1
|
Frantzeskos SA, Biggs MA, Banerjee IA. Exploring the Potential of Biomimetic Peptides in Targeting Fibrillar and Filamentous Alpha-Synuclein-An In Silico and Experimental Approach to Parkinson's Disease. Biomimetics (Basel) 2024; 9:705. [PMID: 39590277 PMCID: PMC11591946 DOI: 10.3390/biomimetics9110705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/09/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
Alpha-synuclein (ASyn) is a protein that is known to play a critical role in Parkinson's disease (PD) due to its propensity for misfolding and aggregation. Furthermore, this process leads to oxidative stress and the formation of free radicals that cause neuronal damage. In this study, we have utilized a biomimetic approach to design new peptides derived from marine natural resources. The peptides were designed using a peptide scrambling approach where antioxidant moieties were combined with fibrillary inhibition motifs in order to design peptides that would have a dual targeting effect on ASyn misfolding. Of the 20 designed peptides, 12 were selected for examining binding interactions through molecular docking and molecular dynamics approaches, which revealed that the peptides were binding to the pre-NAC and NAC (non-amyloid component) domain residues such as Tyr39, Asn65, Gly86, and Ala85, among others. Because ASyn filaments derived from Lewy body dementia (LBD) have a different secondary structure compared to pathogenic ASyn fibrils, both forms were tested computationally. Five of those peptides were utilized for laboratory validation based on those results. The binding interactions with fibrils were confirmed using surface plasmon resonance studies, where EQALMPWIWYWKDPNGS, PYYYWKDPNGS, and PYYYWKELAQM showed higher binding. Secondary structural analyses revealed their ability to induce conformational changes in ASyn fibrils. Additionally, PYYYWKDPNGS and PYYYWKELAQM also demonstrated antioxidant properties. This study provides insight into the binding interactions of varying forms of ASyn implicated in PD. The peptides may be further investigated for mitigating fibrillation at the cellular level and may have the potential to target ASyn.
Collapse
Affiliation(s)
| | | | - Ipsita A. Banerjee
- Department of Chemistry and Biochemistry, Fordham University, 441 East Fordham Road, Bronx, NY 10458, USA; (S.A.F.); (M.A.B.)
| |
Collapse
|
2
|
Yang Y, Zhou ZD, Yi L, Tan BJW, Tan EK. Interaction between caffeine consumption & genetic susceptibility in Parkinson's disease: A systematic review. Ageing Res Rev 2024; 99:102381. [PMID: 38914264 DOI: 10.1016/j.arr.2024.102381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/03/2024] [Accepted: 06/14/2024] [Indexed: 06/26/2024]
Abstract
BACKGROUND Caffeine is one of the most consumed psychoactive substances globally. Caffeine-gene interactions in Parkinson's disease (PD) has not been systematically examined. OBJECTIVES To conduct a systematic review on the interaction between caffeine consumption and genetic susceptibility to PD. METHODOLOGY We conducted PubMed and Embase search using terms "Genetic association studies", "Caffeine", "polymorphism" and "Parkinson's disease", from inception till 2023. Of the initial 2391 studies, 21 case-control studies were included. The demographic, genetic and clinical data were extracted and analyzed. RESULTS We identified 21 studies which involved a total of 607,074 study subjects and 17 gene loci (SNCA, MAPT, HLA-DRA, NOS1, NOS3, GBA, ApoE, BST1, ESR2, NAT2, SLC2A13, LRRK2, NOS2A, GRIN2A, CYP1A2, ESR1, ADORA2A) have been investigated for the effect of gene-caffeine interaction and PD risk. The genes were identified through PD GWAS or involved in caffeine or related metabolism pathways. Based on the genetic association and interaction studies, only MAPT, SLC2A13, LRRK2, ApoE, NOS2A, GRIN2A, CYP1A2, and ADORA2A have been shown by at least one study to have a positive caffeine-gene interaction influencing the risk of PD. CONCLUSION Studies have shown an interaction between caffeine with genetic variants of MAPT, SLC2A13, LRRK2, ApoE, NOS2A, GRIN2A, CYP1A2, and ADORA2A in modulating the risk of PD. Due to the potential limitations of these discovery/pilot studies, further independent replication studies are needed. Better designed genetic association studies in multi-ancestry and admixed cohorts to identify potential shared or unique multivariate gene-environmental interactions, as well as functional studies of gene-caffeine interactions will be useful.
Collapse
Affiliation(s)
- Yujuan Yang
- Department of Neurology, National Neuroscience Institute, Singapore; Neuroscience and Behavioural Disorders, Duke-NUS Medical School, Singapore.
| | - Zhi Dong Zhou
- Department of Neurology, National Neuroscience Institute, Singapore; Neuroscience and Behavioural Disorders, Duke-NUS Medical School, Singapore.
| | - Lingxiao Yi
- Department of Neurology, National Neuroscience Institute, Singapore.
| | | | - Eng-King Tan
- Department of Neurology, National Neuroscience Institute, Singapore; Neuroscience and Behavioural Disorders, Duke-NUS Medical School, Singapore.
| |
Collapse
|
3
|
Mejaes JI, Saenz J, O’Brien C, Pizzano CM, Pan PY, Barker DJ. Haploinsufficiency of the Parkinson's disease gene synaptojanin1 is associated with abnormal responses to psychomotor stimulants and mesolimbic dopamine signaling. Front Behav Neurosci 2024; 18:1359225. [PMID: 39050701 PMCID: PMC11266296 DOI: 10.3389/fnbeh.2024.1359225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 06/25/2024] [Indexed: 07/27/2024] Open
Abstract
The synaptojanin-1 (SYNJ1) gene is known to be important for dopamine-related disorders. Recent evidence has demonstrated that Synj1 deficient mice (Synj1 +/-) have impairments in dopaminergic synaptic vesicular recycling. However, less is known about how Synj1 deficits affect the mesolimbic system, reward processing, and motivated behavior. To examine the role of the Synj1 gene in motivated behavior, we subjected male and female Synj1 +/- and Synj1 +/+ mice to a battery of behavioral tests evaluating hedonic responses, effortful responding, and responses to psychomotor stimulants. We observed that Synj1 +/- mice exhibit few differences in reward processing and motivated behavior, with normal hedonic responses and motivated responding for sucrose. However, male but not female Synj1 +/- demonstrated an attenuated conditioned place preference for cocaine that could not be attributed to deficits in spatial memory. To further understand the dopamine signaling underlying the attenuated response to cocaine in these mutant mice, we recorded nucleus accumbens dopamine in response to cocaine and observed that Synj1 +/- male and female mice took longer to reach peak dopamine release following experimenter-administered cocaine. However, female mice also showed slower decay in accumbens dopamine that appear to be linked to differences in cocaine-induced DAT responses. These findings demonstrate that SYNJ1 deficiencies result in abnormal mesolimbic DA signaling which has not previously been demonstrated. Our work also highlights the need to develop targeted therapeutics capable of restoring deficits in DAT function, which may be effective for reversing the pathologies associated with Synj1 mutations.
Collapse
Affiliation(s)
- Jennifer I. Mejaes
- Department of Psychology, Rutgers, The State University of New Jersey, Piscataway, NJ, United States
| | - Jacqueline Saenz
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, United States
| | - Chris O’Brien
- Department of Psychology, Rutgers, The State University of New Jersey, Piscataway, NJ, United States
| | - Carina M. Pizzano
- Department of Psychology, Rutgers, The State University of New Jersey, Piscataway, NJ, United States
| | - Ping-Yue Pan
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, United States
- Brain Health Institute, Rutgers University, Piscataway, NJ, United States
| | - David J. Barker
- Department of Psychology, Rutgers, The State University of New Jersey, Piscataway, NJ, United States
- Brain Health Institute, Rutgers University, Piscataway, NJ, United States
| |
Collapse
|
4
|
Zhang P, Lu Y, Li Y, Wang K, An H, Tan Y. Genome-wide DNA methylation analysis in schizophrenia with tardive dyskinesia: a preliminary study. Genes Genomics 2023; 45:1317-1328. [PMID: 37414911 DOI: 10.1007/s13258-023-01414-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 06/01/2023] [Indexed: 07/08/2023]
Abstract
BACKGROUND Tardive dyskinesia (TD) develops in 20-30% of schizophrenia patients and up to 50% in patients > 50 years old. DNA methylation may play an important role in the development of TD. OBJECTIVE DNA methylation analyses in schizophrenia with TD. METHODS We conducted a genome-wide DNA methylation analysis in schizophrenia with TD using methylated DNA immunoprecipitation coupled with next-generation sequencing (MeDIP-Seq) in a Chinese sample including five schizophrenia patients with TD and five without TD (NTD), and five healthy controls. The results were expressed as the log2FC, fold change of normalized tags between two groups within the differentially methylated region (DMR). For validation, the pyrosequencing was used to quantify DNA methylation levels of several methylated genes in an independent sample (n = 30). RESULTS Through genome-wide MeDIP-Seq analysis, we identified 116 genes that were significantly differentially methylated in promotor regions in comparison of TD group with NTD group including 66 hypermethylated genes (top 4 genes are GABRR1, VANGL2, ZNF534, and ZNF746) and 50 hypomethylated genes (top 4 genes are DERL3, GSTA4, KNCN, and LRRK1). Part of these genes (such as DERL3, DLGAP2, GABRR1, KLRG2, LRRK1, VANGL2, and ZP3) were previously reported to be associated with methylation in schizophrenia. Gene Ontology enrichment and KEGG pathway analyses identified several pathways. So far, we have confirmed the methylation of 3 genes (ARMC6, WDR75, and ZP3) in schizophrenia with TD using pyrosequencing. CONCLUSIONS This study identified number of methylated genes and pathways for TD and will provide potential biomarkers for TD and serve as a resource for replication in other populations.
Collapse
Affiliation(s)
- Ping Zhang
- Beijing HuiLongGuan Hospital, Peking University HuiLongGuan Clinical Medical School, Beijing, 100096, China
| | - Yongke Lu
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, 25755, USA
| | - Yanli Li
- Beijing HuiLongGuan Hospital, Peking University HuiLongGuan Clinical Medical School, Beijing, 100096, China
| | - Kesheng Wang
- Department of Family and Community Health, School of Nursing, Health Sciences Center, West Virginia University, Office 6419, Post Office Box 9600, Morgantown, WV, 26506, USA.
| | - Huimei An
- Beijing HuiLongGuan Hospital, Peking University HuiLongGuan Clinical Medical School, Beijing, 100096, China
| | - Yunlong Tan
- Beijing HuiLongGuan Hospital, Peking University HuiLongGuan Clinical Medical School, Beijing, 100096, China.
| |
Collapse
|
5
|
Raghunathan R, Turajane K, Wong LC. Biomarkers in Neurodegenerative Diseases: Proteomics Spotlight on ALS and Parkinson’s Disease. Int J Mol Sci 2022; 23:ijms23169299. [PMID: 36012563 PMCID: PMC9409485 DOI: 10.3390/ijms23169299] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/13/2022] [Accepted: 08/14/2022] [Indexed: 11/21/2022] Open
Abstract
Neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS) and Parkinson’s disease (PD) are both characterized by pathogenic protein aggregates that correlate with the progressive degeneration of neurons and the loss of behavioral functions. Both diseases lack biomarkers for diagnosis and treatment efficacy. Proteomics is an unbiased quantitative tool capable of the high throughput quantitation of thousands of proteins from minimal sample volumes. We review recent proteomic studies in human tissues, plasma, cerebrospinal fluid (CSF), and exosomes in ALS and PD that identify proteins with potential utility as biomarkers. Further, we review disease-related post-translational modifications in key proteins TDP43 in ALS and α-synuclein in PD studies, which may serve as biomarkers. We compare relative and absolute quantitative proteomic approaches in key biomarker studies in ALS and PD and discuss recent technological advancements which may identify suitable biomarkers for the early-diagnosis treatment efficacy of these diseases.
Collapse
|
6
|
Pedersen CC, Lange J, Førland MGG, Macleod AD, Alves G, Maple-Grødem J. A systematic review of associations between common SNCA variants and clinical heterogeneity in Parkinson's disease. NPJ PARKINSONS DISEASE 2021; 7:54. [PMID: 34210990 PMCID: PMC8249472 DOI: 10.1038/s41531-021-00196-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 06/02/2021] [Indexed: 11/09/2022]
Abstract
There is great heterogeneity in both the clinical presentation and rate of disease progression among patients with Parkinson’s disease (PD). This can pose prognostic difficulties in a clinical setting, and a greater understanding of the risk factors that contribute to modify disease course is of clear importance for optimizing patient care and clinical trial design. Genetic variants in SNCA are an established risk factor for PD and are candidates to modify disease presentation and progression. This systematic review aimed to summarize all available primary research reporting the association of SNCA polymorphisms with features of PD. We systematically searched PubMed and Web of Science, from inception to 1 June 2020, for studies evaluating the association of common SNCA variants with age at onset (AAO) or any clinical feature attributed to PD in patients with idiopathic PD. Fifty-eight studies were included in the review that investigated the association between SNCA polymorphisms and a broad range of outcomes, including motor and cognitive impairment, sleep disorders, mental health, hyposmia, or AAO. The most reproducible findings were with the REP1 polymorphism or rs356219 and an earlier AAO, but no clear associations were identified with an SNCA polymorphism and any individual clinical outcome. The results of this comprehensive summary suggest that, while there is evidence that genetic variance in the SNCA region may have a small impact on clinical outcomes in PD, the mechanisms underlying the association of SNCA polymorphisms with PD risk may not be a major factor driving clinical heterogeneity in PD.
Collapse
Affiliation(s)
- Camilla Christina Pedersen
- The Norwegian Centre for Movement Disorders, Stavanger University Hospital, Stavanger, Norway.,Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, Stavanger, Norway
| | - Johannes Lange
- The Norwegian Centre for Movement Disorders, Stavanger University Hospital, Stavanger, Norway.,Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, Stavanger, Norway
| | | | - Angus D Macleod
- Institute of Applied Health Sciences, University of Aberdeen, Aberdeen, UK
| | - Guido Alves
- The Norwegian Centre for Movement Disorders, Stavanger University Hospital, Stavanger, Norway.,Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, Stavanger, Norway.,Department of Neurology, Stavanger University Hospital, Stavanger, Norway
| | - Jodi Maple-Grødem
- The Norwegian Centre for Movement Disorders, Stavanger University Hospital, Stavanger, Norway. .,Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, Stavanger, Norway.
| |
Collapse
|
7
|
Genetics of synucleins in neurodegenerative diseases. Acta Neuropathol 2021; 141:471-490. [PMID: 32740728 DOI: 10.1007/s00401-020-02202-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/23/2020] [Accepted: 07/24/2020] [Indexed: 12/14/2022]
Abstract
The SNCA locus currently has an indisputable role in Parkinson's disease and other synucleinopathies. The role of genetic variability in the other members of the synuclein family (SNCB and SNCG) in disease is far less clear. In this review, we critically assess the pathogenicity, main characteristics, and roles of genetic variants in these genes reported to be causative of synucleinopathies. We also summarize the different association signals identified in the SNCA locus that have been associated with risk for disease. We take a bird's eye view of the variability currently reported in the general population for the three genes and use these data to infer on the potential relationship between each of the genes and human disease.
Collapse
|
8
|
Wei X, Luo C, Li Q, Hu N, Xiao Y, Liu N, Lui S, Gong Q. White Matter Abnormalities in Patients With Parkinson's Disease: A Meta-Analysis of Diffusion Tensor Imaging Using Tract-Based Spatial Statistics. Front Aging Neurosci 2021; 12:610962. [PMID: 33584244 PMCID: PMC7876070 DOI: 10.3389/fnagi.2020.610962] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 12/28/2020] [Indexed: 02/05/2023] Open
Abstract
Background: Tract-based spatial statistics (TBSS) studies based on diffusion tensor imaging (DTI) have revealed extensive abnormalities in white matter (WM) fibers of Parkinson's disease (PD); however, the results were inconsistent. Therefore, a meta-analytical approach was used in this study to find the most prominent and replicable WM abnormalities of PD. Methods: Online databases were systematically searched for all TBSS studies comparing fractional anisotropy (FA) between patients with PD and controls. Subsequently, we performed the meta-analysis using a coordinate-based meta-analytic software called seed-based d mapping. Meanwhile, meta-regression was performed to explore the potential correlation between the alteration of FA and the clinical characteristics of PD. Results: Out of a total of 1,701 studies that were identified, 23 studies were included. Thirty datasets, including 915 patients (543 men) with PD and 836 healthy controls (449 men), were included in the current study. FA reduction was identified in the body of the corpus callosum (CC; 245 voxels; z = -1.739; p < 0.001) and the left inferior fronto-occipital fasciculus (IFOF) 118 voxels; z = -1.182; p < 0.001). Both CC and IFOF maintained significance in the sensitivity analysis. No increase in FA was identified, but the percentage of male patients with PD was positively associated with the value of FA in the body of the CC. Conclusions: Although some limitations exist, DTI is regarded as a valid way to identify the pathophysiology of PD. It could be more beneficial to integrate DTI parameters with other MRI techniques to explore brain degeneration in PD.
Collapse
Affiliation(s)
- Xia Wei
- Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, Huaxi MR Research Center (HMRRC), West China Hospital, Sichuan University, Chengdu, China.,Psychoradiology Research Unit of the Chinese Academy of Medical Sciences (2018RU011), West China Hospital of Sichuan University, Chengdu, China.,Department of Radiology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Chunyan Luo
- Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, Huaxi MR Research Center (HMRRC), West China Hospital, Sichuan University, Chengdu, China.,Psychoradiology Research Unit of the Chinese Academy of Medical Sciences (2018RU011), West China Hospital of Sichuan University, Chengdu, China.,Department of Radiology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Qian Li
- Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, Huaxi MR Research Center (HMRRC), West China Hospital, Sichuan University, Chengdu, China.,Psychoradiology Research Unit of the Chinese Academy of Medical Sciences (2018RU011), West China Hospital of Sichuan University, Chengdu, China.,Department of Radiology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Na Hu
- Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, Huaxi MR Research Center (HMRRC), West China Hospital, Sichuan University, Chengdu, China.,Psychoradiology Research Unit of the Chinese Academy of Medical Sciences (2018RU011), West China Hospital of Sichuan University, Chengdu, China.,Department of Radiology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Yuan Xiao
- Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, Huaxi MR Research Center (HMRRC), West China Hospital, Sichuan University, Chengdu, China.,Psychoradiology Research Unit of the Chinese Academy of Medical Sciences (2018RU011), West China Hospital of Sichuan University, Chengdu, China.,Department of Radiology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Nian Liu
- Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, Huaxi MR Research Center (HMRRC), West China Hospital, Sichuan University, Chengdu, China.,Psychoradiology Research Unit of the Chinese Academy of Medical Sciences (2018RU011), West China Hospital of Sichuan University, Chengdu, China.,Department of Radiology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Su Lui
- Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, Huaxi MR Research Center (HMRRC), West China Hospital, Sichuan University, Chengdu, China.,Psychoradiology Research Unit of the Chinese Academy of Medical Sciences (2018RU011), West China Hospital of Sichuan University, Chengdu, China.,Department of Radiology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Qiyong Gong
- Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, Huaxi MR Research Center (HMRRC), West China Hospital, Sichuan University, Chengdu, China.,Psychoradiology Research Unit of the Chinese Academy of Medical Sciences (2018RU011), West China Hospital of Sichuan University, Chengdu, China.,Department of Radiology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
9
|
Ton ND, Thuan ND, Thuong MTH, Ngoc TTB, Nhung VP, Hoa NTT, Nam NH, Dung HT, Son ND, Ba NV, Bac ND, Tai TN, Dung LTK, Hung NT, Duong NT, Ha NH, Hai NV. Rare and novel variants of PRKN and PINK1 genes in Vietnamese patients with early-onset Parkinson's disease. Mol Genet Genomic Med 2020; 8:e1463. [PMID: 32856414 PMCID: PMC7549612 DOI: 10.1002/mgg3.1463] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 07/10/2020] [Accepted: 07/31/2020] [Indexed: 12/16/2022] Open
Abstract
Background Early‐onset Parkinson's disease (EOPD) refers to that of patients who have been diagnosed or had onset of motor symptoms before age 50, accounting for 4% of Parkinson's disease patients. The PRKN and PINK1 genes, both involved in a metabolic pathway, are associated with EOPD. Methods To identify variants associated with EOPD, coding region of PARKIN and PINK1 genes in 112 patients and 112 healthy individuals were sequenced. Multiplex ligation‐dependent probe amplification kit was used to determine EOPD patients that carried mutations in PRKN and PINK1 genes. Results and Conclusion Three rare and three novel mutations in total of 14 variants of PARKIN and PINK1 were detected in the EOPD cohorts. Mutations of PRKN and PINK1 genes were found in five (4.4%) patients, which were four patients with compound heterozygous variants in the PRKN and one case with a homozygous mutation of the PINK1 gene. The novel mutations might reduce the stability of the PRKN and PINK1 protein molecules. The frequency of homozygous mutant genotype p.A340T of the PINK1 in the EOPD cohort was higher than in control (p = 0.0001, OR = 5.704), suggesting this variant might be a risk factor for EOPD. To the best of our knowledge, this is the first study of PRKN and PINK1 genes conducted on Vietnamese EOPD patients. These results might contribute to the genetic screening of EOPD in Vietnam.
Collapse
Affiliation(s)
- Nguyen Dang Ton
- Institute of Genome Research, Vietnam Academy of Science and Technology, Hanoi, Vietnam.,Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Nguyen Duc Thuan
- 103 Military Hospital, Vietnam Military Medical University, Hanoi, Vietnam
| | - Ma Thi Huyen Thuong
- Institute of Genome Research, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Tran Thi Bich Ngoc
- Institute of Genome Research, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Vu Phuong Nhung
- Institute of Genome Research, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Nguyen Thi Thanh Hoa
- Institute of Genome Research, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Nguyen Hoai Nam
- Institute of Genome Research, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Hoang Thi Dung
- 103 Military Hospital, Vietnam Military Medical University, Hanoi, Vietnam
| | - Nhu Dinh Son
- 103 Military Hospital, Vietnam Military Medical University, Hanoi, Vietnam
| | | | | | - Tran Ngoc Tai
- University Medical Center HCMC, University of Medicine and Pharmacy at HCMC, Ho Chi Minh City, Vietnam
| | | | | | - Nguyen Thuy Duong
- Institute of Genome Research, Vietnam Academy of Science and Technology, Hanoi, Vietnam.,Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Nguyen Hai Ha
- Institute of Genome Research, Vietnam Academy of Science and Technology, Hanoi, Vietnam.,Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Nong Van Hai
- Institute of Genome Research, Vietnam Academy of Science and Technology, Hanoi, Vietnam.,Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| |
Collapse
|
10
|
Epigenetics in Lewy Body Diseases: Impact on Gene Expression, Utility as a Biomarker, and Possibilities for Therapy. Int J Mol Sci 2020; 21:ijms21134718. [PMID: 32630630 PMCID: PMC7369933 DOI: 10.3390/ijms21134718] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/29/2020] [Accepted: 06/30/2020] [Indexed: 02/07/2023] Open
Abstract
Lewy body disorders (LBD) include Parkinson's disease (PD) and dementia with Lewy bodies (DLB). They are synucleinopathies with a heterogeneous clinical manifestation. As a cause of neuropathological overlap with other neurodegenerative diseases, the establishment of a correct clinical diagnosis is still challenging, and clinical management may be difficult. The combination of genetic variation and epigenetic changes comprising gene expression-modulating DNA methylation and histone alterations modifies the phenotype, disease course, and susceptibility to disease. In this review, we summarize the results achieved in the deciphering of the LBD epigenome. To provide an appropriate context, first LBD genetics is briefly outlined. Afterwards, a detailed review of epigenetic modifications identified for LBD in human cells, postmortem, and peripheral tissues is provided. We also focus on the difficulty of identifying epigenome-related biomarker candidates and discuss the results obtained so far. Additionally, epigenetic changes as therapeutic targets, as well as different epigenome-based treatments, are revised. The number of studies focusing on PD is relatively limited and practically inexistent for DLB. There is a lack of replication studies, and some results are even contradictory, probably due to differences in sample collection and analytical techniques. In summary, we show the current achievements and directions for future research.
Collapse
|
11
|
Gámez-Valero A, Canet-Pons J, Urbizu A, Anillo A, Santos C, Ariza A, Beyer K. INDEL Length and Haplotypes in the β-Synuclein Gene: A Key to Differentiate Dementia with Lewy Bodies? J Alzheimers Dis 2019; 65:207-219. [PMID: 30040713 DOI: 10.3233/jad-180074] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Lewy body diseases (LBD) include Parkinson's disease (PD) and dementia with Lewy bodies (DLB) and together with Alzheimer's disease (AD) they show an important neuropathological and clinical overlap. The human alpha- and beta-synuclein genes (SNCA and SNCB) are key factors for the development of Lewy body diseases. Here, we aimed to analyze the genotype distribution of potentially functional SNPs in SNCA and SNCB, perform haplotype analysis for SNCB, and to identify functional insertion and deletion (INDEL) variations within the regulatory region of SNCB which might be responsible for the drastically diminished beta-synuclein levels reported for pure DLB. Thus, we genotyped brain samples from AD, DLB, PD, and healthy controls for two SNCA and four SNCB SNPs. We also analyzed INDEL variations upstream of SNCB, determined SNCB expression levels, and correlated INDEL lengths with expression levels. Applying Fisher's exact, chi-square, ANOVA tests, and the ΔΔCt method, we found disease-specific genotype distribution of SNCA and SNCB SNPs. Additionally, we identified three INDEL variations upstream of SNCB and showed that the INDEL allele lengths were associated with SNCB expression levels. INDEL alleles associated with low SNCB expression were accumulated in pure DLB. Finally, one major and four minor DLB specific SNCB haplotypes were identified with Haploview and Arlequin. In summary, our study showed that different SNCA and SNCB genotypes are associated with the development of either PD or DLB, and that the frequencies of genotypes associated with low SNCB expression are elevated in DLB.
Collapse
Affiliation(s)
- Ana Gámez-Valero
- Department of Pathology, Hospital Universitari and Health Sciences Research Institute Germans Trias i Pujol, Universitat Autònoma de Barcelona, Spain.,REMAR-IVECAT group, Health Sciences Research Institute Germans Trias i Pujol, Barcelona, Spain
| | - Julia Canet-Pons
- Department of Pathology, Hospital Universitari and Health Sciences Research Institute Germans Trias i Pujol, Universitat Autònoma de Barcelona, Spain
| | - Aintzane Urbizu
- Department of Pathology, Hospital Universitari and Health Sciences Research Institute Germans Trias i Pujol, Universitat Autònoma de Barcelona, Spain
| | - Ana Anillo
- Department of Pathology, Hospital Universitari and Health Sciences Research Institute Germans Trias i Pujol, Universitat Autònoma de Barcelona, Spain
| | - Cristina Santos
- Unitat d'Antropologia Biològica, Departament de Biologia Animal, Biologia Vegetal i Ecologia, Universitat Autònoma de Barcelona, Spain
| | - Aurelio Ariza
- Department of Pathology, Hospital Universitari and Health Sciences Research Institute Germans Trias i Pujol, Universitat Autònoma de Barcelona, Spain
| | - Katrin Beyer
- Department of Pathology, Hospital Universitari and Health Sciences Research Institute Germans Trias i Pujol, Universitat Autònoma de Barcelona, Spain
| |
Collapse
|
12
|
Zhang Y, Shu L, Sun Q, Pan H, Guo J, Tang B. A Comprehensive Analysis of the Association Between SNCA Polymorphisms and the Risk of Parkinson's Disease. Front Mol Neurosci 2018; 11:391. [PMID: 30410434 PMCID: PMC6209653 DOI: 10.3389/fnmol.2018.00391] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 10/05/2018] [Indexed: 12/14/2022] Open
Abstract
Background: Various studies have reported associations between synuclein alpha (SNCA) polymorphisms and Parkinson's disease (PD) risk. However, the results are inconsistent. We conducted a comprehensive meta-analysis of the associations between SNCA single-nucleotide polymorphisms (SNPs) and PD risk in overall populations and subpopulations by ethnicity. Methods: Standard meta-analysis was conducted according to our protocol with a cutoff point of p < 0.05. To find the most relevant SNCA SNPs, we used a cutoff point of p < 1 × 10−5 in an analysis based on the allele model. In the subgroup analysis by ethnicity, we divided the overall populations into five ethnic groups. We conducted further analysis on the most relevant SNPs using dominant and recessive models to identify the contributions of heterozygotes and homozygotes regarding each SNP. Results: In our comprehensive meta-analysis, 24,075 cases and 22,877 controls from 36 articles were included. We included 16 variants in the meta-analysis and found 12 statistically significant variants with p < 0.05. After narrowing down the variants using the p < 1 × 10−5 cutoff, in overall populations, seven SNPs increased the risk of PD (rs2736990, rs356220, rs356165, rs181489, rs356219, rs11931074, and rs2737029, with odds ratios [ORs] of 1.22–1.38) and one SNP decreased the risk (rs356186, with an OR of 0.77). In the East Asian group, rs2736990 and rs11931074 increased the risk (with ORs of 1.22–1.34). In the European group, five SNPs increased the risk (rs356219, rs181489, rs2737029, rs356165, and rs11931074, with ORs of 1.26–1.37) while one SNP decreased the risk (rs356186, with an OR of 0.77). The heterozygotes and homozygotes contributed differently depending on the variant. Conclusions: In summary, we found eight SNCA SNPs associated with PD risk, which had obvious differences between ethnicities. Seven SNPs increased the risk of PD and one SNP decreased the risk in the overall populations. In the East Asian group, rs2736990 and rs11931074 increased the risk. In the European group, rs356219, rs181489, rs2737029, rs356165, and rs11931074 increased the risk while rs356186 decreased the risk. Variants with the highest ORs and allele frequencies in our analysis should be given priority when carrying out genetic screening.
Collapse
Affiliation(s)
- Yuan Zhang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Li Shu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Qiying Sun
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| | - Hongxu Pan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Jifeng Guo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China.,Parkinson's Disease Center of Beijing Institute for Brain Disorders, Beijing, China.,Collaborative Innovation Center for Brain Science, Shanghai, China.,Collaborative Innovation Center for Genetics and Development, Shanghai, China
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China.,Parkinson's Disease Center of Beijing Institute for Brain Disorders, Beijing, China.,Collaborative Innovation Center for Brain Science, Shanghai, China.,Collaborative Innovation Center for Genetics and Development, Shanghai, China.,Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| |
Collapse
|
13
|
Abrahams S, Mc Fie S, Patricios J, Suter J, September AV, Posthumus M. Toxic tau: The TAU gene polymorphisms associate with concussion history in rugby union players. J Sci Med Sport 2018; 22:22-28. [PMID: 30554614 DOI: 10.1016/j.jsams.2018.06.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 04/25/2018] [Accepted: 06/13/2018] [Indexed: 12/14/2022]
Abstract
OBJECTIVES Concussion is a brain injury that occurs when biomechanical forces are transmitted to the head region resulting in neurological deficits. The accumulation of tau protein in autopsies of athletes with multiple concussions implicates tau in concussion-associated neurodegeneration. The TAU rs2435211 (C>T) and rs2435200 (G>A) polymorphisms are involved in pathological tau expression and neurodegenerative disease risk. The aims of this study were to investigate the associations of TAU (rs2435211, rs2435200) polymorphisms with concussion history and sustaining multiple concussions in rugby. DESIGN In total, 140 non-concussed controls and 163 previously concussed participants (all cases group, N=163; clinically diagnosed, N=140; multiple concussed, N=87) were recruited from high school (N=135, junior), club and professional rugby teams (N=166, senior). METHODS Participants were genotyped for TAU rs2435211 and rs2435200 polymorphisms. RESULTS In seniors, the rs2435200 AA genotype was significantly over-represented in the control group compared to the multiple concussed subgroup (P=0.033, control: 25%, N=16, multiple concussed: 11%, N=6; OR: 0.34, 95% CI 0.12-0.96). While the AG genotype was significantly under-represented in the control compared to multiple concussed (P=0.024, control: 45%, N=29, multiple concussed: 63%, N=36; OR: 2.34, 95% CI 1.11-4.95). The inferred TAU (rs2435211 C>T-rs2435200 G>A) T-G haplotype was significantly under-represented in the control (19%, N=12) compared to the all cases group (30%, N=28, P=0.031). CONCLUSIONS The TAU-associated neurodegenerative pathway was implicated as a potential pathophysiological mechanism underlying concussion in seniors. In future, the identification of TAU polymorphisms associated with concussion risk may assist clinical management and reduce risk of severe complications.
Collapse
Affiliation(s)
- Shameemah Abrahams
- Division of Exercise Science and Sports Medicine, Department of Human Biology, Faculty of Health Science, University of Cape Town, South Africa
| | - Sarah Mc Fie
- Division of Exercise Science and Sports Medicine, Department of Human Biology, Faculty of Health Science, University of Cape Town, South Africa
| | - Jon Patricios
- Sports Concussion South Africa, South Africa,; Section of Sports Medicine, University of Pretoria, South Africa; Department of Emergency Medicine, University of the Witwatersrand, South Africa
| | - Jason Suter
- Cape Sports Medicine, Sports Science Institute, South Africa
| | - Alison V September
- Division of Exercise Science and Sports Medicine, Department of Human Biology, Faculty of Health Science, University of Cape Town, South Africa
| | - Michael Posthumus
- Division of Exercise Science and Sports Medicine, Department of Human Biology, Faculty of Health Science, University of Cape Town, South Africa.
| |
Collapse
|
14
|
Genetic Variants in SNCA and the Risk of Sporadic Parkinson's Disease and Clinical Outcomes: A Review. PARKINSONS DISEASE 2017; 2017:4318416. [PMID: 28781905 PMCID: PMC5525082 DOI: 10.1155/2017/4318416] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 04/17/2017] [Accepted: 05/24/2017] [Indexed: 12/14/2022]
Abstract
There is increasing evidence of the contribution of genetic susceptibility to the etiology of Parkinson's disease (PD). Genetic variations in the SNCA gene are well established by linkage and genome-wide association studies. Positive associations of single nucleotide polymorphisms (SNPs) in SNCA and increased risk for PD were found. However, the role of SNCA variants in individual traits or phenotypes of PD is unknown. Here, we reviewed the current literature and identified 57 studies, performed in fourteen different countries, that investigated SNCA variants and susceptibility to PD. We discussed the findings based on environmental factors, history of PD, clinical outcomes, and ethnicity. In conclusion, SNPs within the SNCA gene can modify the susceptibility to PD, leading to increased or decreased risk. The risk associations of some SNPs varied among samples. Of notice, no studies in South American or African populations were found. There is little information about the effects of these variants on particular clinical aspects of PD, such as motor and nonmotor symptoms. Similarly, evidence of possible interactions between SNCA SNPs and environmental factors or disease progression is scarce. There is a need to expand the clinical applicability of these data as well as to investigate the role of SNCA SNPs in populations with different ethnic backgrounds.
Collapse
|
15
|
Oczkowska A, Florczak-Wyspianska J, Permoda-Osip A, Owecki M, Lianeri M, Kozubski W, Dorszewska J. Analysis of PRKN Variants and Clinical Features in Polish Patients with Parkinson's Disease. Curr Genomics 2016; 16:215-23. [PMID: 27006626 PMCID: PMC4765516 DOI: 10.2174/1389202916666150326002549] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 03/21/2015] [Accepted: 03/24/2015] [Indexed: 11/22/2022] Open
Abstract
The etiology of Parkinson's disease (PD) is still unclear, but mutations in PRKN have provided some biological insights. The role of PRKN mutations and other genetic variation in determining the clinical features of PD remains unresolved. The aim of the study was to analyze PRKN mutations in PD and controls in the Polish population and to try to correlate between the presence of genetic variants and clinical features. We screened for PRKN mutations in 90 PD patients and 113 controls and evaluated clinical features in these patients. We showed that in the Polish population 4% of PD patients had PRKN mutations (single or with additional polymorphism) while single heterozygous polymorphisms (S167N, E310D, D394N) of PRKN were present in 21% of sporadic PD. Moreover, 5% PD patients had more than one PRKN change (polymorphisms and mutations). Detected PRKN variants moderately correlated with PD course and response to L-dopa. It also showed that other PARK genes (SNCA, HTRA2, SPR) mutations probably may additionally influence PD risk and clinical features. PRKN variants are relatively common in our Polish series of patients with PD. Analysis of the PRKN gene may be useful in determining clinical phenotype, and helping with diagnostic and prognostic procedures in the future.
Collapse
Affiliation(s)
- Anna Oczkowska
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, 49 Przybyszewskiego St. 60-355 Poznan, Poland
| | | | | | - Michal Owecki
- Chair and Department of Neurology, Poznan University of Medical Sciences
| | - Margarita Lianeri
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, 49 Przybyszewskiego St. 60-355 Poznan, Poland
| | - Wojciech Kozubski
- Chair and Department of Neurology, Poznan University of Medical Sciences
| | - Jolanta Dorszewska
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, 49 Przybyszewskiego St. 60-355 Poznan, Poland
| |
Collapse
|
16
|
Abstract
Parkinson's disease (PD) is a movement disorder due to the loss of dopaminergic (DA) neurons in the substantia nigra. Alpha-synuclein phosphorylation and α-synuclein inclusion (Lewy body) become a main contributor, but little is known about their formation mechanism. Here we used protein expression profiling of PD to construct a model of their signalling network from drsophila to human and nominate major nodes that regulate PD development. We found in this network that LK6, a serine/threonine protein kinase, plays a key role in promoting α-synuclein Ser129 phosphorylation by identification of LK6 knockout and overexpression. In vivo test was further confirmed that LK6 indeed enhances α-synuclein phosphorylation, accelerates the death of dopaminergic neurons, reduces the climbing ability and shortens the the life span of drosophila. Further, MAP kinase-interacting kinase 2a (Mnk2a), a human homolog of LK6, also been shown to make α-synuclein phosphorylation and leads to α-synuclein inclusion formation. On the mechanism, the phosphorylation mediated by LK6 and Mnk2a is controlled through ERK signal pathway by phorbolmyristate acetate (PMA) avtivation and PD98059 inhibition. Our findings establish pivotal role of Lk6 and Mnk2a in unprecedented signalling networks, may lead to new therapies preventing α-synuclein inclusion formation and neurodegeneration.
Collapse
|
17
|
Xu W, Tan L, Yu JT. Link between the SNCA gene and parkinsonism. Neurobiol Aging 2014; 36:1505-18. [PMID: 25554495 DOI: 10.1016/j.neurobiolaging.2014.10.042] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Revised: 10/30/2014] [Accepted: 10/31/2014] [Indexed: 12/11/2022]
Abstract
The groundbreaking discovery of mutations in the SNCA gene in a rare familial form of Parkinson's disease (PD) has revolutionized our basic understanding of the etiology of PD and other related disorders. Genome-wide Association Studies has demonstrated a wide array of single-nucleotide polymorphisms associated with the increasing risk of developing the more common type, sporadic PD, further corroborating the genetic etiology of PD. Among them, SNCA is a gene responsible for encoding α-synuclein, a protein found to be the major component of Lewy body and Lewy neurite, both of these components are the pathognomonic hallmarks of PD. Thus, it has been postulated that this gene plays specific roles in pathogenesis of PD. Here, we summarize the basic biological characteristics of the wild type of the protein (wt-α-synuclein) as well as genetic and epigenetic features of its encoding gene (SNCA) in PD. Based on these characteristics, SNCA may be involved in PD pathogenesis in at least 2 ways: wt-α-synuclein overexpression and its mutation types via different mechanisms. Associations between SNCA mutations and other Lewy body disorders, such as dementia with Lewy bodies and multiple system atrophy, are also mentioned. Finally, it is necessary to explore the influences which SNCA exerts on clinical and neuropathological phenotypes by promoting the transfer of scientific research into practice, such as clinical evaluation, diagnosis, and treatment of the disease. We believe it is promising to target SNCA for developing novel therapeutic strategies for parkinsonism.
Collapse
Affiliation(s)
- Wei Xu
- Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, Shandong Province, China
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, Shandong Province, China; Department of Neurology, Qingdao Municipal Hospital, College of Medicine and Pharmaceutics, Ocean University of China, Qingdao, Shandong Province, China; Department of Neurology, Qingdao Municipal Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China.
| | - Jin-Tai Yu
- Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, Shandong Province, China; Department of Neurology, Qingdao Municipal Hospital, College of Medicine and Pharmaceutics, Ocean University of China, Qingdao, Shandong Province, China; Department of Neurology, Qingdao Municipal Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China.
| |
Collapse
|
18
|
Markopoulou K, Biernacka JM, Armasu SM, Anderson KJ, Ahlskog JE, Chase BA, Chung SJ, Cunningham JM, Farrer M, Frigerio R, Maraganore DM. Does α-synuclein have a dual and opposing effect in preclinical vs. clinical Parkinson's disease? Parkinsonism Relat Disord 2014; 20:584-9; discussion 584. [PMID: 24656894 DOI: 10.1016/j.parkreldis.2014.02.021] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 02/10/2014] [Accepted: 02/22/2014] [Indexed: 10/25/2022]
Abstract
α-Synuclein gene (SNCA) multiplications cause familial parkinsonism and allele-length polymorphisms within the SNCA dinucleotide repeat REP1 increase the risk for developing Parkinson's disease (PD). Since SNCA multiplications increase SNCA expression, and REP1 genotypes that increase the risk of developing PD show increased SNCA expression in cell-culture systems, animal models, and human blood and brain, PD therapies seek to reduce SNCA expression. We conducted an observational study of 1098 PD cases to test the hypothesis that REP1 genotypes correlated with reduced SNCA expression are associated with better motor and cognitive outcomes. We evaluated the association of REP1 genotypes with survival free of Hoehn and Yahr stages 4 or 5 (motor outcome) and of Modified Telephone Interview for Cognitive Status score ≤27 or Alzheimer's Disease Dementia Screening Interview score ≥2 (cognitive outcome). Median disease duration at baseline was 3.3 years and median lag time from baseline to follow-up was 7.8 years. Paradoxically, REP1 genotypes associated with increased risk of developing PD and increased SNCA expression were associated with better motor (HR = 0.87, p = 0.046, covariate-adjusted age-scale analysis; HR = 0.85, p = 0.020, covariate-adjusted time-scale analysis) and cognitive outcomes (HR = 0.90, p = 0.12, covariate-adjusted age-scale analysis; HR = 0.85, p = 0.023, covariate-adjusted time-scale analysis). Our findings raise the possibility that SNCA has a dual, opposing, and time-dependent role. This may have implications for the development of therapies that target SNCA expression.
Collapse
Affiliation(s)
| | | | | | - Kari J Anderson
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - J Eric Ahlskog
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Bruce A Chase
- Department of Biology, University of Nebraska at Omaha, Omaha, NE, USA
| | - Sun Ju Chung
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Julie M Cunningham
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Matthew Farrer
- Centre for Applied Neurogenetics, University of British Columbia, Vancouver, BC, Canada
| | - Roberta Frigerio
- Department of Neurology, NorthShore University HealthSystem, Evanston, IL, USA
| | | |
Collapse
|
19
|
Chung SJ, Biernacka JM, Armasu SM, Anderson K, Frigerio R, Aasly JO, Annesi G, Bentivoglio AR, Brighina L, Chartier-Harlin MC, Goldwurm S, Hadjigeorgiou G, Jasinska-Myga B, Jeon BS, Kim YJ, Krüger R, Lesage S, Markopoulou K, Mellick G, Morrison KE, Puschmann A, Tan EK, Crosiers D, Theuns J, Van Broeckhoven C, Wirdefeldt K, Wszolek ZK, Elbaz A, Maraganore DM. Alpha-synuclein repeat variants and survival in Parkinson's disease. Mov Disord 2014; 29:1053-7. [PMID: 24578302 DOI: 10.1002/mds.25841] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 01/15/2014] [Accepted: 01/20/2014] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVES To determine whether α-synuclein dinucleotide repeat (REP1) genotypes are associated with survival in Parkinson's disease (PD). METHODS Investigators from the Genetic Epidemiology of Parkinson's Disease Consortium provided REP1 genotypes and baseline and follow-up clinical data for cases. The primary outcome was time to death. Cox proportional hazards regression models were used to assess the association of REP1 genotypes with survival. RESULTS Twenty-one sites contributed data for 6,154 cases. There was no significant association between α-synuclein REP1 genotypes and survival in PD. However, there was a significant association between REP1 genotypes and age at onset of PD (hazard ratio: 1.06; 95% confidence interval: 1.01-1.10; P value = 0.01). CONCLUSIONS In our large consortium study, α-synuclein REP1 genotypes were not associated with survival in PD. Further studies of α-synuclein's role in disease progression and long-term outcomes are needed.
Collapse
Affiliation(s)
- Sun Ju Chung
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
Approximately 20 % of individuals with Parkinson's disease (PD) report a positive family history. Yet, a large portion of causal and disease-modifying variants is still unknown. We used exome sequencing in two affected individuals from a family with late-onset PD to identify 15 potentially causal variants. Segregation analysis and frequency assessment in 862 PD cases and 1,014 ethnically matched controls highlighted variants in EEF1D and LRRK1 as the best candidates. Mutation screening of the coding regions of these genes in 862 cases and 1,014 controls revealed several novel non-synonymous variants in both genes in cases and controls. An in silico multi-model bioinformatics analysis was used to prioritize identified variants in LRRK1 for functional follow-up. However, protein expression, subcellular localization, and cell viability were not affected by the identified variants. Although it has yet to be proven conclusively that variants in LRRK1 are indeed causative of PD, our data strengthen a possible role for LRRK1 in addition to LRRK2 in the genetic underpinnings of PD but, at the same time, highlight the difficulties encountered in the study of rare variants identified by next-generation sequencing in diseases with autosomal dominant or complex patterns of inheritance.
Collapse
|
21
|
Xu X, Wang N, Xu H, Xie A, Jiang H, Xie J. Fibroblast growth factor 20 polymorphism in sporadic Parkinson’s disease in Northern Han Chinese. J Clin Neurosci 2013; 20:1588-90. [DOI: 10.1016/j.jocn.2013.02.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 01/18/2013] [Accepted: 02/04/2013] [Indexed: 11/29/2022]
|
22
|
Chandrasekaran S, Bonchev D. A network view on Parkinson's disease. Comput Struct Biotechnol J 2013; 7:e201304004. [PMID: 24688734 PMCID: PMC3962195 DOI: 10.5936/csbj.201304004] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 06/27/2013] [Accepted: 06/30/2013] [Indexed: 12/21/2022] Open
Abstract
Network-based systems biology tools including Pathway Studio 9.0 were used to identify Parkinson's disease (PD) critical molecular players, drug targets, and underlying biological processes. Utilizing several microarray gene expression datasets, biomolecular networks such as direct interaction, shortest path, and microRNA regulatory networks were constructed and analyzed for the disease conditions. Network topology analysis of node connectivity and centrality revealed in combination with the guilt-by-association rule 17 novel genes of PD-potential interest. Seven new microRNAs (miR-132, miR-133a1, miR-181-1, miR-182, miR-218-1, miR-29a, and miR-330) related to Parkinson's disease were identified, along with more microRNA targeted genes of interest like RIMS3, SEMA6D and SYNJ1. David and IPA enrichment analysis of KEGG and canonical pathways provided valuable mechanistic information emphasizing among others the role of chemokine signaling, adherence junction, and regulation of actin cytoskeleton pathways. Several routes for possible disease initiation and neuro protection mechanisms triggered via the extra-cellular ligands such as CX3CL1, SEMA6D and IL12B were thus uncovered, and a dual regulatory system of integrated transcription factors and microRNAs mechanisms was detected.
Collapse
Affiliation(s)
- Sreedevi Chandrasekaran
- Center for the Study of Biological Complexity, Virginia Commonwealth University, United States
| | - Danail Bonchev
- Center for the Study of Biological Complexity, Virginia Commonwealth University, United States
| |
Collapse
|
23
|
Funke C, Schneider SA, Berg D, Kell DB. Genetics and iron in the systems biology of Parkinson’s disease and some related disorders. Neurochem Int 2013; 62:637-52. [DOI: 10.1016/j.neuint.2012.11.015] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Revised: 11/19/2012] [Accepted: 11/28/2012] [Indexed: 12/21/2022]
|
24
|
Chung SJ, Armasu SM, Anderson KJ, Biernacka JM, Lesnick TG, Rider DN, Cunningham JM, Ahlskog JE, Frigerio R, Maraganore DM. Genetic susceptibility loci, environmental exposures, and Parkinson's disease: a case-control study of gene-environment interactions. Parkinsonism Relat Disord 2013; 19:595-9. [PMID: 23507417 DOI: 10.1016/j.parkreldis.2013.02.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2012] [Revised: 01/16/2013] [Accepted: 02/15/2013] [Indexed: 10/27/2022]
Abstract
BACKGROUND Prior studies causally linked mutations in SNCA, MAPT, and LRRK2 genes with familial Parkinsonism. Genome-wide association studies have demonstrated association of single nucleotide polymorphisms (SNPs) in those three genes with sporadic Parkinson's disease (PD) susceptibility worldwide. Here we investigated the interactions between SNPs in those three susceptibility genes and environmental exposures (pesticides application, tobacco smoking, coffee drinking, and alcohol drinking) also associated with PD susceptibility. METHODS Pairwise interactions between environmental exposures and 18 variants (16 SNPs and two variable number tandem repeats, or "VNTRs") in SNCA, MAPT and LRRK2, were investigated using data from 1098 PD cases from the upper Midwest, USA and 1098 matched controls. Environmental exposures were assessed using a validated telephone interview script. RESULTS Five pairwise interactions had uncorrected P-values < 0.05. These included pairings of pesticides × SNCA rs3775423 or MAPT rs4792891, coffee drinking × MAPT H1/H2 haplotype or MAPT rs16940806, and alcohol drinking × MAPT rs2435211. None of these interactions remained significant after Bonferroni correction. Secondary analyses in strata defined by type of control (sibling or unrelated), sex, or age at onset of the case also did not identify significant interactions after Bonferroni correction. CONCLUSIONS This study documented limited pairwise interactions between established genetic and environmental risk factors for PD; however, the associations were not significant after correction for multiple testing.
Collapse
Affiliation(s)
- Sun Ju Chung
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
In 2004 it was first shown that mutations in LRRK2 can cause Parkinson's disease. This initial discovery was quickly followed by the observation that a single particular mutation is a relatively common cause of Parkinson's disease across varied populations. Further genetic investigation has revealed a variety of genetic ties to Parkinson's disease across this gene. These include common alleles with quite broad effects on risk, likely through both alterations at the protein sequence level, and in the context of expression. A great deal of functional characterization of LRRK2 and disease-causing mutations in this protein has occurred over the last 9 years, and considerable progress has been made. Particular attention has been paid to the kinase activity of LRRK2 as a therapeutic target, and while it is no means certain that this is viable target it is likely that this hypothesis will be tested in clinical trials sooner rather than later. We believe that the future goals for LRRK2 research are, while challenging, relatively clear and that the next 10 years of research promises to be perhaps more exciting than the last.
Collapse
Affiliation(s)
- Coro Paisán-Ruiz
- Department of Neurology, Psychiatry, and Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, NY, USA
- Friedman Brain and Mindich Child Health and Development Institutes, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, NY, USA
| | - Patrick A. Lewis
- Department of Molecular Neuroscience, UCL Institute of Neurology, University College London, Queen Square, London, UK
- School of Pharmacy, University of Reading, Whiteknights, Reading, UK
| | - Andrew B. Singleton
- Laboratory of Neurogenetics, National Institute on Aging Intramural Research Program, Bethesda, MD, USA
| |
Collapse
|
26
|
Abstract
The review addresses issues pertinent to Mn accumulation and its mechanisms of transport, its neurotoxicity and mechanisms of neurodegeneration. The role of mitochondria and glia in this process is emphasized. We also discuss gene x environment interactions, focusing on the interplay between genes linked to Parkinson's disease (PD) and sensitivity to Mn.
Collapse
Affiliation(s)
- Jerome Roth
- Department of Pharmacology and Toxicology, University at Buffalo School of Medicine, 11 Cary Hall, Buffalo, NY, 14214, USA
| | | | | |
Collapse
|
27
|
Yadav S, Dixit A, Agrawal S, Singh A, Srivastava G, Singh AK, Srivastava PK, Prakash O, Singh MP. Rodent models and contemporary molecular techniques: notable feats yet incomplete explanations of Parkinson's disease pathogenesis. Mol Neurobiol 2012; 46:495-512. [PMID: 22736079 DOI: 10.1007/s12035-012-8291-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Accepted: 06/13/2012] [Indexed: 12/20/2022]
Abstract
Rodent models and molecular tools, mainly omics and RNA interference, have been rigorously used to decode the intangible etiology and pathogenesis of Parkinson's disease (PD). Although convention of contemporary molecular techniques and multiple rodent models paved imperative leads in deciphering the role of putative causative factors and sequential events leading to PD, complete and clear-cut mechanisms of pathogenesis are still hard to pin down. The current article reviews the implications and pros and cons of rodent models and molecular tools in understanding the molecular and cellular bases of PD pathogenesis based on the existing literature. Probable rationales for short of comprehensive leads and future possibilities in spite of the extensive applications of molecular tools and rodent models have also been discussed.
Collapse
Affiliation(s)
- Sharawan Yadav
- CSIR-Indian Institute of Toxicology Research, Lucknow-226 001, Uttar Pradesh, India
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Ritz B, Rhodes SL, Bordelon Y, Bronstein J. α-Synuclein genetic variants predict faster motor symptom progression in idiopathic Parkinson disease. PLoS One 2012; 7:e36199. [PMID: 22615757 PMCID: PMC3352914 DOI: 10.1371/journal.pone.0036199] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Accepted: 04/03/2012] [Indexed: 11/19/2022] Open
Abstract
Currently, there are no reported genetic predictors of motor symptom progression in Parkinson's disease (PD). In familial PD, disease severity is associated with higher α-synuclein (SNCA) expression levels, and in postmortem studies expression varies with SNCA genetic variants. Furthermore, SNCA is a well-known risk factor for PD occurrence. We recruited Parkinson's patients from the communities of three central California counties to investigate the influence of SNCA genetic variants on motor symptom progression in idiopathic PD. We repeatedly assessed this cohort of patients over an average of 5.1 years for motor symptom changes employing the Unified Parkinson's Disease Rating Scale (UPDRS). Of 363 population-based incident PD cases diagnosed less than 3 years from baseline assessment, 242 cases were successfully re-contacted and 233 were re-examined at least once. Of subjects lost to follow-up, 69% were due to death. Adjusting for covariates, risk of faster decline of motor function as measured by annual increase in motor UPDRS exam score was increased 4-fold in carriers of the REP1 263bp promoter variant (OR 4.03, 95%CI:1.57-10.4). Our data also suggest a contribution to increased risk by the G-allele for rs356165 (OR 1.66; 95%CI:0.96-2.88), and we observed a strong trend across categories when both genetic variants were considered (p for trend = 0.002). Our population-based study has demonstrated that SNCA variants are strong predictors of faster motor decline in idiopathic PD. SNCA may be a promising target for therapies and may help identify patients who will benefit most from early interventions. This is the first study to link SNCA to motor symptom decline in a longitudinal progression study.
Collapse
Affiliation(s)
- Beate Ritz
- Department of Epidemiology, University of California Los Angeles, Los Angeles, California, United States of America.
| | | | | | | |
Collapse
|
29
|
Abstract
AbstractGenetic, neuropathological and biochemical evidence implicates α-synuclein, a 140 amino acid presynaptic neuronal protein, in the pathogenesis of Parkinson’s disease and other neurodegenerative disorders. The aggregated protein inclusions mainly containing aberrant α-synuclein are widely accepted as morphological hallmarks of α-synucleinopathies, but their composition and location vary between disorders along with neuronal networks affected. α-Synuclein exists physiologically in both soluble and membran-bound states, in unstructured and α-helical conformations, respectively, while posttranslational modifications due to proteostatic deficits are involved in β-pleated aggregation resulting in formation of typical inclusions. The physiological function of α-synuclein and its role linked to neurodegeneration, however, are incompletely understood. Soluble oligomeric, not fully fibrillar α-synuclein is thought to be neurotoxic, main targets might be the synapse, axons and glia. The effects of aberrant α-synuclein include alterations of calcium homeostasis, mitochondrial dysfunction, oxidative and nitric injuries, cytoskeletal effects, and neuroinflammation. Proteasomal dysfunction might be a common mechanism in the pathogenesis of neuronal degeneration in α-synucleinopathies. However, how α-synuclein induces neurodegeneration remains elusive as its physiological function. Genome wide association studies demonstrated the important role for genetic variants of the SNCA gene encoding α-synuclein in the etiology of Parkinson’s disease, possibly through effects on oxidation, mitochondria, autophagy, and lysosomal function. The neuropathology of synucleinopathies and the role of α-synuclein as a potential biomarker are briefly summarized. Although animal models provided new insights into the pathogenesis of Parkinson disease and multiple system atrophy, most of them do not adequately reproduce the cardinal features of these disorders. Emerging evidence, in addition to synergistic interactions of α-synuclein with various pathogenic proteins, suggests that prionlike induction and seeding of α-synuclein could lead to the spread of the pathology and disease progression. Intervention in the early aggregation pathway, aberrant cellular effects, or secretion of α-synuclein might be targets for neuroprotection and disease-modifying therapy.
Collapse
|
30
|
Biernacka JM, Armasu SM, Cunningham JM, Ahlskog JE, Chung SJ, Maraganore DM. Do interactions between SNCA, MAPT, and LRRK2 genes contribute to Parkinson's disease susceptibility? Parkinsonism Relat Disord 2011; 17:730-6. [PMID: 21816655 DOI: 10.1016/j.parkreldis.2011.07.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Revised: 06/21/2011] [Accepted: 07/01/2011] [Indexed: 11/26/2022]
Abstract
BACKGROUND Polymorphisms in SNCA, MAPT and LRRK2 genes have recently been confirmed as risk factors for Parkinson's disease (PD), although with small individual attributable risk. Here we investigated the association of PD with interactions between variants of these genes. METHODS As part of a previous study of PD susceptibility genes 119 SNCA, MAPT, and LRRK2 haplotype tagging single nucleotide polymorphisms (SNPs) and two variable number tandem repeats (VNTRs) were genotyped in 1098 PD cases from the upper Midwest, USA and 1098 matched controls. Twenty-six of these SNPs were selected for SNP-SNP (or SNP-VNTR or VNTR-VNTR) interaction analysis (256 interaction pairs). Case-control analyses were performed to study association of pairwise SNP interactions with PD susceptibility. RESULTS Out of the 256 interaction pairs investigated, 10 had uncorrected p-values <0.05. These represented six SNCA-LRRK2 pairs, three SNCA-MAPT pairs, and one MAPT-LRRK2 pair. However, none of these pairwise interactions were significant after correction for multiple testing. Secondary analyses in strata defined by type of control (sibling or unrelated), sex, or age at onset of the case also did not reveal any significant interactions after accounting for multiple testing. CONCLUSIONS This study provides no statistically significant evidence of gene-gene interaction effects for the three confirmed genetic susceptibility loci for PD. However, this does not exclude the possibility that other genomic loci or environmental risk factors interact with these genes.
Collapse
Affiliation(s)
- Joanna M Biernacka
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55095, USA
| | | | | | | | | | | |
Collapse
|
31
|
Maraganore DM. Rationale for therapeutic silencing of alpha-synuclein in Parkinson's disease. J Mov Disord 2011; 4:1-7. [PMID: 24868385 PMCID: PMC4027709 DOI: 10.14802/jmd.11001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Accepted: 12/28/2010] [Indexed: 02/05/2023] Open
Abstract
The purpose of this paper is to provide the rationale for therapeutic silencing of the alpha-synuclein gene (SNCA) in Parkinson’s disease (PD). The paper reviews the public health significance of PD; the causal links between rare SNCA variants and familial PD; the association of common SNCA variants and PD susceptibility; the association of SNCA variants also with age at onset and motor and cognitive outcomes in PD; therapeutic strategies targeting SNCA in PD; and preliminary findings and considerations on small interfering RNA-based therapies and PD.
Collapse
Affiliation(s)
- Demetrius M Maraganore
- Ruth Cain Ruggles Chairman, Department of Neurology, and Medical Director, Neurological Institute, NorthShore University Health System, Evanston, IL, USA. Clinical Professor of Neurology, Pritzker School of Medicine, University of Chicago, Chicago, IL, USA
| |
Collapse
|
32
|
Affiliation(s)
- Sun Ju Chung
- Parkinson/Alzheimer Center, Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|