1
|
Xing C, Malaty J, Malham MB, Orlando FA, Lynch A, Huo Z, François M, Firpi-Morell R, Fisher CL, Christou DD, Salloum RG. The potential of AB-free kava in enabling tobacco cessation via management of abstinence-related stress and insomnia: study protocol for a randomized clinical trial. BMC Complement Med Ther 2024; 24:422. [PMID: 39709468 PMCID: PMC11662815 DOI: 10.1186/s12906-024-04722-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 12/06/2024] [Indexed: 12/23/2024] Open
Abstract
BACKGROUND As the primary cause of various preventable illnesses, smoking results in approximately five million premature deaths each year in the US and a multitude of adults living with serious illness. The majority of smokers know the health risks associated with smoking and intend to quit. However, quitting is very difficult partly because of insomnia and stress associated with it. Current tobacco cessation medications are not designed to address these problems, which may have contributed to their limited success in enabling cessation. Novel interventions are thus urgently needed to enhance success rates in tobacco cessation. Based on its historical usage and our preliminary data, kava is such a candidate. Kava, customarily enjoyed by South Pacific Islanders, is known for its relaxing effects, stress-relieving properties, and ability to enhance sleep. In the US, it is marketed and distributed as a dietary supplement due to its recognized calming properties. A pilot trial was performed among active smokers with a one-week ingestion of a kava supplement. The results for the first-time revealed kava's potential in enabling tobacco cessation with effects on a panel of biological signatures. The primary goal of this trial is to replicate kava's effects on the biological signatures of tobacco use, stress, and sleep in addition to its compliance and safety among those who smoke. METHODS A double-blind randomized placebo controlled two-arm trial will enroll 76 smokers with intention to quit, who will consume AB-free kava at a dietary supplement dose or placebo, 3 times per day for 4 weeks with two follow-ups. DISCUSSION The study will (1) monitor the adherence to and safety of AB-free kava consumption among smokers and evaluate changes in smoking habits, and (2) quantify a panel of non-invasive translatable biomarkers to objectively evaluate AB-free kava's holistic effects on biological signatures associated with tobacco use, stress, and sleep. We hypothesize that AB-free kava is a novel and promising intervention to facilitate tobacco cessation via its holistic effects associated with managing stress and insomnia during abstinence. If the results from this study support our hypothesis, kava could emerge as an affordable and accessible dietary supplement candidate for tobacco cessation. TRIAL REGISTRATION registered on 04/14/2023 in ClinicalTrials.gov with the identifier NCT05814055.
Collapse
Affiliation(s)
- Chengguo Xing
- College of Pharmacy, University of Florida, Gainesville, FL, USA.
| | - John Malaty
- College of Medicine, University of Florida, Gainesville, FL, USA
| | | | - Frank A Orlando
- College of Medicine, University of Florida, Gainesville, FL, USA
| | - Allison Lynch
- College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Zhiguang Huo
- College of Medicine, University of Florida, Gainesville, FL, USA
| | - Magda François
- College of Medicine, University of Florida, Gainesville, FL, USA
| | | | - Carla L Fisher
- College of Medicine, University of Florida, Gainesville, FL, USA
| | - Demetra D Christou
- College of Health and Human Performance, University of Florida, Gainesville, FL, USA
| | - Ramzi G Salloum
- College of Medicine, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
2
|
Bian T, Lynch A, Ballas K, Mamallapalli J, Freeman B, Scala A, Wang Y, Traboulsi H, Chellian RK, Fagan A, Tang Z, Ding H, De U, Fredenburg KM, Huo Z, Baglole CJ, Zhang W, Reznikov LR, Bruijnzeel AW, Xing C. Flavokavains A- and B-Free Kava Enhances Resilience against the Adverse Health Effects of Tobacco Smoke in Mice. ACS Pharmacol Transl Sci 2024; 7:3502-3517. [PMID: 39539272 PMCID: PMC11555507 DOI: 10.1021/acsptsci.4c00415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/18/2024] [Accepted: 09/26/2024] [Indexed: 11/16/2024]
Abstract
Tobacco smoke remains a serious global issue, resulting in serious health complications, contributing to the onset of numerous preventive diseases and imposing significant health burdens. Despite regulatory policies and cessation measures aimed at curbing its usage, novel interventions are urgently needed for effective damage reduction. Our preclinical and pilot clinical studies showed that AB-free kava has the potential to reduce tobacco-smoking-induced lung cancer risk, mitigate tobacco dependence, and reduce tobacco use. To understand the scope of its benefits in damage reduction and potential limitations, this study evaluated the effects of AB-free kava on a panel of health indicators in mice exposed to 2-4 weeks of daily tobacco smoke exposure. Our assessments included global transcriptional profiling of the lung and liver tissues, analysis of lung inflammation, evaluation of lung function, exploration of tobacco nicotine withdrawal, and characterization of the causal protein kinase A (PKA) signaling pathway. As expected, tobacco smoke exposure perturbed a wide range of biological processes and compromised multiple functions in mice. Remarkably, AB-free kava demonstrated the ability to globally mitigate tobacco smoke-induced deficits at the molecular and functional levels with promising safety profiles, offering AB-free kava unique promise to mitigate tobacco smoke-related health damages. Further preclinical evaluations are warranted to fully harness the potential of AB-free kava in combating tobacco smoke-related harms in the preparation of its clinical translation.
Collapse
Affiliation(s)
- Tengfei Bian
- Department
of Medicinal Chemistry, Center for Natural Products, Drug Discovery
and Development (CNPD3), College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States
| | - Allison Lynch
- Department
of Medicinal Chemistry, Center for Natural Products, Drug Discovery
and Development (CNPD3), College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States
| | - Kayleigh Ballas
- Department
of Medicinal Chemistry, Center for Natural Products, Drug Discovery
and Development (CNPD3), College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States
| | - Jessica Mamallapalli
- Department
of Medicinal Chemistry, Center for Natural Products, Drug Discovery
and Development (CNPD3), College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States
| | - Breanne Freeman
- Department
of Medicinal Chemistry, Center for Natural Products, Drug Discovery
and Development (CNPD3), College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States
| | - Alexander Scala
- Department
of Medicinal Chemistry, Center for Natural Products, Drug Discovery
and Development (CNPD3), College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States
| | - Yifan Wang
- Department
of Medicinal Chemistry, Center for Natural Products, Drug Discovery
and Development (CNPD3), College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States
| | - Hussein Traboulsi
- Division
of Experimental Medicine, Research Institute
of the McGill University Health Center (RI-MUHC), 1001 Decarie Boulevard, Montreal, Qc H4A3J1, Canada
| | - Ranjith kumar Chellian
- Department
of Psychiatry, College of Medicine, University
of Florida, Gainesville, Florida 32610, United States
| | - Amy Fagan
- Department
of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida 32610, United States
| | - Zhixin Tang
- Department
of Biostatistics, College of Public Health and Health Professionals
& College of Medicine, University of
Florida, Gainesville, Florida 32610, United States
| | - Haocheng Ding
- Department
of Biostatistics, College of Public Health and Health Professionals
& College of Medicine, University of
Florida, Gainesville, Florida 32610, United States
| | - Umasankar De
- Department
of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, Florida 32610, United States
| | - Kristianna M. Fredenburg
- Department
of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, Florida 32610, United States
| | - Zhiguang Huo
- Department
of Biostatistics, College of Public Health and Health Professionals
& College of Medicine, University of
Florida, Gainesville, Florida 32610, United States
| | - Carolyn J. Baglole
- Division
of Experimental Medicine, Research Institute
of the McGill University Health Center (RI-MUHC), 1001 Decarie Boulevard, Montreal, Qc H4A3J1, Canada
| | - Weizhou Zhang
- Department
of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, Florida 32610, United States
| | - Leah R. Reznikov
- Department
of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida 32610, United States
| | - Adriaan W. Bruijnzeel
- Department
of Psychiatry, College of Medicine, University
of Florida, Gainesville, Florida 32610, United States
| | - Chengguo Xing
- Department
of Medicinal Chemistry, Center for Natural Products, Drug Discovery
and Development (CNPD3), College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States
| |
Collapse
|
3
|
Bian T, Lynch A, Ballas K, Mamallapalli J, Freeman B, Scala A, Wang Y, Trabouls H, Chellian RK, Fagan A, Tang Z, Ding H, De U, Fredenburg KM, Huo Z, Baglole CJ, Zhang W, Reznikov LR, Bruijnzeel AW, Xing C. AB-free kava enhances resilience against the adverse health effects of tobacco smoke in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.25.599576. [PMID: 38979295 PMCID: PMC11230230 DOI: 10.1101/2024.06.25.599576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Tobacco smoke remains a serious global issue, resulting in serious health complications, contributing to the onsets of numerous preventive diseases, and imposing significant financial burdens. Despite regulatory policies and cessation measures aimed at curbing its usage, novel interventions are urgently needed for effective damage reduction. Our preclinical and pilot clinical studies showed that AB-free kava has the potential to reduce tobacco smoke-induced lung cancer risk, mitigate tobacco dependence, and reduce tobacco use. To understand the scope of its benefits in damage reduction and potential limitations, this study evaluated the effects of AB-free kava on a panel of health indicators in mice exposed to 2 - 4 weeks of daily tobacco smoke exposure. Our comprehensive assessments included global transcriptional profiling of the lung and liver tissues, analysis of lung inflammation, evaluation of lung function, exploration of tobacco nicotine withdrawal, and characterization of the causal PKA signaling pathway. As expected, Tobacco smoke exposure perturbed a wide range of biological processes and compromised multiple functions in mice. Remarkably, AB-free kava demonstrated the ability to globally mitigate tobacco smoke-induced deficits at the molecular and functional levels with promising safety profiles, offering a unique promise to mitigate tobacco smoke-related health damages. Further pre-clinical evaluation and clinical translation are warranted to fully harness the potential of AB-free kava in combating tobacco smoke-related harms.
Collapse
|
4
|
Montico F, Lamas CDA, Rossetto IMU, Baseggio AM, Cagnon VHA. Lobe-specific responses of TRAMP mice dorsolateral prostate following celecoxib and nintedanib therapy. J Mol Histol 2023; 54:379-403. [PMID: 37335420 DOI: 10.1007/s10735-023-10130-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 06/01/2023] [Indexed: 06/21/2023]
Abstract
Delayed cancer progression in the ventral prostate of the Transgenic Adenocarcinoma of the Mouse Prostate (TRAMP) model has been previously reported upon celecoxib and nintedanib co-administration. Herein, we sought to further investigate the effects of these drugs association in some of their direct molecular targets (COX-2, VEGF and VEGFR-2) and in reactive stroma markers (TGF-β, αSMA, vimentin and pro-collagen 1) in the dorsolateral prostate, looking for lobe-specific responses. Male TRAMP mice were treated with celecoxib (10 mg/Kg, i.o.) and/or nintedanib (15 mg/Kg, i.o.) for 6 weeks and prostate was harvested for morphological and protein expression analyses. Results showed that combined therapy resulted in unique antitumor effects in dorsolateral prostate, especially due to the respective stromal or epithelial antiproliferative actions of these drugs, which altogether led to a complete inversion in high-grade (HGPIN) versus low-grade (LGPIN) premalignant lesion incidences in relation to controls. At the molecular level, this duality in drug action was paralleled by the differential down/upregulation of TGF-β signaling by celecoxib/nintedanib, thus leading to associated changes in stroma composition towards regression or quiescence, respectively. Additionally, combined therapy was able to promote decreased expression of inflammatory (COX-2) and angiogenesis (VEGF/VEGFR-2) mediators. Overall, celecoxib and nintedanib association provided enhanced antitumor effects in TRAMP dorsolateral as compared to former registers in ventral prostate, thus demonstrating lobe-specific responses of this combined chemoprevention approach. Among these responses, we highlight the ability in promoting TGF-β signaling and its associated stromal maturation/stabilization, thus yielding a more quiescent stromal milieu and resulting in greater epithelial proliferation impairment.
Collapse
Affiliation(s)
- Fabio Montico
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Bertrand Russell Avenue, Campinas, São Paulo, 13083-865, Brazil.
| | - Celina de Almeida Lamas
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Bertrand Russell Avenue, Campinas, São Paulo, 13083-865, Brazil
| | - Isabela Maria Urra Rossetto
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Bertrand Russell Avenue, Campinas, São Paulo, 13083-865, Brazil
| | - Andressa Mara Baseggio
- Department of Food and Nutrition, School of Food Engineering, University of Campinas (UNICAMP), Campinas, São Paulo, 13083-852, Brazil
| | - Valéria Helena Alves Cagnon
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Bertrand Russell Avenue, Campinas, São Paulo, 13083-865, Brazil
| |
Collapse
|
5
|
Freeman B, Mamallapalli J, Bian T, Ballas K, Lynch A, Scala A, Huo Z, Fredenburg KM, Bruijnzeel AW, Baglole CJ, Lu J, Salloum RG, Malaty J, Xing C. Opportunities and Challenges of Kava in Lung Cancer Prevention. Int J Mol Sci 2023; 24:ijms24119539. [PMID: 37298489 DOI: 10.3390/ijms24119539] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/28/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
Lung cancer is the leading cause of cancer-related deaths due to its high incidence, late diagnosis, and limited success in clinical treatment. Prevention therefore is critical to help improve lung cancer management. Although tobacco control and tobacco cessation are effective strategies for lung cancer prevention, the numbers of current and former smokers in the USA and globally are not expected to decrease significantly in the near future. Chemoprevention and interception are needed to help high-risk individuals reduce their lung cancer risk or delay lung cancer development. This article will review the epidemiological data, pre-clinical animal data, and limited clinical data that support the potential of kava in reducing human lung cancer risk via its holistic polypharmacological effects. To facilitate its future clinical translation, advanced knowledge is needed with respect to its mechanisms of action and the development of mechanism-based non-invasive biomarkers in addition to safety and efficacy in more clinically relevant animal models.
Collapse
Affiliation(s)
- Breanne Freeman
- Department of Medicinal Chemistry and Center for Natural Products, Drug Discovery and Development, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
| | - Jessica Mamallapalli
- Department of Medicinal Chemistry and Center for Natural Products, Drug Discovery and Development, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
| | - Tengfei Bian
- Department of Medicinal Chemistry and Center for Natural Products, Drug Discovery and Development, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
| | - Kayleigh Ballas
- Department of Medicinal Chemistry and Center for Natural Products, Drug Discovery and Development, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
| | - Allison Lynch
- Department of Medicinal Chemistry and Center for Natural Products, Drug Discovery and Development, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
| | - Alexander Scala
- Department of Medicinal Chemistry and Center for Natural Products, Drug Discovery and Development, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
| | - Zhiguang Huo
- Department of Biostatistics, College of Public Health & Health Professions, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Kristianna M Fredenburg
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Adriaan W Bruijnzeel
- Department of Psychiatry, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Carolyn J Baglole
- Department of Medicine, McGill University, Montreal, QC H3A 0G4, Canada
| | - Junxuan Lu
- Department of Pharmacology, PennState Cancer Institute, Penn State University College of Medicine, Hershey, PA 17033, USA
| | - Ramzi G Salloum
- Department of Health Outcome & Biomedical Informatics, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - John Malaty
- Department of Community Health & Family Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Chengguo Xing
- Department of Medicinal Chemistry and Center for Natural Products, Drug Discovery and Development, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
6
|
Mamallapalli J, Kanumuri SRR, Corral P, Johnston E, Zhuang C, McCurdy CR, Mathews CA, Sharma A, Xing C. Characterization of Different Forms of Kava (Piper methysticum) Products by UPLC-MS/MS. PLANTA MEDICA 2022; 88:1348-1359. [PMID: 34839465 DOI: 10.1055/a-1708-1994] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
There are several forms of kava (Piper methysticum) products available for human consumption, and many factors are known to influence their chemical compositions and therefore their pharmacological properties. Because of the increased popularity of kava intake, a rigorous characterization of their content diversity is prerequisite, particularly due to its known potential to cause hepatotoxicity. To understand the composition diversity of kavalactones and flavokavains in commercial kava products, we developed a UPLC-MS/MS-based analytical method for the quantification of six kavalactones (kavain, dihydrokavain, methysticin, dihydromethysticin, yangonin and desmethoxyyangonin) and two flavokavains (flavokavains A and B) and analyzed their contents in 28 different kava products in the form of capsules, tinctures, traditional aqueous suspensions and dried powders. Our results demonstrated a great variation in terms of the total and relative abundance of the analyzed kavalactones and flavokavains among the analyzed kava preparations. More importantly, the kavalactone abundance in the product label could differ up to 90% from our experimental measurements. Therefore, more rigorous and comprehensive quality control of kava products is required with respect to the content of individual kavalactones and flavokavains. Accurate content information is essential to understand the pharmacological properties and safety of different kava products.
Collapse
Affiliation(s)
- Jessica Mamallapalli
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Siva Rama Raju Kanumuri
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, USA
- Translational Drug Development Core, Clinical and Translational Science Institute, University of Florida, Gainesville, FL, USA
| | - Pedro Corral
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | | | - Chunlin Zhuang
- School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Christopher R McCurdy
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, USA
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, USA
- Translational Drug Development Core, Clinical and Translational Science Institute, University of Florida, Gainesville, FL, USA
| | - Carol A Mathews
- Department of Psychiatry, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Abhisheak Sharma
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, USA
- Translational Drug Development Core, Clinical and Translational Science Institute, University of Florida, Gainesville, FL, USA
| | - Chengguo Xing
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, USA
| |
Collapse
|
7
|
Kanumuri SRR, Mamallapalli J, Nelson R, McCurdy CR, Mathews CA, Xing C, Sharma A. Clinical pharmacokinetics of kavalactones after oral dosing of standardized kava extract in healthy volunteers. JOURNAL OF ETHNOPHARMACOLOGY 2022; 297:115514. [PMID: 35777607 PMCID: PMC9634089 DOI: 10.1016/j.jep.2022.115514] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/22/2022] [Accepted: 06/26/2022] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Piper methysticum G. Forst. (Piperaceae), commonly known as kava, has been used as a traditional beverage for centuries for its relaxing properties. Kavalactones are considered to be the major constituents responsible for kava's beneficial effects. Despite the extensive use of kava, clinical pharmacokinetic data is not available in the literature; therefore, the findings of this study will be critical for the dosage calculations for future clinical evaluation of kava. AIM OF THE STUDY The aim of the current study is to examine the clinical pharmacokinetics of six major kavalactones following oral dosing of flavokavain A/B-free standardized kava extract capsules in healthy volunteers using two dosage regimens. MATERIALS AND METHODS A sensitive, reliable, and specific ultra-high pressure liquid chromatography-mass spectrometry (UPLC-MS/MS) method was developed and validated for the simultaneous quantification of six major kavalactones (kavain, dihydrokavain, methysticin, dihydromethysticin, yangonin, and desmethoxyyangonin) and two flavokavains (A and B) in human plasma. Pharmacokinetic profiles were assessed in ten healthy volunteers after oral doses of standardized kava product, and plasma samples were analyzed for six kavalactones and two flavokavains using the validated UPLC-MS/MS method. Concentration-time data was subjected to pharmacokinetic analysis. RESULTS The systemic exposure of the kavalactones was found to be in the following order: dihydrokavain > dihydromethysticin > kavain > methysticin > yangonin. Desmethoxyyangonin was quantifiable only at a couple of time points, while flavokavain A and flavokavain B were not present in any of the plasma samples. Fast absorption of five kavalactones was observed with time to reach the maximum plasma concentration of 1-3 h. A dose proportionality in pharmacokinetics was established from 75 to 225 mg of kavalactone doses. In the multiple-dose study, a significant reduction in the extent of absorption of kavalactones with food was observed. CONCLUSION Single and multiple-dose clinical pharmacokinetic studies for kava were performed in healthy volunteers, and higher exposure to the kavalactones was observed after single-dosing (225 mg), while a longer duration of exposure was observed after three times a day (3 x 75 mg) dosing.
Collapse
Affiliation(s)
- Siva Rama Raju Kanumuri
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, USA; Translational Drug Development Core, Clinical and Translational Science Institute, University of Florida, Gainesville, FL, USA; Center for OCD, Anxiety and Related Disorders, University of Florida, Gainesville, FL, USA
| | - Jessica Mamallapalli
- Center for OCD, Anxiety and Related Disorders, University of Florida, Gainesville, FL, USA; Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Robyn Nelson
- Center for OCD, Anxiety and Related Disorders, University of Florida, Gainesville, FL, USA; Department of Psychiatry, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Christopher R McCurdy
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, USA; Translational Drug Development Core, Clinical and Translational Science Institute, University of Florida, Gainesville, FL, USA; Center for OCD, Anxiety and Related Disorders, University of Florida, Gainesville, FL, USA; Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Carol A Mathews
- Center for OCD, Anxiety and Related Disorders, University of Florida, Gainesville, FL, USA; Department of Psychiatry, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Chengguo Xing
- Center for OCD, Anxiety and Related Disorders, University of Florida, Gainesville, FL, USA; Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, USA.
| | - Abhisheak Sharma
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, USA; Translational Drug Development Core, Clinical and Translational Science Institute, University of Florida, Gainesville, FL, USA; Center for OCD, Anxiety and Related Disorders, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
8
|
Biological Activity, Hepatotoxicity, and Structure-Activity Relationship of Kavalactones and Flavokavins, the Two Main Bioactive Components in Kava ( Piper methysticum). EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:6851798. [PMID: 34471418 PMCID: PMC8405297 DOI: 10.1155/2021/6851798] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 08/13/2021] [Indexed: 11/25/2022]
Abstract
Kava (Piper methysticum Forst) is a popular and favorable edible medicinal herb which was traditionally used to prepare a nonfermented beverage with relaxant beneficial for both social and recreational purposes. Numerous studies conducted on kava have confirmed the presence of kavalactones and flavokawains, two major groups of bioactive ingredients, in this miraculous natural plant. Expectedly, both kavalactone and flavokawain components exhibited potent antianxiety and anticancer activities, and their structure-activity relationships were also revealed. However, dozens of clinical data revealed the hepatotoxicity effect which is indirectly or directly associated with kava consumption, and most of the evidence currently seems to point the compounds of flavokawains in kava were responsible. Therefore, our aim is to conduct a systematic review of kavalactones and flavokawains in kava including their biological activities, structure-activity relationships, and toxicities, and as a result of our systematic investigations, suggestions on kava and its compounds are supplied for future research.
Collapse
|
9
|
Tang SN, Jiang P, Kim S, Zhang J, Jiang C, Lü J. Interception Targets of Angelica Gigas Nakai Root Extract versus Pyranocoumarins in Prostate Early Lesions and Neuroendocrine Carcinomas in TRAMP Mice. Cancer Prev Res (Phila) 2021; 14:635-648. [PMID: 33648943 PMCID: PMC8225574 DOI: 10.1158/1940-6207.capr-20-0589] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/19/2021] [Accepted: 02/26/2021] [Indexed: 11/16/2022]
Abstract
We reported efficacy of Angelica gigas Nakai (AGN) root ethanol extract and equimolar decursin (D)/decursinol angelate (DA) through daily gavage starting at 8 weeks of age (WOA) to male transgenic adenocarcinoma of mouse prostate (TRAMP) mice such that these modalities suppressed precancerous epithelial lesions in their dorsolateral prostate (DLP) to similar extent, but AGN extract was better than the D/DA mixture at promoting the survival of mice bearing prostate neuroendocrine carcinomas to 28 WOA. Here, we compared by microarray hybridization the mRNA levels in pooled DLP tissues and individual neuroendocrine carcinomas to characterize potential molecular targets of AGN extract and D/DA. Clustering and principal component analyses supported distinct gene expression profiles of TRAMP DLP versus neuroendocrine carcinomas. Pathway Enrichment, Gene Ontology, and Ingenuity Pathway Analyses of differential genes indicated that AGN and D/DA affected chiefly processes of lipid and mitochondrial energy metabolism and oxidation-reduction in TRAMP DLP, while AGN affected neuronal signaling, immune systems and cell cycling in neuroendocrine carcinomas. Protein-Protein Interaction Network analysis predicted and reverse transcription-PCR verified multiple hub genes common in the DLP of AGN- and D/DA-treated TRAMP mice at 28 WOA and select hub genes attributable to the non-D/DA AGN components. The vast majority of hub genes in the AGN-treated neuroendocrine carcinomas differed from those in TRAMP DLP. In summary, the transcriptomic approach illuminated vastly different signaling pathways and networks, cellular processes, and hub genes of two TRAMP prostate malignancy lineages and their associations with the interception efficacy of AGN and D/DA. PREVENTION RELEVANCE: This study explores potential molecular targets associated with in vivo activity of AGN root alcoholic extract and its major pyranocoumarins to intercept precancerous epithelial lesions and early malignancies of the prostate. Without an ethically-acceptable, clearly defined cancer initiation risk reduction strategy available for the prostate, using natural products like AGN to delay formation of malignant tumors could be a plausible approach for prostate cancer prevention.
Collapse
Affiliation(s)
- Su-Ni Tang
- School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas
| | - Peixin Jiang
- School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas
| | - Sangyub Kim
- Department of Pharmacology, Penn State College of Medicine, Hershey, Pennsylvania
| | - Jinhui Zhang
- School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas
| | - Cheng Jiang
- School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas
- Department of Pharmacology, Penn State College of Medicine, Hershey, Pennsylvania
| | - Junxuan Lü
- School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas.
- Department of Pharmacology, Penn State College of Medicine, Hershey, Pennsylvania
- Penn State Cancer Institute, Pennsylvania State University, Hershey, Pennsylvania
| |
Collapse
|
10
|
Li X, Song L, Xu S, Tippin M, Meng S, Xie J, Uchio E, Zi X. Kava root extracts hinder prostate cancer development and tumorigenesis by involvement of dual inhibition of MAO-A and LSD1. JOURNAL OF TRANSLATIONAL GENETICS AND GENOMICS 2021; 5:163-172. [PMID: 34368644 PMCID: PMC8341175 DOI: 10.20517/jtgg.2021.22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
AIM Here, we aim to evaluate the chemopreventive efficacy of kava root extracts (KRE) in transgenic adenocarcinoma of the mouse prostate (TRAMP) mice and investigate potential molecular targets of kavalactones, the main components of kava. METHODS TRAMP mice were administrated with KRE formulated food for different periods of time, and then the incidences of high-grade prostatic intraepithelial neoplasia (HG-PIN) and adenocarcinomas and tumor burdens were compared between vehicle control and KRE food fed groups. In addition, the inhibitory effect of the KRE and kavalactones on monoamine oxidase A (MAO-A) and lysine-specific demethylase 1 (LSD1) enzyme activities were examined by commercially available inhibitor screening kits. Histone H3 lysine 9 dimethylation was also evaluated in prostate cancer cells and tumor tissues using Western blotting analysis. RESULTS Dietary feeding of 0.3% and 0.6% KRE to TRAMP mice from ages of 6 weeks to 12 weeks inhibited HG-PIN by 43.5% and 59.7%, respectively, and prostate adenocarcinoma by 53.5% and 66.4%, respectively. In addition, 0.6% KRE fed TRAMP mice from ages of 6 weeks to 24 weeks exhibited a significant reduction of genitourinary weight (a surrogate of tumor burden) by 54.5% and reduced body weight gain. Furthermore, the KRE and kavalactones showed a significant inhibition of LSD1 and MAO-A enzyme activities. CONCLUSION Our results suggest that consumption of kava products through diet can delay prostate cancer development and progression and that kavalactones may be a new structure model for developing a potent dual inhibitor of LSD1 and MAO-A.
Collapse
Affiliation(s)
- Xuesen Li
- Department of Urology, University of California, Irvine, Orang, CA 92868, USA
| | - Liankun Song
- Department of Urology, University of California, Irvine, Orang, CA 92868, USA
| | - Shan Xu
- Department of Urology, University of California, Irvine, Orang, CA 92868, USA
| | - Matthew Tippin
- Department of Urology, University of California, Irvine, Orang, CA 92868, USA
| | - Shuan Meng
- Department of Urology, University of California, Irvine, Orang, CA 92868, USA
| | - Jun Xie
- Department of Urology, University of California, Irvine, Orang, CA 92868, USA
| | - Edward Uchio
- Department of Urology, University of California, Irvine, Orang, CA 92868, USA.,Chao Family Comprehensive Cancer Center, University of California, Orange, CA 92868, USA
| | - Xiaolin Zi
- Department of Urology, University of California, Irvine, Orang, CA 92868, USA.,Chao Family Comprehensive Cancer Center, University of California, Orange, CA 92868, USA.,Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA 92617, USA
| |
Collapse
|
11
|
Bian T, Corral P, Wang Y, Botello J, Kingston R, Daniels T, Salloum RG, Johnston E, Huo Z, Lu J, Liu AC, Xing C. Kava as a Clinical Nutrient: Promises and Challenges. Nutrients 2020; 12:E3044. [PMID: 33027883 PMCID: PMC7600512 DOI: 10.3390/nu12103044] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 09/21/2020] [Accepted: 09/25/2020] [Indexed: 12/20/2022] Open
Abstract
Kava beverages are typically prepared from the root of Piper methysticum. They have been consumed among Pacific Islanders for centuries. Kava extract preparations were once used as herbal drugs to treat anxiety in Europe. Kava is also marketed as a dietary supplement in the U.S. and is gaining popularity as a recreational drink in Western countries. Recent studies suggest that kava and its key phytochemicals have anti-inflammatory and anticancer effects, in addition to the well-documented neurological benefits. While its beneficial effects are widely recognized, rare hepatotoxicity had been associated with use of certain kava preparations, but there are no validations nor consistent mechanisms. Major challenges lie in the diversity of kava products and the lack of standardization, which has produced an unmet need for quality initiatives. This review aims to provide the scientific community and consumers, as well as regulatory agencies, with a broad overview on kava use and its related research. We first provide a historical background for its different uses and then discuss the current state of the research, including its chemical composition, possible mechanisms of action, and its therapeutic potential in treating inflammatory and neurological conditions, as well as cancer. We then discuss the challenges associated with kava use and research, focusing on the need for the detailed characterization of kava components and associated risks such as its reported hepatotoxicity. Lastly, given its growing popularity in clinical and recreational use, we emphasize the urgent need for quality control and quality assurance of kava products, pharmacokinetics, absorption, distribution, metabolism, excretion, and foundational pharmacology. These are essential in order to inform research into the molecular targets, cellular mechanisms, and creative use of early stage human clinical trials for designer kava modalities to inform and guide the design and execution of future randomized placebo controlled trials to maximize kava's clinical efficacy and to minimize its risks.
Collapse
Affiliation(s)
- Tengfei Bian
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA; (T.B.); (P.C.); (Y.W.); (J.B.)
| | - Pedro Corral
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA; (T.B.); (P.C.); (Y.W.); (J.B.)
| | - Yuzhi Wang
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA; (T.B.); (P.C.); (Y.W.); (J.B.)
| | - Jordy Botello
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA; (T.B.); (P.C.); (Y.W.); (J.B.)
| | - Rick Kingston
- College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Tyler Daniels
- Thorne Research Inc., Industrial Road, 620 Omni Dr, Summerville, SC 29483, USA;
| | - Ramzi G. Salloum
- Department of Health Outcome & Biomedical Informatics, College of Medicine, University of Florida, Gainesville, FL 32610, USA;
| | - Edward Johnston
- The Association for Hawaiian Awa (kava), Pepe’ekeo, HI 96783, USA;
| | - Zhiguang Huo
- Department of Biostatistics, College of Public Health & Health Professions, College of Medicine, University of Florida, Gainesville, FL 32610, USA;
| | - Junxuan Lu
- Department of Pharmacology, Penn State University College of Medicine, Hershey, PA 17033, USA;
| | - Andrew C. Liu
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville, FL 32610, USA;
| | - Chengguo Xing
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA; (T.B.); (P.C.); (Y.W.); (J.B.)
| |
Collapse
|
12
|
Wang Y, Narayanapillai SC, Tessier KM, Strayer LG, Upadhyaya P, Hu Q, Kingston R, Salloum RG, Lu J, Hecht SS, Hatsukami DK, Fujioka N, Xing C. The Impact of One-week Dietary Supplementation with Kava on Biomarkers of Tobacco Use and Nitrosamine-based Carcinogenesis Risk among Active Smokers. Cancer Prev Res (Phila) 2020; 13:483-492. [PMID: 32102948 DOI: 10.1158/1940-6207.capr-19-0501] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 01/16/2020] [Accepted: 02/20/2020] [Indexed: 12/19/2022]
Abstract
Tobacco smoking is the primary risk factor for lung cancer, driven by the addictive nature of nicotine and the indisputable carcinogenicity of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) as well as other compounds. The integration of lung cancer chemoprevention with smoking cessation is one potential approach to reduce this risk and mitigate lung cancer mortality. Experimental data from our group suggest that kava, commonly consumed in the South Pacific Islands as a beverage to promote relaxation, may reduce lung cancer risk by enhancing NNK detoxification and reducing NNK-derived DNA damage. Building upon these observations, we conducted a pilot clinical trial to evaluate the effects of a 7-day course of kava on NNK metabolism in active smokers. The primary objective was to compare urinary total 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL plus its glucuronides, major metabolites of NNK) before and after kava administration as an indicator of NNK detoxification. Secondary objectives included determining kava's safety, its effects on DNA damage, tobacco use, and cortisol (a biomarker of stress). Kava increased urinary excretion of total NNAL and reduced urinary 3-methyladenine in participants, suggestive of its ability to reduce the carcinogenicity of NNK. Kava also reduced urinary total nicotine equivalents, indicative of its potential to facilitate tobacco cessation. Plasma cortisol and urinary total cortisol equivalents were reduced upon kava use, which may contribute to reductions in tobacco use. These results demonstrate the potential of kava intake to reduce lung cancer risk among smokers.
Collapse
Affiliation(s)
- Yi Wang
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, Florida
| | | | - Katelyn M Tessier
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Lori G Strayer
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Pramod Upadhyaya
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Qi Hu
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, Florida
| | - Rick Kingston
- College of Pharmacy, University of Minnesota, Minneapolis, Minnesota
| | - Ramzi G Salloum
- Department of Health Outcome & Biomedical Informatics, College of Medicine, University of Florida, Gainesville, Florida
| | - Junxuan Lu
- Department of Pharmacology and Cancer Institute, Penn State, Hershey, Pennsylvania
| | - Stephen S Hecht
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Dorothy K Hatsukami
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota.,Department of Psychiatry, University of Minnesota, Minneapolis, Minnesota
| | - Naomi Fujioka
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota. .,Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Chengguo Xing
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, Florida.
| |
Collapse
|