1
|
Matar E, Halliday GM. Biological effects of pathologies in Lewy body diseases: why timing matters. Lancet Neurol 2025; 24:441-455. [PMID: 40252665 DOI: 10.1016/s1474-4422(25)00085-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 03/04/2025] [Accepted: 03/06/2025] [Indexed: 04/21/2025]
Abstract
The emergence of promising biomarkers of α-synuclein Lewy pathology has led to new biological definitions and staging systems for Parkinson's disease and dementia with Lewy bodies. These research frameworks aim to enhance patient selection for studies of biomarkers and disease-modifying therapies. Building on approaches developed for Alzheimer's disease, these new frameworks focus on hallmark neuropathological findings in Lewy body diseases, including abnormal α-synuclein aggregates and neurodegeneration, particularly nigrostriatal dopaminergic loss. Understanding the temporal inter-relationships between Lewy pathology, Alzheimer's disease, and other co-pathologies and symptom manifestation is central to any biological staging system. Neuropathological and in vivo evidence demonstrates substantial temporal and biological heterogeneity in the progression of clinical and pathological events across Lewy body disorders, highlighting knowledge gaps. Staging systems must incorporate this evidence into a nuanced conceptual framework of biological progression. Such revision will be crucial for the appropriate selection of participants and correct timing of targeted interventions in clinical research.
Collapse
Affiliation(s)
- Elie Matar
- Central Clinical School, Faculty of Medicine and Health, University of Sydney, NSW, Australia; Department of Neurology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia; Brain and Mind Centre, University of Sydney, Camperdown, NSW, Australia.
| | - Glenda M Halliday
- Brain and Mind Centre, University of Sydney, Camperdown, NSW, Australia; School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, NSW, Australia; Aligning Science Across Parkinson's Collaborative Research Network, Chevy Chase, MD, USA.
| |
Collapse
|
2
|
Amaral L, Martins M, Côrte-Real M, Outeiro TF, Chaves SR, Rego A. The neurotoxicity of pesticides: Implications for Parkinson's disease. CHEMOSPHERE 2025; 377:144348. [PMID: 40203643 DOI: 10.1016/j.chemosphere.2025.144348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 03/04/2025] [Accepted: 03/19/2025] [Indexed: 04/11/2025]
Abstract
Parkinson's disease (PD) is the fastest-growing neurodegenerative disorder worldwide, and no effective cure is currently available. Neuropathologically, PD is characterized by the selective degeneration of dopaminergic neurons in the substantia nigra and by the accumulation of alpha-synuclein (aSyn)-rich proteinaceous inclusions within surviving neurons. As a multifactorial disorder, approximately 85 % of PD cases are sporadic with unknown etiology. Among the many risk factors implicated in PD, exposure to neurotoxic pesticides stands out as a significant contributor. While the effects of many are still uncharacterized, it has already been shown that rotenone, paraquat, maneb, and dieldrin affect critical cellular pathways, including mitochondrial and proteasomal dysfunction, aSyn aggregation, autophagy dysregulation, and disruption of dopamine metabolism. With the constant rise in pesticide usage to meet the demands of a growing human population, the risk of environmental contamination and subsequent PD development is also increasing. This review explores the molecular mechanisms by which pesticide exposure influences PD development, shedding light on their role in the pathogenesis of PD and highlighting the need for preventative measures and regulatory oversight to mitigate these risks.
Collapse
Affiliation(s)
- Leslie Amaral
- CBMA - Centre of Molecular and Environmental Biology / ARNET - Aquatic Research Network, Department of Biology, School of Sciences, University of Minho, 4710-057, Braga, Portugal; University Medical Center Göttingen, Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, Göttingen, Germany
| | - Márcia Martins
- CBMA - Centre of Molecular and Environmental Biology / ARNET - Aquatic Research Network, Department of Biology, School of Sciences, University of Minho, 4710-057, Braga, Portugal
| | - Manuela Côrte-Real
- CBMA - Centre of Molecular and Environmental Biology / ARNET - Aquatic Research Network, Department of Biology, School of Sciences, University of Minho, 4710-057, Braga, Portugal
| | - Tiago F Outeiro
- University Medical Center Göttingen, Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, Göttingen, Germany; Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle Upon Tyne, NE2 4HH, UK; Max Planck Institute for Multidisciplinary Sciences, 37075, Göttingen, Germany; Scientific Employee with an Honorary Contract at Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Göttingen, Germany
| | - Susana R Chaves
- CBMA - Centre of Molecular and Environmental Biology / ARNET - Aquatic Research Network, Department of Biology, School of Sciences, University of Minho, 4710-057, Braga, Portugal.
| | - António Rego
- Department of Biology, School of Sciences, University of Minho, 4710-057, Braga, Portugal; Solfarcos, Pharmaceutical and Cosmetic Solutions, Braga, Portugal.
| |
Collapse
|
3
|
Scholz K, Pattanayak R, Ekkatine R, Pair FS, Nobles A, Stone WJ, Yacoubian TA. Rab27b Promotes Lysosomal Function and Alpha-Synuclein Clearance in Neurons. J Neurosci 2025; 45:e1579242025. [PMID: 39965930 PMCID: PMC11968537 DOI: 10.1523/jneurosci.1579-24.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 02/04/2025] [Accepted: 02/04/2025] [Indexed: 02/20/2025] Open
Abstract
Alpha-synuclein (αsyn) is the key pathogenic protein implicated in synucleinopathies including Parkinson's disease (PD) and dementia with Lewy bodies (DLB). In these diseases, αsyn is thought to spread between cells where it accumulates and induces pathology; however, mechanisms that drive its propagation or aggregation are poorly understood. We have previously reported that the small GTPase Rab27b is elevated in human PD and DLB and that it can mediate the autophagic clearance and toxicity of αsyn in a paracrine αsyn cell culture model. Here, we expanded our previous work and characterized the role of Rab27b in neuronal lysosomal processing and αsyn clearance. We found that Rab27b KD in this αsyn-inducible neuronal model resulted in lysosomal dysfunction and increased αsyn levels in lysosomes. Similar lysosomal proteolytic defects and enzymatic dysfunction were observed in both primary neuronal cultures and brain lysates from male and female Rab27b knock-out (KO) mice. αSyn aggregation was exacerbated in Rab27b KO neurons upon treatment with αsyn preformed fibrils. We found no changes in lysosomal counts or lysosomal pH in either model, but we did identify changes in acidic vesicle trafficking and in lysosomal enzyme maturation and localization, which may drive lysosomal dysfunction and promote αsyn aggregation. Rab27b OE enhanced lysosomal activity and reduced insoluble αsyn accumulation. Finally we found elevated Rab27b levels in human postmortem incidental Lewy body disease subjects relative to healthy controls. These data suggest the role of Rab27b in neuronal lysosomal activity and identify it as a potential therapeutic target in synucleinopathies.
Collapse
Affiliation(s)
- Kasandra Scholz
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Rudradip Pattanayak
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Roschongporn Ekkatine
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - F Sanders Pair
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Amber Nobles
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - William J Stone
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Talene A Yacoubian
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama 35294
| |
Collapse
|
4
|
Samson JS, Rajagopal K, Parvathi VD. Outlook of SNCA (α-synuclein) transgenic fly models in delineating the sequel of mitochondrial dysfunction in Parkinson's disease. Brain Res 2025; 1852:149505. [PMID: 39954798 DOI: 10.1016/j.brainres.2025.149505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 12/21/2024] [Accepted: 02/11/2025] [Indexed: 02/17/2025]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder associated with mechanisms that results in loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc) region of the brain. Being a complex heterogeneous disorder, there is a requisite in discovering the underlying molecular signatures that could potentially help in resolving challenges associated with diagnosis as well as therapeutic management. SNCA gene that encodes for the protein α-synuclein is widely known for its indispensable role in aggravating the progression of sporadic and familial PD, upon mutations. Likewise, mitochondrial dysfunction is inferred to be playing a central role in both forms of PD. Observations from experimental models and human PD cases displayed strong evidence for disruption of mitochondrial dynamics, inhibition of mitochondrial complex I protein's function and elevation in reactive oxygen species (ROS) by the toxic aggregation of α-synuclein. Further, recent studies have raised the possibility of an underlying relationship, where the α-synuclein toxicity is exacerbated by the mutant mitochondrial complex proteins and vice-versa. In this review, we provide an overview of mechanisms influencing α-synuclein-related neurodegeneration, particularly, emphasizing the role of SNCA (α-synuclein) gene in leading to altered mitochondrial biogenesis during PD. We have described how transgenic Drosophila models were reliable at recapitulating some of the essential characteristics of PD. In addition, we highlight the capability of utilizing transgenic fly models in deciphering the altered α-synuclein toxicity and mitochondrial dysfunction, as induced by defects in the mitochondrial DNA.
Collapse
Affiliation(s)
- Jennifer Sally Samson
- Department of Biomedical Sciences, Faculty of Biomedical Sciences and Technology, Sri Ramachandra Institute of Higher Education and Research, Chennai, India.
| | | | - Venkatachalam Deepa Parvathi
- Department of Biomedical Sciences, Faculty of Biomedical Sciences and Technology, Sri Ramachandra Institute of Higher Education and Research, Chennai, India.
| |
Collapse
|
5
|
Wang W, Wang Y, Xu L, Liu X, Hu Y, Li J, Huang Q, Ren S, Huang Y, Guan Y, Li Y, Hua F, Ye Q, Xie F. Presynaptic terminal integrity is associated with glucose metabolism in Parkinson's disease. Eur J Nucl Med Mol Imaging 2025; 52:1510-1519. [PMID: 39572432 DOI: 10.1007/s00259-024-06993-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 11/13/2024] [Indexed: 02/20/2025]
Abstract
OBJECTIVE To investigate the relationship of synaptic loss with glucose metabolism and dopaminergic transporters in Parkinson's disease (PD) patients. METHODS A total of 16 patients with PD and 11 age-matched healthy controls underwent positron emission tomography (PET) with the tracers [18F]SynVesT-1, a ligand for the presynaptic terminal marker synaptic vesicle protein 2 A (SV2A), and FDG. PD patients also underwent PET with the dopamine transporter (DAT) ligand [18F]FP-CIT. The difference in synaptic density between PD patients and age-matched normal controls(NCs) was determined in the selected regions of interest, and the correlations of the [18F]SynVesT-1 PET SUVRs with [18F]FP-CIT PET SUVRs and [18F]FDG PET SUVRs were evaluated. RESULTS Compared with that in the NC group, the synaptic density in the caudate region was significantly lower in the PD group (SUVR: 2.51 ± 0.36 vs. 3.18 ± 0.32, p < 0.001), especially in the pre-commissural caudate and post-commissural caudate (SUVR: 2.42 ± 0.29 vs. 2.63 ± 0.32, p < 0.01; 0.76 ± 0.31 vs. 0.97 ± 0.33, p < 0.001). A reduced synaptic density was significantly correlated with DAT (r = 0.61, p < 0.001) and glucose metabolism (r = 0.73, p < 0.001) in the post-commissural caudate. In the post-commissural regions of the caudate, there was a partial mediating effect of synaptic density on the relationship between glucose metabolism and DAT availability (indirect effect: β4 = 0.039, p = 0.024). CONCLUSION [18F]SynVesT-1 binds specifically to SV2A, reflecting synaptic density, and there is a positive correlation metabolic pattern related to the changes reflected by [18F]SynVesT-1 and [18F]FDG.
Collapse
Affiliation(s)
- Weiyi Wang
- Department of Nuclear Medicine & PET Center, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Yanru Wang
- Department of Nuclear Medicine, Longhua Hospital affiliated to Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai, 200032, China
| | - Limin Xu
- Department of Neurology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai, 200032, China
| | - Xueling Liu
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yuqing Hu
- Department of Neurology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai, 200032, China
| | - Junpeng Li
- Department of Nuclear Medicine & PET Center, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Qi Huang
- Department of Nuclear Medicine & PET Center, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Shuhua Ren
- Department of Nuclear Medicine & PET Center, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Yiyun Huang
- PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Yihui Guan
- Department of Nuclear Medicine & PET Center, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Yuxin Li
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Fengchun Hua
- Department of Nuclear Medicine, Longhua Hospital affiliated to Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai, 200032, China.
| | - Qing Ye
- Department of Neurology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai, 200032, China.
| | - Fang Xie
- Department of Nuclear Medicine & PET Center, Huashan Hospital, Fudan University, Shanghai, 200040, China.
| |
Collapse
|
6
|
Kiersnowski OC, Mattioli P, Argenti L, Avanzino L, Calizzano F, Diociasi A, Falcitano L, Liu C, Losa M, Massa F, Morbelli S, Orso B, Pelosin E, Raffa S, Pardini M, Arnaldi D, Roccatagliata L, Costagli M. Magnetic susceptibility components reveal different aspects of neurodegeneration in alpha-synucleinopathies. Sci Rep 2025; 15:4186. [PMID: 39905067 PMCID: PMC11794440 DOI: 10.1038/s41598-024-83593-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 12/16/2024] [Indexed: 02/06/2025] Open
Abstract
Nigrostriatal dopaminergic degeneration in alpha-synucleinopathies is indirectly reflected by low dopamine transporter (DaT) uptake through [123I]FP-CIT-SPECT. Bulk magnetic susceptibility (χ) in the substantia nigra, from MRI-based quantitative susceptibility mapping (QSM), is a potential biomarker of nigrostriatal degeneration, however, QSM cannot disentangle paramagnetic (e.g. iron) and diamagnetic (e.g. myelin) sources. Using the susceptibility source-separation technique DECOMPOSE, paramagnetic component susceptibility (PCS) and diamagnetic component susceptibility (DCS) were studied in prodromal and overt alpha-synucleinopathies, and their relationships with DaT-SPECT specific binding ratio (SBR) and clinical scores. 78 participants were included (23 controls, 30 prodromal and 25 overt alpha-synucleinopathies). Prodromal patients were subdivided into groups with positive or negative DaT-SPECT (SBR Z-scores below or above -1, respectively). Correlations of putamen and caudate SBR Z-scores with PCS and DCS in the substantia nigra, putamen, and caudate were investigated. Increased PCS was observed in the substantia nigra of prodromal alpha-synucleinopathy patients with positive DaT-SPECT compared to controls and prodromal patients with negative DaT-SPECT. SBR Z-scores in the putamen correlated with increased PCS in the substantia nigra and reduced |DCS| in the putamen, which may reflect dopaminergic degeneration ascribable to iron accumulation and nigrostriatal neuron axonal loss, respectively.
Collapse
Affiliation(s)
| | - Pietro Mattioli
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
| | - Lucia Argenti
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
| | - Laura Avanzino
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Department of Experimental Medicine, University of Genova, Genova, Italy
| | - Francesco Calizzano
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
| | | | | | - Chunlei Liu
- University of California Berkeley, Berkeley, United States of America
| | - Mattia Losa
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
| | - Federico Massa
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
| | - Silvia Morbelli
- Department of Nuclear Medicine, University of Turin, Turin, Italy
| | - Beatrice Orso
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
| | - Elisa Pelosin
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
| | - Stefano Raffa
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Matteo Pardini
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
| | - Dario Arnaldi
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
| | - Luca Roccatagliata
- IRCCS Ospedale Policlinico San Martino, Genova, Italy.
- Department of Health Sciences, University of Genova, Genova, Italy.
| | - Mauro Costagli
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
| |
Collapse
|
7
|
Kim C, Kim C, Tae BS, Kwon DY, Lee YH. Assessing the Association Between Gadolinium-Based Contrast Agents and Parkinson Disease: Insights From the Korean National Health Insurance Service Database. Invest Radiol 2025:00004424-990000000-00286. [PMID: 39841176 DOI: 10.1097/rli.0000000000001155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
OBJECTIVES This study aimed to investigate the association between the use of linear and macrocyclic gadolinium-based contrast agents (GBCAs) and the subsequent development of Parkinson disease (PD). METHODS In this retrospective cohort study, data were extracted from the Korean National Health Insurance Service database, comprising 1,038,439 individuals. From this population, 175,125 adults aged 40 to 60 years with no history of brain disease were identified. All patients including 3835 who were administered GBCA at least once were monitored until 2022 for the onset of PD. Propensity score (PS) matching was employed to compare the incidence of PD between those exposed to GBCAs (either linear or macrocyclic) and those not exposed (no-GBCA group). RESULTS The final cohort consisted of 1175 subjects exposed to linear GBCAs, 2334 exposed to macrocyclic GBCAs, and 171,616 unexposed to any GBCA (no-GBCA group). After PS matching, PD incidence was significantly higher in the linear GBCA group compared with the no-GBCA group (0.9% vs 0.0%, P = 0.002) and was also significantly higher in the macrocyclic GBCA group than in the no-GBCA group (0.5% vs 0.04%, P = 0.003). No significant difference in PD incidence was observed between the linear and macrocyclic GBCA groups. CONCLUSIONS Exposure to GBCAs was linked to an increased risk of developing PD in this large population-based study. The risk of PD did not differ significantly between linear and macrocyclic GBCAs.
Collapse
Affiliation(s)
- Cherry Kim
- From the Department of Radiology, Ansan Hospital, Korea University College of Medicine, Ansan, South Korea (C.K., C.K., Y.H.L.); Department of Urology, Ansan Hospital, Korea University College of Medicine, Ansan, South Korea (B.S.T.); and Department of Neurology, Ansan Hospital, Korea University College of Medicine, Ansan, South Korea (D.-Y.K.)
| | | | | | | | | |
Collapse
|
8
|
van der Horn HJ, Vakhtin AA, Julio K, Nitschke S, Shaff N, Dodd AB, Erhardt E, Phillips JP, Pirio Richardson S, Deligtisch A, Stewart M, Suarez Cedeno G, Meles SK, Mayer AR, Ryman SG. Parkinson's disease cerebrovascular reactivity pattern: A feasibility study. J Cereb Blood Flow Metab 2024; 44:1774-1786. [PMID: 38578669 PMCID: PMC11494834 DOI: 10.1177/0271678x241241895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 02/20/2024] [Accepted: 02/27/2024] [Indexed: 04/06/2024]
Abstract
A mounting body of research points to cerebrovascular dysfunction as a fundamental element in the pathophysiology of Parkinson's disease (PD). In the current feasibility study, blood-oxygen-level-dependent (BOLD) MRI was used to measure cerebrovascular reactivity (CVR) in response to hypercapnia in 26 PD patients and 16 healthy controls (HC), and aimed to find a multivariate pattern specific to PD. Whole-brain maps of CVR amplitude (i.e., magnitude of response to CO2) and latency (i.e., time to reach maximum amplitude) were computed, which were further analyzed using scaled sub-profile model principal component analysis (SSM-PCA) with leave-one-out cross-validation. A meaningful pattern based on CVR latency was identified, which was named the PD CVR pattern (PD-CVRP). This pattern was characterized by relatively increased latency in basal ganglia, sensorimotor cortex, supplementary motor area, thalamus and visual cortex, as well as decreased latency in the cerebral white matter, relative to HC. There were no significant associations with clinical measures, though sample size may have limited our ability to detect significant associations. In summary, the PD-CVRP highlights the importance of cerebrovascular dysfunction in PD, and may be a potential biomarker for future clinical research and practice.
Collapse
Affiliation(s)
- Harm Jan van der Horn
- Department of Translational Neuroscience, The Mind Research Network, Albuquerque, NM, USA
| | - Andrei A Vakhtin
- Department of Translational Neuroscience, The Mind Research Network, Albuquerque, NM, USA
| | - Kayla Julio
- Department of Translational Neuroscience, The Mind Research Network, Albuquerque, NM, USA
| | - Stephanie Nitschke
- Department of Translational Neuroscience, The Mind Research Network, Albuquerque, NM, USA
| | - Nicholas Shaff
- Department of Translational Neuroscience, The Mind Research Network, Albuquerque, NM, USA
| | - Andrew B Dodd
- Department of Translational Neuroscience, The Mind Research Network, Albuquerque, NM, USA
| | - Erik Erhardt
- Department of Mathematics and Statistics, University of New Mexico, Albuquerque, NM, USA
| | - John P Phillips
- Department of Translational Neuroscience, The Mind Research Network, Albuquerque, NM, USA
| | - Sarah Pirio Richardson
- Nene and Jamie Koch Comprehensive Movement Disorder Center, Department of Neurology, University of New Mexico, Albuquerque, NM, USA
- New Mexico VA Health Care System, Albuquerque, NM, USA
| | - Amanda Deligtisch
- Nene and Jamie Koch Comprehensive Movement Disorder Center, Department of Neurology, University of New Mexico, Albuquerque, NM, USA
| | - Melanie Stewart
- Nene and Jamie Koch Comprehensive Movement Disorder Center, Department of Neurology, University of New Mexico, Albuquerque, NM, USA
| | - Gerson Suarez Cedeno
- Nene and Jamie Koch Comprehensive Movement Disorder Center, Department of Neurology, University of New Mexico, Albuquerque, NM, USA
| | - Sanne K Meles
- Department of Neurology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Andrew R Mayer
- Department of Translational Neuroscience, The Mind Research Network, Albuquerque, NM, USA
| | - Sephira G Ryman
- Department of Translational Neuroscience, The Mind Research Network, Albuquerque, NM, USA
- Nene and Jamie Koch Comprehensive Movement Disorder Center, Department of Neurology, University of New Mexico, Albuquerque, NM, USA
| |
Collapse
|
9
|
Patton T, Comini G, Narasimhan K, Cairns AG, Ådén J, Almqvist F, Bemelmans A, Brouillet E, McKernan DP, Dowd E. Intra-striatal infusion of the small molecule alpha-synuclein aggregator, FN075, does not enhance parkinsonism in a subclinical AAV-alpha-synuclein rat model. Eur J Neurosci 2024; 60:5234-5248. [PMID: 39143728 DOI: 10.1111/ejn.16493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 07/19/2024] [Accepted: 07/21/2024] [Indexed: 08/16/2024]
Abstract
Numerous challenges hinder the development of neuroprotective treatments for Parkinson's disease, with a regularly identified issue being the lack of clinically relevant animal models. Viral vector overexpression of α-synuclein is widely considered the most relevant model; however, this has been limited by high variability and inconsistency. One potential method of optimisation is pairing it with a secondary insult such as FN075, a synthetic molecule demonstrated to accelerate α-synucleinopathy. Thus, the aim of this study was to investigate if sequential infusion of adeno-associated virus (AAV)-α-synuclein and FN075 into the rat brain can replicate α-synucleinopathy, nigrostriatal pathology and motor dysfunction associated with Parkinson's disease. Rats received a unilateral injection of AAV-α-synuclein (or AAV-green fluorescent protein) into two sites in the substantia nigra, followed 4 weeks later by unilateral injection of FN075 (or vehicle) into the striatum. Animals underwent behavioural testing every 4 weeks until sacrifice at 20 weeks, followed by immunohistochemistry assessment post-mortem. As anticipated, AAV-α-synuclein led to extensive overexpression of human α-synuclein throughout the nigrostriatal pathway, as well as elevated levels of phosphorylated and aggregated forms of the protein. However, the sequential administration of FN075 into the striatum did not exacerbate any of the α-synuclein pathology. Furthermore, despite the extensive α-synuclein pathology, neither administration of AAV-α-synuclein nor FN075, alone or in combination, was sufficient to induce dopaminergic degeneration or motor deficits. In conclusion, this approach did not replicate the key characteristics of Parkinson's disease, and further studies are required to create more representational models for testing of novel compounds and treatments for Parkinson's disease.
Collapse
Affiliation(s)
- Tommy Patton
- Pharmacology & Therapeutics and Galway Neuroscience Centre, University of Galway, Galway, Ireland
| | - Giulia Comini
- Pharmacology & Therapeutics and Galway Neuroscience Centre, University of Galway, Galway, Ireland
| | - Kaushik Narasimhan
- Pharmacology & Therapeutics and Galway Neuroscience Centre, University of Galway, Galway, Ireland
| | | | - Jörgen Ådén
- Department of Chemistry, Umeå University, Umeå, Sweden
| | | | - Alexis Bemelmans
- Université Paris-Saclay, Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Centre National de la Recherche Scientifique (CNRS), Molecular Imaging Research Center (MIRCen), Laboratoire des Maladies Neurodégénératives, Fontenay-aux-Roses, France
| | - Emmanuel Brouillet
- Université Paris-Saclay, Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Centre National de la Recherche Scientifique (CNRS), Molecular Imaging Research Center (MIRCen), Laboratoire des Maladies Neurodégénératives, Fontenay-aux-Roses, France
| | - Declan P McKernan
- Pharmacology & Therapeutics and Galway Neuroscience Centre, University of Galway, Galway, Ireland
| | - Eilís Dowd
- Pharmacology & Therapeutics and Galway Neuroscience Centre, University of Galway, Galway, Ireland
| |
Collapse
|
10
|
Leak RK, Clark RN, Abbas M, Xu F, Brodsky JL, Chen J, Hu X, Luk KC. Current insights and assumptions on α-synuclein in Lewy body disease. Acta Neuropathol 2024; 148:18. [PMID: 39141121 PMCID: PMC11324801 DOI: 10.1007/s00401-024-02781-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 07/28/2024] [Accepted: 08/04/2024] [Indexed: 08/15/2024]
Abstract
Lewy body disorders are heterogeneous neurological conditions defined by intracellular inclusions composed of misshapen α-synuclein protein aggregates. Although α-synuclein aggregates are only one component of inclusions and not strictly coupled to neurodegeneration, evidence suggests they seed the propagation of Lewy pathology within and across cells. Genetic mutations, genomic multiplications, and sequence polymorphisms of the gene encoding α-synuclein are also causally linked to Lewy body disease. In nonfamilial cases of Lewy body disease, the disease trigger remains unidentified but may range from industrial/agricultural toxicants and natural sources of poisons to microbial pathogens. Perhaps due to these peripheral exposures, Lewy inclusions appear at early disease stages in brain regions connected with cranial nerves I and X, which interface with inhaled and ingested environmental elements in the nasal or gastrointestinal cavities. Irrespective of its identity, a stealthy disease trigger most likely shifts soluble α-synuclein (directly or indirectly) into insoluble, cross-β-sheet aggregates. Indeed, β-sheet-rich self-replicating α-synuclein multimers reside in patient plasma, cerebrospinal fluid, and other tissues, and can be subjected to α-synuclein seed amplification assays. Thus, clinicians should be able to capitalize on α-synuclein seed amplification assays to stratify patients into potential responders versus non-responders in future clinical trials of α-synuclein targeted therapies. Here, we briefly review the current understanding of α-synuclein in Lewy body disease and speculate on pathophysiological processes underlying the potential transmission of α-synucleinopathy across the neuraxis.
Collapse
Affiliation(s)
- Rehana K Leak
- Graduate School of Pharmaceutical Sciences, Duquesne University, 418C Mellon Hall, 913 Bluff Street, Pittsburgh, PA, 15219, USA.
| | - Rachel N Clark
- Graduate School of Pharmaceutical Sciences, Duquesne University, 418C Mellon Hall, 913 Bluff Street, Pittsburgh, PA, 15219, USA
| | - Muslim Abbas
- Graduate School of Pharmaceutical Sciences, Duquesne University, 418C Mellon Hall, 913 Bluff Street, Pittsburgh, PA, 15219, USA
| | - Fei Xu
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jeffrey L Brodsky
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jun Chen
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
- Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, Pennsylvania, USA
| | - Xiaoming Hu
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kelvin C Luk
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Pennsylvania, PA, USA
| |
Collapse
|
11
|
Mitchell CL, Kurouski D. Novel strategies in Parkinson's disease treatment: a review. Front Mol Neurosci 2024; 17:1431079. [PMID: 39183754 PMCID: PMC11341544 DOI: 10.3389/fnmol.2024.1431079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 07/29/2024] [Indexed: 08/27/2024] Open
Abstract
An unprecedented extension of life expectancy observed during the past century drastically increased the number of patients diagnosed with Parkinson's diseases (PD) worldwide. Estimated costs of PD alone reached $52 billion per year, making effective neuroprotective treatments an urgent and unmet need. Current treatments of both AD and PD focus on mitigating the symptoms associated with these pathologies and are not neuroprotective. In this review, we discuss the most advanced therapeutic strategies that can be used to treat PD. We also critically review the shift of the therapeutic paradigm from a small molecule-based inhibition of protein aggregation to the utilization of natural degradation pathways and immune cells that are capable of degrading toxic amyloid deposits in the brain of PD patients.
Collapse
Affiliation(s)
- Charles L. Mitchell
- Interdisciplinary Program in Genetics and Genomics, Texas A&M University, College Station, TX, United States
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, United States
| | - Dmitry Kurouski
- Interdisciplinary Program in Genetics and Genomics, Texas A&M University, College Station, TX, United States
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, United States
| |
Collapse
|
12
|
Shwab EK, Gingerich DC, Man Z, Gamache J, Garrett ME, Crawford GE, Ashley-Koch AE, Serrano GE, Beach TG, Lutz MW, Chiba-Falek O. Single-nucleus multi-omics of Parkinson's disease reveals a glutamatergic neuronal subtype susceptible to gene dysregulation via alteration of transcriptional networks. Acta Neuropathol Commun 2024; 12:111. [PMID: 38956662 PMCID: PMC11218415 DOI: 10.1186/s40478-024-01803-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 05/27/2024] [Indexed: 07/04/2024] Open
Abstract
The genetic architecture of Parkinson's disease (PD) is complex and multiple brain cell subtypes are involved in the neuropathological progression of the disease. Here we aimed to advance our understanding of PD genetic complexity at a cell subtype precision level. Using parallel single-nucleus (sn)RNA-seq and snATAC-seq analyses we simultaneously profiled the transcriptomic and chromatin accessibility landscapes in temporal cortex tissues from 12 PD compared to 12 control subjects at a granular single cell resolution. An integrative bioinformatic pipeline was developed and applied for the analyses of these snMulti-omics datasets. The results identified a subpopulation of cortical glutamatergic excitatory neurons with remarkably altered gene expression in PD, including differentially-expressed genes within PD risk loci identified in genome-wide association studies (GWAS). This was the only neuronal subtype showing significant and robust overexpression of SNCA. Further characterization of this neuronal-subpopulation showed upregulation of specific pathways related to axon guidance, neurite outgrowth and post-synaptic structure, and downregulated pathways involved in presynaptic organization and calcium response. Additionally, we characterized the roles of three molecular mechanisms in governing PD-associated cell subtype-specific dysregulation of gene expression: (1) changes in cis-regulatory element accessibility to transcriptional machinery; (2) changes in the abundance of master transcriptional regulators, including YY1, SP3, and KLF16; (3) candidate regulatory variants in high linkage disequilibrium with PD-GWAS genomic variants impacting transcription factor binding affinities. To our knowledge, this study is the first and the most comprehensive interrogation of the multi-omics landscape of PD at a cell-subtype resolution. Our findings provide new insights into a precise glutamatergic neuronal cell subtype, causal genes, and non-coding regulatory variants underlying the neuropathological progression of PD, paving the way for the development of cell- and gene-targeted therapeutics to halt disease progression as well as genetic biomarkers for early preclinical diagnosis.
Collapse
Affiliation(s)
- E Keats Shwab
- Division of Translational Brain Sciences, Department of Neurology, Duke University School of Medicine, Duke University Medical Center, Durham, NC, 27710, USA
- Center for Genomic and Computational Biology, Duke University Medical Center, Durham, NC, 27708, USA
| | - Daniel C Gingerich
- Division of Translational Brain Sciences, Department of Neurology, Duke University School of Medicine, Duke University Medical Center, Durham, NC, 27710, USA
- Center for Genomic and Computational Biology, Duke University Medical Center, Durham, NC, 27708, USA
| | - Zhaohui Man
- Division of Translational Brain Sciences, Department of Neurology, Duke University School of Medicine, Duke University Medical Center, Durham, NC, 27710, USA
- Center for Genomic and Computational Biology, Duke University Medical Center, Durham, NC, 27708, USA
| | - Julia Gamache
- Division of Translational Brain Sciences, Department of Neurology, Duke University School of Medicine, Duke University Medical Center, Durham, NC, 27710, USA
- Center for Genomic and Computational Biology, Duke University Medical Center, Durham, NC, 27708, USA
| | - Melanie E Garrett
- Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, 27701, USA
| | - Gregory E Crawford
- Center for Genomic and Computational Biology, Duke University Medical Center, Durham, NC, 27708, USA
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, 27708, USA
- Center for Advanced Genomic Technologies, Duke University Medical Center, Durham, NC, 27708, USA
| | - Allison E Ashley-Koch
- Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, 27701, USA
- Department of Medicine, Duke University Medical Center, Durham, NC, 27708, USA
| | - Geidy E Serrano
- Banner Sun Health Research Institute, Sun City, AZ, 85351, USA
| | - Thomas G Beach
- Banner Sun Health Research Institute, Sun City, AZ, 85351, USA
| | - Michael W Lutz
- Division of Translational Brain Sciences, Department of Neurology, Duke University School of Medicine, Duke University Medical Center, Durham, NC, 27710, USA
| | - Ornit Chiba-Falek
- Division of Translational Brain Sciences, Department of Neurology, Duke University School of Medicine, Duke University Medical Center, Durham, NC, 27710, USA.
- Center for Genomic and Computational Biology, Duke University Medical Center, Durham, NC, 27708, USA.
| |
Collapse
|
13
|
Barbosa R, Mendonça M, Bastos P, Pita Lobo P, Valadas A, Correia Guedes L, Ferreira JJ, Rosa MM, Matias R, Coelho M. 3D Kinematics Quantifies Gait Response to Levodopa earlier and to a more Comprehensive Extent than the MDS-Unified Parkinson's Disease Rating Scale in Patients with Motor Complications. Mov Disord Clin Pract 2024; 11:795-807. [PMID: 38610081 PMCID: PMC11233852 DOI: 10.1002/mdc3.14016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 01/20/2024] [Accepted: 02/13/2024] [Indexed: 04/14/2024] Open
Abstract
BACKGROUND Quantitative 3D movement analysis using inertial measurement units (IMUs) allows for a more detailed characterization of motor patterns than clinical assessment alone. It is essential to discriminate between gait features that are responsive or unresponsive to current therapies to better understand the underlying pathophysiological basis and identify potential therapeutic strategies. OBJECTIVES This study aims to characterize the responsiveness and temporal evolution of different gait subcomponents in Parkinson's disease (PD) patients in their OFF and various ON states following levodopa administration, utilizing both wearable sensors and the gold-standard MDS-UPDRS motor part III. METHODS Seventeen PD patients were assessed while wearing a full-body set of 15 IMUs in their OFF state and at 20-minute intervals following the administration of a supra-threshold levodopa dose. Gait was reconstructed using a biomechanical model of the human body to quantify how each feature was modulated. Comparisons with non-PD control subjects were conducted in parallel. RESULTS Significant motor changes were observed in both the upper and lower limbs according to the MDS-UPDRS III, 40 minutes after levodopa intake. IMU-assisted 3D kinematics detected significant motor alterations as early as 20 minutes after levodopa administration, particularly in upper limbs metrics. Although all "pace-domain" gait features showed significant improvement in the Best-ON state, most rhythmicity, asymmetry, and variability features did not. CONCLUSION IMUs are capable of detecting motor alterations earlier and in a more comprehensive manner than the MDS-UPDRS III. The upper limbs respond more rapidly to levodopa, possibly reflecting distinct thresholds to levodopa across striatal regions.
Collapse
Affiliation(s)
- Raquel Barbosa
- Neurology DeparmentCentre Hospitalier Universitaire ToulouseToulouseFrance
- Nova Medical School, Faculdade de Ciências MedicasUniversidade Nova de LisboaLisbonPortugal
| | - Marcelo Mendonça
- Nova Medical School, Faculdade de Ciências MedicasUniversidade Nova de LisboaLisbonPortugal
- Champalimaud Research and Clinical Centre, Champalimaud Centre for the UnknownLisbonPortugal
| | - Paulo Bastos
- Neurology DeparmentCentre Hospitalier Universitaire ToulouseToulouseFrance
- Nova Medical School, Faculdade de Ciências MedicasUniversidade Nova de LisboaLisbonPortugal
| | - Patrícia Pita Lobo
- Department of Neurosciences and Mental HealthNeurology Hospital Santa Maria, CHLUNLisbonPortugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculty of MedicineUniversity of LisbonLisbonPortugal
| | - Anabela Valadas
- Department of Neurosciences and Mental HealthNeurology Hospital Santa Maria, CHLUNLisbonPortugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculty of MedicineUniversity of LisbonLisbonPortugal
| | - Leonor Correia Guedes
- Department of Neurosciences and Mental HealthNeurology Hospital Santa Maria, CHLUNLisbonPortugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculty of MedicineUniversity of LisbonLisbonPortugal
| | - Joaquim J. Ferreira
- Instituto de Medicina Molecular João Lobo Antunes, Faculty of MedicineUniversity of LisbonLisbonPortugal
- Laboratory of Clinical Pharmacology and Therapeutics, Faculdade de MedicinaUniversidade de LisboaLisbonPortugal
- CNS‐ Campus Neurológico SeniorTorres VedrasPortugal
| | - Mário Miguel Rosa
- Department of Neurosciences and Mental HealthNeurology Hospital Santa Maria, CHLUNLisbonPortugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculty of MedicineUniversity of LisbonLisbonPortugal
- Laboratory of Clinical Pharmacology and Therapeutics, Faculdade de MedicinaUniversidade de LisboaLisbonPortugal
| | - Ricardo Matias
- Physics Department & Institute of Biophysics and Biomedical Engineering (IBEB), Faculty of SciencesUniversity of LisbonLisbonPortugal
- KinetikosCoimbraPortugal
| | - Miguel Coelho
- Department of Neurosciences and Mental HealthNeurology Hospital Santa Maria, CHLUNLisbonPortugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculty of MedicineUniversity of LisbonLisbonPortugal
| |
Collapse
|
14
|
Scholz K, Pattanayak R, Roschonporn E, Pair FS, Nobles A, Yacoubian TA. Rab27b promotes lysosomal function and alpha-synuclein clearance in neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.20.599785. [PMID: 38979346 PMCID: PMC11230153 DOI: 10.1101/2024.06.20.599785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Alpha-synuclein (αsyn) is the key pathogenic protein implicated in synucleinopathies including Parkinson's Disease (PD) and Dementia with Lewy Bodies (DLB). In these diseases, αsyn is thought to spread between cells where it accumulates and induces pathology; however, mechanisms that drive its propagation or aggregation are poorly understood. We have previously reported that the small GTPase Rab27b is elevated in human PD and DLB and that it can mediate the autophagic clearance and toxicity of αsyn in a paracrine αsyn cell culture neuronal model. Here, we expanded our previous work and further characterized a role for Rab27b in neuronal lysosomal processing and αsyn clearance. We found that Rab27b KD in this αsyn inducible neuronal model resulted in lysosomal dysfunction and increased αsyn levels in lysosomes. Similar lysosomal proteolytic defects and enzymatic dysfunction were observed in both primary neuronal cultures and brain lysates from Rab27b knockout (KO) mice. αSyn aggregation was exacerbated in Rab27b KO neurons upon treatment with αsyn preformed fibrils. We found no changes in lysosomal counts or lysosomal pH in either model, but we did identify defects in acidic vesicle trafficking in Rab27b KO primary neurons which may drive lysosomal dysfunction and promote αsyn aggregation. Rab27b OE enhanced lysosomal activity and reduced insoluble αsyn accumulation. Finally we found elevated Rab27b levels in human postmortem incidental Lewy Body Disease (iLBD) subjects relative to healthy controls. These data suggest a role for Rab27b in neuronal lysosomal activity and identify it as a potential therapeutic target in synucleinopathies.
Collapse
|
15
|
Calakos N, Caffall ZF. The integrated stress response pathway and neuromodulator signaling in the brain: lessons learned from dystonia. J Clin Invest 2024; 134:e177833. [PMID: 38557486 PMCID: PMC10977992 DOI: 10.1172/jci177833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024] Open
Abstract
The integrated stress response (ISR) is a highly conserved biochemical pathway involved in maintaining proteostasis and cell health in the face of diverse stressors. In this Review, we discuss a relatively noncanonical role for the ISR in neuromodulatory neurons and its implications for synaptic plasticity, learning, and memory. Beyond its roles in stress response, the ISR has been extensively studied in the brain, where it potently influences learning and memory, and in the process of synaptic plasticity, which is a substrate for adaptive behavior. Recent findings demonstrate that some neuromodulatory neuron types engage the ISR in an "always-on" mode, rather than the more canonical "on-demand" response to transient perturbations. Atypical demand for the ISR in neuromodulatory neurons introduces an additional mechanism to consider when investigating ISR effects on synaptic plasticity, learning, and memory. This basic science discovery emerged from a consideration of how the ISR might be contributing to human disease. To highlight how, in scientific discovery, the route from starting point to outcomes can often be circuitous and full of surprise, we begin by describing our group's initial introduction to the ISR, which arose from a desire to understand causes for a rare movement disorder, dystonia. Ultimately, the unexpected connection led to a deeper understanding of its fundamental role in the biology of neuromodulatory neurons, learning, and memory.
Collapse
Affiliation(s)
- Nicole Calakos
- Department of Neurology
- Department of Neurobiology, and
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, Maryland, USA
| | | |
Collapse
|
16
|
Goralski TM, Meyerdirk L, Breton L, Brasseur L, Kurgat K, DeWeerd D, Turner L, Becker K, Adams M, Newhouse DJ, Henderson MX. Spatial transcriptomics reveals molecular dysfunction associated with cortical Lewy pathology. Nat Commun 2024; 15:2642. [PMID: 38531900 PMCID: PMC10966039 DOI: 10.1038/s41467-024-47027-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 03/18/2024] [Indexed: 03/28/2024] Open
Abstract
A key hallmark of Parkinson's disease (PD) is Lewy pathology. Composed of α-synuclein, Lewy pathology is found both in dopaminergic neurons that modulate motor function, and cortical regions that control cognitive function. Recent work has established the molecular identity of dopaminergic neurons susceptible to death, but little is known about cortical neurons susceptible to Lewy pathology or molecular changes induced by aggregates. In the current study, we use spatial transcriptomics to capture whole transcriptome signatures from cortical neurons with α-synuclein pathology compared to neurons without pathology. We find, both in PD and related PD dementia, dementia with Lewy bodies and in the pre-formed fibril α-synucleinopathy mouse model, that specific classes of excitatory neurons are vulnerable to developing Lewy pathology. Further, we identify conserved gene expression changes in aggregate-bearing neurons that we designate the Lewy-associated molecular dysfunction from aggregates (LAMDA) signature. Neurons with aggregates downregulate synaptic, mitochondrial, ubiquitin-proteasome, endo-lysosomal, and cytoskeletal genes and upregulate DNA repair and complement/cytokine genes. Our results identify neurons vulnerable to Lewy pathology in the PD cortex and describe a conserved signature of molecular dysfunction in both mice and humans.
Collapse
Affiliation(s)
- Thomas M Goralski
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, 49503, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Lindsay Meyerdirk
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, 49503, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Libby Breton
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, 49503, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Laura Brasseur
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, 49503, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Kevin Kurgat
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, 49503, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Daniella DeWeerd
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, 49503, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Lisa Turner
- Van Andel Institute Pathology Core, Grand Rapids, MI, 49503, USA
| | - Katelyn Becker
- Van Andel Institute Genomics Core, Grand Rapids, MI, 49503, USA
| | - Marie Adams
- Van Andel Institute Genomics Core, Grand Rapids, MI, 49503, USA
| | | | - Michael X Henderson
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, 49503, USA.
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA.
| |
Collapse
|
17
|
Xu Q, Jiang S, Kang R, Wang Y, Zhang B, Tian J. Deciphering the molecular pathways underlying dopaminergic neuronal damage in Parkinson's disease associated with SARS-CoV-2 infection. Comput Biol Med 2024; 171:108200. [PMID: 38428099 DOI: 10.1016/j.compbiomed.2024.108200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 01/24/2024] [Accepted: 02/18/2024] [Indexed: 03/03/2024]
Abstract
BACKGROUND The COVID-19 pandemic caused by SARS-CoV-2 has led to significant global morbidity and mortality, with potential neurological consequences, such as Parkinson's disease (PD). However, the underlying mechanisms remain elusive. METHODS To address this critical question, we conducted an in-depth transcriptome analysis of dopaminergic (DA) neurons in both COVID-19 and PD patients. We identified common pathways and differentially expressed genes (DEGs), performed enrichment analysis, constructed protein‒protein interaction networks and gene regulatory networks, and employed machine learning methods to develop disease diagnosis and progression prediction models. To further substantiate our findings, we performed validation of hub genes using a single-cell sequencing dataset encompassing DA neurons from PD patients, as well as transcriptome sequencing of DA neurons from a mouse model of MPTP(1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine)-induced PD. Furthermore, a drug-protein interaction network was also created. RESULTS We gained detailed insights into biological functions and signaling pathways, including ion transport and synaptic signaling pathways. CD38 was identified as a potential key biomarker. Disease diagnosis and progression prediction models were specifically tailored for PD. Molecular docking simulations and molecular dynamics simulations were employed to predict potential therapeutic drugs, revealing that genistein holds significant promise for exerting dual therapeutic effects on both PD and COVID-19. CONCLUSIONS Our study provides innovative strategies for advancing PD-related research and treatment in the context of the ongoing COVID-19 pandemic by elucidating the common pathogenesis between COVID-19 and PD in DA neurons.
Collapse
Affiliation(s)
- Qiuhan Xu
- Department of Neurology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, People's Republic of China
| | - Sisi Jiang
- Department of Neurology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, People's Republic of China
| | - Ruiqing Kang
- Department of Neurology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, People's Republic of China
| | - Yiling Wang
- Department of Neurology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, People's Republic of China
| | - Baorong Zhang
- Department of Neurology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, People's Republic of China.
| | - Jun Tian
- Department of Neurology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, People's Republic of China.
| |
Collapse
|
18
|
Azevedo MD, Prince N, Humbert-Claude M, Mesa-Infante V, Jeanneret C, Golzne V, De Matos K, Jamot BB, Magara F, Gonzalez-Hernandez T, Tenenbaum L. Oxidative stress induced by sustained supraphysiological intrastriatal GDNF delivery is prevented by dose regulation. Mol Ther Methods Clin Dev 2023; 31:101106. [PMID: 37766790 PMCID: PMC10520444 DOI: 10.1016/j.omtm.2023.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023]
Abstract
Despite its established neuroprotective effect on dopaminergic neurons and encouraging phase I results, intraputaminal GDNF administration failed to demonstrate significant clinical benefits in Parkinson's disease patients. Different human GDNF doses were delivered in the striatum of rats with a progressive 6-hydroxydopamine lesion using a sensitive doxycycline-regulated AAV vector. GDNF treatment was applied either continuously or intermittently (2 weeks on/2 weeks off) during 17 weeks. Stable reduction of motor impairments as well as increased number of dopaminergic neurons and striatal innervation were obtained with a GDNF dose equivalent to 3- and 10-fold the rat endogenous level. In contrast, a 20-fold increased GDNF level only temporarily provided motor benefits and neurons were not spared. Strikingly, oxidized DNA in the substantia nigra increased by 50% with 20-fold, but not 3-fold GDNF treatment. In addition, only low-dose GDNF allowed to preserve dopaminergic neuron cell size. Finally, aberrant dopaminergic fiber sprouting was observed with 20-fold GDNF but not at lower doses. Intermittent 20-fold GDNF treatment allowed to avoid toxicity and spare dopaminergic neurons but did not restore their cell size. Our data suggest that maintaining GDNF concentration under a threshold generating oxidative stress is a pre-requisite to obtain significant symptomatic relief and neuroprotection.
Collapse
Affiliation(s)
- Marcelo Duarte Azevedo
- Laboratory of Cellular and Molecular Neurotherapies, Center for Neuroscience Research, Clinical Neurosciences Department, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), 1011 Lausanne, Switzerland
| | - Naika Prince
- Laboratory of Cellular and Molecular Neurotherapies, Center for Neuroscience Research, Clinical Neurosciences Department, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), 1011 Lausanne, Switzerland
| | - Marie Humbert-Claude
- Laboratory of Cellular and Molecular Neurotherapies, Center for Neuroscience Research, Clinical Neurosciences Department, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), 1011 Lausanne, Switzerland
| | - Virginia Mesa-Infante
- Departamento de Ciencias Médicas Básicas, Facultad de Ciencias de la Salud, Instituto de Tecnologías Biomédicas (ITB), Universidad de La Laguna, La Laguna, 38200 Tenerife, Spain
| | - Cheryl Jeanneret
- Laboratory of Cellular and Molecular Neurotherapies, Center for Neuroscience Research, Clinical Neurosciences Department, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), 1011 Lausanne, Switzerland
| | - Valentine Golzne
- Laboratory of Cellular and Molecular Neurotherapies, Center for Neuroscience Research, Clinical Neurosciences Department, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), 1011 Lausanne, Switzerland
| | - Kevin De Matos
- Laboratory of Cellular and Molecular Neurotherapies, Center for Neuroscience Research, Clinical Neurosciences Department, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), 1011 Lausanne, Switzerland
| | - Benjamin Boury Jamot
- Center for the Study of Behaviour, Department of Psychiatry, Lausanne University Hospital and University of Lausanne (CHUV-UNIL), 1008 Lausanne, Switzerland
| | - Fulvio Magara
- Center for the Study of Behaviour, Department of Psychiatry, Lausanne University Hospital and University of Lausanne (CHUV-UNIL), 1008 Lausanne, Switzerland
| | - Tomas Gonzalez-Hernandez
- Departamento de Ciencias Médicas Básicas, Facultad de Ciencias de la Salud, Instituto de Tecnologías Biomédicas (ITB), Universidad de La Laguna, La Laguna, 38200 Tenerife, Spain
| | - Liliane Tenenbaum
- Laboratory of Cellular and Molecular Neurotherapies, Center for Neuroscience Research, Clinical Neurosciences Department, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), 1011 Lausanne, Switzerland
| |
Collapse
|
19
|
Henrich MT, Oertel WH, Surmeier DJ, Geibl FF. Mitochondrial dysfunction in Parkinson's disease - a key disease hallmark with therapeutic potential. Mol Neurodegener 2023; 18:83. [PMID: 37951933 PMCID: PMC10640762 DOI: 10.1186/s13024-023-00676-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 10/30/2023] [Indexed: 11/14/2023] Open
Abstract
Mitochondrial dysfunction is strongly implicated in the etiology of idiopathic and genetic Parkinson's disease (PD). However, strategies aimed at ameliorating mitochondrial dysfunction, including antioxidants, antidiabetic drugs, and iron chelators, have failed in disease-modification clinical trials. In this review, we summarize the cellular determinants of mitochondrial dysfunction, including impairment of electron transport chain complex 1, increased oxidative stress, disturbed mitochondrial quality control mechanisms, and cellular bioenergetic deficiency. In addition, we outline mitochondrial pathways to neurodegeneration in the current context of PD pathogenesis, and review past and current treatment strategies in an attempt to better understand why translational efforts thus far have been unsuccessful.
Collapse
Affiliation(s)
- Martin T Henrich
- Department of Psychiatry and Psychotherapy, Philipps University Marburg, 35039, Marburg, Germany
- Department of Neurology, Philipps University Marburg, 35043, Marburg, Germany
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Wolfgang H Oertel
- Department of Neurology, Philipps University Marburg, 35043, Marburg, Germany
| | - D James Surmeier
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Fanni F Geibl
- Department of Psychiatry and Psychotherapy, Philipps University Marburg, 35039, Marburg, Germany.
- Department of Neurology, Philipps University Marburg, 35043, Marburg, Germany.
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA.
| |
Collapse
|
20
|
von Mikecz A. Elegant Nematodes Improve Our Understanding of Human Neuronal Diseases, the Role of Pollutants and Strategies of Resilience. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:16755-16763. [PMID: 37874738 PMCID: PMC10634345 DOI: 10.1021/acs.est.3c04580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 10/05/2023] [Accepted: 10/06/2023] [Indexed: 10/26/2023]
Abstract
The prevalence of neurodegenerative disorders such as Alzheimer's and Parkinson's disease are rising globally. The role of environmental pollution in neurodegeneration is largely unknown. Thus, this perspective advocates exposome research in C. elegans models of human diseases. The models express amyloid proteins such as Aβ, recapitulate the degeneration of specifically vulnerable neurons and allow for correlated neurobehavioral phenotyping throughout the entire life span of the nematode. Neurobehavioral traits like locomotion gaits, rigidity, or cognitive decline are quantifiable and carefully mimic key aspects of the human diseases. Underlying molecular pathways of neurodegeneration are elucidated in pollutant-exposed C. elegans Alzheimer's or Parkinson's models by transcriptomics (RNA-seq), mass spectrometry-based proteomics and omics addressing other biochemical traits. Validation of the identified disease pathways can be achieved by genome-wide association studies in matching human cohorts. A consistent One Health approach includes isolation of nematodes from contaminated sites and their comparative investigation by imaging, neurobehavioral profiling and single worm proteomics. C. elegans models of neurodegenerative diseases are likewise well-suited for high throughput methods that provide a promising strategy to identify resilience pathways of neurosafety and keep up with the number of pollutants, nonchemical exposome factors, and their interactions.
Collapse
Affiliation(s)
- Anna von Mikecz
- IUF − Leibniz Research Institute
of Environmental Medicine GmbH, Auf’m Hennekamp 50, 40225 Duesseldorf, Germany
| |
Collapse
|
21
|
López-Aguirre M, Matarazzo M, Blesa J, Monje MHG, Rodríguez-Rojas R, Sánchez-Ferro A, Obeso JA, Pineda-Pardo JA. Dopaminergic denervation and associated MRI microstructural changes in the nigrostriatal projection in early Parkinson's disease patients. NPJ Parkinsons Dis 2023; 9:144. [PMID: 37852988 PMCID: PMC10584921 DOI: 10.1038/s41531-023-00586-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 10/03/2023] [Indexed: 10/20/2023] Open
Abstract
Loss of dopaminergic neurons in the substantia nigra pars compacta (SNc) and a profound reduction of striatal dopamine are two hallmarks of Parkinson's disease (PD). However, it's unclear whether degeneration starts at the neuronal soma or the striatal presynaptic terminals, and how microstructural degeneration is linked to dopaminergic loss is also uncertain. In this study, thirty de novo PD patients and twenty healthy subjects (HS) underwent 6-[18F]-fluoro-L-dopa (FDOPA) PET and MRI studies no later than 12 months from clinical diagnosis. FDOPA uptake rate (Ki), fractional volume of free-water (FW), and iron-sensitive R2* relaxometry were quantified within nigrostriatal regions. Inter-group differences (PD vs HS) were studied using non-parametric statistics and complemented with Cohen's d effect sizes and Bayesian statistics. Correlation analyses were performed exploring biomarker dependencies and their association with bradykinesia scores. PD patients exhibited a significant decline in nigrostriatal dopaminergic activity, being post-commissural putamen (-67%) and posterolateral SNc (-11.7%) the most affected subregions within striatum and SNc respectively. Microstructural alterations (FW) were restricted to the hemisphere corresponding to the most affected side and followed similar spatial gradients as FDOPA Ki (+20% in posterior putamen and +11% in posterolateral SNc). R2* revealed no relevant significant changes. FDOPA and FW were correlated within the posterolateral SNc, and clinical severity was associated with FDOPA Ki loss. The asymmetry between striatal and SNc changes for both dopaminergic depletion and microstructural degeneration biomarkers is consistent with a neurodegenerative process that begins in the striatal terminals before progressing toward the cell bodies in the SNc.
Collapse
Affiliation(s)
- M López-Aguirre
- HM CINAC (Centro Integral de Neurociencias Abarca Campal). Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain
- PhD Program in Physics, Complutense University of Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - M Matarazzo
- HM CINAC (Centro Integral de Neurociencias Abarca Campal). Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - J Blesa
- HM CINAC (Centro Integral de Neurociencias Abarca Campal). Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - M H G Monje
- HM CINAC (Centro Integral de Neurociencias Abarca Campal). Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain
- Ken and Ruth Davee Department of Neurology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - R Rodríguez-Rojas
- HM CINAC (Centro Integral de Neurociencias Abarca Campal). Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - A Sánchez-Ferro
- HM CINAC (Centro Integral de Neurociencias Abarca Campal). Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
- Department of Neurology, University Hospital 12 de Octubre, Madrid, Spain
- Department of Medicine, Complutense University of Madrid, Madrid, Spain
| | - J A Obeso
- HM CINAC (Centro Integral de Neurociencias Abarca Campal). Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
- University CEU-San Pablo, Madrid, Spain
| | - J A Pineda-Pardo
- HM CINAC (Centro Integral de Neurociencias Abarca Campal). Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain.
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA.
- University CEU-San Pablo, Madrid, Spain.
| |
Collapse
|
22
|
Ren Z, Sun H, Xiu S, Yang N, Liu Y, Chan P. Investigation of rhodamine derivative on behavioral impairment in a double neurotoxin lesion of substantia nigra and locus coeruleus dysfunctional mice. Eur J Pharmacol 2023; 956:175944. [PMID: 37536627 DOI: 10.1016/j.ejphar.2023.175944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/11/2023] [Accepted: 07/31/2023] [Indexed: 08/05/2023]
Abstract
Although multiple mechanisms have been studied, there is still a lack of effective treatment on non-motor symptoms in Parkinson's disease (PD) patients. Therapeutic effects of 5-(4-hydroxy-3-dimethoxybenzylidene)-thiazolidinone (RD-1), one of rhodamine derivatives, on motor recovery have been previously demonstrated, but its effects on non-motor symptoms remain unclear. Herein, we explored the beneficial effects of RD-1 on PD-related non-motor symptoms and changes in synaptic plasticity in the mesencephalon. To investigate its therapeutic effects in the non-motor symptoms of Parkinsonian model, we employed male C57BL/6N mice and double injection with noradrenergic specific neurotoxin N-2-Chloroethyl-N-ethyl-2-bromobenzylamine hydrochloride, followed 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Next, we performed behavioral tests, histological analyses and immunoblotting. Our findings showed that RD-1 significantly alleviated locomotor abnormality, motor disturbance, anxiety/depression-like behavior and memory deficit. It rescued the levels of tyrosine hydroxylase in substantia nigra, and striatum. Moreover, RD-1 upregulated expression levels of α-synuclein, synapsin II, postsynaptic density 95 and vesicle-associated membrane protein 2. The restoration of synaptic function may underlie the neuroprotective effects of RD-1 in double lesioned mice, confirming its protective effect for dopaminergic neurodegeneration.
Collapse
Affiliation(s)
- Zhili Ren
- Department of Neurobiology, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital of Capital Medical University, Beijing Institute of Geriatrics, Beijing, China.
| | - Hong Sun
- Department of Neurobiology, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital of Capital Medical University, Beijing Institute of Geriatrics, Beijing, China
| | - Shuangling Xiu
- Department of Endocrinology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Nan Yang
- Department of Pharmacology, Institute of Basic Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Yanyong Liu
- Department of Pharmacology, Institute of Basic Medical Sciences, Peking Union Medical College, Beijing, 100005, China.
| | - Piu Chan
- Department of Neurobiology, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital of Capital Medical University, Beijing Institute of Geriatrics, Beijing, China; Clinical Center for Parkinson's Disease, Capital Medical University, Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Beijing Key Laboratory for Parkinson's Disease, Beijing, China; Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| |
Collapse
|
23
|
Teil M, Dovero S, Bourdenx M, Arotcarena ML, Darricau M, Porras G, Thiolat ML, Trigo-Damas I, Perier C, Estrada C, Garcia-Carrillo N, Herrero MT, Vila M, Obeso JA, Bezard E, Dehay B. Cortical Lewy body injections induce long-distance pathogenic alterations in the non-human primate brain. NPJ Parkinsons Dis 2023; 9:135. [PMID: 37726343 PMCID: PMC10509171 DOI: 10.1038/s41531-023-00579-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 09/08/2023] [Indexed: 09/21/2023] Open
Abstract
Aggregation of α-synuclein (α-syn) is the cornerstone of neurodegenerative diseases termed synucleinopathies, which include Parkinson's Disease (PD), Dementia with Lewy Bodies (DLB), and Multiple System Atrophy (MSA). These synucleinopathies are characterized by the deposit of aggregated α-syn in intracellular inclusions observable in neurons and glial cells. In PD and DLB, these aggregates, predominantly located in neurons, are called Lewy Bodies (LBs). These LBs are one of the pathological hallmarks of PD and DLB, alongside dopaminergic neuron loss in the substantia nigra. Previous studies have demonstrated the ability of PD patient-derived LB fractions to induce nigrostriatal neurodegeneration and α-syn pathology when injected into the striatum or the enteric nervous system of non-human primates. Here, we report the pathological consequences of injecting these LB fractions into the cortex of non-human primates. To this end, we inoculated mesencephalic PD patient-derived LB fractions into the prefrontal cortex of baboon monkeys terminated one year later. Extensive analyses were performed to evaluate pathological markers known to be affected in LB pathologies. We first assessed the hypothesized presence of phosphorylated α-syn at S129 (pSyn) in the prefrontal cortices. Second, we quantified the neuronal, microglial, and astrocytic cell survival in the same cortices. Third, we characterized these cortical LB injections' putative impact on the integrity of the nigrostriatal system. Overall, we observed pSyn accumulation around the injection site in the dorsal prefrontal cortex, in connected cortical regions, and further towards the striatum, suggesting α-syn pathological propagation. The pathology was also accompanied by neuronal loss in these prefrontal cortical regions and the caudate nucleus, without, however, loss of nigral dopamine neurons. In conclusion, this pilot study provides novel data demonstrating the toxicity of patient-derived extracts, their potential to propagate from the cortex to the striatum in non-human primates, and a possible primate model of DLB.
Collapse
Affiliation(s)
- Margaux Teil
- Univ. Bordeaux, CNRS, IMN, UMR 5293, F-33000, Bordeaux, France
| | - Sandra Dovero
- Univ. Bordeaux, CNRS, IMN, UMR 5293, F-33000, Bordeaux, France
| | - Mathieu Bourdenx
- Univ. Bordeaux, CNRS, IMN, UMR 5293, F-33000, Bordeaux, France
- UK Dementia Research Institute, University College London, London, WC1E 6BT, UK
| | | | | | - Gregory Porras
- Univ. Bordeaux, CNRS, IMN, UMR 5293, F-33000, Bordeaux, France
| | | | - Inés Trigo-Damas
- HM CINAC, HM Puerta del Sur, Fundación HM Hospitales and CIBERNED and CEU-San Pablo University Madrid, E-28938, Mostoles, Spain
- Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Instituto Carlos III, Madrid, Spain
| | - Celine Perier
- Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Instituto Carlos III, Madrid, Spain
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
| | - Cristina Estrada
- Clinical and Experimental Neuroscience Unit, School of Medicine, Biomedical Research Institute of Murcia (IMIB), University of Murcia, Campus Mare Nostrum, 30100, Murcia, Spain
- Institute of Research on Aging (IUIE), School of Medicine, University of Murcia, 30100, Murcia, Spain
| | - Nuria Garcia-Carrillo
- Centro Experimental en Investigaciones Biomédica (CEIB), Universidad de Murcia, Murcia, Spain
| | - María Trinidad Herrero
- Clinical and Experimental Neuroscience Unit, School of Medicine, Biomedical Research Institute of Murcia (IMIB), University of Murcia, Campus Mare Nostrum, 30100, Murcia, Spain
- Institute of Research on Aging (IUIE), School of Medicine, University of Murcia, 30100, Murcia, Spain
| | - Miquel Vila
- Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Instituto Carlos III, Madrid, Spain
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
- Department of Biochemistry and Molecular Biology, Autonomous University of Barcelona (UAB), Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - José A Obeso
- HM CINAC, HM Puerta del Sur, Fundación HM Hospitales and CIBERNED and CEU-San Pablo University Madrid, E-28938, Mostoles, Spain
- Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Instituto Carlos III, Madrid, Spain
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
- CEU, San Pablo University Madrid, E-28938 Mostoles, Spain 2 HM CINAC, HM Puerta del Sur and CIBERNED and CEU-San Pablo University Madrid, E-, 28938, Mostoles, Spain
| | - Erwan Bezard
- Univ. Bordeaux, CNRS, IMN, UMR 5293, F-33000, Bordeaux, France
| | - Benjamin Dehay
- Univ. Bordeaux, CNRS, IMN, UMR 5293, F-33000, Bordeaux, France.
| |
Collapse
|
24
|
Calabresi P, Di Lazzaro G, Marino G, Campanelli F, Ghiglieri V. Advances in understanding the function of alpha-synuclein: implications for Parkinson's disease. Brain 2023; 146:3587-3597. [PMID: 37183455 PMCID: PMC10473562 DOI: 10.1093/brain/awad150] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/13/2023] [Accepted: 03/29/2023] [Indexed: 05/16/2023] Open
Abstract
The critical role of alpha-synuclein in Parkinson's disease represents a pivotal discovery. Some progress has been made over recent years in identifying disease-modifying therapies for Parkinson's disease that target alpha-synuclein. However, these treatments have not yet shown clear efficacy in slowing the progression of this disease. Several explanations exist for this issue. The pathogenesis of Parkinson's disease is complex and not yet fully clarified and the heterogeneity of the disease, with diverse genetic susceptibility and risk factors and different clinical courses, adds further complexity. Thus, a deep understanding of alpha-synuclein physiological and pathophysiological functions is crucial. In this review, we first describe the cellular and animal models developed over recent years to study the physiological and pathological roles of this protein, including transgenic techniques, use of viral vectors and intracerebral injections of alpha-synuclein fibrils. We then provide evidence that these tools are crucial for modelling Parkinson's disease pathogenesis, causing protein misfolding and aggregation, synaptic dysfunction, brain plasticity impairment and cell-to-cell spreading of alpha-synuclein species. In particular, we focus on the possibility of dissecting the pre- and postsynaptic effects of alpha-synuclein in both physiological and pathological conditions. Finally, we show how vulnerability of specific neuronal cell types may facilitate systemic dysfunctions leading to multiple network alterations. These functional alterations underlie diverse motor and non-motor manifestations of Parkinson's disease that occur before overt neurodegeneration. However, we now understand that therapeutic targeting of alpha-synuclein in Parkinson's disease patients requires caution, since this protein exerts important physiological synaptic functions. Moreover, the interactions of alpha-synuclein with other molecules may induce synergistic detrimental effects. Thus, targeting only alpha-synuclein might not be enough. Combined therapies should be considered in the future.
Collapse
Affiliation(s)
- Paolo Calabresi
- Sezione di Neurologia, Dipartimento di Neuroscienze, Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, Rome, 00168, Italy
- Neurologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, 00168, Italy
| | - Giulia Di Lazzaro
- Neurologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, 00168, Italy
| | - Gioia Marino
- Sezione di Neurologia, Dipartimento di Neuroscienze, Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, Rome, 00168, Italy
| | - Federica Campanelli
- Sezione di Neurologia, Dipartimento di Neuroscienze, Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, Rome, 00168, Italy
| | - Veronica Ghiglieri
- Neurologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, 00168, Italy
- Department of Human Sciences and Promotion of the Quality of Life, Università Telematica San Raffaele, Rome, 00166, Italy
| |
Collapse
|
25
|
Zhang D, Zhou L, Yao J, Shi Y, He H, Wei H, Tong Q, Liu J, Wu T. Increased Free Water in the Putamen in Idiopathic REM Sleep Behavior Disorder. Mov Disord 2023; 38:1645-1654. [PMID: 37342973 DOI: 10.1002/mds.29499] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/05/2023] [Accepted: 05/24/2023] [Indexed: 06/23/2023] Open
Abstract
BACKGROUND It has been suggested that the loss of nigrostriatal dopaminergic axon terminals occurs before the loss of dopaminergic neurons in the substantia nigra (SN) in Parkinson's disease (PD). This study aimed to use free-water imaging to evaluate microstructural changes in the dorsoposterior putamen (DPP) of idiopathic rapid eye movement (REM) sleep behavior disorder (iRBD) patients, which is considered a prodromal stage of synucleinopathies. METHODS Free water values in the DPP, dorsoanterior putamen (DAP), and posterior SN were compared between the healthy controls (n = 48), iRBD (n = 43) and PD (n = 47) patients. In iRBD patients, the relationships between baseline and longitudinal free water values and clinical manifestations or dopamine transporter (DAT) striatal binding ratio (SBR) were analyzed. RESULTS Free water values were significantly higher in the DPP and posterior substantia nigra (pSN), but not in the DAP, in the iRBD and PD groups than in controls. In iRBD patients, free water values in the DPP were progressively increased and correlated with the progression of clinical manifestations and the striatal DAT SBR. Baseline free water in the DPP was negatively correlated with striatal DAT SBR and hyposmia and positively correlated with motor deficits. CONCLUSIONS This study demonstrates that free water values in the DPP are increased cross-sectionally and longitudinally and associated with clinical manifestations and the function of the dopaminergic system in the prodromal stage of synucleinopathies. Our findings indicate that free-water imaging of the DPP has the potential to be a valid marker of early diagnosis and progression of synucleinopathies. © 2023 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Dongling Zhang
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Parkinson's Disease Center, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Liche Zhou
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Junye Yao
- Center for Brain Imaging Science and Technology, College of Biomedical Engineering and Instrument Science, Zhejiang University, Zhejiang, China
| | - Yuting Shi
- Institute for Medical Imaging Technology, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Hongjian He
- Center for Brain Imaging Science and Technology, College of Biomedical Engineering and Instrument Science, Zhejiang University, Zhejiang, China
- School of Physics, Zhejiang University, Zhejiang, China
| | - Hongjiang Wei
- Institute for Medical Imaging Technology, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Qiqi Tong
- Research Center for Healthcare Data Science, Zhejiang Lab, Zhejiang, China
| | - Jun Liu
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tao Wu
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Parkinson's Disease Center, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| |
Collapse
|
26
|
Clemente-Suárez VJ, Beltrán-Velasco AI, Redondo-Flórez L, Martín-Rodríguez A, Yáñez-Sepúlveda R, Tornero-Aguilera JF. Neuro-Vulnerability in Energy Metabolism Regulation: A Comprehensive Narrative Review. Nutrients 2023; 15:3106. [PMID: 37513524 PMCID: PMC10383861 DOI: 10.3390/nu15143106] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/09/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
This comprehensive narrative review explores the concept of neuro-vulnerability in energy metabolism regulation and its implications for metabolic disorders. The review highlights the complex interactions among the neural, hormonal, and metabolic pathways involved in the regulation of energy metabolism. The key topics discussed include the role of organs, hormones, and neural circuits in maintaining metabolic balance. The review investigates the association between neuro-vulnerability and metabolic disorders, such as obesity, insulin resistance, and eating disorders, considering genetic, epigenetic, and environmental factors that influence neuro-vulnerability and subsequent metabolic dysregulation. Neuroendocrine interactions and the neural regulation of food intake and energy expenditure are examined, with a focus on the impact of neuro-vulnerability on appetite dysregulation and altered energy expenditure. The role of neuroinflammation in metabolic health and neuro-vulnerability is discussed, emphasizing the bidirectional relationship between metabolic dysregulation and neuroinflammatory processes. This review also evaluates the use of neuroimaging techniques in studying neuro-vulnerability and their potential applications in clinical settings. Furthermore, the association between neuro-vulnerability and eating disorders, as well as its contribution to obesity, is examined. Potential therapeutic interventions targeting neuro-vulnerability, including pharmacological treatments and lifestyle modifications, are reviewed. In conclusion, understanding the concept of neuro-vulnerability in energy metabolism regulation is crucial for addressing metabolic disorders. This review provides valuable insights into the underlying neurobiological mechanisms and their implications for metabolic health. Targeting neuro-vulnerability holds promise for developing innovative strategies in the prevention and treatment of metabolic disorders, ultimately improving metabolic health outcomes.
Collapse
Affiliation(s)
- Vicente Javier Clemente-Suárez
- Faculty of Sports Sciences, Universidad Europea de Madrid, Tajo Street, s/n, 28670 Madrid, Spain
- Grupo de Investigación en Cultura, Educación y Sociedad, Universidad de la Costa, Barranquilla 080002, Colombia
| | | | - Laura Redondo-Flórez
- Department of Health Sciences, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, Tajo Street s/n, 28670 Madrid, Spain
| | | | - Rodrigo Yáñez-Sepúlveda
- Faculty of Education and Social Sciences, Universidad Andres Bello, Viña del Mar 2520000, Chile
| | | |
Collapse
|
27
|
Goralski T, Meyerdirk L, Breton L, Brasseur L, Kurgat K, DeWeerd D, Turner L, Becker K, Adams M, Newhouse D, Henderson MX. Spatial transcriptomics reveals molecular dysfunction associated with Lewy pathology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.17.541144. [PMID: 37292685 PMCID: PMC10245657 DOI: 10.1101/2023.05.17.541144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Lewy pathology composed of α-synuclein is the key pathological hallmark of Parkinson's disease (PD), found both in dopaminergic neurons that control motor function, and throughout cortical regions that control cognitive function. Recent work has investigated which dopaminergic neurons are most susceptible to death, but little is known about which neurons are vulnerable to developing Lewy pathology and what molecular changes an aggregate induces. In the current study, we use spatial transcriptomics to selectively capture whole transcriptome signatures from cortical neurons with Lewy pathology compared to those without pathology in the same brains. We find, both in PD and in a mouse model of PD, that there are specific classes of excitatory neurons that are vulnerable to developing Lewy pathology in the cortex. Further, we identify conserved gene expression changes in aggregate-bearing neurons that we designate the Lewy-associated molecular dysfunction from aggregates (LAMDA) signature. This gene signature indicates that neurons with aggregates downregulate synaptic, mitochondrial, ubiquitin-proteasome, endo-lysosomal, and cytoskeletal genes and upregulate DNA repair and complement/cytokine genes. However, beyond DNA repair gene upregulation, we find that neurons also activate apoptotic pathways, suggesting that if DNA repair fails, neurons undergo programmed cell death. Our results identify neurons vulnerable to Lewy pathology in the PD cortex and identify a conserved signature of molecular dysfunction in both mice and humans.
Collapse
Affiliation(s)
- Thomas Goralski
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI 49503
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD
| | - Lindsay Meyerdirk
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI 49503
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD
| | - Libby Breton
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI 49503
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD
| | - Laura Brasseur
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI 49503
| | - Kevin Kurgat
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI 49503
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD
| | - Daniella DeWeerd
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI 49503
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD
| | | | | | | | | | - Michael X. Henderson
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI 49503
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD
| |
Collapse
|
28
|
Calabresi P, Mechelli A, Natale G, Volpicelli-Daley L, Di Lazzaro G, Ghiglieri V. Alpha-synuclein in Parkinson's disease and other synucleinopathies: from overt neurodegeneration back to early synaptic dysfunction. Cell Death Dis 2023; 14:176. [PMID: 36859484 PMCID: PMC9977911 DOI: 10.1038/s41419-023-05672-9] [Citation(s) in RCA: 220] [Impact Index Per Article: 110.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 01/18/2023] [Accepted: 02/09/2023] [Indexed: 03/03/2023]
Abstract
Although the discovery of the critical role of α-synuclein (α-syn) in the pathogenesis of Parkinson's disease (PD) is now twenty-five years old, it still represents a milestone in PD research. Abnormal forms of α-syn trigger selective and progressive neuronal death through mitochondrial impairment, lysosomal dysfunction, and alteration of calcium homeostasis not only in PD but also in other α-syn-related neurodegenerative disorders such as dementia with Lewy bodies, multiple system atrophy, pure autonomic failure, and REM sleep behavior disorder. Furthermore, α-syn-dependent early synaptic and plastic alterations and the underlying mechanisms preceding overt neurodegeneration have attracted great interest. In particular, the presence of early inflammation in experimental models and PD patients, occurring before deposition and spreading of α-syn, suggests a mechanistic link between inflammation and synaptic dysfunction. The knowledge of these early mechanisms is of seminal importance to support the research on reliable biomarkers to precociously identify the disease and possible disease-modifying therapies targeting α-syn. In this review, we will discuss these critical issues, providing a state of the art of the role of this protein in early PD and other synucleinopathies.
Collapse
Affiliation(s)
- Paolo Calabresi
- Sezione di Neurologia, Dipartimento di Neuroscienze, Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, Rome, 00168, Italy. .,Neurologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, 00168, Italy.
| | - Alessandro Mechelli
- Dipartimento di Scienze Mediche e Chirurgiche, Istituto di Neurologia, Università "Magna Graecia", Catanzaro, Italy
| | - Giuseppina Natale
- Sezione di Neurologia, Dipartimento di Neuroscienze, Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, Rome, 00168, Italy
| | - Laura Volpicelli-Daley
- Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Giulia Di Lazzaro
- Neurologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, 00168, Italy
| | - Veronica Ghiglieri
- Neurologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, 00168, Italy.,Università Telematica San Raffaele, Rome, 00166, Italy
| |
Collapse
|
29
|
Chung M, Park YS. Hyperkinetic Rat Model Induced by Optogenetic Parafascicular Nucleus Stimulation. J Korean Neurosurg Soc 2023; 66:121-132. [PMID: 36239081 PMCID: PMC10009241 DOI: 10.3340/jkns.2022.0106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 10/11/2022] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVE The parafascicular nucleus (PF) plays important roles in controlling the basal ganglia. It is not well known whether the PF affects the development of abnormal involuntary movements (AIMs). This study was aimed to find a role of the PF in development of AIMs using optogenetic methods in an animal model. METHODS Fourteen rats were underwent stereotactic operation, in which they were injected with an adeno-associated virus with channelrhodopsin (AAV2-hSyn-ChR2-mCherry) to the lateral one third of the PF. Behavior test was performed with and without optical stimulation 14 days after the injection of the virus. AIM of rat was examined using AIM score. After the behavior test, rat's brain was carefully extracted and the section was examined using a fluorescence microscope to confirm transfection of the PF. RESULTS Of the 14 rats, seven rats displayed evident involuntary abnormal movements. AIM scores were increased significantly after the stimulation compared to those at baseline. In rats with AIMs, mCherry expression was prominent in the PF, while the rats without AIM lacked with the mCherry expression. CONCLUSION AIMs could be reversibly induced by stimulating the PF through an optogenetic method.
Collapse
Affiliation(s)
- Moonyoung Chung
- Department of Neurosurgery, Soonchunhyang University Bucheon Hospital, Soonchunhyang University, Korea
| | - Young Seok Park
- Department of Neurosurgery, Chungbuk National University Hospital, Cheongju, Korea
| |
Collapse
|
30
|
SNCA Gene Methylation in Parkinson's Disease and Multiple System Atrophy. EPIGENOMES 2023; 7:epigenomes7010005. [PMID: 36810559 PMCID: PMC9944792 DOI: 10.3390/epigenomes7010005] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/27/2023] [Accepted: 02/02/2023] [Indexed: 02/10/2023] Open
Abstract
In recent years, epigenetic mechanisms have been implicated in the development of multifactorial diseases including neurodegenerative disorders. In Parkinson's disease (PD), as a synucleinopathy, most studies focused on DNA methylation of SNCA gene coding alpha-synuclein but obtained results were rather contradictory. In another neurodegenerative synucleinopathy, multiple system atrophy (MSA), very few studies investigated the epigenetic regulation. This study included patients with PD (n = 82), patients with MSA (n = 24), and a control group (n = 50). In three groups, methylation levels of CpG and non-CpG sites in regulatory regions of the SNCA gene were analyzed. We revealed hypomethylation of CpG sites in the SNCA intron 1 in PD and hypermethylation of predominantly non-CpG sites in the SNCA promoter region in MSA. In PD patients, hypomethylation in the intron 1 was associated with earlier age at the disease onset. In MSA patients, hypermethylation in the promotor was associated with shorter disease duration (before examination). These results showed different patterns of the epigenetic regulation in two synucleinopathies-PD and MSA.
Collapse
|
31
|
Krainc T, Monje MHG, Kinsinger M, Bustos BI, Lubbe SJ. Melanin and Neuromelanin: Linking Skin Pigmentation and Parkinson's Disease. Mov Disord 2023; 38:185-195. [PMID: 36350228 DOI: 10.1002/mds.29260] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/28/2022] [Accepted: 10/05/2022] [Indexed: 11/11/2022] Open
Abstract
Neuromelanin-containing dopaminergic neurons in the substantia nigra pars compacta (SNpc) are the most vulnerable neurons in Parkinson's disease (PD). Recent work suggests that the accumulation of oxidized dopamine and neuromelanin mediate the convergence of mitochondrial and lysosomal dysfunction in patient-derived neurons. In addition, the expression of human tyrosinase in mouse SNpc led to the formation of neuromelanin resulting in the degeneration of nigral dopaminergic neurons, further highlighting the importance of neuromelanin in PD. The potential role of neuromelanin in PD pathogenesis has been supported by epidemiological observations, whereby individuals with lighter pigmentation or cutaneous malignant melanoma exhibit higher incidence of PD. Because neuromelanin and melanin share many functional characteristics and overlapping biosynthetic pathways, it has been postulated that genes involved in skin pigmentation and melanin formation may play a role in the susceptibility of vulnerable midbrain dopaminergic neurons to neurodegeneration. Here, we highlight potential mechanisms that may explain the link between skin pigmentation and PD, focusing on the role of skin pigmentation genes in the pathogenesis of PD. We also discuss the importance of genetic ancestry in assessing the contribution of pigmentation-related genes to risk of PD. © 2022 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Talia Krainc
- Department of Anthropology, Princeton University, Princeton, New Jersey, USA.,Ken and Ruth Davee Department of Neurology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Mariana H G Monje
- Ken and Ruth Davee Department of Neurology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Morgan Kinsinger
- Ken and Ruth Davee Department of Neurology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Bernabe I Bustos
- Ken and Ruth Davee Department of Neurology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA.,Simpson Querrey Center for Neurogenetics, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Steven J Lubbe
- Ken and Ruth Davee Department of Neurology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA.,Simpson Querrey Center for Neurogenetics, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
32
|
Andrade-Oliva MDLA, Debray-García Y, Morales-Figueroa GE, Escamilla-Sánchez J, Amador-Muñoz O, Díaz-Godoy RV, Kleinman M, Florán B, Arias-Montaño JA, De Vizcaya-Ruiz A. Effect of subchronic exposure to ambient fine and ultrafine particles on rat motor activity and ex vivo striatal dopaminergic transmission. Inhal Toxicol 2023; 35:1-13. [PMID: 36325922 DOI: 10.1080/08958378.2022.2140228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Alterations in dopaminergic transmission are associated with neurological disorders, such as depression, autism, and Parkinson's disease. Exposure of rats to ambient fine (FP) or ultrafine (UFP) particles induces oxidative and inflammatory responses in the striatum, a neuronal nucleus with dense dopaminergic innervation and critically involved in the control of motor activity.Objectives: We used an ex vivo system to evaluate the effect of in vivo inhalation exposure to FP and UFP on motor activity and dopaminergic transmission.Materials and Methods: Male adult Wistar rats were exposed to FP, UFP, or filtered air for 8 weeks (subchronic exposure; 5 h/day, 5 days/week) in a particle concentrator. Motor activity was evaluated using the open-field test. Uptake and release of [3H]-dopamine were assessed in striatal synaptosomes, and dopamine D2 receptor (D2R) affinity for dopamine was evaluated by the displacement of [3H]-spiperone binding to striatal membranes.Results: Exposure to FP or UFP significantly reduced spontaneous motor activity (ambulatory distance: FP -25%, UFP -32%; ambulatory time: FP -24%, UFP -22%; ambulatory episodes: FP -22%, UFP -30%), decreased [3H]-dopamine uptake (FP -18%, UFP -24%), and increased, although not significantly, [3H]-dopamine release (113.3 ± 16.3 and 138.6 ± 17.3%). Neither FP nor UFP exposure affected D2R density or affinity for dopamine.Conclusions: These results indicate that exposure to ambient particulate matter reduces locomotion in rats, which could be related to altered striatal dopaminergic transmission: UFP was more potent than FP. Our results contribute to the evidence linking environmental factors to changes in brain function that could turn into neurological and psychiatric disorders.HIGHLIGHTSYoung adult rats were exposed to fine (FP) or ultrafine (UFP) particles for 40 days.Exposure to FP or UFP reduced motor activity.Exposure to FP or UFP reduced dopamine uptake by striatal synaptosomes.Neither D2R density or affinity for dopamine was affected by FP or UFP.UFP was more potent than FP to exert the effects reported.
Collapse
Affiliation(s)
- María-de-Los-Angeles Andrade-Oliva
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, Ciudad de México, México
| | - Yazmín Debray-García
- Departamento de Investigación de Toxicología y Medicina Ambiental, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Ciudad de México, Mexico
| | - Guadalupe-Elide Morales-Figueroa
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, Ciudad de México, México
| | - Juan Escamilla-Sánchez
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, Ciudad de México, México
| | - Omar Amador-Muñoz
- Instituto de Ciencias de la Atmósfera y Cambio Climático, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México, Mexico
| | - Raúl V Díaz-Godoy
- Instituto Nacional de Investigaciones Nucleares, Ocoyoacac, Estado de México, México
| | - Michael Kleinman
- Department of Environmental and Occupational Health, University of California, Irvine, Irvine, CA, USA
| | - Benjamín Florán
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, Ciudad de México, México
| | - José-Antonio Arias-Montaño
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, Ciudad de México, México
| | - Andrea De Vizcaya-Ruiz
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del IPN, Ciudad de México, Mexico
| |
Collapse
|
33
|
Fathy YY, Jonkman LE, Bol JJ, Timmermans E, Jonker AJ, Rozemuller AJM, van de Berg WDJ. Axonal degeneration in the anterior insular cortex is associated with Alzheimer's co-pathology in Parkinson's disease and dementia with Lewy bodies. Transl Neurodegener 2022; 11:52. [PMID: 36474289 PMCID: PMC9728006 DOI: 10.1186/s40035-022-00325-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 11/08/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Axons, crucial for impulse transmission and cellular trafficking, are thought to be primary targets of neurodegeneration in Parkinson's disease (PD) and dementia with Lewy bodies (DLB). Axonal degeneration occurs early, preceeding and exceeding neuronal loss, and contributes to the spread of pathology, yet is poorly described outside the nigrostriatal circuitry. The insula, a cortical brain hub, was recently discovered to be highly vulnerable to pathology and plays a role in cognitive deficits in PD and DLB. The aim of this study was to evaluate morphological features as well as burden of proteinopathy and axonal degeneration in the anterior insular sub-regions in PD, PD with dementia (PDD), and DLB. METHODS α-Synuclein, phosphorylated (p-)tau, and amyloid-β pathology load were evaluated in the anterior insular (agranular and dysgranular) subregions of post-mortem human brains (n = 27). Axonal loss was evaluated using modified Bielschowsky silver staining and quantified using stereology. Cytoskeletal damage was comprehensively studied using immunofluorescent multi-labelling and 3D confocal laser-scanning microscopy. RESULTS Compared to PD and PDD, DLB showed significantly higher α-synuclein and p-tau pathology load, argyrophilic grains, and more severe axonal loss, particularly in the anterior agranular insula. Alternatively, the dysgranular insula showed a significantly higher load of amyloid-β pathology and its axonal density correlated with cognitive performance. p-Tau contributed most to axonal loss in the DLB group, was highest in the anterior agranular insula and significantly correlated with CDR global scores for dementia. Neurofilament and myelin showed degenerative changes including swellings, demyelination, and detachment of the axon-myelin unit. CONCLUSIONS Our results highlight the selective vulnerability of the anterior insular sub-regions to various converging pathologies, leading to impaired axonal integrity in PD, PDD and DLB, disrupting their functional properties and potentially contributing to cognitive, emotional, and autonomic deficits.
Collapse
Affiliation(s)
- Yasmine Y. Fathy
- grid.12380.380000 0004 1754 9227Amsterdam UMC, Department of Anatomy and Neurosciences, Section Clinical Neuroanatomy and Biobanking, Amsterdam Neuroscience, Vrije University Amsterdam, O
- 2 Life Sciences building, De Boelelaan 1108, 1081 HZ Amsterdam, Netherlands ,grid.484519.5Amsterdam Neuroscience, Program Neurodegeneration, Amsterdam, the Netherlands ,grid.5645.2000000040459992XDepartment of Neurology, Erasmus Medical Center, Postbus 2040, 3000 CA Rotterdam, Netherlands
| | - Laura E. Jonkman
- grid.12380.380000 0004 1754 9227Amsterdam UMC, Department of Anatomy and Neurosciences, Section Clinical Neuroanatomy and Biobanking, Amsterdam Neuroscience, Vrije University Amsterdam, O
- 2 Life Sciences building, De Boelelaan 1108, 1081 HZ Amsterdam, Netherlands ,grid.484519.5Amsterdam Neuroscience, Program Neurodegeneration, Amsterdam, the Netherlands
| | - John J. Bol
- grid.12380.380000 0004 1754 9227Amsterdam UMC, Department of Anatomy and Neurosciences, Section Clinical Neuroanatomy and Biobanking, Amsterdam Neuroscience, Vrije University Amsterdam, O
- 2 Life Sciences building, De Boelelaan 1108, 1081 HZ Amsterdam, Netherlands ,grid.484519.5Amsterdam Neuroscience, Program Neurodegeneration, Amsterdam, the Netherlands
| | - Evelien Timmermans
- grid.12380.380000 0004 1754 9227Amsterdam UMC, Department of Anatomy and Neurosciences, Section Clinical Neuroanatomy and Biobanking, Amsterdam Neuroscience, Vrije University Amsterdam, O
- 2 Life Sciences building, De Boelelaan 1108, 1081 HZ Amsterdam, Netherlands ,grid.484519.5Amsterdam Neuroscience, Program Neurodegeneration, Amsterdam, the Netherlands
| | - Allert J. Jonker
- grid.12380.380000 0004 1754 9227Amsterdam UMC, Department of Anatomy and Neurosciences, Section Clinical Neuroanatomy and Biobanking, Amsterdam Neuroscience, Vrije University Amsterdam, O
- 2 Life Sciences building, De Boelelaan 1108, 1081 HZ Amsterdam, Netherlands ,grid.484519.5Amsterdam Neuroscience, Program Neurodegeneration, Amsterdam, the Netherlands
| | - Annemieke J. M. Rozemuller
- grid.484519.5Amsterdam Neuroscience, Program Neurodegeneration, Amsterdam, the Netherlands ,grid.12380.380000 0004 1754 9227Amsterdam UMC, Department of Pathology, Amsterdam Neuroscience, Vrije University Amsterdam, De Boelelaan, Amsterdam, Netherlands
| | - Wilma D. J. van de Berg
- grid.12380.380000 0004 1754 9227Amsterdam UMC, Department of Anatomy and Neurosciences, Section Clinical Neuroanatomy and Biobanking, Amsterdam Neuroscience, Vrije University Amsterdam, O
- 2 Life Sciences building, De Boelelaan 1108, 1081 HZ Amsterdam, Netherlands ,grid.484519.5Amsterdam Neuroscience, Program Neurodegeneration, Amsterdam, the Netherlands
| |
Collapse
|
34
|
Disentangling nigral and putaminal contribution to motor impairment and levodopa response in Parkinson's disease. NPJ Parkinsons Dis 2022; 8:132. [PMID: 36241644 PMCID: PMC9568583 DOI: 10.1038/s41531-022-00401-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 09/28/2022] [Indexed: 11/08/2022] Open
Abstract
The extent to which the degeneration of the substantia nigra (SN) and putamen each contribute to motor impairment in Parkinson's disease (PD) is unclear, as they are usually investigated using different imaging modalities. To examine the pathophysiological significance of the SN and putamen in both motor impairment and the levodopa response in PD using diffusion microstructure imaging (DMI). In this monocentric retrospective cross-sectional study, DMI parameters from 108 patients with PD and 35 healthy controls (HC) were analyzed using a voxel- and region-based approach. Linear models were applied to investigate the association between individual DMI parameters and Movement Disorder Society Unified Parkinson's Disease Rating Scale-Part 3 performance in ON- and OFF-states, as well as the levodopa response, controlling for age and sex. Voxel- and region-based group comparisons of DMI parameters between PD and HC revealed significant differences in the SN and putamen. In PD, a poorer MDS-UPDRS-III performance in the ON-state was associated with increased free fluid in the SN (b-weight = 65.79, p = 0.004) and putamen (b-weight = 86.00, p = 0.006), and contrariwise with the demise of cells in both structures. The levodopa response was inversely associated with free fluid both in the SN (b-weight = -83.61, p = 0.009) and putamen (b-weight = -176.56, p < 0.001). Interestingly, when the two structures were assessed together, the integrity of the putamen, but not the SN, served as a predictor for the levodopa response (b-weight = -158.03, p < 0.001). Structural alterations in the SN and putamen can be measured by diffusion microstructure imaging in PD. They are associated with poorer motor performance in the ON-state, as well as a reduced response to levodopa. While both nigral and putaminal integrity are required for good performance in the ON-state, it is putaminal integrity alone that determines the levodopa response. Therefore, the structural integrity of the putamen is crucial for the improvement of motor symptoms to dopaminergic medication, and might therefore serve as a promising biomarker for motor staging.
Collapse
|
35
|
Burke S, Trudeau LE. Axonal Domain Structure as a Putative Identifier of Neuron-Specific Vulnerability to Oxidative Stress in Cultured Neurons. eNeuro 2022; 9:ENEURO.0139-22.2022. [PMID: 36192156 PMCID: PMC9595591 DOI: 10.1523/eneuro.0139-22.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 08/30/2022] [Accepted: 09/16/2022] [Indexed: 12/15/2022] Open
Abstract
Several populations of neurons are purported to degenerate in Parkinson's disease (PD). One current hypothesis suggests that vulnerable neurons in PD share common characteristics including projecting to voluminous territories and having extremely long and branched axonal domains with large numbers of neurotransmitter release sites. In this study, we used a mouse in vitro culture system to compare the axonal domain of neuronal populations suspected to be vulnerable in PD to that of neuronal populations considered at a lesser risk. In the first category, we included dopamine (DA) neurons of the substantia nigra, noradrenergic neurons of the locus coeruleus (LC), serotonin neurons of the raphe nuclei (R), and cholinergic neurons of the dorsal motor nucleus of the vagus (DMV). In the second category, we included DA neurons of the ventral tegmental area, cholinergic neurons of the hypoglossal nucleus, and cholinergic interneurons of the dorsal striatum. Validating their differential vulnerability, we find that, when compared with neurons presumed to be resilient in PD, a larger proportion of neurons presumed to be vulnerable in PD degenerate in response to cell stress induced by hydrogen peroxide. We also find that they are endowed with larger axonal domains, that are more complex, have more axonal varicosities with a higher proportion of varicosities that are positive for synaptotagmin 1 (Syt-1). Notwithstanding the obvious limitations related to the dissection of small brain nuclei and to the growth of these neurons in vitro, these findings support the hypothesis that axonal domain structure is a key characteristic of neuronal vulnerability to oxidative stress.
Collapse
Affiliation(s)
- Samuel Burke
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montreal, Quebec, H3T 1J4, Canada
- Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montreal, Quebec, H3T 1J4, Canada
- Neural Signaling and Circuitry Research Group (SNC), Montréal, Quebec, H3T 1J4, Canada
- Center for Interdisciplinary Research on the Brain and Learning (CIRCA), Montréal, Quebec, H3T 1J4
| | - Louis-Eric Trudeau
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montreal, Quebec, H3T 1J4, Canada
- Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montreal, Quebec, H3T 1J4, Canada
- Neural Signaling and Circuitry Research Group (SNC), Montréal, Quebec, H3T 1J4, Canada
- Center for Interdisciplinary Research on the Brain and Learning (CIRCA), Montréal, Quebec, H3T 1J4
| |
Collapse
|
36
|
Pieger K, Schmitt V, Gauer C, Gießl N, Prots I, Winner B, Winkler J, Brandstätter JH, Xiang W. Translocation of Distinct Alpha Synuclein Species from the Nucleus to Neuronal Processes during Neuronal Differentiation. Biomolecules 2022; 12:biom12081108. [PMID: 36009004 PMCID: PMC9406079 DOI: 10.3390/biom12081108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 11/16/2022] Open
Abstract
Alpha synuclein (aSyn) and its aggregation are crucial for the neurodegeneration of Parkinson’s disease (PD). aSyn was initially described in the nucleus and presynaptic nerve terminals. However, the biology of nuclear aSyn and the link of aSyn between subcellular compartments are less understood. Current knowledge suggests the existence of various aSyn species with distinct structural and biochemical properties. Here, we identified a C-terminal-targeting aSyn antibody (Nu-aSyn-C), which has a high immunoaffinity towards aSyn in the nucleus. Comparing the Nu-aSyn-C antibody to aSyn antibodies developed against phosphorylated or aggregated forms, we observed that nuclear aSyn differs from cytosolic aSyn by an increased phosphorylation and assembly level in proliferating cells. Employing Nu-aSyn-C, we characterized aSyn distribution during neuronal differentiation in midbrain dopaminergic neurons (mDANs) derived from human-induced pluripotent stem cells (hiPSCs) and Lund human mesencephalic cells, and in primary rat hippocampal neurons. We detected a specific translocation pattern of aSyn during neuronal differentiation from the nucleus to the soma and finally to neuronal processes. Interestingly, a remarkable shift of Nu-aSyn-C-positive species towards neurites was detected in hiPSC mDANs from a PD patient carrying aSyn gene duplication. Together, our results reveal distinct nuclear and cytosolic aSyn species that redistribute during neuronal differentiation—a process that is altered in PD-derived neurons.
Collapse
Affiliation(s)
- Katharina Pieger
- Department of Biology, Animal Physiology/Neurobiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Verena Schmitt
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Carina Gauer
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Nadja Gießl
- Department of Biology, Animal Physiology/Neurobiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Iryna Prots
- Department of Stem Cell Biology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Beate Winner
- Department of Stem Cell Biology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Jürgen Winkler
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Johann Helmut Brandstätter
- Department of Biology, Animal Physiology/Neurobiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Wei Xiang
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
- Correspondence: ; Tel.: +49-9131-85-44676
| |
Collapse
|
37
|
Ferrari E, Scheggia D, Zianni E, Italia M, Brumana M, Palazzolo L, Parravicini C, Pilotto A, Padovani A, Marcello E, Eberini I, Calabresi P, Diluca M, Gardoni F. Rabphilin-3A as a Novel Target to Reverse α-synuclein-induced Synaptic Loss in Parkinson's Disease. Pharmacol Res 2022; 183:106375. [PMID: 35918045 DOI: 10.1016/j.phrs.2022.106375] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/24/2022] [Accepted: 07/27/2022] [Indexed: 10/16/2022]
Abstract
Toxic aggregates of α-synuclein (αsyn) are considered key drivers of Parkinson's disease (PD) pathology. In early PD, αsyn induces synaptic dysfunction also modulating the glutamatergic neurotransmission. However, a more detailed understanding of the molecular mechanisms underlying αsyn-triggered synaptic failure is required to design novel therapeutic interventions. Here, we described the role of Rabphilin-3A (Rph3A) as novel target to counteract αsyn-induced synaptic loss in PD. Rph3A is a synaptic protein interacting with αsyn and involved in stabilizing dendritic spines and in promoting the synaptic retention of NMDA-type glutamate receptors. We found that in vivo intrastriatal injection of αsyn-preformed fibrils in mice induces the early loss of striatal synapses associated with decreased synaptic levels of Rph3A and impaired Rph3A/NMDA receptors interaction. Modulating Rph3A striatal expression or interfering with the Rph3A/αsyn complex with a small molecule prevented dendritic spine loss and rescued associated early motor defects in αsyn-injected mice. Notably, the same experimental approaches prevented αsyn-induced synaptic loss in vitro in primary hippocampal neurons. Overall, these findings indicate that approaches aimed at restoring Rph3A synaptic functions can slow down the early synaptic detrimental effects of αsyn aggregates in PD.
Collapse
Affiliation(s)
- Elena Ferrari
- Department of Pharmacological and Biomolecular Sciences (DiSFeB), University of Milan, 20133 Milan, Italy.
| | - Diego Scheggia
- Department of Pharmacological and Biomolecular Sciences (DiSFeB), University of Milan, 20133 Milan, Italy.
| | - Elisa Zianni
- Department of Pharmacological and Biomolecular Sciences (DiSFeB), University of Milan, 20133 Milan, Italy.
| | - Maria Italia
- Department of Pharmacological and Biomolecular Sciences (DiSFeB), University of Milan, 20133 Milan, Italy.
| | - Marta Brumana
- Department of Pharmacological and Biomolecular Sciences (DiSFeB), University of Milan, 20133 Milan, Italy.
| | - Luca Palazzolo
- Department of Pharmacological and Biomolecular Sciences (DiSFeB), University of Milan, 20133 Milan, Italy.
| | - Chiara Parravicini
- Department of Pharmacological and Biomolecular Sciences (DiSFeB), University of Milan, 20133 Milan, Italy.
| | - Andrea Pilotto
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, 25123, Brescia, Italy.
| | - Alessandro Padovani
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, 25123, Brescia, Italy.
| | - Elena Marcello
- Department of Pharmacological and Biomolecular Sciences (DiSFeB), University of Milan, 20133 Milan, Italy.
| | - Ivano Eberini
- Department of Pharmacological and Biomolecular Sciences (DiSFeB), University of Milan, 20133 Milan, Italy.
| | - Paolo Calabresi
- Sezione di Neurologia, Dipartimento di Neuroscienze, Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, Rome, Italy; Clinica Neurologica, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy.
| | - Monica Diluca
- Department of Pharmacological and Biomolecular Sciences (DiSFeB), University of Milan, 20133 Milan, Italy.
| | - Fabrizio Gardoni
- Department of Pharmacological and Biomolecular Sciences (DiSFeB), University of Milan, 20133 Milan, Italy.
| |
Collapse
|
38
|
Kulkarni AS, Burns MR, Brundin P, Wesson DW. Linking α-synuclein-induced synaptopathy and neural network dysfunction in early Parkinson's disease. Brain Commun 2022; 4:fcac165. [PMID: 35822101 PMCID: PMC9272065 DOI: 10.1093/braincomms/fcac165] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/11/2022] [Accepted: 06/20/2022] [Indexed: 01/18/2023] Open
Abstract
The prodromal phase of Parkinson's disease is characterized by aggregation of the misfolded pathogenic protein α-synuclein in select neural centres, co-occurring with non-motor symptoms including sensory and cognitive loss, and emotional disturbances. It is unclear whether neuronal loss is significant during the prodrome. Underlying these symptoms are synaptic impairments and aberrant neural network activity. However, the relationships between synaptic defects and network-level perturbations are not established. In experimental models, pathological α-synuclein not only impacts neurotransmission at the synaptic level, but also leads to changes in brain network-level oscillatory dynamics-both of which likely contribute to non-motor deficits observed in Parkinson's disease. Here we draw upon research from both human subjects and experimental models to propose a 'synapse to network prodrome cascade' wherein before overt cell death, pathological α-synuclein induces synaptic loss and contributes to aberrant network activity, which then gives rise to prodromal symptomology. As the disease progresses, abnormal patterns of neural activity ultimately lead to neuronal loss and clinical progression of disease. Finally, we outline goals and research needed to unravel the basis of functional impairments in Parkinson's disease and other α-synucleinopathies.
Collapse
Affiliation(s)
- Aishwarya S Kulkarni
- Department of Pharmacology & Therapeutics, University of Florida, 1200 Newell Dr, Gainesville, FL 32610, USA
| | - Matthew R Burns
- Department of Neurology, University of Florida, 1200 Newell Dr, Gainesville, FL 32610, USA
- Norman Fixel Institute for Neurological Disorders, University of Florida, 1200 Newell Dr, Gainesville, FL 32610, USA
| | - Patrik Brundin
- Pharma Research and Early Development (pRED), F. Hoffman-La Roche, Little Falls, NJ, USA
| | - Daniel W Wesson
- Department of Pharmacology & Therapeutics, University of Florida, 1200 Newell Dr, Gainesville, FL 32610, USA
- Norman Fixel Institute for Neurological Disorders, University of Florida, 1200 Newell Dr, Gainesville, FL 32610, USA
| |
Collapse
|
39
|
Muddapu VRJ, Vijayakumar K, Ramakrishnan K, Chakravarthy VS. A Multi-Scale Computational Model of Levodopa-Induced Toxicity in Parkinson's Disease. Front Neurosci 2022; 16:797127. [PMID: 35516806 PMCID: PMC9063169 DOI: 10.3389/fnins.2022.797127] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 03/15/2022] [Indexed: 01/08/2023] Open
Abstract
Parkinson's disease (PD) is caused by the progressive loss of dopaminergic cells in substantia nigra pars compacta (SNc). The root cause of this cell loss in PD is still not decisively elucidated. A recent line of thinking has traced the cause of PD neurodegeneration to metabolic deficiency. Levodopa (L-DOPA), a precursor of dopamine, used as a symptom-relieving treatment for PD, leads to positive and negative outcomes. Several researchers inferred that L-DOPA might be harmful to SNc cells due to oxidative stress. The role of L-DOPA in the course of the PD pathogenesis is still debatable. We hypothesize that energy deficiency can lead to L-DOPA-induced toxicity in two ways: by promoting dopamine-induced oxidative stress and by exacerbating excitotoxicity in SNc. We present a systems-level computational model of SNc-striatum, which will help us understand the mechanism behind neurodegeneration postulated above and provide insights into developing disease-modifying therapeutics. It was observed that SNc terminals are more vulnerable to energy deficiency than SNc somas. During L-DOPA therapy, it was observed that higher L-DOPA dosage results in increased loss of terminals in SNc. It was also observed that co-administration of L-DOPA and glutathione (antioxidant) evades L-DOPA-induced toxicity in SNc neurons. Our proposed model of the SNc-striatum system is the first of its kind, where SNc neurons were modeled at a biophysical level, and striatal neurons were modeled at a spiking level. We show that our proposed model was able to capture L-DOPA-induced toxicity in SNc, caused by energy deficiency.
Collapse
Affiliation(s)
| | - Karthik Vijayakumar
- Department of Biotechnology, Rajalakshmi Engineering College, Chennai, India
| | | | - V. Srinivasa Chakravarthy
- Department of Biotechnology, Bhupat and Jyothi Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
- *Correspondence: V. Srinivasa Chakravarthy
| |
Collapse
|
40
|
Pineda-Pardo JA, Sánchez-Ferro Á, Monje MHG, Pavese N, Obeso JA. Onset pattern of nigrostriatal denervation in early Parkinson's disease. Brain 2022; 145:1018-1028. [PMID: 35349639 DOI: 10.1093/brain/awab378] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 09/06/2021] [Accepted: 09/09/2021] [Indexed: 12/12/2022] Open
Abstract
The striatal dopaminergic deficit in Parkinson's disease exhibits a typical pattern, extending from the caudal and dorsal putamen at onset to its more rostral region as the disease progresses. Clinically, upper-limb onset of cardinal motor features is the rule. Thus, according to current understanding of striatal somatotopy (i.e. the lower limb is dorsal to the upper limb) the assumed pattern of early dorsal striatal dopaminergic denervation in Parkinson's disease does not fit with an upper-limb onset. We have examined the topography of putaminal denervation in a cohort of 23 recently diagnosed de novo Parkinson's disease patients and 19 age-/gender-matched healthy subjects assessed clinically and by 18F-DOPA PET; 15 patients were re-assessed after 2 years. There was a net upper-limb predominance of motor features at onset. Caudal denervation of the putamen was confirmed in both the more- and less-affected hemispheres and corresponding hemibodies. Spatial covariance analysis of the most affected hemisphere revealed a pattern of 18F-DOPA uptake rate deficit that suggested focal dopamine loss starting in the posterolateral and intermediate putamen. Functional MRI group-activation maps during a self-paced motor task were used to represent the somatotopy of the putamen and were then used to characterize the decline in 18F-DOPA uptake rate in the upper- and lower-limb territories. This showed a predominant decrement in both hemispheres, which correlated significantly with severity of bradykinesia. A more detailed spatial analysis revealed a dorsoventral linear gradient of 18F-DOPA uptake rate in Parkinson's disease patients, with the highest putamen denervation in the caudal intermediate subregion (dorsoventral plane) compared to healthy subjects. The latter area coincides with the functional representation of the upper limb. Clinical motor assessment at 2-year follow-up showed modest worsening of parkinsonism in the primarily affected side and more noticeable increases in the upper limb in the less-affected side. Concomitantly, 18F-DOPA uptake rate in the less-affected putamen mimicked that recognized on the most-affected side. Our findings suggest that early dopaminergic denervation in Parkinson's disease follows a somatotopically related pattern, starting with the upper-limb representation in the putamen and progressing over a 2-year period in the less-affected hemisphere. These changes correlate well with the clinical presentation and evolution of motor features. Recognition of a precise somatotopic onset of nigrostriatal denervation may help to better understand the onset and progression of dopaminergic neurodegeneration in Parkinson's disease and eventually monitor the impact of putative therapies.
Collapse
Affiliation(s)
- José A Pineda-Pardo
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain.,Universidad San Pablo-CEU, Madrid, Spain.,CIBERNED, Instituto de Salud Carlos III, Madrid, Spain
| | - Álvaro Sánchez-Ferro
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain.,Neurology Department, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Mariana H G Monje
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain.,Universidad San Pablo-CEU, Madrid, Spain.,CIBERNED, Instituto de Salud Carlos III, Madrid, Spain.,Ken and Ruth Davee Department of Neurology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Nicola Pavese
- Department of Nuclear Medicine and PET Centre, Aarhus University Hospital, Aarhus, Denmark.,Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - José A Obeso
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain.,Universidad San Pablo-CEU, Madrid, Spain.,CIBERNED, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
41
|
Merino-Galan L, Jimenez-Urbieta H, Zamarbide M, Rodríguez-Chinchilla T, Belloso-Iguerategui A, Santamaria E, Fernández-Irigoyen J, Aiastui A, Doudnikoff E, Bézard E, Ouro A, Knafo S, Gago B, Quiroga-Varela A, Rodríguez-Oroz MC. Striatal synaptic bioenergetic and autophagic decline in premotor experimental parkinsonism. Brain 2022; 145:2092-2107. [PMID: 35245368 PMCID: PMC9460676 DOI: 10.1093/brain/awac087] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/31/2022] [Accepted: 02/20/2022] [Indexed: 12/02/2022] Open
Abstract
Synaptic impairment might precede neuronal degeneration in Parkinson’s disease. However, the intimate mechanisms altering synaptic function by the accumulation of presynaptic α-synuclein in striatal dopaminergic terminals before dopaminergic death occurs, have not been elucidated. Our aim is to unravel the sequence of synaptic functional and structural changes preceding symptomatic dopaminergic cell death. As such, we evaluated the temporal sequence of functional and structural changes at striatal synapses before parkinsonian motor features appear in a rat model of progressive dopaminergic death induced by overexpression of the human mutated A53T α-synuclein in the substantia nigra pars compacta, a protein transported to these synapses. Sequential window acquisition of all theoretical mass spectra proteomics identified deregulated proteins involved first in energy metabolism and later, in vesicle cycling and autophagy. After protein deregulation and when α-synuclein accumulated at striatal synapses, alterations to mitochondrial bioenergetics were observed using a Seahorse XF96 analyser. Sustained dysfunctional mitochondrial bioenergetics was followed by a decrease in the number of dopaminergic terminals, morphological and ultrastructural alterations, and an abnormal accumulation of autophagic/endocytic vesicles inside the remaining dopaminergic fibres was evident by electron microscopy. The total mitochondrial population remained unchanged whereas the number of ultrastructurally damaged mitochondria increases as the pathological process evolved. We also observed ultrastructural signs of plasticity within glutamatergic synapses before the expression of motor abnormalities, such as a reduction in axospinous synapses and an increase in perforated postsynaptic densities. Overall, we found that a synaptic energetic failure and accumulation of dysfunctional organelles occur sequentially at the dopaminergic terminals as the earliest events preceding structural changes and cell death. We also identify key proteins involved in these earliest functional abnormalities that may be modulated and serve as therapeutic targets to counterbalance the degeneration of dopaminergic cells to delay or prevent the development of Parkinson’s disease.
Collapse
Affiliation(s)
- Leyre Merino-Galan
- Neuroscience Program, Center for Applied Medical Research (CIMA), Universidad de Navarra, 31008 Pamplona, Spain.,Neuroscience Department, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
| | - Haritz Jimenez-Urbieta
- Cell culture Platform, Biodonostia Health Research Institute, San Sebastian, 20014 Donostia, Spain
| | - Marta Zamarbide
- Neuroscience Program, Center for Applied Medical Research (CIMA), Universidad de Navarra, 31008 Pamplona, Spain
| | | | | | - Enrique Santamaria
- Clinical Neuroproteomics Unit, Proteomics Platform, Proteored-ISCIII, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), 31008 Pamplona, Spain.,Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Joaquín Fernández-Irigoyen
- Clinical Neuroproteomics Unit, Proteomics Platform, Proteored-ISCIII, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), 31008 Pamplona, Spain.,Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Ana Aiastui
- Cell culture Platform, Biodonostia Health Research Institute, San Sebastian, 20014 Donostia, Spain
| | - Evelyne Doudnikoff
- CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33076 Bordeaux, France
| | - Erwan Bézard
- CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33076 Bordeaux, France
| | - Alberto Ouro
- Clinical Neurosciences Research Laboratories, Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
| | - Shira Knafo
- Department of Physiology and Cell Biology, Faculty of Health Sciences, The National Institute for Biotechnology in the Negev, and The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, 8410501 Beer-Sheva, Israel.,Instituto Biofisika (UPV/EHU, CSIC), University of the Basque Country, Basque Foundation for Science, IKERBASQUE, 48940 Leioa, Spain
| | - Belén Gago
- Faculty of Medicine, Instituto de Investigación Biomédica de Málaga, Universidad de Málaga, 29016 Málaga, Spain
| | - Ana Quiroga-Varela
- Neuroscience Program, Center for Applied Medical Research (CIMA), Universidad de Navarra, 31008 Pamplona, Spain.,Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - María Cruz Rodríguez-Oroz
- Neuroscience Program, Center for Applied Medical Research (CIMA), Universidad de Navarra, 31008 Pamplona, Spain.,Navarra Institute for Health Research (IdiSNA), Pamplona, Spain.,Neurology Department, Clínica Universidad de Navarra (CUN), 31008 Pamplona, Spain
| |
Collapse
|
42
|
Modeling Parkinson's disease in LRRK2 mice: focus on synaptic dysfunction and the autophagy-lysosomal pathway. Biochem Soc Trans 2022; 50:621-632. [PMID: 35225340 DOI: 10.1042/bst20211288] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/11/2022] [Accepted: 02/11/2022] [Indexed: 01/18/2023]
Abstract
Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene are associated with familial and sporadic forms of Parkinson's disease (PD), for which the LRRK2 locus itself represents a risk factor. Idiopathic and LRRK2-related PD share the main clinical and neuropathological features, thus animals harboring the most common LRRK2 mutations, i.e. G2019S and R1441C/G, have been generated to replicate the parkinsonian phenotype and investigate the underlying pathological mechanisms. Most LRRK2 rodent models, however, fail to show the main neuropathological hallmarks of the disease i.e. the degeneration of dopaminergic neurons in the substantia nigra pars compacta and presence of Lewy bodies or Lewy body-like aggregates of α-synuclein, lacking face validity. Rather, they manifest dysregulation in cellular pathways and functions that confer susceptibility to a variety of parkinsonian toxins/triggers and model the presymptomatic/premotor stages of the disease. Among such susceptibility factors, dysregulation of synaptic activity and proteostasis are evident in LRRK2 mutants. These abnormalities are also manifest in the PD brain and represent key events in the development and progression of the pathology. The present minireview covers recent articles (2018-2021) investigating the role of LRRK2 and LRRK2 mutants in the regulation of synaptic activity and autophagy-lysosomal pathway. These articles confirm a perturbation of synaptic vesicle endocytosis and glutamate release in LRRK2 mutants. Likewise, LRRK2 mutants show a marked impairment of selective forms of autophagy (i.e. mitophagy and chaperone-mediated autophagy) and lysosomal function, with minimal perturbations of nonselective autophagy. Thus, LRRK2 rodents might help understand the contribution of these pathways to PD.
Collapse
|
43
|
Seebauer L, Schneider Y, Drobny A, Plötz S, Koudelka T, Tholey A, Prots I, Winner B, Zunke F, Winkler J, Xiang W. Interaction of Alpha Synuclein and Microtubule Organization Is Linked to Impaired Neuritic Integrity in Parkinson's Patient-Derived Neuronal Cells. Int J Mol Sci 2022; 23:1812. [PMID: 35163733 PMCID: PMC8836605 DOI: 10.3390/ijms23031812] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/02/2022] [Accepted: 02/03/2022] [Indexed: 11/17/2022] Open
Abstract
Parkinson's disease (PD) is neuropathologically characterized by the loss of dopaminergic neurons and the deposition of aggregated alpha synuclein (aSyn). Mounting evidence suggests that neuritic degeneration precedes neuronal loss in PD. A possible underlying mechanism could be the interference of aSyn with microtubule organization in the neuritic development, as implied by several studies using cell-free model systems. In this study, we investigate the impact of aSyn on microtubule organization in aSyn overexpressing H4 neuroglioma cells and midbrain dopaminergic neuronal cells (mDANs) generated from PD patient-derived human induced pluripotent stem cells (hiPSCs) carrying an aSyn gene duplication (SNCADupl). An unbiased mass spectrometric analysis reveals a preferential binding of aggregated aSyn conformers to a number of microtubule elements. We confirm the interaction of aSyn with beta tubulin III in H4 and hiPSC-derived mDAN cell model systems, and demonstrate a remarkable redistribution of tubulin isoforms from the soluble to insoluble fraction, accompanied by a significantly increased insoluble aSyn level. Concordantly, SNCADupl mDANs show impaired neuritic phenotypes characterized by perturbations in neurite initiation and outgrowth. In summary, our findings suggest a mechanistic pathway, through which aSyn aggregation interferes with microtubule organization and induces neurite impairments.
Collapse
Affiliation(s)
- Lukas Seebauer
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander Universität, Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (L.S.); (Y.S.); (A.D.); (S.P.); (F.Z.); (J.W.)
| | - Yanni Schneider
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander Universität, Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (L.S.); (Y.S.); (A.D.); (S.P.); (F.Z.); (J.W.)
| | - Alice Drobny
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander Universität, Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (L.S.); (Y.S.); (A.D.); (S.P.); (F.Z.); (J.W.)
| | - Sonja Plötz
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander Universität, Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (L.S.); (Y.S.); (A.D.); (S.P.); (F.Z.); (J.W.)
| | - Tomas Koudelka
- Systematic Proteome Research & Bioanalytics, Institute for Experimental Medicine, Christian-Albrechts-Universität zu Kiel, 24105 Kiel, Germany; (T.K.); (A.T.)
| | - Andreas Tholey
- Systematic Proteome Research & Bioanalytics, Institute for Experimental Medicine, Christian-Albrechts-Universität zu Kiel, 24105 Kiel, Germany; (T.K.); (A.T.)
| | - Iryna Prots
- Department of Stem Cell Biology, University Hospital Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (I.P.); (B.W.)
| | - Beate Winner
- Department of Stem Cell Biology, University Hospital Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (I.P.); (B.W.)
- Center of Rare Diseases Erlangen (ZSEER), University Hospital Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Friederike Zunke
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander Universität, Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (L.S.); (Y.S.); (A.D.); (S.P.); (F.Z.); (J.W.)
| | - Jürgen Winkler
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander Universität, Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (L.S.); (Y.S.); (A.D.); (S.P.); (F.Z.); (J.W.)
- Center of Rare Diseases Erlangen (ZSEER), University Hospital Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Wei Xiang
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander Universität, Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (L.S.); (Y.S.); (A.D.); (S.P.); (F.Z.); (J.W.)
| |
Collapse
|
44
|
Motor and non-motor circuit disturbances in early Parkinson disease: which happens first? Nat Rev Neurosci 2022; 23:115-128. [PMID: 34907352 DOI: 10.1038/s41583-021-00542-9] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/12/2021] [Indexed: 12/15/2022]
Abstract
For the last two decades, pathogenic concepts in Parkinson disease (PD) have revolved around the toxicity and spread of α-synuclein. Thus, α-synuclein would follow caudo-rostral propagation from the periphery to the central nervous system, first producing non-motor manifestations (such as constipation, sleep disorders and hyposmia), and subsequently impinging upon the mesencephalon to account for the cardinal motor features before reaching the neocortex as the disease evolves towards dementia. This model is the prevailing theory of the principal neurobiological mechanism of disease. Here, we scrutinize the temporal evolution of motor and non-motor manifestations in PD and suggest that, even though the postulated bottom-up mechanisms are likely to be involved, early involvement of the nigrostriatal system is a key and prominent pathophysiological mechanism. Upcoming studies of detailed clinical manifestations with newer neuroimaging techniques will allow us to more closely define, in vivo, the role of α-synuclein aggregates with respect to neuronal loss during the onset and progression of PD.
Collapse
|
45
|
Glycoconjugate journal special issue on: the glycobiology of Parkinson's disease. Glycoconj J 2021; 39:55-74. [PMID: 34757539 DOI: 10.1007/s10719-021-10024-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 09/14/2021] [Accepted: 09/24/2021] [Indexed: 10/19/2022]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder that affects over 10 million aging people worldwide. This condition is characterized by the degeneration of dopaminergic neurons in the pars compacta region of the substantia nigra (SNpc) and by aggregation of proteins, commonly α-synuclein (SNCA). The formation of Lewy bodies that encapsulate aggregated proteins in lipid vesicles is a hallmark of PD. Glycosylation of proteins and neuroinflammation are involved in the pathogenesis. SNCA has many posttranslational modifications and interacts with components of membranes that affect aggregation. The large membrane lipid dolichol accumulates in the brain upon age and has a significant effect on membrane structure. The replacement of dopamine and dopaminergic neurons are at the forefront of therapeutic development. This review examines the role of membrane lipids, glycolipids, glycoproteins and dopamine in the aggregation of SNCA and development of PD. We discuss the SNCA-dopamine-neuromelanin-dolichol axis and the role of membranes in neuronal stem cells that could be a regenerative therapy for PD patients.
Collapse
|
46
|
Morales I, Puertas-Avendaño R, Sanchez A, Perez-Barreto A, Rodriguez-Sabate C, Rodriguez M. Astrocytes and retrograde degeneration of nigrostriatal dopaminergic neurons in Parkinson's disease: removing axonal debris. Transl Neurodegener 2021; 10:43. [PMID: 34727977 PMCID: PMC8562009 DOI: 10.1186/s40035-021-00262-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 09/05/2021] [Indexed: 12/26/2022] Open
Abstract
Objective The dopaminergic nigrostriatal neurons (DA cells) in healthy people present a slow degeneration with aging, which produces cellular debris throughout life. About 2%–5% of people present rapid cell degeneration of more than 50% of DA cells, which produces Parkinson’s disease (PD). Neuroinflammation accelerates the cell degeneration and may be critical for the transition between the slow physiological and the rapid pathological degeneration of DA cells, particularly when it activates microglial cells of the medial forebrain bundle near dopaminergic axons. As synaptic debris produced by DA cell degeneration may trigger the parkinsonian neuroinflammation, this study investigated the removal of axonal debris produced by retrograde degeneration of DA cells, paying particular attention to the relative roles of astrocytes and microglia. Methods Rats and mice were injected in the lateral ventricles with 6-hydroxydopamine, inducing a degeneration of dopaminergic synapses in the striatum which was not accompanied by non-selective tissue damage, microgliosis or neuroinflammation. The possible retrograde degeneration of dopaminergic axons, and the production and metabolization of DA-cell debris were studied with immunohistochemical methods and analyzed in confocal and electron microscopy images. Results The selective degeneration of dopaminergic synapses in the striatum was followed by a retrograde degeneration of dopaminergic axons whose debris was found within spheroids of the medial forebrain bundle. These spheroids retained mitochondria and most (e.g., tyrosine hydroxylase, the dopamine transporter protein, and amyloid precursor protein) but not all (e.g., α-synuclein) proteins of the degenerating dopaminergic axons. Spheroids showed initial (autophagosomes) but not late (lysosomes) components of autophagy (incomplete autophagy). These spheroids were penetrated by astrocytic processes of the medial forebrain bundle, which provided the lysosomes needed to continue the degradation of dopaminergic debris. Finally, dopaminergic proteins were observed in the cell somata of astrocytes. No microgliosis or microglial phagocytosis of debris was observed in the medial forebrain bundle during the retrograde degeneration of dopaminergic axons. Conclusions The present data suggest a physiological role of astrocytic phagocytosis of axonal debris for the medial forebrain bundle astrocytes, which may prevent the activation of microglia and the spread of retrograde axonal degeneration in PD. Supplementary Information The online version contains supplementary material available at 10.1186/s40035-021-00262-1.
Collapse
Affiliation(s)
- Ingrid Morales
- Laboratory of Neurobiology and Experimental Neurology, Department of Basic Medical Sciences, Faculty of Medicine, La Laguna University, La Laguna, Tenerife, Canary Islands, Spain.,Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED) , Madrid, Spain
| | - Ricardo Puertas-Avendaño
- Laboratory of Neurobiology and Experimental Neurology, Department of Basic Medical Sciences, Faculty of Medicine, La Laguna University, La Laguna, Tenerife, Canary Islands, Spain
| | - Alberto Sanchez
- Laboratory of Neurobiology and Experimental Neurology, Department of Basic Medical Sciences, Faculty of Medicine, La Laguna University, La Laguna, Tenerife, Canary Islands, Spain.,Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED) , Madrid, Spain
| | - Adrian Perez-Barreto
- Laboratory of Neurobiology and Experimental Neurology, Department of Basic Medical Sciences, Faculty of Medicine, La Laguna University, La Laguna, Tenerife, Canary Islands, Spain
| | - Clara Rodriguez-Sabate
- Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED) , Madrid, Spain
| | - Manuel Rodriguez
- Laboratory of Neurobiology and Experimental Neurology, Department of Basic Medical Sciences, Faculty of Medicine, La Laguna University, La Laguna, Tenerife, Canary Islands, Spain. .,Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED) , Madrid, Spain.
| |
Collapse
|
47
|
Song N, Fang Y, Zhu H, Liu J, Jiang S, Sun S, Xu R, Ding J, Hu G, Lu M. Kir6.2 is essential to maintain neurite features by modulating PM20D1-reduced mitochondrial ATP generation. Redox Biol 2021; 47:102168. [PMID: 34673451 PMCID: PMC8577462 DOI: 10.1016/j.redox.2021.102168] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 12/28/2022] Open
Abstract
Kir6.2, a pore-forming subunit of the ATP-sensitive potassium (KATP) channels, regulates the functions of metabolically active tissues and acts as an ideal therapeutic target for multiple diseases. Previous studies have been conducted on peripheral kir6.2, but its precise physiological roles in the central nervous system (CNS) have rarely been revealed. In the current study, we evaluated the neurophenotypes and neuroethology of kir6.2 knockout (kir6.2-/-) mice. We demonstrated the beneficial effects of kir6.2 on maintaining the morphology of mesencephalic neurons and controlling the motor coordination of mice. The mechanisms underlying the abnormal neurological features of kir6.2 deficiency were analyzed by RNA sequencing (RNA-seq). Pm20d1, a gene encoding PM20D1 secretase that promotes the generation of endogenous mitochondria uncouplers in vivo, was dramatically upregulated in the midbrain of kir6.2-/- mice. Further investigations verified that PM20D1-induced increase of N-acyl amino acids (N-AAAs) from circulating fatty acids and amino acids promoted mitochondrial impairments and cut down the ATP generation, which mediated the morphological defects of the mesencephalic neurons and thus led to the behavioral impairments of kir6.2 knockout mice. This study is the first evidence to demonstrate the roles of kir6.2 in the morphological maintenance of neurite and motor coordination control of mice, which extends our understanding of kir6.2/KATP channels in regulating the neurophysiological function.
Collapse
Affiliation(s)
- Nanshan Song
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, 211166, China
| | - Yinquan Fang
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, 211166, China
| | - Hong Zhu
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, 211166, China
| | - Jiaqi Liu
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, 211166, China
| | - Siyuan Jiang
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, 211166, China
| | - Sifan Sun
- Department of Pharmacology, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Rong Xu
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, 211166, China
| | - Jianhua Ding
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, 211166, China
| | - Gang Hu
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, 211166, China; Department of Pharmacology, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Ming Lu
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, 211166, China; Neuroprotective Drug Discovery Key Laboratory, Department of Pharmacology, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
48
|
Palermo G, Giannoni S, Bellini G, Siciliano G, Ceravolo R. Dopamine Transporter Imaging, Current Status of a Potential Biomarker: A Comprehensive Review. Int J Mol Sci 2021; 22:11234. [PMID: 34681899 PMCID: PMC8538800 DOI: 10.3390/ijms222011234] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 11/16/2022] Open
Abstract
A major goal of current clinical research in Parkinson's disease (PD) is the validation and standardization of biomarkers enabling early diagnosis, predicting outcomes, understanding PD pathophysiology, and demonstrating target engagement in clinical trials. Molecular imaging with specific dopamine-related tracers offers a practical indirect imaging biomarker of PD, serving as a powerful tool to assess the status of presynaptic nigrostriatal terminals. In this review we provide an update on the dopamine transporter (DAT) imaging in PD and translate recent findings to potentially valuable clinical practice applications. The role of DAT imaging as diagnostic, preclinical and predictive biomarker is discussed, especially in view of recent evidence questioning the incontrovertible correlation between striatal DAT binding and nigral cell or axon counts.
Collapse
Affiliation(s)
- Giovanni Palermo
- Unit of Neurology, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (G.P.); (S.G.); (G.B.); (G.S.)
| | - Sara Giannoni
- Unit of Neurology, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (G.P.); (S.G.); (G.B.); (G.S.)
- Unit of Neurology, San Giuseppe Hospital, 50053 Empoli, Italy
| | - Gabriele Bellini
- Unit of Neurology, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (G.P.); (S.G.); (G.B.); (G.S.)
| | - Gabriele Siciliano
- Unit of Neurology, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (G.P.); (S.G.); (G.B.); (G.S.)
| | - Roberto Ceravolo
- Unit of Neurology, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (G.P.); (S.G.); (G.B.); (G.S.)
- Center for Neurodegenerative Diseases, Unit of Neurology, Parkinson’s Disease and Movement Disorders, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| |
Collapse
|
49
|
Sun J, Chen R, Tong Q, Ma J, Gao L, Fang J, Zhang D, Chan P, He H, Wu T. Convolutional neural network optimizes the application of diffusion kurtosis imaging in Parkinson's disease. Brain Inform 2021; 8:18. [PMID: 34585306 PMCID: PMC8479023 DOI: 10.1186/s40708-021-00139-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 08/11/2021] [Indexed: 11/25/2022] Open
Abstract
Objectives The literature regarding the use of diffusion-tensor imaging-derived metrics in the evaluation of Parkinson’s disease (PD) is controversial. This study attempted to assess the feasibility of a deep-learning-based method for detecting alterations in diffusion kurtosis measurements associated with PD. Methods A total of 68 patients with PD and 77 healthy controls were scanned using scanner-A (3 T Skyra) (DATASET-1). Meanwhile, an additional five healthy volunteers were scanned with both scanner-A and an additional scanner-B (3 T Prisma) (DATASET-2). Diffusion kurtosis imaging (DKI) of DATASET-2 had an extra b shell compared to DATASET-1. In addition, a 3D-convolutional neural network (CNN) was trained from DATASET-2 to harmonize the quality of scalar measures of scanner-A to a similar level as scanner-B. Whole-brain unpaired t test and Tract-Based Spatial Statistics (TBSS) were performed to validate the differences between the PD and control groups using the model-fitting method and CNN-based method, respectively. We further clarified the correlation between clinical assessments and DKI results. Results An increase in mean diffusivity (MD) was found in the left substantia nigra (SN) in the PD group. In the right SN, fractional anisotropy (FA) and mean kurtosis (MK) values were negatively correlated with Hoehn and Yahr (H&Y) scales. In the putamen (Put), FA values were positively correlated with the H&Y scales. It is worth noting that these findings were only observed with the deep learning method. There was neither a group difference nor a correlation with clinical assessments in the SN or striatum exceeding the significance level using the conventional model-fitting method. Conclusions The CNN-based method improves the robustness of DKI and can help to explore PD-associated imaging features. Supplementary Information The online version contains supplementary material available at 10.1186/s40708-021-00139-z.
Collapse
Affiliation(s)
- Junyan Sun
- Department of Neurobiology, Neurology and Geriatrics, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Disease, Beijing, 100053, China
| | - Ruike Chen
- Center for Brain Imaging Science and Technology, College of Biomedical Engineering and Instrumental Science, Zhejiang University, Hangzhou, 310027, Zhejiang, China
| | - Qiqi Tong
- Center for Brain Imaging Science and Technology, College of Biomedical Engineering and Instrumental Science, Zhejiang University, Hangzhou, 310027, Zhejiang, China.,Research Center for Healthcare Data Science, Zhejiang Lab, Hangzhou, Zhejiang, China
| | - Jinghong Ma
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Linlin Gao
- Department of Neurobiology, Neurology and Geriatrics, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Disease, Beijing, 100053, China
| | - Jiliang Fang
- Department of Radiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Dongling Zhang
- Department of Neurobiology, Neurology and Geriatrics, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Disease, Beijing, 100053, China
| | - Piu Chan
- Department of Neurobiology, Neurology and Geriatrics, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Disease, Beijing, 100053, China.,Clinical Center for Parkinson's Disease, Capital Medical University, Beijing, China.,Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Beijing Key Laboratory for Parkinson's Disease, Parkinson Disease Center of Beijing Institute for Brain Disorders, Beijing, China.,National Clinical Research Center for Geriatric Disorders, Beijing, China
| | - Hongjian He
- Center for Brain Imaging Science and Technology, College of Biomedical Engineering and Instrumental Science, Zhejiang University, Hangzhou, 310027, Zhejiang, China. .,Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, 310027, Zhejiang, China.
| | - Tao Wu
- Department of Neurobiology, Neurology and Geriatrics, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Disease, Beijing, 100053, China. .,Clinical Center for Parkinson's Disease, Capital Medical University, Beijing, China. .,Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Beijing Key Laboratory for Parkinson's Disease, Parkinson Disease Center of Beijing Institute for Brain Disorders, Beijing, China. .,National Clinical Research Center for Geriatric Disorders, Beijing, China.
| |
Collapse
|
50
|
Burtscher J, Syed MMK, Keller MA, Lashuel HA, Millet GP. Fatal attraction - The role of hypoxia when alpha-synuclein gets intimate with mitochondria. Neurobiol Aging 2021; 107:128-141. [PMID: 34428721 DOI: 10.1016/j.neurobiolaging.2021.07.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 07/21/2021] [Accepted: 07/24/2021] [Indexed: 12/21/2022]
Abstract
Alpha-synuclein aggregation and mitochondrial dysfunction are main pathological hallmarks of Parkinson's disease (PD) and several other neurodegenerative diseases, collectively known as synucleinopathies. However, increasing evidence suggests that they may not be sufficient to cause PD. Here we propose the role of hypoxia as a missing link that connects the complex interplay between alpha-synuclein biochemistry and pathology, mitochondrial dysfunctions and neurodegeneration in PD. We review the partly conflicting literature on alpha-synuclein binding to membranes and mitochondria and its impact on mitochondrial functions. From there, we focus on adverse changes in cellular environments, revolving around hypoxic stress, that may trigger or facilitate PD progression. Inter-dependent structural re-arrangements of mitochondrial membranes, including increased cytoplasmic exposure of mitochondrial cardiolipins and changes in alpha-synuclein localization and conformation are discussed consequences of such conditions. Enhancing cellular resilience could be an integral part of future combination-based therapies of PD. This may be achieved by boosting the capacity of cellular and specifically mitochondrial processes to regulate and adapt to altered proteostasis, redox, and inflammatory conditions and by inducing protective molecular and tissue re-modelling.
Collapse
Affiliation(s)
- Johannes Burtscher
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland; Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland.
| | - Muhammed Muazzam Kamil Syed
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute, EPFL, Lausanne, Switzerland
| | - Markus A Keller
- Institute of Human Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Hilal A Lashuel
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute, EPFL, Lausanne, Switzerland
| | - Grégoire P Millet
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|