1
|
Sun Y, Chen M, Ye P, Yang J, Fang K, Wang C, Li R, Fan T, Shi S, Dong C. Dual inhibition of DNA damage repair sensitizes photodynamic therapy for triple negative breast cancer. Mater Today Bio 2025; 32:101706. [PMID: 40230647 PMCID: PMC11995139 DOI: 10.1016/j.mtbio.2025.101706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 03/21/2025] [Accepted: 03/23/2025] [Indexed: 04/16/2025] Open
Abstract
Photodynamic therapy (PDT) has emerged as an ideal candidate among reactive oxygen species (ROS)-mediated tumor therapies. However, the self-repair of DNA, a hallmark of mechanism induced by excessive intracellular ROS is one of the leading causes of PDT resistance. To overcome this challenge, we construct a therapeutic system, Ce6@MSN-ZOP-HA, wrapped with hyaluronic acid (HA) for binding to the highly expressed CD44 on triple negative breast cancer (TNBC) and loaded with DNA damage repair inhibitor (olaparib) and p38 inhibitor (SB203580). After arriving at tumor site, HA mediates drug internalization, intracellular acid microenvironment mediated ZIF8 cleavage, thus releases olaparib and SB203580. Ce6 produces ROS under 650 nm laser, SB203580 as well as olaparib increase the expression of DNA damage related molecule γH2AX, and consequent cell apoptosis, dually enhancing the PDT sensitivity of TNBC. Eventually, Ce6@MSN-ZOP-HA provides a new thought for the development of PDT synergistic nanodrugs with low biotoxicity and high anti-tumor efficiency.
Collapse
Affiliation(s)
- Yanting Sun
- Department of Oncology, East Hospital Affiliated to Tongji University, School of Medicine, Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, PR China
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, PR China
| | - Mengyao Chen
- Department of Oncology, East Hospital Affiliated to Tongji University, School of Medicine, Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, PR China
- WuXi City College of Vocational Technology, Wuxi, Jiangsu, 214153, PR China
| | - Pingting Ye
- Department of Oncology, East Hospital Affiliated to Tongji University, School of Medicine, Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, PR China
| | - Jingxian Yang
- Department of Oncology, East Hospital Affiliated to Tongji University, School of Medicine, Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, PR China
| | - Kang Fang
- Department of Oncology, East Hospital Affiliated to Tongji University, School of Medicine, Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, PR China
| | - Chunhui Wang
- Department of Oncology, East Hospital Affiliated to Tongji University, School of Medicine, Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, PR China
| | - Ruihao Li
- Department of Oncology, East Hospital Affiliated to Tongji University, School of Medicine, Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, PR China
| | - Ting Fan
- Department of Oncology, East Hospital Affiliated to Tongji University, School of Medicine, Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, PR China
| | - Shuo Shi
- Department of Oncology, East Hospital Affiliated to Tongji University, School of Medicine, Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, PR China
| | - Chunyan Dong
- Department of Oncology, East Hospital Affiliated to Tongji University, School of Medicine, Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, PR China
| |
Collapse
|
2
|
Papa V, Furci F, Minciullo PL, Casciaro M, Allegra A, Gangemi S. Photodynamic Therapy in Cancer: Insights into Cellular and Molecular Pathways. Curr Issues Mol Biol 2025; 47:69. [PMID: 39996790 PMCID: PMC11854756 DOI: 10.3390/cimb47020069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/13/2025] [Accepted: 01/17/2025] [Indexed: 02/26/2025] Open
Abstract
Photodynamic therapy is a non-ionizing radiation treatment that utilizes a photosensitizer in combination with light to produce singlet oxygen. This singlet oxygen induces anti-cancer effects by causing apoptotic, necrotic, or autophagic cell death in tumor cells. Currently, photodynamic therapy is employed in oncology to treat various cancers. In the presence of oxygen, this non-invasive approach leads to direct tumor cell death, damage to microvasculature, and the induction of a local inflammatory response. These effects allow photodynamic therapy to be effective in treating early-stage tumors, extending survival in cases where surgery is not feasible, and significantly improving quality of life. In this paper, we provide a state of the art on cytomolecular mechanisms and associated pathways involved in photodynamic therapy. By integrating these mechanistic insights with the most recent advancements in nanotechnology, this phototherapeutic approach has the potential to become a prevalent treatment option within conventional cancer therapies, enhancing its application in precision medicine.
Collapse
Affiliation(s)
- Vincenzo Papa
- Allergy and Clinical Immunology Unit, Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria, 98125 Messina, Italy; (V.P.); (P.L.M.); (S.G.)
| | - Fabiana Furci
- Provincial Healthcare Unit, Section of Allergy, 89900 Vibo Valentia, Italy;
| | - Paola Lucia Minciullo
- Allergy and Clinical Immunology Unit, Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria, 98125 Messina, Italy; (V.P.); (P.L.M.); (S.G.)
| | - Marco Casciaro
- Allergy and Clinical Immunology Unit, Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria, 98125 Messina, Italy; (V.P.); (P.L.M.); (S.G.)
| | - Alessandro Allegra
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, Via Consolare Valeria, 98125 Messina, Italy;
| | - Sebastiano Gangemi
- Allergy and Clinical Immunology Unit, Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria, 98125 Messina, Italy; (V.P.); (P.L.M.); (S.G.)
| |
Collapse
|
3
|
Caliskan M, Ilikci‐Sagkan R, Bayrak G, Ozlem‐Caliskan S. Monitoring Apoptosis and Myeloid Differentiation of Acridine Orange-Mediated Sonodynamic Therapy-Induced Human Promyelocytic Leukemia HL60 Cells. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2025; 44:15-34. [PMID: 39257135 PMCID: PMC11632649 DOI: 10.1002/jum.16575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 08/19/2024] [Accepted: 08/24/2024] [Indexed: 09/12/2024]
Abstract
OBJECTIVES In the treatment of acute myeloid leukemia (AML), conventional therapies can lead to severe side effects and drug resistance. There is a need for alternative treatments that do not cause treatment resistance and have minimal or no side effects. Sonodynamic therapy (SDT), due to its noninvasive, multiple repeatability, localized treatment feature and do not cause treatment resistance, emerges as an alternative treatment option. However, it has not received sufficient attention in the treatment of AML especially acute promyelocytic leukemia (APL). The aim of the study was to investigate the potential differentiation and antileukemic effects of acridine orange (AO)-mediated SDT on HL60 cells. METHODS Cell viability was determined by the 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide (MTT) method in the control, ultrasound, AO concentrations, and ultrasound-exposed AO concentrations groups. Transmission electron microscopy (TEM) was used to determine morphology, and flow cytometry was used to determine apoptosis, DNA cycle, cell volume, mitochondria membrane potential (Δψm), reactive oxygen species (ROS) production, and differentiation markers (CD11b and CD15) expressions. Additionally, toluidine blue staining for semithin sections was used to determine differentiation. RESULTS The cytotoxicity of AO-mediated SDT on HL60 cells was significantly higher than other groups, and TEM images showed that it caused various morphological changes typical for apoptosis. Flow cytometry results showed the presence of early apoptosis, subG1 arrest, loss of Δψm, increase of intracellular ROS production, decreased cell volume, and increased expression of CD11b (1.3-fold) antigen and CD15 (1.2-fold) antigen. CONCLUSION Data showed that AO-mediated SDT significantly induced apoptosis in HL60 cells. Increased expression of CD11b and CD15 antigens and morphological findings demonstrated that AO-mediated SDT contributes to granulocytic differentiation in HL60 cells. AO-mediated SDT has potential as an alternative treatment of APL.
Collapse
Affiliation(s)
- Metin Caliskan
- Department of Medical Biology, Faculty of MedicineUsak UniversityUsakTurkey
| | | | - Gulsen Bayrak
- Department of Histology and Embryology, Faculty of MedicineUsak UniversityUsakTurkey
| | | |
Collapse
|
4
|
Simelane NWN, Abrahamse H. Zinc phthalocyanine loaded- antibody functionalized nanoparticles enhance photodynamic therapy in monolayer (2-D) and multicellular tumour spheroid (3-D) cell cultures. Front Mol Biosci 2024; 10:1340212. [PMID: 38259685 PMCID: PMC10801020 DOI: 10.3389/fmolb.2023.1340212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 12/15/2023] [Indexed: 01/24/2024] Open
Abstract
In conventional photodynamic therapy (PDT), effective delivery of photosensitizers (PS) to cancer cells can be challenging, prompting the exploration of active targeting as a promising strategy to enhance PS delivery. Typically, two-dimensional (2-D) monolayer cell culture models are used for investigating targeted photodynamic therapy. However, despite their ease of use, these cell culture models come with certain limitations due to their structural simplicity when compared to three-dimensional (3-D) cell culture models such as multicellular tumour spheroids (MCTSs). In this study, we prepared gold nanoparticles (AuNPs) that were functionalized with antibodies and loaded with tetra sulphonated zinc phthalocyanine (ZnPcS4). Characterization techniques including transmission electron microscopy (TEM) was used to determine the size and morphology of the prepared nanoconjugates. We also conducted a comparative investigation to assess the photodynamic effects of ZnPcS4 alone and/or conjugated onto the bioactively functionalized nanodelivery system in colorectal Caco-2 cells cultured in both in vitro 2-D monolayers and 3-D MCTSs. TEM micrographs revealed small, well distributed, and spherical shaped nanoparticles. Our results demonstrated that biofunctionalized nanoparticle mediated PDT significantly inhibited cell proliferation and induced apoptosis in Caco-2 cancer monolayers and, to a lesser extent, in Caco-2 MCTSs. Live/dead assays further elucidated the impact of actively targeted nanoparticle-photosensitizer nanoconstruct, revealing enhanced cytotoxicity in 2-D cultures, with a notable increase in dead cells post-PDT. In 3-D spheroids, however, while the presence of targeted nanoparticle-photosensitizer system facilitated improved therapeutic outcomes, the live/dead results showed a higher number of viable cells after PDT treatment compared to their 2-D monolayer counterparts suggesting that MCTSs showed more resistance to PS drug as compared to 2-D monolayers. These findings suggest a high therapeutic potential of the multifunctional nanoparticle as a targeted photosensitizer delivery system in PDT of colorectal cancer. Furthermore, the choice of cell culture model influenced the response of cancer cells to PDT treatment, highlighting the feasibility of using MCTSs for targeted PS delivery to colorectal cancer cells.
Collapse
Affiliation(s)
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Johannesburg, South Africa
| |
Collapse
|
5
|
Chapron D, Michel JP, Fontaine P, Godard J, Brégier F, Sol V, Rosilio V. Thermodynamic and structural properties of lipid-photosensitizer conjugates mixed with phospholipids: Impact on the formation and stability of nano-assemblies. Colloids Surf B Biointerfaces 2023; 231:113565. [PMID: 37778109 DOI: 10.1016/j.colsurfb.2023.113565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 09/21/2023] [Accepted: 09/23/2023] [Indexed: 10/03/2023]
Abstract
The photosensitizer Phenalenone (PN) was grafted with one or two lipid (C18) chains to form pure nano-assemblies or mixed lipid vesicles suitable for photodynamic therapy. Mixtures of PN-C18 conjugates with stearoyl-oleoyl phosphatidylcholine (SOPC) form vesicles that disintegrate into bilayer sheets as the concentration of PN-C18 conjugates increases. We hypothesized that PN-C18 conjugates control the thermodynamic and structural properties of the mixtures and induce the disintegration of vesicles due to PN π-π-interactions. Monolayers were analyzed by surface pressure and grazing incidence X-ray diffraction (GIXD) measurements, and vesicles by differential scanning calorimetry and cryo-TEM. The results showed that PN-triazole-C18 (1A) and PN-NH-C18 (1B) segregate from the phospholipid domains. PN-(C18)2 (conjugate 2) develops favorable interactions with SOPC and distearoyl-phosphatidylcholine (DSPC). GIXD demonstrates the contribution of SOPC to the structuring of conjugate 2 and the role of the major component in controlling the structural properties of DSPC-conjugate 2 mixtures. Above 10 mol% conjugate 2 in SOPC vesicles, the coexistence of domains with different molecule packing leads to conjugate segregation, vesicle deformation, and the formation of small bilayer discs stabilized by the inter-bilayer π-π stacking of PN molecules.
Collapse
Affiliation(s)
- David Chapron
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 17 avenue des Sciences, F-91400 Orsay, France; CNRS, GDR 2025 HappyBio, Université d'Orléans, 14 rue d'Issoudun, BP 6744, 45067 Orléans cedex 2, France
| | - Jean-Philippe Michel
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 17 avenue des Sciences, F-91400 Orsay, France; CNRS, GDR 2025 HappyBio, Université d'Orléans, 14 rue d'Issoudun, BP 6744, 45067 Orléans cedex 2, France
| | - Philippe Fontaine
- Synchrotron SOLEIL, L'Orme des Merisiers, Départementale 128, 91190 Saint-Aubin, France
| | - Jérémy Godard
- Univ. Limoges, LABCiS, UR 22722, 123 avenue Albert Thomas, F-87000, Limoges, France
| | - Frédérique Brégier
- Univ. Limoges, LABCiS, UR 22722, 123 avenue Albert Thomas, F-87000, Limoges, France; CNRS, GDR 2025 HappyBio, Université d'Orléans, 14 rue d'Issoudun, BP 6744, 45067 Orléans cedex 2, France
| | - Vincent Sol
- Univ. Limoges, LABCiS, UR 22722, 123 avenue Albert Thomas, F-87000, Limoges, France; CNRS, GDR 2025 HappyBio, Université d'Orléans, 14 rue d'Issoudun, BP 6744, 45067 Orléans cedex 2, France
| | - Véronique Rosilio
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 17 avenue des Sciences, F-91400 Orsay, France; CNRS, GDR 2025 HappyBio, Université d'Orléans, 14 rue d'Issoudun, BP 6744, 45067 Orléans cedex 2, France.
| |
Collapse
|
6
|
Carigga Gutierrez NM, Pujol-Solé N, Arifi Q, Coll JL, le Clainche T, Broekgaarden M. Increasing cancer permeability by photodynamic priming: from microenvironment to mechanotransduction signaling. Cancer Metastasis Rev 2022; 41:899-934. [PMID: 36155874 DOI: 10.1007/s10555-022-10064-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/06/2022] [Indexed: 01/25/2023]
Abstract
The dense cancer microenvironment is a significant barrier that limits the penetration of anticancer agents, thereby restraining the efficacy of molecular and nanoscale cancer therapeutics. Developing new strategies to enhance the permeability of cancer tissues is of major interest to overcome treatment resistance. Nonetheless, early strategies based on small molecule inhibitors or matrix-degrading enzymes have led to disappointing clinical outcomes by causing increased chemotherapy toxicity and promoting disease progression. In recent years, photodynamic therapy (PDT) has emerged as a novel approach to increase the permeability of cancer tissues. By producing excessive amounts of reactive oxygen species selectively in the cancer microenvironment, PDT increases the accumulation, penetration depth, and efficacy of chemotherapeutics. Importantly, the increased cancer permeability has not been associated to increased metastasis formation. In this review, we provide novel insights into the mechanisms by which this effect, called photodynamic priming, can increase cancer permeability without promoting cell migration and dissemination. This review demonstrates that PDT oxidizes and degrades extracellular matrix proteins, reduces the capacity of cancer cells to adhere to the altered matrix, and interferes with mechanotransduction pathways that promote cancer cell migration and differentiation. Significant knowledge gaps are identified regarding the involvement of critical signaling pathways, and to which extent these events are influenced by the complicated PDT dosimetry. Addressing these knowledge gaps will be vital to further develop PDT as an adjuvant approach to improve cancer permeability, demonstrate the safety and efficacy of this priming approach, and render more cancer patients eligible to receive life-extending treatments.
Collapse
Affiliation(s)
| | - Núria Pujol-Solé
- Université Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Institute for Advanced Biosciences, 38000, Grenoble, France
| | - Qendresa Arifi
- Université Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Institute for Advanced Biosciences, 38000, Grenoble, France
| | - Jean-Luc Coll
- Université Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Institute for Advanced Biosciences, 38000, Grenoble, France
| | - Tristan le Clainche
- Université Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Institute for Advanced Biosciences, 38000, Grenoble, France.
| | - Mans Broekgaarden
- Université Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Institute for Advanced Biosciences, 38000, Grenoble, France.
| |
Collapse
|
7
|
de Klerk DJ, de Keijzer MJ, Dias LM, Heemskerk J, de Haan LR, Kleijn TG, Franchi LP, Heger M. Strategies for Improving Photodynamic Therapy Through Pharmacological Modulation of the Immediate Early Stress Response. Methods Mol Biol 2022; 2451:405-480. [PMID: 35505025 DOI: 10.1007/978-1-0716-2099-1_20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Photodynamic therapy (PDT) is a minimally to noninvasive treatment modality that has emerged as a promising alternative to conventional cancer treatments. PDT induces hyperoxidative stress and disrupts cellular homeostasis in photosensitized cancer cells, resulting in cell death and ultimately removal of the tumor. However, various survival pathways can be activated in sublethally afflicted cancer cells following PDT. The acute stress response is one of the known survival pathways in PDT, which is activated by reactive oxygen species and signals via ASK-1 (directly) or via TNFR (indirectly). The acute stress response can activate various other survival pathways that may entail antioxidant, pro-inflammatory, angiogenic, and proteotoxic stress responses that culminate in the cancer cell's ability to cope with redox stress and oxidative damage. This review provides an overview of the immediate early stress response in the context of PDT, mechanisms of activation by PDT, and molecular intervention strategies aimed at inhibiting survival signaling and improving PDT outcome.
Collapse
Affiliation(s)
- Daniel J de Klerk
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, People's Republic of China
- Laboratory of Experimental Oncology, Department of Pathology, Erasmus MC, Rotterdam, The Netherlands
| | - Mark J de Keijzer
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, People's Republic of China
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Lionel M Dias
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, People's Republic of China
- Faculdade de Ciências da Saúde (FCS-UBI), Universidade da Beira Interior, Covilhã, Portugal
| | - Jordi Heemskerk
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, People's Republic of China
| | - Lianne R de Haan
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, People's Republic of China
- Laboratory of Experimental Oncology, Department of Pathology, Erasmus MC, Rotterdam, The Netherlands
| | - Tony G Kleijn
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, People's Republic of China
- Laboratory of Experimental Oncology, Department of Pathology, Erasmus MC, Rotterdam, The Netherlands
| | - Leonardo P Franchi
- Departamento de Bioquímica e Biologia Molecular, Instituto de Ciências Biológicas (ICB) 2, Universidade Federal de Goiás (UFG), Goiânia, GO, Brazil
- Faculty of Philosophy, Department of Chemistry, Center of Nanotechnology and Tissue Engineering-Photobiology and Photomedicine Research Group, Sciences, and Letters of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Michal Heger
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, People's Republic of China.
- Laboratory of Experimental Oncology, Department of Pathology, Erasmus MC, Rotterdam, The Netherlands.
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
8
|
Dubey T, Chinnathambi S. Photodynamic treatment modulates various GTPase and cellular signalling pathways in Tauopathy. Small GTPases 2022; 13:183-195. [PMID: 34138681 PMCID: PMC9707546 DOI: 10.1080/21541248.2021.1940722] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The application of photo-excited dyes for treatment is known as photodynamic therapy (PDT). PDT is known to target GTPase proteins in cells, which are the key proteins of diverse signalling cascades which ultimately modulate cell proliferation and death. Cytoskeletal proteins play critical roles in maintaining cell integrity and cell division. Whereas, it was also observed that in neuronal cells PDT modulated actin and tubulin resulting in increased neurite growth and filopodia. Recent studies supported the role of PDT in dissolving the extracellular amyloid beta aggregates and intracellular Tau aggregates, which indicated the potential role of PDT in neurodegeneration. The advancement in the field of PDT led to its clinical approval in treatment of cancers, brain tumour, and dermatological acne. Although several question need to be answered for application of PDT in neuronal cells, but the primary studies gave a hint that it can emerge as potential therapy in neural cells.
Collapse
Affiliation(s)
- Tushar Dubey
- Neurobiology Group, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, India.,Academy of Scientific and Innovative Research (Acsir), Ghaziabad, India
| | - Subashchandrabose Chinnathambi
- Neurobiology Group, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, India.,Academy of Scientific and Innovative Research (Acsir), Ghaziabad, India
| |
Collapse
|
9
|
Serain AF, Morosi L, Ceruti T, Matteo C, Meroni M, Minatel E, Zucchetti M, Salvador MJ. Betulinic acid and its spray dried microparticle formulation: In vitro PDT effect against ovarian carcinoma cell line and in vivo plasma and tumor disposition. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2021; 224:112328. [PMID: 34628206 DOI: 10.1016/j.jphotobiol.2021.112328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 08/31/2021] [Accepted: 09/28/2021] [Indexed: 01/03/2023]
Abstract
The race against ovarian cancer continue to motivate the research worldwide. It is known that many antitumor drugs have limited penetration into solid tumor tissues due to its microenvironment, thus contributing to their low efficacy. Therapeutic modalities have been exploited to elicit antitumor effects based on microenvironment of tumor, including Photodynamic therapy (PDT). Prospection of natural small molecules and nanotechnology are important tools in the development of new ways of obtaining photoactive compounds that are biocompatible. The Betulinic acid (BA) has shown potential biological effect as bioactive drug, but it has low water solubility. Thus, in the present study, owing to the poor solubility of the BA, its free form (BAF) was compared to a spray dried microparticle betulinic acid/HP-β-CD formulation (BAC) aiming to assess the BAF and BAC efficacy as a photosensitizer in PDT for application in ovarian cancer. BAF and BAC were submitted to assays in the presence of LED (λ = 420 nm) under different conditions (2.75 J/cm2, 5.5 J/cm2, and 11 J/cm2) and in absence of irradiation, after 5 min or 4 h of contact with ovarian carcinoma cells (A2780) or fibroblast murine cells (3T3). Furthermore, HPLC-MS/MS and MALDI-MSI methods were developed and validated in plasma and tumor of mice proving suitable for in vivo studies. The results found a greater photoinduced cytotoxic effect for the BAC at low concentration for A2780 when irradiated with LED with similar results for fluorescence microscopy. The results motivate us to continue the studies with the BA as a potential antitumor bioactive compound.
Collapse
Affiliation(s)
- Alessandra F Serain
- Universidade Estadual de Campinas (UNICAMP), Instituto de Biologia, Departamento de Biologia Vegetal, PPG BTPB, Cidade Universitária Zeferino Vaz, Campinas, SP, Brazil.
| | - Lavinia Morosi
- Laboratory of Cancer Pharmacology, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milan, Italy
| | - Tommaso Ceruti
- Laboratory of Cancer Pharmacology, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milan, Italy
| | - Cristina Matteo
- Laboratory of Cancer Pharmacology, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milan, Italy
| | - Marina Meroni
- Laboratory of Cancer Pharmacology, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milan, Italy
| | - Elaine Minatel
- Universidade Estadual de Campinas (UNICAMP), Instituto de Biologia, Departamento de Biologia Estrutural e Funcional, Cidade Universitária Zeferino Vaz, Campinas, SP, Brazil
| | - Massimo Zucchetti
- Laboratory of Cancer Pharmacology, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milan, Italy
| | - Marcos J Salvador
- Universidade Estadual de Campinas (UNICAMP), Instituto de Biologia, Departamento de Biologia Vegetal, PPG BTPB, Cidade Universitária Zeferino Vaz, Campinas, SP, Brazil.
| |
Collapse
|
10
|
Ma H, Long S, Cao J, Xu F, Zhou P, Zeng G, Zhou X, Shi C, Sun W, Du J, Han K, Fan J, Peng X. New Cy5 photosensitizers for cancer phototherapy: a low singlet-triplet gap provides high quantum yield of singlet oxygen. Chem Sci 2021; 12:13809-13816. [PMID: 34760166 PMCID: PMC8549779 DOI: 10.1039/d1sc04570a] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 09/21/2021] [Indexed: 01/12/2023] Open
Abstract
Highly efficient triplet photosensitizers (PSs) have attracted increasing attention in cancer photodynamic therapy where photo-induced reactive oxygen species (ROSs, such as singlet oxygen) are produced via singlet–triplet intersystem crossing (ISC) of the excited photosensitizer to kill cancer cells. However, most PSs exhibit the fatal defect of a generally less-than-1% efficiency of ISC and low yield of ROSs, and this defect strongly impedes their clinical application. In the current work, a new strategy to enhance the ISC and high phototherapy efficiency has been developed, based on the molecular design of a thio-pentamethine cyanine dye (TCy5) as a photosensitizer. The introduction of an electron-withdrawing group at the meso-position of TCy5 could dramatically reduce the singlet–triplet energy gap (ΔEst) value (from 0.63 eV to as low as 0.14 eV), speed up the ISC process (τISC = 1.7 ps), prolong the lifetime of the triplet state (τT = 319 μs) and improve singlet oxygen (1O2) quantum yield to as high as 99%, a value much higher than those of most reported triplet PSs. Further in vitro and in vivo experiments have shown that TCy5-CHO, with its efficient 1O2 generation and good biocompatibility, causes an intense tumor ablation in mice. This provides a new strategy for designing ideal PSs for cancer photo-therapy. The electron-withdrawing group at the meso-position of Thio-Cy5 could dramatically reduce the singlet–triplet energy gap, and speed up the intersystem crossing process.![]()
Collapse
Affiliation(s)
- He Ma
- State Key Laboratory of Fine Chemicals, Dalian University of Technology Dalian 116024 China
| | - Saran Long
- State Key Laboratory of Fine Chemicals, Dalian University of Technology Dalian 116024 China .,State Key Laboratory of Fine Chemicals and Shenzhen Research Institute, Dalian University of Technology Dalian 116024 China
| | - Jianfang Cao
- School of Chemical Engineering, Dalian University of Technology Panjin Campus Panjin 124221 China
| | - Feng Xu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology Dalian 116024 China
| | - Panwang Zhou
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University Qingdao 266237 China
| | - Guang Zeng
- State Key Laboratory of Catalysis, Dalian Institute of Chemical and Physics, Chinese Academy of Sciences Zhongshan Road 457 Dalian 116023 China
| | - Xiao Zhou
- State Key Laboratory of Fine Chemicals, Dalian University of Technology Dalian 116024 China
| | - Chao Shi
- State Key Laboratory of Fine Chemicals, Dalian University of Technology Dalian 116024 China
| | - Wen Sun
- State Key Laboratory of Fine Chemicals, Dalian University of Technology Dalian 116024 China .,State Key Laboratory of Fine Chemicals and Shenzhen Research Institute, Dalian University of Technology Dalian 116024 China
| | - Jianjun Du
- State Key Laboratory of Fine Chemicals, Dalian University of Technology Dalian 116024 China .,State Key Laboratory of Fine Chemicals and Shenzhen Research Institute, Dalian University of Technology Dalian 116024 China
| | - Keli Han
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences 457, Zhongshan Road Dalian 116023 China
| | - Jiangli Fan
- State Key Laboratory of Fine Chemicals, Dalian University of Technology Dalian 116024 China .,State Key Laboratory of Fine Chemicals and Shenzhen Research Institute, Dalian University of Technology Dalian 116024 China
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals, Dalian University of Technology Dalian 116024 China .,State Key Laboratory of Fine Chemicals and Shenzhen Research Institute, Dalian University of Technology Dalian 116024 China
| |
Collapse
|
11
|
Kaye EG, Kailass K, Sadovski O, Beharry AA. A Green-Absorbing, Red-Fluorescent Phenalenone-Based Photosensitizer as a Theranostic Agent for Photodynamic Therapy. ACS Med Chem Lett 2021; 12:1295-1301. [PMID: 34413959 DOI: 10.1021/acsmedchemlett.1c00284] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 07/07/2021] [Indexed: 12/27/2022] Open
Abstract
Phenalenone is a synthetically accessible, highly efficient photosensitizer with a near-unity singlet oxygen quantum yield. Unfortunately, its UV absorption and lack of fluorescence has made it unsuitable for fluorescence-guided photodynamic therapy against cancer. In this work, we synthesized a series of phenalenone derivatives containing electron-donating groups to red-shift the absorption spectrum and bromine(s) to permit good singlet oxygen production via the heavy-atom effect. Of the derivatives synthesized, the phenalenone containing an amine at the 6-position with bromines at the 2- and 5-positions (OE19) exhibited the longest absorption wavelength (i.e., green) and produced both singlet oxygen and red fluorescence efficiently. OE19 induced photocytotoxicity with nanomolar potency in 2D cultured PANC-1 cancer cells as well as light-induced destruction of PANC-1 spheroids with minimal dark toxicity. Overall, OE19 opens up the possibility of employing phenalenone-based photosensitizers as theranostic agents for photodynamic cancer therapy.
Collapse
Affiliation(s)
- Esther G. Kaye
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road North, Mississauga, ON L5L 1C6, Canada
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| | - Karishma Kailass
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road North, Mississauga, ON L5L 1C6, Canada
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| | - Oleg Sadovski
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road North, Mississauga, ON L5L 1C6, Canada
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| | - Andrew A. Beharry
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road North, Mississauga, ON L5L 1C6, Canada
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| |
Collapse
|
12
|
Wang X, Gong Q, Song C, Fang J, Yang Y, Liang X, Huang X, Liu J. Berberine-photodynamic therapy sensitizes melanoma cells to cisplatin-induced apoptosis through ROS-mediated P38 MAPK pathways. Toxicol Appl Pharmacol 2021; 418:115484. [PMID: 33716044 DOI: 10.1016/j.taap.2021.115484] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 03/05/2021] [Accepted: 03/06/2021] [Indexed: 12/17/2022]
Abstract
The clinical use of cisplatin are limited due to its drug resistance. Thus, it is urgent to find effective combination therapy that sensitizes tumor cells to this drug. The combined chemo-photodynamic therapy could increase anti-tumor efficacy while also reduce the side effects of cisplatin. Berberine is an isoquinoline alkaloid, which has been reported to show high photosensitizing activity. In this study, we have examined the effect of a combination of cisplatin and berberine-PDT in cisplatin-resistant melanoma cells. The cytotoxic effects of berberine-PDT alone or in combination with cisplatin were tested by MTT assays. We then examined the subcellular localization of berberine with confocal fluorescence microscopy. The percentage of apoptotic cells, the mitochondrial membrane potential (Δψm) and reactive oxygen species (ROS) generation assessed using flow cytometry analysis. Western blotting used in this study to determine the expression levels of MAPK signaling pathways and apoptosis-related proteins. Experimental data revealed that the mode of cell death is the caspase-dependent mitochondrial apoptotic pathways. Excessive accumulation of ROS played a key role in this process, which is confirmed by alleviation of cytotoxicity upon pretreatment with NAC. Furthermore, we found that the combined treatment activated MAPK signaling pathway. The inhibition of p38 MAPK by pretreating with SB203580 block the combined treatment-induced apoptotic cell death. In conclusion, berberine-PDT could be used as a chemo-sensitizer by promoting cell death through activation of a ROS/p38/caspase cascade.
Collapse
Affiliation(s)
- Xiaotong Wang
- State Key Laboratory of Bioreactor Engineering and Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, PR China
| | - Qianyi Gong
- State Key Laboratory of Bioreactor Engineering and Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, PR China
| | - Changfeng Song
- State Key Laboratory of Bioreactor Engineering and Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, PR China
| | - Jiaping Fang
- State Key Laboratory of Bioreactor Engineering and Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, PR China
| | - Yun Yang
- Department of Pharmacy, School of Medicine, Jiaxing University, Jiaxing, Zhejiang 314001, China
| | - Xin Liang
- State Key Laboratory of Bioreactor Engineering and Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, PR China.
| | - Xuan Huang
- Department of Pharmacy, School of Medicine, Jiaxing University, Jiaxing, Zhejiang 314001, China; Natural Medicine and Health Food Research & Technology Innovation Team of Jiaxing, Jiaxing, Zhejiang 314001, China; Jiaxing Key Laboratory of Oncological Photodynamic Therapy and Targeted Drug Research, China.
| | - Jianwen Liu
- State Key Laboratory of Bioreactor Engineering and Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, PR China.
| |
Collapse
|
13
|
Sun J, Cai X, Wang C, Du K, Chen W, Feng F, Wang S. Cascade Reactions by Nitric Oxide and Hydrogen Radical for Anti-Hypoxia Photodynamic Therapy Using an Activatable Photosensitizer. J Am Chem Soc 2021; 143:868-878. [PMID: 33417765 DOI: 10.1021/jacs.0c10517] [Citation(s) in RCA: 132] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Organelle-targeted activatable photosensitizers are attractive to improve the specificity and controllability of photodynamic therapy (PDT), however, they suffer from a big problem in the photoactivity under both normoxia and hypoxia due to the limited diversity of phototoxic species (mainly reactive oxygen species). Herein, by effectively photocaging a π-conjugated donor-acceptor (D-A) structure with an N-nitrosamine substituent, we established a unimolecular glutathione and light coactivatable photosensitizer, which achieved its high performance PDT effect by targeting mitochondria through both type I and type II (dual type) reactions as well as secondary radicals-participating reactions. Of peculiar interest, hydrogen radical (H•) was detected by electron spin resonance technique. The generation pathway of H• via reduction of proton and its role in type I reaction were discussed. We demonstrated that the synergistic effect of multiple reactive species originated from tandem cascade reactions comprising reduction of O2 by H• to form O2•-/HO2• and downstream reaction of O2•- with •NO to yield ONOO-. With a relatively large two-photon absorption cross section for photoexcitation in the near-infrared region (166 ± 22 GM at 800 nm) and fluorogenic property, the new photosensitizing system is very promising for broad biomedical applications, particularly low-light dose PDT, in both normoxic and hypoxic environments.
Collapse
Affiliation(s)
- Jian Sun
- Department of Polymer Science & Engineering, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Xuetong Cai
- Department of Polymer Science & Engineering, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Chengjun Wang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
| | - Ke Du
- Department of Polymer Science & Engineering, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Weijian Chen
- Department of Polymer Science & Engineering, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China.,Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Fude Feng
- Department of Polymer Science & Engineering, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Shu Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| |
Collapse
|
14
|
Husni P, Shin Y, Kim JC, Kang K, Lee ES, Youn YS, Rusdiana T, Oh KT. Photo-Based Nanomedicines Using Polymeric Systems in the Field of Cancer Imaging and Therapy. Biomedicines 2020; 8:E618. [PMID: 33339198 PMCID: PMC7765596 DOI: 10.3390/biomedicines8120618] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/13/2020] [Accepted: 12/14/2020] [Indexed: 12/14/2022] Open
Abstract
The use of photo-based nanomedicine in imaging and therapy has grown rapidly. The property of light in converting its energy into different forms has been exploited in the fields of optical imaging (OI) and phototherapy (PT) for diagnostic and therapeutic applications. The development of nanotechnology offers numerous advantages to overcome the challenges of OI and PT. Accordingly, in this review, we shed light on common photosensitive agents (PSAs) used in OI and PT; these include fluorescent and bioluminescent PSAs for OI or PT agents for photodynamic therapy (PDT) and photothermal therapy (PTT). We also describe photo-based nanotechnology systems that can be used in photo-based diagnostics and therapies by using various polymeric systems.
Collapse
Affiliation(s)
- Patihul Husni
- Department of Global Innovative Drugs, College of Pharmacy, Chung-Ang University, 221 Heukseok dong, Dongjak-gu, Seoul 06974, Korea; (P.H.); (Y.S.); (J.C.K.); (K.K.)
| | - Yuseon Shin
- Department of Global Innovative Drugs, College of Pharmacy, Chung-Ang University, 221 Heukseok dong, Dongjak-gu, Seoul 06974, Korea; (P.H.); (Y.S.); (J.C.K.); (K.K.)
| | - Jae Chang Kim
- Department of Global Innovative Drugs, College of Pharmacy, Chung-Ang University, 221 Heukseok dong, Dongjak-gu, Seoul 06974, Korea; (P.H.); (Y.S.); (J.C.K.); (K.K.)
| | - Kioh Kang
- Department of Global Innovative Drugs, College of Pharmacy, Chung-Ang University, 221 Heukseok dong, Dongjak-gu, Seoul 06974, Korea; (P.H.); (Y.S.); (J.C.K.); (K.K.)
| | - Eun Seong Lee
- Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si 14662, Gyeonggi-do, Korea;
| | - Yu Seok Youn
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 16419, Gyeonggi-do, Korea;
| | - Taofik Rusdiana
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor 45363, Indonesia;
| | - Kyung Taek Oh
- Department of Global Innovative Drugs, College of Pharmacy, Chung-Ang University, 221 Heukseok dong, Dongjak-gu, Seoul 06974, Korea; (P.H.); (Y.S.); (J.C.K.); (K.K.)
| |
Collapse
|
15
|
Zhang ZJ, Wang KP, Mo JG, Xiong L, Wen Y. Photodynamic therapy regulates fate of cancer stem cells through reactive oxygen species. World J Stem Cells 2020; 12:562-584. [PMID: 32843914 PMCID: PMC7415247 DOI: 10.4252/wjsc.v12.i7.562] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 05/17/2020] [Accepted: 05/21/2020] [Indexed: 02/06/2023] Open
Abstract
Photodynamic therapy (PDT) is an effective and promising cancer treatment. PDT directly generates reactive oxygen species (ROS) through photochemical reactions. This oxygen-dependent exogenous ROS has anti-cancer stem cell (CSC) effect. In addition, PDT may also increase ROS production by altering metabolism, endoplasmic reticulum stress, or potential of mitochondrial membrane. It is known that the half-life of ROS in PDT is short, with high reactivity and limited diffusion distance. Therefore, the main targeting position of PDT is often the subcellular localization of photosensitizers, which is helpful for us to explain how PDT affects CSC characteristics, including differentiation, self-renewal, apoptosis, autophagy, and immunogenicity. Broadly speaking, excess ROS will damage the redox system and cause oxidative damage to molecules such as DNA, change mitochondrial permeability, activate unfolded protein response, autophagy, and CSC resting state. Therefore, understanding the molecular mechanism by which ROS affect CSCs is beneficial to improve the efficiency of PDT and prevent tumor recurrence and metastasis. In this article, we review the effects of two types of photochemical reactions on PDT, the metabolic processes, and the biological effects of ROS in different subcellular locations on CSCs.
Collapse
Affiliation(s)
- Zi-Jian Zhang
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China
| | - Kun-Peng Wang
- Department of General Surgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou 318000, Zhejiang Province, China
| | - Jing-Gang Mo
- Department of General Surgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou 318000, Zhejiang Province, China
| | - Li Xiong
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China
| | - Yu Wen
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China.
| |
Collapse
|
16
|
De Bonfils P, Verron E, Sandoval-Altamirano C, Jaque P, Moreau X, Gunther G, Nun P, Coeffard V. Unusual Oxidative Dealkylation Strategy toward Functionalized Phenalenones as Singlet Oxygen Photosensitizers and Photophysical Studies. J Org Chem 2020; 85:10603-10616. [DOI: 10.1021/acs.joc.0c01140] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Paul De Bonfils
- CEISAM UMR CNRS 6230, Université de Nantes, F-44000 Nantes, France
| | - Elise Verron
- CEISAM UMR CNRS 6230, Université de Nantes, F-44000 Nantes, France
| | - Catalina Sandoval-Altamirano
- Facultad de Quı́mica y Biologı́a, Universidad de Santiago de Chile, Casilla 40, correo 33, Santiago 518000, Chile
| | - Pablo Jaque
- Facultad de Ciencias Quı́micas y Farmacéuticas, Departamento de Quı́mica Orgánica y Fisicoquı́mica, Universidad de Chile, Casilla 233, Santiago 8380492, Chile
| | - Xavier Moreau
- Institut Lavoisier de Versailles, Université Paris-Saclay, UVSQ, CNRS, 78035 Versailles, France
| | - German Gunther
- Facultad de Ciencias Quı́micas y Farmacéuticas, Departamento de Quı́mica Orgánica y Fisicoquı́mica, Universidad de Chile, Casilla 233, Santiago 8380492, Chile
| | - Pierrick Nun
- CEISAM UMR CNRS 6230, Université de Nantes, F-44000 Nantes, France
| | - Vincent Coeffard
- CEISAM UMR CNRS 6230, Université de Nantes, F-44000 Nantes, France
| |
Collapse
|
17
|
Wang H, Xiong L, Xia Y, Wang X. 5-aminolaevulinic acid-based photodynamic therapy induces both necrosis and apoptosis of keratinocytes in plantar warts. J COSMET LASER THER 2020; 22:165-170. [PMID: 32600214 DOI: 10.1080/14764172.2020.1785626] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Huixia Wang
- Department of Dermatology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Layuan Xiong
- Department of Dermatology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yumin Xia
- Department of Dermatology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Department of Dermatology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiuying Wang
- Department of Dermatology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
18
|
Li Y, Wu S, Zhang J, Zhou R, Cai X. Sulphur doped carbon dots enhance photodynamic therapy via PI3K/Akt signalling pathway. Cell Prolif 2020; 53:e12821. [PMID: 32364266 PMCID: PMC7260068 DOI: 10.1111/cpr.12821] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/10/2020] [Accepted: 03/15/2020] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVES Photodynamic therapy (PDT) is a promising approach for cancer treatment, and the underlying signalling pathway changes has been carried out for studying the PDT mechanisms, but is majorly limited to organic photosensitizers (PSs). For the emerging nano-PSs typically possessing higher 1 O2 quantum yield, few mechanistic studies were carried out, which limited their further applications in clinical therapeutics. PI3K/Akt signalling pathway, a most frequently activated signalling network in cancers, could promote cancer cell survival, but was seldom reported in previous PDT studies mediated by nano-PSs. MATERIALS AND METHODS Sulphur doped carbon dots (S-CDs) was prepared via a hydrothermal synthetic route and was characterized by transmission electron microscopy, X-ray photoelectron spectroscopy and so on. CCK-8 assay and Annexin V/PI staining were performed to demonstrate the death of cancer cells, Western blot, RT-PCR and immunofluorescence were employed to explore the underlying mechanism, and variation of PI3K/Akt and other signalling pathways was detected by Western blot. RESULTS S-CDs was successfully synthesized, and it was much more efficient compared with classic organic PSs. S-CDs could induce cancer cell death through mitochondria mediated cell apoptosis with the imbalance of Bcl-2 family proteins and caspase cascade via several signalling pathways. Low concentration of S-CDs could effectively inhibit PI3K/Akt pathway and promote p38/JNK pathway, on one way inhibiting cancer cell survival and on the other way promoting cell apoptosis. CONCLUSIONS Herein, we found that S-CDs acted as an inhibitor of the PI3K/Akt pathway for efficient cancer cell killing, thus yielding in a higher PDT performance over the existing photosensitizers.
Collapse
Affiliation(s)
- Yanjing Li
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Shihong Wu
- Analytical & Testing CenterSichuan UniversityChengduChina
| | - Junjiang Zhang
- Department of ProsthodonticsTianjin Medical UniversityTianjinChina
| | - Ronghui Zhou
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Xiaoxiao Cai
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduChina
| |
Collapse
|
19
|
Digby EM, Sadovski O, Beharry AA. An Activatable Photosensitizer Targeting Human NAD(P)H: Quinone Oxidoreductase 1. Chemistry 2020; 26:2713-2718. [PMID: 31814180 DOI: 10.1002/chem.201904607] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 12/02/2019] [Indexed: 12/22/2022]
Abstract
Human NAD(P)H: Quinone Oxidoreductase 1 (hNQO1) is an attractive enzyme for cancer therapeutics due to its significant overexpression in tumors compared to healthy tissues. Its unique catalytic mechanism involving the two-electron reduction of quinone-based compounds has made it a useful target to exploit in the design of hNQO1 fluorescent chemosensors and hNQO1-activatable-prodrugs. In this work, hNQO1 is exploited for an optical therapeutic. The probe uses the photosensitizer, phenalenone, which is initially quenched via photo-induced electron transfer by the attached quinone. Native phenalenone is liberated in the presence of hNQO1 resulting in the production of cytotoxic singlet oxygen upon irradiation. hNQO1-mediated activation in A549 lung cancer cells containing high levels of hNQO1 induces a dose-dependent photo-cytotoxic response after irradiation. In contrast, no photo-cytotoxicity was observed in the normal lung cell line, MRC9. By targeting hNQO1, this scaffold can be used to enhance the cancer selectivity of photodynamic therapy.
Collapse
Affiliation(s)
- Elyse M Digby
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road North, Mississauga, ON, L5L 1C6, Canada
| | - Oleg Sadovski
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road North, Mississauga, ON, L5L 1C6, Canada
| | - Andrew A Beharry
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road North, Mississauga, ON, L5L 1C6, Canada
| |
Collapse
|
20
|
Sensitive Photodynamic Detection of Adult T-cell Leukemia/Lymphoma and Specific Leukemic Cell Death Induced by Photodynamic Therapy: Current Status in Hematopoietic Malignancies. Cancers (Basel) 2020; 12:cancers12020335. [PMID: 32024297 PMCID: PMC7072618 DOI: 10.3390/cancers12020335] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 01/27/2020] [Accepted: 01/30/2020] [Indexed: 01/10/2023] Open
Abstract
Adult T-cell leukemia/lymphoma (ATL), an aggressive type of T-cell malignancy, is caused by the human T-cell leukemia virus type I (HTLV-1) infections. The outcomes, following therapeutic interventions for ATL, have not been satisfactory. Photodynamic therapy (PDT) exerts selective cytotoxic activity against malignant cells, as it is considered a minimally invasive therapeutic procedure. In PDT, photosensitizing agent administration is followed by irradiation at an absorbance wavelength of the sensitizer in the presence of oxygen, with ultimate direct tumor cell death, microvasculature injury, and induced local inflammatory reaction. This review provides an overview of the present status and state-of-the-art ATL treatments. It also focuses on the photodynamic detection (PDD) of hematopoietic malignancies and the recent progress of 5-Aminolevulinic acid (ALA)-PDT/PDD, which can efficiently induce ATL leukemic cell-specific death with minor influence on normal lymphocytes. Further consideration of the ALA-PDT/PDD system along with the circulatory system regarding the clinical application in ATL and others will be discussed. ALA-PDT/PDD can be promising as a novel treatment modality that overcomes unmet medical needs with the optimization of PDT parameters to increase the effectiveness of the tumor-killing activity and enhance the innate and adaptive anti-tumor immune responses by the optimized immunogenic cell death.
Collapse
|
21
|
López-Arencibia A, Reyes-Batlle M, Freijo MB, Sifaoui I, Bethencourt-Estrella CJ, Rizo-Liendo A, Chiboub O, McNaughton-Smith G, Lorenzo-Morales J, Abad-Grillo T, Piñero JE. In vitro activity of 1H-phenalen-1-one derivatives against Leishmania spp. and evidence of programmed cell death. Parasit Vectors 2019; 12:601. [PMID: 31870406 PMCID: PMC6929359 DOI: 10.1186/s13071-019-3854-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 12/16/2019] [Indexed: 11/12/2022] Open
Abstract
Background The in vitro activity against Leishmania spp. of a novel group of compounds, phenalenone derivatives, is described in this study. Previous studies have shown that some phenalenones present leishmanicidal activity, and induce a decrease in the mitochondrial membrane potential in L. amazonensis parasites, so in order to elucidate the evidence of programmed cell death occurring inside the promastigote stage, different assays were performed in two different species of Leishmania. Methods We focused on the determination of the programmed cell death evidence by detecting the characteristic features of the apoptosis-like process, such as phosphatidylserine exposure, mitochondrial membrane potential, and chromatin condensation among others. Results The results showed that four molecules activated the apoptosis-like process in the parasite. All the signals observed were indicative of the death process that the parasites were undergoing. Conclusions The present results highlight the potential use of phenalenone derivatives against Leishmania species and further studies should be undertaken to establish them as novel leishmanicidal therapeutic agents.![]()
Collapse
Affiliation(s)
- Atteneri López-Arencibia
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Avda. Astrofísico Fco. Sánchez, S/N, 38203, La Laguna, Tenerife, Islas Canarias, Spain. .,Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, La Laguna, Tenerife, Spain.
| | - María Reyes-Batlle
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Avda. Astrofísico Fco. Sánchez, S/N, 38203, La Laguna, Tenerife, Islas Canarias, Spain
| | - Mónica B Freijo
- Instituto Universitario de Bio-Orgánica 'Antonio González', Departamento de Química Orgánica, Universidad de La Laguna, Avda. Fco. Sánchez 2, 38206, La Laguna, Tenerife, Islas Canarias, Spain
| | - Ines Sifaoui
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Avda. Astrofísico Fco. Sánchez, S/N, 38203, La Laguna, Tenerife, Islas Canarias, Spain
| | - Carlos J Bethencourt-Estrella
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Avda. Astrofísico Fco. Sánchez, S/N, 38203, La Laguna, Tenerife, Islas Canarias, Spain
| | - Aitor Rizo-Liendo
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Avda. Astrofísico Fco. Sánchez, S/N, 38203, La Laguna, Tenerife, Islas Canarias, Spain
| | - Olfa Chiboub
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Avda. Astrofísico Fco. Sánchez, S/N, 38203, La Laguna, Tenerife, Islas Canarias, Spain.,Laboratoire Matériaux-Molécules et Applications, La Marsa, University of Carthage, Carthage, Tunisia
| | - Grant McNaughton-Smith
- Centro Atlántico del Medicamento S.A (CEAMED S.A.), PCTT, La Laguna, Tenerife, Islas Canarias, Spain
| | - Jacob Lorenzo-Morales
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Avda. Astrofísico Fco. Sánchez, S/N, 38203, La Laguna, Tenerife, Islas Canarias, Spain.,Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, La Laguna, Tenerife, Spain
| | - Teresa Abad-Grillo
- Instituto Universitario de Bio-Orgánica 'Antonio González', Departamento de Química Orgánica, Universidad de La Laguna, Avda. Fco. Sánchez 2, 38206, La Laguna, Tenerife, Islas Canarias, Spain
| | - José E Piñero
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Avda. Astrofísico Fco. Sánchez, S/N, 38203, La Laguna, Tenerife, Islas Canarias, Spain. .,Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, La Laguna, Tenerife, Spain.
| |
Collapse
|
22
|
López-Arencibia A, San Nicolás-Hernández D, Bethencourt-Estrella CJ, Sifaoui I, Reyes-Batlle M, Rodríguez-Expósito RL, Rizo-Liendo A, Lorenzo-Morales J, Bazzocchi IL, Piñero JE, Jiménez IA. Withanolides from Withania aristata as Antikinetoplastid Agents through Induction of Programmed Cell Death. Pathogens 2019; 8:pathogens8040172. [PMID: 31581590 PMCID: PMC6963971 DOI: 10.3390/pathogens8040172] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 09/26/2019] [Accepted: 09/28/2019] [Indexed: 12/16/2022] Open
Abstract
Leishmaniasis and American trypanosomiasis are parasitic diseases that cause significant clinical, social and economic impact on the population of tropical and subtropical countries. Their current treatment is limited and presents multiple drawbacks, including high toxicity, high cost, lengthy treatment plans, as well as the emergence of resistant species. Therefore, there is a need to find new lead compounds with high potency against parasites and low toxicity in patients. In the present work, the bioguided fractionation of an endemic plant from the Canary Islands, Withania aristata, led to the identification of withanolide-type metabolites (1-3) with leishmanicidal and trypanocidal activities. Compounds 1 and 3 showed a significant dose-dependent inhibition effect on the proliferation of L. amazonensis promastigotes and T. cruzi epimastigotes, higher than the reference drugs, miltefosine and benznidazole, respectively. Moreover, compounds 1-3 were more potent (IC50 0.055-0.663 µM) than the reference drug against the intracellular amastigote stage of L. amazonensis, with a high selectivity index on murine macrophage cells (SI 58.66-216.73). Studies on the mechanism of death showed that the compounds induced programmed cell death or that which was apoptosis-like. The present findings underline the potential of withanolides as novel therapeutic antikinetoplastid agents.
Collapse
Affiliation(s)
- Atteneri López-Arencibia
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Avda. Astrofısico Fco. Sanchez, S/N, 38203 La Laguna, Tenerife, Canary Islands, Spain.
- Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, 38200 La Laguna, Tenerife, Spain.
| | - Desirée San Nicolás-Hernández
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Avda. Astrofısico Fco. Sanchez, S/N, 38203 La Laguna, Tenerife, Canary Islands, Spain.
| | - Carlos J Bethencourt-Estrella
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Avda. Astrofısico Fco. Sanchez, S/N, 38203 La Laguna, Tenerife, Canary Islands, Spain.
| | - Ines Sifaoui
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Avda. Astrofısico Fco. Sanchez, S/N, 38203 La Laguna, Tenerife, Canary Islands, Spain.
| | - María Reyes-Batlle
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Avda. Astrofısico Fco. Sanchez, S/N, 38203 La Laguna, Tenerife, Canary Islands, Spain.
| | - Rubén L Rodríguez-Expósito
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Avda. Astrofısico Fco. Sanchez, S/N, 38203 La Laguna, Tenerife, Canary Islands, Spain.
| | - Aitor Rizo-Liendo
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Avda. Astrofısico Fco. Sanchez, S/N, 38203 La Laguna, Tenerife, Canary Islands, Spain.
| | - Jacob Lorenzo-Morales
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Avda. Astrofısico Fco. Sanchez, S/N, 38203 La Laguna, Tenerife, Canary Islands, Spain.
- Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, 38200 La Laguna, Tenerife, Spain.
| | - Isabel L Bazzocchi
- Instituto Universitario de Bio-Orgánica Antonio González, Departamento de Química Orgánica, Universidad de La Laguna, Avenida Astrofísico Francisco Sánchez 2, 38206 La Laguna, Tenerife, Canary Islands, Spain.
| | - José E Piñero
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Avda. Astrofısico Fco. Sanchez, S/N, 38203 La Laguna, Tenerife, Canary Islands, Spain.
- Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, 38200 La Laguna, Tenerife, Spain.
| | - Ignacio A Jiménez
- Instituto Universitario de Bio-Orgánica Antonio González, Departamento de Química Orgánica, Universidad de La Laguna, Avenida Astrofísico Francisco Sánchez 2, 38206 La Laguna, Tenerife, Canary Islands, Spain.
| |
Collapse
|
23
|
Siewert B, Stuppner H. The photoactivity of natural products - An overlooked potential of phytomedicines? PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 60:152985. [PMID: 31257117 DOI: 10.1016/j.phymed.2019.152985] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 06/07/2019] [Accepted: 06/08/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Photoactivity, though known for centuries, is only recently shifting back into focus as a treatment option against cancer and microbial infections. The external factor light is the ingenious key-component of this therapy: Since light activates the drug locally, a high level of selectivity is reached and side effects are avoided. The first reported photoactive medicines were plant extracts. Synthetic entities (so-called photosensitizers PSs), however, paved the route towards the clinical approval of the so-called photodynamic therapy (PDT), and thus natural PSs took a backseat in the past. HYPOTHESIS Many isolated bioactive phytochemicals hold a hidden photoactive potential, which is overlooked due to the reduced common awareness of photoactivity. METHODS A systematic review of reported natural PSs and their supposed medicinal application was conducted by employing PubMed, Scifinder, and Web of Science. The identified photoactive natural products were compiled including information about their natural sources, their photoyield, and their pharmacological application. Furthermore, the common chemical scaffolds of natural PS are shown to enable the reader to recognize potentially overlooked natural PSs. RESULTS The literature review revealed over 100 natural PS, excluding porphyrins. The PSs were classified according to their scaffold. Thereby it was shown that some PS-scaffolds were analyzed in a detailed way, while other classes were only scarcely investigated, which leaves space for future discoveries. In addition, the literature revealed that many PSs are phytoalexins, thus the selection of the starting material significantly matters in order to find new PSs. CONCLUSION Photoactive principles are ubiquitous and can be found in various plant extracts. With the increasing availability of light-irradiation setups for the identification of photoactive natural products, we anticipate the discovery of many new natural PSs in the near future. With the accumulation of chemically diverse PSs, PDT itself might finally reach its clinical breakthrough as a promising alternative treatment against multi-resistant microbes and cancer types.
Collapse
Affiliation(s)
- Bianka Siewert
- Institute of Pharmacy/Pharmacognosy, Center for Molecular Biosciences Innsbruck (CMBI), Center for Chemistry and Biomedicine, University of Innsbruck, Innrain 80-82, Innsbruck, 6020 Austria.
| | - Hermann Stuppner
- Institute of Pharmacy/Pharmacognosy, Center for Molecular Biosciences Innsbruck (CMBI), Center for Chemistry and Biomedicine, University of Innsbruck, Innrain 80-82, Innsbruck, 6020 Austria
| |
Collapse
|
24
|
Jing Y, Xu Q, Chen M, Shao X. Pyridone-containing phenalenone-based photosensitizer working both under light and in the dark for photodynamic therapy. Bioorg Med Chem 2019; 27:2201-2208. [DOI: 10.1016/j.bmc.2019.04.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 03/31/2019] [Accepted: 04/16/2019] [Indexed: 12/31/2022]
|
25
|
Soltan MY, Sumarni U, Assaf C, Langer P, Reidel U, Eberle J. Key Role of Reactive Oxygen Species (ROS) in Indirubin Derivative-Induced Cell Death in Cutaneous T-Cell Lymphoma Cells. Int J Mol Sci 2019; 20:ijms20051158. [PMID: 30866411 PMCID: PMC6429192 DOI: 10.3390/ijms20051158] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 02/27/2019] [Accepted: 03/02/2019] [Indexed: 01/05/2023] Open
Abstract
Cutaneous T-cell lymphoma (CTCL) may develop a highly malignant phenotype in its late phase, and patients may profit from innovative therapies. The plant extract indirubin and its chemical derivatives represent new and promising antitumor strategies. This first report on the effects of an indirubin derivative in CTCL cells shows a strong decrease of cell proliferation and cell viability as well as an induction of apoptosis, suggesting indirubin derivatives for therapy of CTCL. As concerning the mode of activity, the indirubin derivative DKP-071 activated the extrinsic apoptosis cascade via caspase-8 and caspase-3 through downregulation of the caspase antagonistic proteins c-FLIP and XIAP. Importantly, a strong increase of reactive oxygen species (ROS) was observed as an immediate early effect in response to DKP-071 treatment. The use of antioxidative pre-treatment proved the decisive role of ROS, which turned out upstream of all other proapoptotic effects monitored. Thus, reactive oxygen species appear as a highly active proapoptotic pathway in CTCL, which may be promising for therapeutic intervention. This pathway can be efficiently activated by an indirubin derivative.
Collapse
Affiliation(s)
- Marwa Y Soltan
- Skin Cancer Centre Charité, Department of Dermatology and Allergy, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany.
- Department of Dermatology and Venereology, Faculty of Medicine, Ain Shams University, Cairo 11591, Egypt.
| | - Uly Sumarni
- Skin Cancer Centre Charité, Department of Dermatology and Allergy, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany.
| | - Chalid Assaf
- Skin Cancer Centre Charité, Department of Dermatology and Allergy, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany.
- Clinic for Dermatology and Venereology, Helios Klinikum Krefeld, Lutherplatz 40, 47805 Krefeld, Germany.
| | - Peter Langer
- Institute of Chemistry, University of Rostock, Albert-Einstein-Str. 3a, 18059 Rostock, Germany.
- Leibniz Institute of Catalysis at the University of Rostock e.V., Albert-Einstein-Str. 29a, 18059 Rostock, Germany.
| | - Ulrich Reidel
- Skin Cancer Centre Charité, Department of Dermatology and Allergy, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany.
| | - Jürgen Eberle
- Skin Cancer Centre Charité, Department of Dermatology and Allergy, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany.
| |
Collapse
|