression in HCC cells, making it a potential imaging biomarker. This study designed a targeted small-molecule fluorescent probe, SeCF3-IRDye800cw (SeCF3-IRD800), operating within the Second near-infrared window (NIR-II, 1000-1700 nm). The study confirms the biocompatibility of SeCF3-IRD800 and proceeds to demonstrate its applications in imaging in vivo, fluorescence-guided surgery (FGS) for liver cancer, liver fibrosis imaging, and clinical samples incubation, thereby preliminarily validating its utility in liver cancer. METHODS SeCF3-IRD800 was synthesized by combining the near-infrared fluorescent dye IRDye800cw-NHS with an improved HDAC6 inhibitor. Initially, a HepG2-Luc subcutaneous tumor model (n = 12) was constructed to investigate the metabolic differences between SeCF3-IRD800 and ICG in vivo. Subsequently, HepG2-Luc (n = 12) and HCCLM3-Luc (n = 6) subcutaneous xenograft mouse models were used to assess in vivo targeting by SeCF3-IRD800. The HepG2-Luc orthotopic liver cancer model (n = 6) was employed to showcase the application of SeCF3-IRD800 in FGS. Liver fibrosis (n = 6) and HepG2-Luc orthotopic (n = 6) model imaging results were used to evaluate the impact of different pathological backgrounds on SeCF3-IRD800 imaging. Three groups of fresh HCC and normal liver samples from patients with liver cancer were utilized for SeCF3-IRD800 incubation ex vivo, while preclinical experiments illustrated its potential for clinical application. FINDINGS The HDAC6 inhibitor 6 (SeCF3) modified with trifluoromethyl was labeled with IRDy800CW-NHS to synthesize the small-molecule targeted probe SeCF3-IRD800, with NIR-II fluorescence signals. SeCF3-IRD800 was rapidly metabolized by the kidneys and exhibited excellent biocompatibility. In vivo validation demonstrated that SeCF3-IRD800 achieved optimal imaging within 8 h, displaying high tumor fluorescence intensity (7658.41 ± 933.34) and high tumor-to-background ratio (5.20 ± 1.04). Imaging experiments with various expression levels revealed its capacity for HDAC6-specific targeting across multiple HCC tumor models, suitable for NIR-II intraoperative imaging. Fluorescence-guided surgery experiments were found feasible and capable of detecting sub-visible 2 mm tumor lesions under white light, aiding surgical decision-making. Further imaging of liver fibrosis mice showed that SeCF3-IRD800's imaging efficacy remained unaffected by liver pathological conditions. Correlations were observed between HDAC6 expression levels and corresponding fluorescence intensity (R2 = 0.8124) among normal liver, liver fibrosis, and HCC tissues. SeCF3-IRD800 identified HDAC6-positive samples from patients with HCC, holding advantages for perspective intraoperative identification in liver cancer. Thus, the rapidly metabolized HDAC6-targeted small-molecule NIR-II fluorescence probe SeCF3-IRD800 holds significant clinical translational value. INTERPRETATION The successful application of NIR-II fluorescence-guided surgery in liver cancer indicates that SeCF3-IRD800 has great potential to improve the clinical diagnosis and treatment of liver cancer, and could be used as an auxiliary tool for surgical treatment of liver cancer without being affected by liver pathology. FUNDING This paper is supported by the National Natural Science Foundation of China (NSFC) (92,059,207, 62,027,901, 81,930,053, 81,227,901, 82,272,105, U21A20386 and 81,971,773), CAS Youth Interdisciplinary Team (JCTD-2021-08), the Zhuhai High-level Health Personnel Team Project (Zhuhai HLHPTP201703), and Guangdong Basic and Applied Basic Research Foundation under Grant No. 2022A1515011244.
Collapse
Affiliation(s)
- Bo Wang
- Department of Hepatobiliary Surgery and Liver Transplantation, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, China; CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
| | - Chu Tang
- Engineering Research Center of Molecular and Neuro Imaging of Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, 710071, China
| | - En Lin
- Department of Hepatobiliary Surgery and Liver Transplantation, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, China; CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
| | - Xiaohua Jia
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China; School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ganyuan Xie
- Department of Hepatobiliary Surgery and Liver Transplantation, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, China
| | - Peiping Li
- Department of Hepatobiliary Surgery and Liver Transplantation, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, China
| | - Decheng Li
- Department of Hepatobiliary Surgery and Liver Transplantation, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, China
| | - Qiyue Yang
- Key Laboratory of Digital Hepatobiliary Surgery, PLA, Institute of Hepatobiliary Surgery of Chinese PLA, Beijing, 100048, China
| | - Xiaoyong Guo
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China; Clinical College of Armed Police General Hospital of Anhui Medical University, Department of Gastroenterology of The Third Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
| | - Caiguang Cao
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China; School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaojing Shi
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China; School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Baojia Zou
- Department of Hepatobiliary Surgery and Liver Transplantation, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, China
| | - Chaonong Cai
- Department of Hepatobiliary Surgery and Liver Transplantation, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, China
| | - Jie Tian
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China; School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, 100049, China; Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Engineering Medicine, Beihang University, Beijing, 100191, China; Engineering Research Center of Molecular and Neuro Imaging of Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, 710071, China.
| | - Zhenhua Hu
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China; School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Jian Li
- Department of Hepatobiliary Surgery and Liver Transplantation, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, China.
| |
Collapse
|
7
|
Mehmood SA, Sahu KK, Sengupta S, Partap S, Karpoormath R, Kumar B, Kumar D. Recent advancement of HDAC inhibitors against breast cancer. Med Oncol 2023; 40:201. [PMID: 37294406 DOI: 10.1007/s12032-023-02058-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 05/22/2023] [Indexed: 06/10/2023]
Abstract
Recent studies highlight the great potential impact of HDAC inhibitors (HDACis) in suppressing TNBC, even though clinical trials including a single HDACis demonstrated unsatisfactory outcomes against TNBC. New compounds created to achieve isoform selectivity and/or a polypharmacological HDAC strategy have also produced interesting results. The current study discusses the HDACis pharmacophoric models and the structural alterations that produced drugs with strong inhibitory effects on TNBC progression. With more than 2 million new cases reported in 2018, breast cancer-the most common cancer among women worldwide-poses a significant financial burden on an already deteriorating public health system. Due to a lack of therapies being developed for triple-negative breast cancers and the development of resistance to the current treatment options, it is imperative to plan novel therapeutics in order to bring new medications to the pipeline. Additionally, HDACs deacetylate a large number of nonhistone cellular substrates that control a variety of biological processes, such as the beginning and development of cancer. The significance of HDACs in cancer and the therapeutic potential of HDAC inhibitor. Furthermore, we also reported molecular docking study with four HDAC inhibitors and performed molecular dynamic stimulation of the best dock score compound. Among the four ligands belinostat compound showed best binding affinity with histone deacetylase protein which was -8.7 kJ/mol. It also formed five conventional hydrogen bond with Gly 841, His 669, His 670, pro 809, and His 709 amino acid residues.
Collapse
Affiliation(s)
- Syed Abdulla Mehmood
- Department of Pharmacology, School of Pharmaceutical Education & Research, Jamia Humdard University, New Delhi, India
| | - Kantrol Kumar Sahu
- Department of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Sounok Sengupta
- Department of Pharmacology, School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh, India
| | - Sangh Partap
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, 4000, South Africa
| | - Rajshekhar Karpoormath
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, 4000, South Africa
| | - Brajesh Kumar
- Department of Chemistry, TATA College, Kolhan University, Chaibasa, India
| | - Deepak Kumar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh, India.
| |
Collapse
|
8
|
El-Kalyoubi S, Elbaramawi SS, Eissa AG, Al-Ageeli E, Hobani YH, El-Sharkawy AA, Mohamed HT, Al-Karmalawy AA, Abulkhair HS. Design and synthesis of novel uracil-linked Schiff bases as dual histone deacetylase type II/topoisomerase type I inhibitors with apoptotic potential. Future Med Chem 2023; 15:937-958. [PMID: 37381751 DOI: 10.4155/fmc-2023-0112] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2023] Open
Abstract
Aim: The previously reported dual histone deacetylase type II (HDAC II) / topoisomerase type I (Topo I) inhibitors suffer pharmacokinetic limitations because of their huge molecular weights. Materials & methods: We report the design and synthesis of a smarter novel set of uracil-linked Schiff bases (19-30) as dual HDAC II/Topo I inhibitors keeping the essential pharmacophoric features. Cytotoxicity of all compounds was assessed against three cancer cell lines. Studies of their effects on the apoptotic BAX and antiapoptotic BCL2 genes, molecular docking studies, and absorption, distribution, metabolism and excretion studies were conducted. Results: Compounds 22, 25 and 30 exhibited significant activities. The bromophenyl derivative 22 displayed the best selectivity index, with IC50 values against HDAC II and Topo I of 1.12 and 13.44 μM, respectively. Conclusion: Compound 22 could be considered a lead HDAC II/Topo I inhibitor.
Collapse
Affiliation(s)
- Samar El-Kalyoubi
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Port Said University, Port Said, 42511, Egypt
| | - Samar S Elbaramawi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Ahmed G Eissa
- Department of Medicinal Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Essam Al-Ageeli
- Department of Clinical Biochemistry (Medical Genetics), Faculty of Medicine, Jazan University, Jazan, 82621, Saudi Arabia
| | - Yahya Hasan Hobani
- Medical Laboratory Technology Department, College of Applied Medical Sciences, Jazan University, Jazan, 82621, Saudi Arabia
| | - Aya Ali El-Sharkawy
- Zoology Department, Faculty of Science, Cairo University, Cairo, 12613, Egypt
| | - Hossam Taha Mohamed
- Zoology Department, Faculty of Science, Cairo University, Cairo, 12613, Egypt
- Faculty of Biotechnology, October University for Modern Sciences & Arts, Giza, 12451, Egypt
| | - Ahmed A Al-Karmalawy
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ahram Canadian University, 6th of October City, Giza, 12566, Egypt
| | - Hamada S Abulkhair
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Nasr City, 11884, Cairo, Egypt
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Horus University-Egypt, International Coastal Road, New Damietta, 34518, Egypt
| |
Collapse
|
9
|
Yang X, Xu L, Yang L. Recent advances in EZH2-based dual inhibitors in the treatment of cancers. Eur J Med Chem 2023; 256:115461. [PMID: 37156182 DOI: 10.1016/j.ejmech.2023.115461] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/04/2023] [Accepted: 05/04/2023] [Indexed: 05/10/2023]
Abstract
The enhancer of zeste homolog 2 (EZH2) protein is the catalytic subunit of one of the histone methyltransferases. EZH2 catalyzes the trimethylation of lysine 27 of histone H3 (H3K27me3) and further alters downstream target levels. EZH2 is upregulated in cancer tissues, wherein its levels correlate strongly with cancer genesis, progression, metastasis, and invasion. Consequently, it has emerged as a novel anticancer therapeutic target. Nonetheless, developing EZH2 inhibitors (EZH2i) has encountered numerous difficulties, such as pre-clinical drug resistance and poor therapeutic effect. The EZH2i synergistically suppresses cancers when used in combination with additional antitumor drugs, such as PARP inhibitors, HDAC inhibitors, BRD4 inhibitors, EZH1 inhibitors, and EHMT2 inhibitors. Typically, the use of dual inhibitors of two different targets mediated by one individual molecule has been recognized as the preferred approach for overcoming the limitations of EZH2 monotherapy. The present review discusses the theoretical basis for designing EZH2-based dual-target inhibitors, and also describes some in vitro and in vivo analysis results.
Collapse
Affiliation(s)
- Xiaojuan Yang
- School of Pharmacy, Xinxiang University, Xinxiang, 453003, China.
| | - Lu Xu
- School of Pharmacy, Xinxiang University, Xinxiang, 453003, China
| | - Li Yang
- School of Pharmacy, Xinxiang University, Xinxiang, 453003, China
| |
Collapse
|
10
|
Meng Y, Du J, Liu N, Qiang Y, Xiao L, Lan X, Ma L, Yang J, Yu J, Lu G. Epigenetic modulation: Research progress on histone acetylation levels in major depressive disorders. J Drug Target 2023; 31:142-151. [PMID: 36112185 DOI: 10.1080/1061186x.2022.2125978] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Depression is a serious mental illness and a prevalent condition with multiple aetiologies. The impact of the current therapeutic strategies is limited and the pathogenesis of the illness is not well understood. According to previous studies, depression onset is influenced by a variety of environmental and genetic factors, including chronic stress, aberrant changes in gene expression, and hereditary predisposition. Transcriptional regulation in eukaryotes is closely related to chromosome packing and is controlled by histone post-translational modifications. The development of new antidepressants may proceed along a new path with medications that target epigenetics. Histone deacetylase inhibitors (HDACis) are a class of compounds that interfere with the function of histone deacetylases (HDACs). This review explores the relationship between HDACs and depression and focuses on the current knowledge on their regulatory mechanism in depression and the potential therapeutic use of HDACis with antidepressant efficacy in preclinical research. Future research on inhibitors is also proposed and discussed.
Collapse
Affiliation(s)
- Yuan Meng
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, PR China.,Department of Pharmacology, College of Pharmacy, Ningxia Medical University, Yinchuan, PR China
| | - Juan Du
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, PR China.,Department of Pharmacology, College of Pharmacy, Ningxia Medical University, Yinchuan, PR China
| | - Ning Liu
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, Yinchuan, PR China
| | - Yuanyuan Qiang
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, PR China
| | - Lifei Xiao
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, PR China
| | - Xiaobing Lan
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, Yinchuan, PR China
| | - Lin Ma
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, Yinchuan, PR China
| | - Jiamei Yang
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, Yinchuan, PR China
| | - Jianqiang Yu
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, Yinchuan, PR China
| | - Guangyuan Lu
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, PR China
| |
Collapse
|
11
|
Kumar A, Emdad L, Fisher PB, Das SK. Targeting epigenetic regulation for cancer therapy using small molecule inhibitors. Adv Cancer Res 2023; 158:73-161. [PMID: 36990539 DOI: 10.1016/bs.acr.2023.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Cancer cells display pervasive changes in DNA methylation, disrupted patterns of histone posttranslational modification, chromatin composition or organization and regulatory element activities that alter normal programs of gene expression. It is becoming increasingly clear that disturbances in the epigenome are hallmarks of cancer, which are targetable and represent attractive starting points for drug creation. Remarkable progress has been made in the past decades in discovering and developing epigenetic-based small molecule inhibitors. Recently, epigenetic-targeted agents in hematologic malignancies and solid tumors have been identified and these agents are either in current clinical trials or approved for treatment. However, epigenetic drug applications face many challenges, including low selectivity, poor bioavailability, instability and acquired drug resistance. New multidisciplinary approaches are being designed to overcome these limitations, e.g., applications of machine learning, drug repurposing, high throughput virtual screening technologies, to identify selective compounds with improved stability and better bioavailability. We provide an overview of the key proteins that mediate epigenetic regulation that encompass histone and DNA modifications and discuss effector proteins that affect the organization of chromatin structure and function as well as presently available inhibitors as potential drugs. Current anticancer small-molecule inhibitors targeting epigenetic modified enzymes that have been approved by therapeutic regulatory authorities across the world are highlighted. Many of these are in different stages of clinical evaluation. We also assess emerging strategies for combinatorial approaches of epigenetic drugs with immunotherapy, standard chemotherapy or other classes of agents and advances in the design of novel epigenetic therapies.
Collapse
|
12
|
Shu Y, Huang C, Liu H, Hu F, Wen H, Liu J, Wang X, Shan C, Li W. A hemicyanine-based fluorescent probe for simultaneous imaging of Carboxylesterases and Histone deacetylases in hepatocellular carcinoma. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 281:121529. [PMID: 35797949 DOI: 10.1016/j.saa.2022.121529] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/11/2022] [Accepted: 06/16/2022] [Indexed: 06/15/2023]
Abstract
Carboxylesterases (CESs) and Histone deacetylases (HDACs) are regarded as important signaling enzymes highly associated with the development and progression of multiple cancers, including hepatocellular carcinoma (HCC). In this work, a near-infrared (NIR) fluorescent probe named Lys-HXPI was designed and synthesized, which linked a hemicyanine dye and 6-acetamidohexanoic acid via an ester bond. Lys-HXPI displayed a remarkable increase with a NIR emission at 720 nm, a low detection limit (<10 nM) for HDAC1, HDAC 6, CES1 and CES2, as well as a high selectivity for the target enzymes over other relevant analytes. Furthermore, Lys-HXPI was used to image endogenous target enzymes in living cells, tumor-bearing nude mice and tissue slices. The ability of Lys-HXPI to simultaneous image CESs and HDACs was demonstrated with RT-qPCR and the confocal imaging in Hep G2 and MDA-MB-231. Taking advantage of NIR emission, the probe was also successfully applied to imaging Hep G2 tumor mice and tissue slices. Lys-HXPI is expected to be useful for the effective detecting of CESs and HDACs in complex biosystems.
Collapse
Affiliation(s)
- Yi Shu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Chaoqun Huang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Hongjing Liu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Feiyang Hu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Hongmei Wen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Jian Liu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Xinzhi Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Chenxiao Shan
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Wei Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
13
|
Kaur S, Rajoria P, Chopra M. HDAC6: A unique HDAC family member as a cancer target. Cell Oncol (Dordr) 2022; 45:779-829. [PMID: 36036883 DOI: 10.1007/s13402-022-00704-6] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/10/2022] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND HDAC6, a structurally and functionally distinct member of the HDAC family, is an integral part of multiple cellular functions such as cell proliferation, apoptosis, senescence, DNA damage and genomic stability, all of which when deregulated contribute to carcinogenesis. Among several HDAC family members known so far, HDAC6 holds a unique position. It differs from the other HDAC family members not only in terms of its subcellular localization, but also in terms of its substrate repertoire and hence cellular functions. Recent findings have considerably expanded the research related to the substrate pool, biological functions and regulation of HDAC6. Studies in HDAC6 knockout mice highlighted the importance of HDAC6 as a cell survival player in stressful situations, making it an important anticancer target. There is ample evidence stressing the importance of HDAC6 as an anti-cancer synergistic partner of many chemotherapeutic drugs. HDAC6 inhibitors have been found to enhance the effectiveness of conventional chemotherapeutic drugs such as DNA damaging agents, proteasome inhibitors and microtubule inhibitors, thereby highlighting the importance of combination therapies involving HDAC6 inhibitors and other anti-cancer agents. CONCLUSIONS Here, we present a review on HDAC6 with emphasis on its role as a critical regulator of specific physiological cellular pathways which when deregulated contribute to tumorigenesis, thereby highlighting the importance of HDAC6 inhibitors as important anticancer agents alone and in combination with other chemotherapeutic drugs. We also discuss the synergistic anticancer effect of combination therapies of HDAC6 inhibitors with conventional chemotherapeutic drugs.
Collapse
Affiliation(s)
- Sumeet Kaur
- Laboratory of Molecular Modeling and Anticancer Drug Development, Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, 110007, India
| | - Prerna Rajoria
- Laboratory of Molecular Modeling and Anticancer Drug Development, Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, 110007, India
| | - Madhu Chopra
- Laboratory of Molecular Modeling and Anticancer Drug Development, Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, 110007, India.
| |
Collapse
|
14
|
Zhu W, Zhang X, Yu M, Zhang Y, Li S, Yu C. Profiles of Acetylation Regulation Genes Contribute to Malignant Progression and Have a Clinical Prognostic Impact on Liver Cancer. DISEASE MARKERS 2022; 2022:1724301. [PMID: 36124029 PMCID: PMC9482539 DOI: 10.1155/2022/1724301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 07/23/2022] [Accepted: 08/25/2022] [Indexed: 11/17/2022]
Abstract
BACKGROUND Several studies have demonstrated that acetylation was involved in the process of liver cancer. This study aimed to establish an effective predictive prognostic model using acetylation regulation genes in liver cancer. METHODS Two datasets were downloaded from the Cancer Genome Atlas (TCGA) database and International Cancer Genome Consortium (ICGC) database. Differentially expressed acetylation regulation genes were identified in the TCGA-LIHC dataset, and then, Gene Ontology (GO) functional annotation analysis was used to investigate the molecular mechanism. After grouping the patients into clusters based on consensus clustering, we explored the correlation between clusters and clinical characteristics. A risk model was constructed by the least absolute shrinkage and selection operator (LASSO) regression analysis to calculate the risk score. Patients were divided into high-risk and low-risk groups according to the risk score using the acetylation regulation genes. Data downloaded from LIRI-JP were used for external validation. Univariate and multivariate Cox regressions were performed to identify independent risk factors. A prognostic nomogram was constructed according to the TCGA-LIHC dataset. The effect of HDAC11 expression on the proliferation and migration of liver cancer was detected by the CCK-8 method and cell scratch test, respectively. RESULTS Eleven of 29 acetylation regulation genes were identified as upregulated differentially expressed genes. Go enrichment analysis showed that they were involved in "protein and histone deacylation and deacetylation." Patients were categorized into two clusters according to the expression of 29 acetylation regulation genes. Compared with cluster 2, cluster 1 correlated with shorter overall survival (OS) and higher expression. Stage, T stage, grade, gender, age, and follow-up state were significantly different between two clusters. Pathways involved in DNA repair were significantly enriched in cluster 1. The risk score was calculated by HDAC1, HDAC2, HDAC4, HDAC11, HAT1, and SIRT6. Patients in the high-risk group had a worse prognosis in both datasets. Risk score was not only an independent prognostic marker but could also predict the clinicopathological features of liver cancer. A nomogram containing risk score, T stage, and M stage was built to predict overall survival. After transfection with HDAC11 overexpression plasmid, the proliferation ability of HepG2 cells increased, while the migration ability had no change. CONCLUSIONS Our findings suggested that acetylation regulation genes contribute to malignant progression and have a clinical prognostic impact on liver cancer.
Collapse
Affiliation(s)
- Wei Zhu
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310000, China
| | - Xiaofen Zhang
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310000, China
| | - Mengli Yu
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310000, China
| | - Yu Zhang
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province, Zhejiang University, Linhai, Zhejiang 317000, China
| | - Shaowei Li
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province, Zhejiang University, Linhai, Zhejiang 317000, China
| | - Chaohui Yu
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310000, China
| |
Collapse
|
15
|
Xia JK, Qin XQ, Zhang L, Liu SJ, Shi XL, Ren HZ. Roles and regulation of histone acetylation in hepatocellular carcinoma. Front Genet 2022; 13:982222. [PMID: 36092874 PMCID: PMC9452893 DOI: 10.3389/fgene.2022.982222] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/03/2022] [Indexed: 11/13/2022] Open
Abstract
Hepatocellular Carcinoma (HCC) is the most frequent malignant tumor of the liver, but its prognosis is poor. Histone acetylation is an important epigenetic regulatory mode that modulates chromatin structure and transcriptional status to control gene expression in eukaryotic cells. Generally, histone acetylation and deacetylation processes are controlled by the opposing activities of histone acetyltransferases (HATs) and histone deacetylases (HDACs). Dysregulation of histone modification is reported to drive aberrant transcriptional programmes that facilitate liver cancer onset and progression. Emerging studies have demonstrated that several HDAC inhibitors exert tumor-suppressive properties via activation of various cell death molecular pathways in HCC. However, the complexity involved in the epigenetic transcription modifications and non-epigenetic cellular signaling processes limit their potential clinical applications. This review brings an in-depth view of the oncogenic mechanisms reported to be related to aberrant HCC-associated histone acetylation, which might provide new insights into the effective therapeutic strategies to prevent and treat HCC.
Collapse
Affiliation(s)
- Jin-kun Xia
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
- Hepatobiliary Institute Nanjing University, Nanjing, China
| | - Xue-qian Qin
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Lu Zhang
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Shu-jun Liu
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Xiao-lei Shi
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
- Hepatobiliary Institute Nanjing University, Nanjing, China
| | - Hao-zhen Ren
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
- Hepatobiliary Institute Nanjing University, Nanjing, China
| |
Collapse
|
16
|
Singh T, Kaur P, Singh P, Singh S, Munshi A. Differential molecular mechanistic behavior of HDACs in cancer progression. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2022; 39:171. [PMID: 35972597 DOI: 10.1007/s12032-022-01770-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 06/10/2022] [Indexed: 12/13/2022]
Abstract
Genetic aberration including mutation in oncogenes and tumor suppressor genes transforms normal cells into tumor cells. Epigenetic modifications work concertedly with genetic factors in controlling cancer development. Histone acetyltransferases (HATs), histone deacetylases (HDACs), DNA methyltransferases (DNMTs) and chromatin structure modifier are prospective epigenetic regulators. Specifically, HDACs are histone modifiers regulating the expression of genes implicated in cell survival, growth, apoptosis, and metabolism. The majority of HDACs are highly upregulated in cancer, whereas some have a varied function and expression in cancer progression. Distinct HDACs have a positive and negative role in controlling cancer progression. HDACs are also significantly involved in tumor cells acquiring metastatic and angiogenic potential in order to withstand the anti-tumor microenvironment. HDACs' role in modulating metabolic genes has also been associated with tumor development and survival. This review highlights and discusses the molecular mechanisms of HDACs by which they regulate cell survival, apoptosis, metastasis, invasion, stemness potential, angiogenesis, and epithelial to mesenchymal transitions (EMT) in tumor cells. HDACs are the potential target for anti-cancer drug development and various inhibitors have been developed and FDA approved for a variety of cancers. The primary HDAC inhibitors with proven anti-cancer efficacy have also been highlighted in this review.
Collapse
Affiliation(s)
- Tashvinder Singh
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, 151401, India
| | - Prabhsimran Kaur
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, 151401, India
| | | | - Sandeep Singh
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, 151401, India.
| | - Anjana Munshi
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, 151401, India.
| |
Collapse
|
17
|
Abstract
The tumor microenvironment (TME) is a well-recognized system that plays an essential role in tumor initiation, development, and progression. Intense intercellular communication between tumor cells and other cells (especially macrophages) occurs in the TME and is mediated by cell-to-cell contact and/or soluble messengers. Emerging evidence indicates that noncoding RNAs (ncRNAs) are critical regulators of the relationship between cells within the TME. In this review, we provide an update on the regulation of ncRNAs (primarily micro RNAs [miRNAs], long ncRNAs [lncRNAs], and circular RNAs [circRNAs]) in the crosstalk between macrophages and tumor cells in hepatocellular carcinoma (HCC). These ncRNAs are derived from macrophages or tumor cells and act as oncogenes or tumor suppressors, contributing to tumor progression not only by regulating the physiological and pathological processes of tumor cells but also by controlling macrophage infiltration, activation, polarization, and function. Herein, we also explore the options available for clinical therapeutic strategies targeting crosstalk-related ncRNAs to treat HCC. A better understanding of the relationship between macrophages and tumor cells mediated by ncRNAs will uncover new diagnostic biomarkers and pharmacological targets in cancer.
Collapse
|
18
|
Xiang XS, Li PC, Wang WQ, Liu L. Histone deacetylases: A novel class of therapeutic targets for pancreatic cancer. Biochim Biophys Acta Rev Cancer 2022; 1877:188676. [PMID: 35016922 DOI: 10.1016/j.bbcan.2022.188676] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/31/2021] [Accepted: 01/05/2022] [Indexed: 12/24/2022]
Abstract
Pancreatic cancer is the seventh leading cause of cancer death worldwide, with a low 5-year survival rate. Novel agents are urgently necessary to treat the main pathological type, known as pancreatic ductal carcinoma (PDAC). The dysregulation of histone deacetylases (HDACs) has been identified in association with PDAC, which can be more easily targeted by small molecular inhibitors than gene mutations and may represent a therapeutic breakthrough for PDAC. However, the contributions of HDACs to PDAC remain controversial, and pharmacokinetic challenges have limited the application of HDAC inhibitors (HDACis) in PDAC. This review summarizes the mechanisms associated with success and failure of HDACis in PDAC and discusses the recent progress made in HDACi development and application, such as combination therapies designed to enhance efficacy. More precise strategies involving HDACis might eventually improve the outcomes of PDAC treatment.
Collapse
Affiliation(s)
- Xue-Song Xiang
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Peng-Cheng Li
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wen-Quan Wang
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Liang Liu
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
19
|
Zhai S, Zhang H, Chen R, Wu J, Ai D, Tao S, Cai Y, Zhang JQ, Wang L. Design, synthesis and biological evaluation of novel hybrids targeting mTOR and HDACs for potential treatment of hepatocellular carcinoma. Eur J Med Chem 2021; 225:113824. [PMID: 34509167 DOI: 10.1016/j.ejmech.2021.113824] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/19/2021] [Accepted: 08/28/2021] [Indexed: 01/02/2023]
Abstract
Hepatocellular carcinoma (HCC) is a major contributor to global cancer incidence and mortality. Many pathways are involved in the development of HCC and various proteins including mTOR and HDACs have been identified as potential drug targets for HCC treatment. In the present study, two series of novel hybrid molecules targeting mTOR and HDACs were designed and synthesized based on parent inhibitors (MLN0128 and PP121 for mTOR, SAHA for HDACs) by using a fusion-type molecular hybridization strategy. In vitro antiproliferative assays demonstrated that these novel hybrids with suitable linker lengths exhibited broad cytotoxicity against various cancer cell lines, with significant activity against HepG2 cells. Notably, DI06, an MLN0128-based hybrid, exhibited antiproliferative activity against HepG2 cells with an IC50 value of 1.61 μM, which was comparable to those of both parent drugs (MLN0128, IC50 = 2.13 μM and SAHA, IC50 = 2.26 μM). In vitro enzyme inhibition assays indicated that DI06, DI07 and DI17 (PP121-based hybrid) exhibited nanomolar inhibitory activity against mTOR kinase and HDACs (e.g., HDAC1, HDAC2, HDAC3, HADC6 and HADC8). Cellular studies and western blot analyses uncovered that in HepG2 cells, DI06 and DI17 induced cell apoptosis by targeting mTOR and HDACs, blocked the cell cycle at the G0/G1 phase and suppressed cell migration. The potential binding modes of the hybrids (DI06 and DI17) with mTOR and HDACs were investigated by molecular docking. DI06 displayed better stability in rat liver microsomes than DI07 and DI17. Collectively, DI06 as a novel mTOR and HDACs inhibitor presented here warrants further investigation as a potential treatment of HCC.
Collapse
Affiliation(s)
- Shiyang Zhai
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, Joint International Research Laboratory of Synthetic Biology and Medicine, Guangdong Provincial Engineering and Technology Research Center of Biopharmaceuticals, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Huimin Zhang
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, Joint International Research Laboratory of Synthetic Biology and Medicine, Guangdong Provincial Engineering and Technology Research Center of Biopharmaceuticals, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Rui Chen
- State Key Laboratory of Functions and Applications of Medicinal Plants & College of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang, 550004, China
| | - Jiangxia Wu
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, Joint International Research Laboratory of Synthetic Biology and Medicine, Guangdong Provincial Engineering and Technology Research Center of Biopharmaceuticals, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Daiqiao Ai
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, Joint International Research Laboratory of Synthetic Biology and Medicine, Guangdong Provincial Engineering and Technology Research Center of Biopharmaceuticals, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Shunming Tao
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, Joint International Research Laboratory of Synthetic Biology and Medicine, Guangdong Provincial Engineering and Technology Research Center of Biopharmaceuticals, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Yike Cai
- Center for Certification and Evaluation, Guangdong Drug Administration, Guangzhou, 510080, China
| | - Ji-Quan Zhang
- State Key Laboratory of Functions and Applications of Medicinal Plants & College of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang, 550004, China
| | - Ling Wang
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, Joint International Research Laboratory of Synthetic Biology and Medicine, Guangdong Provincial Engineering and Technology Research Center of Biopharmaceuticals, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
20
|
Zhou B, Liu D, Tan Y. Role of HDAC6 and Its Selective Inhibitors in Gastrointestinal Cancer. Front Cell Dev Biol 2021; 9:719390. [PMID: 34938729 PMCID: PMC8687743 DOI: 10.3389/fcell.2021.719390] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 11/08/2021] [Indexed: 12/24/2022] Open
Abstract
Worldwide, cancer is the second leading cause of mortality after cardiovascular diseases. Among the numerous malignant tumors in human, digestive system cancers are the primary cause of morbidity and mortality. Acetylation and deacetylation are crucially involved in cancer occurrence and development; in addition, the deacetylation process is regulated by histone deacetylases (HDACs). Among the 18 human HDACs that have been reported, HDAC6 has been widely studied. There is upregulated HDAC6 expression in numerous types of tumor tissues and is closely associated with clinicopathological characteristics. Moreover, several HDAC6 inhibitors have been identified; furthermore, there has been extensive research on their ability to inhibit the growth of many tumors. This review summarizes the roles of HDAC6 in different primary digestive system malignancies.
Collapse
Affiliation(s)
- Bingyi Zhou
- Department of Gastroenterology, The Second Xiangya Hospital, Central South University, Changsha, China
- Research Center of Digestive Disease, Central South University, Changsha, China
| | - Deliang Liu
- Department of Gastroenterology, The Second Xiangya Hospital, Central South University, Changsha, China
- Research Center of Digestive Disease, Central South University, Changsha, China
| | - Yuyong Tan
- Department of Gastroenterology, The Second Xiangya Hospital, Central South University, Changsha, China
- Research Center of Digestive Disease, Central South University, Changsha, China
| |
Collapse
|
21
|
Li Z, Chen Q, Wang J, Pan X, Lu W. Research Progress and Application of Bioorthogonal Reactions in Biomolecular Analysis and Disease Diagnosis. Top Curr Chem (Cham) 2021; 379:39. [PMID: 34590223 DOI: 10.1007/s41061-021-00352-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 09/14/2021] [Indexed: 12/14/2022]
Abstract
Bioorthogonal reactions are rapid, specific and high yield reactions that can be performed in in vivo microenvironments or simulated microenvironments. At present, the main biorthogonal reactions include Staudinger ligation, copper-catalyzed azide alkyne cycloaddition, strain-promoted [3 + 2] reaction, tetrazine ligation, metal-catalyzed coupling reaction and photo-induced biorthogonal reactions. To date, many reviews have reported that bioorthogonal reactions have been used widely as a powerful tool in the field of life sciences, such as in target recognition, drug discovery, drug activation, omics research, visualization of life processes or exogenous bacterial infection processes, signal transduction pathway research, chemical reaction dynamics analysis, disease diagnosis and treatment. In contrast, to date, few studies have investigated the application of bioorthogonal reactions in the analysis of biomacromolecules in vivo. Therefore, the application of bioorthogonal reactions in the analysis of proteins, nucleic acids, metabolites, enzyme activities and other endogenous molecules, and the determination of disease-related targets is reviewed. In addition, this review discusses the future development opportunities and challenges of biorthogonal reactions. This review presents an overview of recent advances for application in biomolecular analysis and disease diagnosis, with a focus on proteins, metabolites and RNA detection.
Collapse
Affiliation(s)
- Zilong Li
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Qinhua Chen
- Department of Pharmacy, Shenzhen Baoan Authentic TCM Therapy Hospital, Shenzhen, 518101, China
| | - Jin Wang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Xiaoyan Pan
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Wen Lu
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China.
| |
Collapse
|
22
|
Zhang Z, Zhang X, Huang A. Aggresome-Autophagy Associated Gene HDAC6 Is a Potential Biomarker in Pan-Cancer, Especially in Colon Adenocarcinoma. Front Oncol 2021; 11:718589. [PMID: 34485153 PMCID: PMC8416150 DOI: 10.3389/fonc.2021.718589] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 06/21/2021] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Histone deacetylase 6 (HDAC6) regulates cytoplasmic signaling networks through the deacetylation of various cytoplasmic substrates. Recent studies have identified the role of HDAC6 in tumor development and immune metabolism, but its specific function remains unclear. METHODS The current study determined the role of HDAC6 in tumor metabolism and tumor immunity through a multi-database pan-cancer analysis. The Cancer Genome Atlas (TCGA), Genotype-Tissue Expression (GTEx), and Cancer Cell Line Encyclopedia (CCLE) datasets were used to determine the expression levels, prognosis, tumor progression, immune checkpoints, and immune metabolism of HDAC6 in 33 tumors. Pathways, immune checkpoints, immune neoantigens, immune microenvironment, tumor mutational burden (TMB), microsatellite instability (MSI), DNA mismatch repair (MMR), and the value of methyltransferases. The R package was used for quantitative analysis and panoramic description. RESULTS In the present study, we determined that HDAC6 is differentially expressed in pan carcinomas, and by survival, we found that HDAC6 was generally associated with the prognosis of pancreatic adenocarcinoma, Thymoma, and uveal melanoma, where low expression of HDAC6 had a significantly worse prognosis. Secondly, through this experiment, we confirmed that HDAC6 expression level was associated with tumor immune infiltration and tumor microenvironment, especially in PAAD. Finally, HDAC6 was associated with immune neoantigen and immune checkpoint gene expression profiles in all cancers in addition to TMB and MSI in pan-cancers. CONCLUSION HDAC6 is differentially expressed in pan-cancers and plays an essential role in tumor metabolism and immunity. HDAC6 holds promise as a tumor potential prognostic marker, especially in colon cancer.
Collapse
Affiliation(s)
- Zhiyong Zhang
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xin Zhang
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Aimin Huang
- Department of General Surgery, Medical College of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
23
|
Hai R, He L, Shu G, Yin G. Characterization of Histone Deacetylase Mechanisms in Cancer Development. Front Oncol 2021; 11:700947. [PMID: 34395273 PMCID: PMC8360675 DOI: 10.3389/fonc.2021.700947] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 07/05/2021] [Indexed: 02/01/2023] Open
Abstract
Over decades of studies, accumulating evidence has suggested that epigenetic dysregulation is a hallmark of tumours. Post-translational modifications of histones are involved in tumour pathogenesis and development mainly by influencing a broad range of physiological processes. Histone deacetylases (HDACs) and histone acetyltransferases (HATs) are pivotal epigenetic modulators that regulate dynamic processes in the acetylation of histones at lysine residues, thereby influencing transcription of oncogenes and tumour suppressor genes. Moreover, HDACs mediate the deacetylation process of many nonhistone proteins and thus orchestrate a host of pathological processes, such as tumour pathogenesis. In this review, we elucidate the functions of HDACs in cancer.
Collapse
Affiliation(s)
- Rihan Hai
- Department of Pathology, Xiangya Hospital, School of Basic Medical Sciences, Central South University, Changsha, China.,School of Basic Medical Sciences, Central South University, Changsha, China
| | - Liuer He
- Department of Pathology, Xiangya Hospital, School of Basic Medical Sciences, Central South University, Changsha, China.,School of Basic Medical Sciences, Central South University, Changsha, China
| | - Guang Shu
- School of Basic Medical Sciences, Central South University, Changsha, China
| | - Gang Yin
- Department of Pathology, Xiangya Hospital, School of Basic Medical Sciences, Central South University, Changsha, China
| |
Collapse
|
24
|
Hu XT, Xing W, Zhao RS, Tan Y, Wu XF, Ao LQ, Li Z, Yao MW, Yuan M, Guo W, Li SZ, Yu J, Ao X, Xu X. HDAC2 inhibits EMT-mediated cancer metastasis by downregulating the long noncoding RNA H19 in colorectal cancer. J Exp Clin Cancer Res 2020; 39:270. [PMID: 33267897 PMCID: PMC7709355 DOI: 10.1186/s13046-020-01783-9] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 11/16/2020] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Emerging evidence suggests that epithelial mesenchymal transition (EMT) and epigenetic mechanisms promote metastasis. Histone deacetylases (HDACs) and noncoding RNAs (ncRNAs) are important epigenetic regulators. Here, we elucidated a novel role of histone deacetylase 2 (HDAC2) in regulating EMT and CRC metastasis via ncRNA. METHODS The expression of HDACs in CRC was analyzed using the public databases and matched primary and metastatic tissues, and CRC cells with different metastatic potentials (DLD1, HCT116, SW480 and SW620). Microarray analysis was used to identify differential genes in parental and HDAC2 knockout CRC cells. EMT and histone modifications were determined using western blot and immunofluorescence. Migration ability was assessed by transwell assay, and metastasis was assessed in vivo using a tail vain injection. Gene expression and regulation was assessed by RT-PCR, chromatin immunoprecipitation and reporter assays. Protein interaction was assessed by immunoprecipitation. Specific siRNAs targeting H19, SP1 and MMP14 were used to validate their role in HDAC2 loss induced EMT and metastasis. RESULTS Reduced HDAC2 expression was associated with poor prognosis in CRC patients and found in CRC metastasis. HDAC2 deletion or knockdown induced EMT and metastasis by upregulating the long noncoding RNA H19 (LncRNA H19). HDAC2 inhibited LncRNA H19 expression by histone H3K27 deacetylation in its promoter via binding with SP1. LncRNA H19 functioned as a miR-22-3P sponge to increase the expression of MMP14. HDAC2 loss strongly promoted CRC lung metastasis, which was suppressed LncRNA H19 knockdown. CONCLUSION Our study supports HDAC2 as a CRC metastasis suppressor through the inhibition of EMT and the expression of H19 and MMP14.
Collapse
Affiliation(s)
- Xue-Ting Hu
- Department of Stem Cell & Regenerative Medicine, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing, 400042, People's Republic of China
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Army Medical University, Chongqing, 400042, People's Republic of China
| | - Wei Xing
- Department of Stem Cell & Regenerative Medicine, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing, 400042, People's Republic of China
| | - Rong-Sen Zhao
- Department of Stem Cell & Regenerative Medicine, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing, 400042, People's Republic of China
| | - Yan Tan
- Department of Stem Cell & Regenerative Medicine, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing, 400042, People's Republic of China
| | - Xiao-Feng Wu
- Department of Stem Cell & Regenerative Medicine, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing, 400042, People's Republic of China
| | - Luo-Quan Ao
- Department of Stem Cell & Regenerative Medicine, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing, 400042, People's Republic of China
| | - Zhan Li
- Department of Stem Cell & Regenerative Medicine, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing, 400042, People's Republic of China
| | - Meng-Wei Yao
- Department of Stem Cell & Regenerative Medicine, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing, 400042, People's Republic of China
| | - Mu Yuan
- Department of Stem Cell & Regenerative Medicine, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing, 400042, People's Republic of China
| | - Wei Guo
- Department of Stem Cell & Regenerative Medicine, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing, 400042, People's Republic of China
| | - Shang-Ze Li
- Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, People's Republic of China
| | - Jian Yu
- Department of Pathology, University of Pittsburgh, UPMC Hillman Cancer Center, Pittsburgh, PA, 15213, USA
| | - Xiang Ao
- Department of Stem Cell & Regenerative Medicine, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing, 400042, People's Republic of China.
| | - Xiang Xu
- Department of Stem Cell & Regenerative Medicine, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing, 400042, People's Republic of China.
| |
Collapse
|
25
|
Neganova ME, Klochkov SG, Aleksandrova YR, Aliev G. Histone modifications in epigenetic regulation of cancer: Perspectives and achieved progress. Semin Cancer Biol 2020; 83:452-471. [PMID: 32814115 DOI: 10.1016/j.semcancer.2020.07.015] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 07/24/2020] [Accepted: 07/27/2020] [Indexed: 02/07/2023]
Abstract
Epigenetic changes associated with histone modifications play an important role in the emergence and maintenance of the phenotype of various cancer types. In contrast to direct mutations in the main DNA sequence, these changes are reversible, which makes the development of inhibitors of enzymes of post-translational histone modifications one of the most promising strategies for the creation of anticancer drugs. To date, a wide variety of histone modifications have been found that play an important role in the regulation of chromatin state, gene expression, and other nuclear events. This review examines the main features of the most common and studied epigenetic histone modifications with a proven role in the pathogenesis of a wide range of malignant neoplasms: acetylation / deacetylation and methylation / demethylation of histone proteins, as well as the role of enzymes of the HAT / HDAC and HMT / HDMT families in the development of oncological pathologies. The data on the relationship between histone modifications and certain types of cancer are presented and discussed. Special attention is devoted to the consideration of various strategies for the development of epigenetic inhibitors. The main directions of the development of inhibitors of histone modifications are analyzed and effective strategies for their creation are identified and discussed. The most promising strategy is the use of multitarget drugs, which will affect multiple molecular targets of cancer. A critical analysis of the current status of approved epigenetic anticancer drugs has also been performed.
Collapse
Affiliation(s)
- Margarita E Neganova
- Institute of Physiologically Active Compounds Russian Academy of Sciences, 1, Severnii pr., Chernogolovka, 142432, Russian Federation
| | - Sergey G Klochkov
- Institute of Physiologically Active Compounds Russian Academy of Sciences, 1, Severnii pr., Chernogolovka, 142432, Russian Federation
| | - Yulia R Aleksandrova
- Institute of Physiologically Active Compounds Russian Academy of Sciences, 1, Severnii pr., Chernogolovka, 142432, Russian Federation
| | - Gjumrakch Aliev
- Institute of Physiologically Active Compounds Russian Academy of Sciences, 1, Severnii pr., Chernogolovka, 142432, Russian Federation.,I. M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 8/2 Trubetskaya Str., Moscow, 119991, Russian Federation.,Laboratory of Cellular Pathology, Federal State Budgetary Institution «Research Institute of Human Morphology», 3, Tsyurupy Str., Moscow, 117418, Russian Federation.,GALLY International Research Institute, 7733 Louis Pasteur Drive, #330, San Antonio, TX, 78229, USA.
| |
Collapse
|
26
|
Dawood M, Hegazy MEF, Elbadawi M, Fleischer E, Klinger A, Bringmann G, Kuntner C, Shan L, Efferth T. Vitamin K 3 chloro derivative (VKT-2) inhibits HDAC6, activates autophagy and apoptosis, and inhibits aggresome formation in hepatocellular carcinoma cells. Biochem Pharmacol 2020; 180:114176. [PMID: 32721508 DOI: 10.1016/j.bcp.2020.114176] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 07/21/2020] [Accepted: 07/22/2020] [Indexed: 12/25/2022]
Abstract
Epigenetics plays a vital role in regulating gene expression and determining the specific phenotypes of eukaryotic cells. Histone deacetylases (HDACs) are important epigenetic regulatory proteins effecting multiple biological functions. Particularly, HDAC6 has become a promising anti-cancer drug target because of its regulation of cell mobility, protein trafficking, degradation of misfolded proteins, cell growth, apoptosis, and metastasis. In this study, we identified one out of six vitamin K3 derivatives, VKT-2, as HDAC6 inhibitor using molecular docking and cell viability assays in HDAC6-overexpressing HuH-7 cancer cells. Microscale thermophoresis and HDAC6 enzymatic assays revealed that VKT-2 bound to HDAC6 and inhibited its function. We further identified its cytotoxic activity. VKT-2 hyperacetylated HDAC6 substrates and disturbed tubulin integrity leading to significant inhibition of tumor migration in both HuH-7 spheroids and U2OS-GFP-α-tubulin cells. Moreover, VKT-2 induced autophagic and apoptotic cell death in HuH-7, while aggresome formation was restrained after VKT-2 treatment. A HuH-7 cell-xenograft model in zebrafish larvae provided evidence that VKT-2 inhibited the tumor growth in vivo. To best of our knowledge, it is the first time to demonstrate that vitamin k3 derivatives (VKT-2) inhibits HDAC6 in solid tumor cells. These unique findings suggested that VKT-2 is a promising anti-cancer agent targeting HDAC6.
Collapse
Affiliation(s)
- Mona Dawood
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany; Department of Molecular Biology, Faculty of Medical Laboratory Science, Al-Neelain University, Khartoum, Sudan
| | - Mohamed-Elamir F Hegazy
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany; Chemistry of Medicinal Plants Department, National Research Centre, 33 El-Bohouth St., Dokki, Giza 12622, Egypt
| | - Mohamed Elbadawi
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany
| | | | | | - Gerhard Bringmann
- Institute of Organic Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Claudia Kuntner
- AIT Austrian Institute of Technology GmbH, Preclinical Molecular Imaging, Seibersdorf, Austria
| | - Letian Shan
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany.
| |
Collapse
|
27
|
Targeting the Cancer Epigenome with Histone Deacetylase Inhibitors in Osteosarcoma. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1258:55-75. [PMID: 32767234 DOI: 10.1007/978-3-030-43085-6_4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Epigenetic deregulation is an emerging hallmark of cancer that enables tumor cells to escape surveillance by tumor suppressors and ultimately progress. The structure of the epigenome consists of covalent modifications of chromatin components, including acetylation by histone acetyltransferases (HATs) and deacetylation by histone deacetylases (HDACs). Targeting these enzymes with inhibitors to restore epigenetic homeostasis has been explored for many cancers. Osteosarcoma, an aggressive bone malignancy that primarily affects children and young adults, is notable for widespread genetic and epigenetic instability. This may explain why therapy directed at unique molecular pathways has failed to substantially improve outcomes in osteosarcoma over the past four decades. In this review, we discuss the potential of targeting the cancer epigenome, with a focus on histone deacetylase inhibitors (HDACi) for osteosarcoma. We additionally highlight the safety and tolerance of HDACi, combination chemotherapy with HDACi, and the ongoing challenges in the development of these agents.
Collapse
|
28
|
Mirzaei H, Ghorbani S, Khanizadeh S, Namdari H, Faghihloo E, Akbari A. Histone deacetylases in virus-associated cancers. Rev Med Virol 2019; 30:e2085. [PMID: 31743548 DOI: 10.1002/rmv.2085] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 08/31/2019] [Accepted: 09/03/2019] [Indexed: 12/24/2022]
Abstract
Oncogenic viruses are one of the most important causes of cancer worldwide. The pathogens contribute to the establishment of human malignancies by affecting various cellular events. Epigenetic mechanisms, such as histone modification methylation/demethylation, are one of the most critical events manipulated by oncogenic viruses to drive tumorigenesis. Histone modifications are mediated by histone acetylation and deacetylation, regulated by histone acetyltransferases (HATs) and histone deacetylases (HDACs), respectively. Dysregulation of HDACs activity affects viral tumorigenesis in several ways, such as manipulating tumor suppressor and viral gene expression. The present review aims to describe the vital interactions between both cancer-caused/associated viruses and the HDAC machinery, particularly by focusing on those viruses involved in gastrointestinal tumors, as some of the most common viral-mediated cancers.
Collapse
Affiliation(s)
- Habibollah Mirzaei
- Hepatitis Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran.,Department of Virology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Saeed Ghorbani
- Student Research Committee, Iran University of Medical Sciences, Tehran, Iran.,Department of Virology, Faculty of Medicine, Iran University of Medical Science, Tehran, Iran
| | - Sayyad Khanizadeh
- Hepatitis Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran.,Department of Virology, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Haideh Namdari
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Ebrahim Faghihloo
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abolfazl Akbari
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
29
|
Yang HD, Kim HS, Kim SY, Na MJ, Yang G, Eun JW, Wang HJ, Cheong JY, Park WS, Nam SW. HDAC6 Suppresses Let-7i-5p to Elicit TSP1/CD47-Mediated Anti-Tumorigenesis and Phagocytosis of Hepatocellular Carcinoma. Hepatology 2019; 70:1262-1279. [PMID: 30991448 DOI: 10.1002/hep.30657] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 03/30/2019] [Indexed: 12/24/2022]
Abstract
Histone deacetylase 6 (HDAC6) uniquely serves as a tumor suppressor in hepatocellular carcinogenesis, but the underlying mechanisms leading to tumor suppression are not fully understood. To identify comprehensive microRNAs (miRNAs) regulated by HDAC6 in hepatocellular carcinogenesis, differential miRNA expression analysis of HDAC6-transfected Hep3B cells was performed. Using integrative analyses of publicly available transcriptome data and miRNA target prediction, we selected five candidate miRNAs and, through in vitro functional validation, showed that let-7i-5p specifically suppressed thrombospondin-1 (TSP1) in hepatocellular carcinoma (HCC). Ectopic expression of antisense let-7i-5p (AS-let-7i-5p) inhibited in vitro tumorigenesis of HCC cells. In addition, treatments of partially purified TSP1 from culture cell media (ppTSP1) and recombinant TSP1 (rTSP1) exhibited similar effects with AS-let-7i-5p treatment on the same HCC cells, whereas TSP1 neutralizing antibody treatment significantly attenuated these effects. Notably, treatments of HDAC6 plasmid, AS-let-7i-5p, ppTSP1, and rTSP1 significantly suppressed in vitro angiogenesis and metastatic potential of HCC cells, but the co-treatment of TSP1 antibody specific to cluster of differentiation 47 (CD47) binding domain successfully blocked these effects in the same cells. Furthermore, we demonstrated that recovery of HDAC6 elicited let-7i-5p suppression to de-repress TSP1 expression; therefore, it occupied the CD47 receptor to block CD47-SIRPα-mediated anti-phagocytosis of macrophage in HCC. We also observed that HCC-derived exosomal let-7i-5p suppressed TSP1 of recipient hepatocyte cells. Treatments of HDAC6 plasmid, AS-let-7i-5p, and rTSP1 suppressed tumor incidence as well as tumor growth rates in a spontaneous mouse HCC model. Conclusion: Our findings suggest that the HDAC6-let-7i-5p-TSP1 regulatory pathway suppresses neoplastic and antiphagocytic behaviors of HCC by interacting with cell surface receptor CD47 in HCC and neighboring cells of tumor microenvironment, providing a therapeutic target for the treatment of liver malignancy and metastasis.
Collapse
Affiliation(s)
- Hee Doo Yang
- Department of Pathology, College of Medicine, the Catholic University of Korea, Seoul, Republic of Korea
- Functional RNomics Research Center, the Catholic University of Korea, Seoul, Republic of Korea
- Department of Biomedicine & Health Sciences, Graduate School of Medicine, the Catholic University of Korea, Seoul, Republic of Korea
| | - Hyung Seok Kim
- Department of Pathology, College of Medicine, the Catholic University of Korea, Seoul, Republic of Korea
- Functional RNomics Research Center, the Catholic University of Korea, Seoul, Republic of Korea
- Department of Biomedicine & Health Sciences, Graduate School of Medicine, the Catholic University of Korea, Seoul, Republic of Korea
| | - Sang Yean Kim
- Department of Pathology, College of Medicine, the Catholic University of Korea, Seoul, Republic of Korea
- Functional RNomics Research Center, the Catholic University of Korea, Seoul, Republic of Korea
- Department of Biomedicine & Health Sciences, Graduate School of Medicine, the Catholic University of Korea, Seoul, Republic of Korea
| | - Min Jeong Na
- Department of Pathology, College of Medicine, the Catholic University of Korea, Seoul, Republic of Korea
- Functional RNomics Research Center, the Catholic University of Korea, Seoul, Republic of Korea
- Department of Biomedicine & Health Sciences, Graduate School of Medicine, the Catholic University of Korea, Seoul, Republic of Korea
| | - Gyeongdeok Yang
- Department of Pathology, College of Medicine, the Catholic University of Korea, Seoul, Republic of Korea
- Functional RNomics Research Center, the Catholic University of Korea, Seoul, Republic of Korea
| | - Jung Woo Eun
- Department of Gastroenterology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Hee Jung Wang
- Department of Surgery, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Jae Youn Cheong
- Department of Gastroenterology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Won Sang Park
- Department of Pathology, College of Medicine, the Catholic University of Korea, Seoul, Republic of Korea
- Functional RNomics Research Center, the Catholic University of Korea, Seoul, Republic of Korea
| | - Suk Woo Nam
- Department of Pathology, College of Medicine, the Catholic University of Korea, Seoul, Republic of Korea
- Functional RNomics Research Center, the Catholic University of Korea, Seoul, Republic of Korea
- Department of Biomedicine & Health Sciences, Graduate School of Medicine, the Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
30
|
Tang C, Du Y, Liang Q, Cheng Z, Tian J. Development of a Novel Histone Deacetylase-Targeted Near-Infrared Probe for Hepatocellular Carcinoma Imaging and Fluorescence Image-Guided Surgery. Mol Imaging Biol 2019; 22:476-485. [DOI: 10.1007/s11307-019-01389-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
31
|
Weng X, Wu J, Lv Z, Peng C, Chen J, Zhang C, He B, Tong R, Hu W, Ding C, Cao L, Chen D, Wu J, Zheng S. Targeting Mybbp1a suppresses HCC progression via inhibiting IGF1/AKT pathway by CpG islands hypo-methylation dependent promotion of IGFBP5. EBioMedicine 2019; 44:225-236. [PMID: 31109829 PMCID: PMC6606930 DOI: 10.1016/j.ebiom.2019.05.029] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 05/10/2019] [Accepted: 05/10/2019] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Myb-binding protein 1A (Mybbp1a) is a nucleolar protein that can regulate rRNA metabolism, the stress response and carcinogenesis. However, the function of Mybbp1a in the progression of hepatocellular carcinoma (HCC) is unclear. We aimed to determine the role of Mybbp1a in HCC and the underlying mechanism. METHODS We investigated the function of Mybbp1a in HCC cell models and the xenograft mouse model. The relationship between Mybbp1a and IGFBP5 was found through expression profile chip. The molecular mechanism of Mybbp1a regulating IGFBP5 was proved through CO-IP, CHIP, Bisulfite Sequencing and Pyrosequencing. FINDINGS In this study, we observed that Mybbp1a was overexpressed in HCC tissues and associated with the poor prognosis of HCC patients. Suppression of Mybbp1a led to a reduction in the proliferation and migration ability of HCC cells through inhibiting the IGF1/AKT signaling pathway. Further study found that Mybbp1a could form a complex with DNMT1 and induce aberrant hyper-methylation of CpG islands of IGFBP5, which inhibits secretion of IGFBP5 and then activates IGF1/AKT signaling pathway. INTERPRETATION These findings extend our understanding of the function of Mybbp1a in the progression of HCC. The newly identified Mybbp1a may provide a novel biomarker for developing potential therapeutic targets of HCC. FUND: Science Technology Department of Zhejiang Province (No. 2015C03034), National Health and Family Planning Commission of China (No. 2016138643), Innovative Research Groups of National Natural Science Foundation of China (No. 81721091), Major program of National Natural Science Foundation of China (No. 91542205).
Collapse
Affiliation(s)
- Xiaoyu Weng
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
- Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou 310003, China
| | - Jingbang Wu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
- Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou 310003, China
| | - Zhen Lv
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Chuanhui Peng
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
- Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou 310003, China
| | - Junru Chen
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
- Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou 310003, China
| | - Cheng Zhang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Bin He
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
- Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou 310003, China
| | - Rongliang Tong
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
- Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou 310003, China
| | - Wendi Hu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
- Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou 310003, China
| | - Chaofeng Ding
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Linping Cao
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Diyu Chen
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
- Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou 310003, China
| | - Jian Wu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
- Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou 310003, China
- The Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou 310003, China
| | - Shusen Zheng
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
- Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou 310003, China
- The Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou 310003, China
| |
Collapse
|
32
|
Niu L, Liu A, Xu W, Yang L, Zhu W, Gu Y. Downregulation of peroxiredoxin II suppresses the proliferation and metastasis of gastric cancer cells. Oncol Lett 2018; 16:4551-4560. [PMID: 30214590 PMCID: PMC6126214 DOI: 10.3892/ol.2018.9208] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 04/18/2018] [Indexed: 12/15/2022] Open
Abstract
Peroxiredoxin (Prx) II is an imperative member of the superfamily of peroxidases. It serves an essential role in scavenging organic hydroperoxide and H2O2. It is involved in the development of various malignant tumors. In order to investigate the significance of Prx II expressions level in gastric cancer (GC), downregulation of Prx II was performed to investigate its role in the proliferation and migration of gastric adenocarcinoma cells. In GC cells and 45 GC specimens, the mRNA and protein expression levels of Prx II were determined using reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and western blot analysis, respectively. The Prx II expression profile in another 116 GC specimens was also detected with immunohistochemistry (IHC). The changes in the proliferation and migration of MKN45 and MGC-803 cells folllowing transfection with small interfering RNA (siRNA) were detected by cell counting kit (CCK)-8, western blot analysis, and Transwell migration and invasion assays. The results revealed that the expression of Prx II in GC tissues and GC cells were significantly upregulated compared with the normal control. There was a significant association between the expression level of Prx II and various factors, including tumor size, histological differentiation, the depth of invasion, the stage of tumor-node-metastasis (TNM) and lymph node metastasis in GC (P<0.05). Survival in patients with higher Prx II expression was significantly decreased compared with those with lower Prx II expression (P<0.01). Prx II, depth of invasion, lymph node metastasis and distant metastasis were identified as independent prognosis factors of GC (P<0.05). Knockdown of Prx II significantly suppressed the proliferation and the migration of GC cells. These experiments revealed that Prx II promotes the development of GC, affecting the survival of patients with GC.
Collapse
Affiliation(s)
- Linjun Niu
- Department of Interventional Radiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China
| | - Ang Liu
- Department of Interventional Radiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China
| | - Wei Xu
- Department of Interventional Radiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China
| | - Liang Yang
- Department of Interventional Radiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China
| | - Wugang Zhu
- Department of Interventional Radiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China
| | - Yuming Gu
- Department of Interventional Radiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China
| |
Collapse
|
33
|
Yin Z, Xu W, Xu H, Zheng J, Gu Y. Overexpression of HDAC6 suppresses tumor cell proliferation and metastasis by inhibition of the canonical Wnt/β-catenin signaling pathway in hepatocellular carcinoma. Oncol Lett 2018; 16:7082-7090. [PMID: 30546442 PMCID: PMC6256338 DOI: 10.3892/ol.2018.9504] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 08/31/2018] [Indexed: 12/18/2022] Open
Abstract
Histone deacetylase 6 (HDAC6), a specific histone deacetylase family member, serves an essential role in the regulation of gene expression, cell cycle progression, autophagy and apoptosis. There are numerous reports on the function of HDAC6 in cancer. However, the specific function of HDAC6 in hepatocellular carcinoma (HCC) has yet to be revealed. In the present study, the expression of HDAC6 was revealed to be downregulated in human HCC cell lines and tissues. The aberrant activation of the canonical Wnt/β-catenin signaling pathway was revealed to be involved in hepatocarcinogenesis and metastasis. It was additionally revealed that the overexpression of HDAC6 decreased the expression of β-catenin protein levels which attenuated the canonical Wnt/β-catenin signaling pathway and suppressed the proliferation of HCC cells. In addition, the upregulation of HDAC6 inhibited the epithelial-to-mesenchymal transition in HCC by increasing the E-cadherin protein levels and decreasing the N-cadherin, vimentin and matrix metalloproteinase-9 protein levels. Furthermore, HDAC6 also exerted an effect on the cell cycle arrest and the induction of apoptosis. These results demonstrated that HDAC6 functioned as a tumor suppressor in HCC by attenuating the activity of the canonical Wnt/β-catenin signaling pathway. Therefore, HDAC6 may serve as a potential therapeutic target for the treatment of HCC.
Collapse
Affiliation(s)
- Zhusheng Yin
- Department of Interventional Radiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China
| | - Wei Xu
- Department of Interventional Radiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China
| | - Hao Xu
- Department of Interventional Radiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China
| | - Junnian Zheng
- Jiangsu Key Laboratory of Biological Cancer Therapy, Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China
| | - Yuming Gu
- Department of Interventional Radiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China
| |
Collapse
|
34
|
Liu Z, Ye Q, Wu L, Gao F, Xie H, Zhou L, Zheng S, Xu X. Metallothionein 1 family profiling identifies MT1X as a tumor suppressor involved in the progression and metastastatic capacity of hepatocellular carcinoma. Mol Carcinog 2018; 57:1435-1444. [PMID: 29873415 DOI: 10.1002/mc.22846] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Revised: 05/14/2018] [Accepted: 06/01/2018] [Indexed: 12/20/2022]
Abstract
Metallothionein 1 (MT1s) is a family of cysteine-rich proteins with diverse functions such as metal homeostasis, oxidative stress, and carcinogenesis. However, its involvement in hepatocellular carcinoma (HCC) remains not fully understood. We aimed to explore the contribution of the individual member of MT1s to HCC. Its member mRNA levels were determined in cohort 1 of normal (n = 30), cirrhotic (n = 30), peritumoral (n = 135), and HCC (n = 135). In cohort 1, seven of eight members were down-regulated during the transition from normal liver to HCC, and only MT1G and MT1X were correlated with tumor features and outcomes. The MT1X was selected to be further stained in cohort 2 consisting of a series of liver nodules (15 normal livers, 33 cirrhotic livers, 12 dysplastic nodules, 31 HCC, and 9 HCC metastasis), and in cohort 3 (HCC, n = 85). In cohort 2, MT1X immunoreactivity was reduced in HCC and lost in metastatic HCC and showed good diagnostic performance for HCC (AUC = 0.754, 95%IC = 0.659-0.849). In cohort 3, MT1X expression in peritumoral tissues was independent predictor for HCC (recurrence free survival: HR = 0.34, 95%CI = 0.17-0.66; overall survival: HR = 0.32, 95%CI = 0.16-0.60). Moreover, we found that ectopic overexpression of MT1X delayed G1/S progression of cell cycle and promoted apoptosis in HCC cells in vitro, and suppressed tumor growth and lung metastasis in nude mice in vivo. We further demonstrated that MT1X induces cell cycle arrest and apoptosis by inactivating NF-κB signaling in HCC. In conclusion, MT1X may serve as a candidate of prognostic indicator and inhibits the progression and metastasis of HCC.
Collapse
Affiliation(s)
- Zhikun Liu
- Division of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Lab of Combined Multi-Organ Transplantation, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Ministry of Public Health, Hangzhou, China
| | - Qianwei Ye
- Key Lab of Combined Multi-Organ Transplantation, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Ministry of Public Health, Hangzhou, China
| | - Lingjiao Wu
- Key Lab of Combined Multi-Organ Transplantation, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Ministry of Public Health, Hangzhou, China
| | - Feng Gao
- Division of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Lab of Combined Multi-Organ Transplantation, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Ministry of Public Health, Hangzhou, China
| | - Haiyang Xie
- Key Lab of Combined Multi-Organ Transplantation, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Ministry of Public Health, Hangzhou, China
| | - Lin Zhou
- Key Lab of Combined Multi-Organ Transplantation, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Ministry of Public Health, Hangzhou, China
| | - Shusen Zheng
- Division of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Lab of Combined Multi-Organ Transplantation, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Ministry of Public Health, Hangzhou, China
| | - Xiao Xu
- Division of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Lab of Combined Multi-Organ Transplantation, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Ministry of Public Health, Hangzhou, China
| |
Collapse
|
35
|
The therapeutic properties of resminostat for hepatocellular carcinoma. Oncoscience 2018; 5:196-208. [PMID: 30035186 PMCID: PMC6049311 DOI: 10.18632/oncoscience.420] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 03/03/2018] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common form of primary liver cancer with increases in new cases being reported annually. Histopathologists have identified hepatic steatosis as a characteristic of a broad range of chronic liver diseases that are associated with the onset and development of HCC. In this context, epigenetic modifications may serve as precancerous factors predisposing normal cells to the initiation of carcinogenesis. This study demonstrated that hepatic tumorigenesis and differentiated adipocytes may modulate both global histone deacetylase (HDAC) expression and specific class I HDAC genes in the tumour microenvironment. The novel class I HDAC inhibitor Resminostat was shown to reduce the proliferation of HCC cells along with its specificity in targeting class I HDACs and oncogenes. The combined effect of Resminostat with several pharmaceutical agents such as Sorafenib, Cisplatin and Doxorubicin was also demonstrated. The inhibition of heat shock protein 90 (HSP90) has been demonstrated as a potential therapeutic option for HCC. In line with this, the specific HSP90 inhibitor 17-(allylamino)-17-demethoxygeldanamycin (17-AAG) was selected and it was found that the combination of Resminostat and 17-AAG may provide a “smart” clinical strategy for HCC patients by targeting cellular communication within the tumour microenvironment. This study provides an insight into the use of Resminostat as an epigenetic based therapeutic for HCC along with other pharmaceutical options, in particular by targeting the cell-to-cell communication that occurs between hepatoma and adipocytes.
Collapse
|
36
|
Zhang SL, Li C, Liu DL, Tan YY. Role of HDAC6 in primary digestive system malignancies. Shijie Huaren Xiaohua Zazhi 2018; 26:827-833. [DOI: 10.11569/wcjd.v26.i14.827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Shi-Lan Zhang
- Department of Gastroenterology, the Second Xiangya Hospital of Central South University, Changsha 410011, Hu'nan Province, China
| | - Chen Li
- Department of Gastroenterology, the Second Xiangya Hospital of Central South University, Changsha 410011, Hu'nan Province, China
| | - De-Liang Liu
- Department of Gastroenterology, the Second Xiangya Hospital of Central South University, Changsha 410011, Hu'nan Province, China
| | - Yu-Yong Tan
- Department of Gastroenterology, the Second Xiangya Hospital of Central South University, Changsha 410011, Hu'nan Province, China
| |
Collapse
|
37
|
Hosseini A, Minucci S. Alterations of Histone Modifications in Cancer. EPIGENETICS IN HUMAN DISEASE 2018:141-217. [DOI: 10.1016/b978-0-12-812215-0.00006-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
38
|
Lernoux M, Schnekenburger M, Dicato M, Diederich M. Anti-cancer effects of naturally derived compounds targeting histone deacetylase 6-related pathways. Pharmacol Res 2017; 129:337-356. [PMID: 29133216 DOI: 10.1016/j.phrs.2017.11.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 10/02/2017] [Accepted: 11/06/2017] [Indexed: 12/20/2022]
Abstract
Alterations of the epigenetic machinery, affecting multiple biological functions, represent a major hallmark enabling the development of tumors. Among epigenetic regulatory proteins, histone deacetylase (HDAC)6 has emerged as an interesting potential therapeutic target towards a variety of diseases including cancer. Accordingly, this isoenzyme regulates many vital cellular regulatory processes and pathways essential to physiological homeostasis, as well as tumor multistep transformation involving initiation, promotion, progression and metastasis. In this review, we will consequently discuss the critical implications of HDAC6 in distinct mechanisms relevant to physiological and cancerous conditions, as well as the anticancer properties of synthetic, natural and natural-derived compounds through the modulation of HDAC6-related pathways.
Collapse
Affiliation(s)
- Manon Lernoux
- Laboratory of Molecular and Cellular Biology of Cancer, Kirchberg Hospital, 9, Edward Steichen Street, L-2540 Luxembourg, Luxembourg
| | - Michael Schnekenburger
- Laboratory of Molecular and Cellular Biology of Cancer, Kirchberg Hospital, 9, Edward Steichen Street, L-2540 Luxembourg, Luxembourg
| | - Mario Dicato
- Laboratory of Molecular and Cellular Biology of Cancer, Kirchberg Hospital, 9, Edward Steichen Street, L-2540 Luxembourg, Luxembourg
| | - Marc Diederich
- Department of Pharmacy, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, 08826, South Korea.
| |
Collapse
|
39
|
Romidepsin induces G2/M phase arrest via Erk/cdc25C/cdc2/cyclinB pathway and apoptosis induction through JNK/c-Jun/caspase3 pathway in hepatocellular carcinoma cells. Biochem Pharmacol 2017; 127:90-100. [DOI: 10.1016/j.bcp.2016.12.008] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 12/13/2016] [Indexed: 01/28/2023]
|
40
|
MicroRNA-16 inhibits feto-maternal angiogenesis and causes recurrent spontaneous abortion by targeting vascular endothelial growth factor. Sci Rep 2016; 6:35536. [PMID: 27748453 PMCID: PMC5066269 DOI: 10.1038/srep35536] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 09/30/2016] [Indexed: 01/23/2023] Open
Abstract
Recurrent spontaneous abortion (RSA) is a common health problem that affects women of reproductive age. Recent studies have indicated that microRNAs are important factors in miscarriage. This study investigated the role of miR-16 in regulating vascular endothelial growth factor (VEGF) expression and the pathogenesis of RSA. In this report, clinical samples revealed that miR-16 expression was significantly elevated in the villi and decidua of RSA patients. In vitro, miR-16 upregulation inhibited human umbilical vein endothelial cell proliferation, migration and tube formation. Conversely, the downregulation of miR-16 reversed these effects. In vivo, we demonstrated that abnormal miR-16 levels affect the weights of the placenta and embryo and the number of progeny and microvascular density, as well as cause recurrent abortions by controlling VEGF expression in pregnant mice. VEGF, a potential target gene of miR-16, was inversely correlated with miR-16 expression in the decidua of clinical samples. Furthermore, the luciferase reporter system demonstrated that miR-16 was found to directly downregulate the expression of VEGF by binding a specific sequence of its 3′-untranslated region (3′UTR). Collectively, these data strongly suggest that miR-16 regulates placental angiogenesis and development by targeting VEGF expression and is involved in the pathogenesis of RSA.
Collapse
|
41
|
Li Y, Seto E. HDACs and HDAC Inhibitors in Cancer Development and Therapy. Cold Spring Harb Perspect Med 2016; 6:cshperspect.a026831. [PMID: 27599530 DOI: 10.1101/cshperspect.a026831] [Citation(s) in RCA: 862] [Impact Index Per Article: 95.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Over the last several decades, it has become clear that epigenetic abnormalities may be one of the hallmarks of cancer. Posttranslational modifications of histones, for example, may play a crucial role in cancer development and progression by modulating gene transcription, chromatin remodeling, and nuclear architecture. Histone acetylation, a well-studied posttranslational histone modification, is controlled by the opposing activities of histone acetyltransferases (HATs) and histone deacetylases (HDACs). By removing acetyl groups, HDACs reverse chromatin acetylation and alter transcription of oncogenes and tumor suppressor genes. In addition, HDACs deacetylate numerous nonhistone cellular substrates that govern a wide array of biological processes including cancer initiation and progression. This review will discuss the role of HDACs in cancer and the therapeutic potential of HDAC inhibitors (HDACi) as emerging drugs in cancer treatment.
Collapse
Affiliation(s)
- Yixuan Li
- George Washington University Cancer Center, Department of Biochemistry and Molecular Medicine, George Washington University, Washington, DC 20037
| | - Edward Seto
- George Washington University Cancer Center, Department of Biochemistry and Molecular Medicine, George Washington University, Washington, DC 20037
| |
Collapse
|