1
|
Fernández-Fernández R, Ibias J, Del Toro-Pérez C, Lahera G, Gasca-Salas C. Alexithymia in Parkinson's Disease: A Meta-analysis. Am J Geriatr Psychiatry 2025; 33:638-653. [PMID: 39732593 DOI: 10.1016/j.jagp.2024.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 10/26/2024] [Accepted: 11/04/2024] [Indexed: 12/30/2024]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by motor and non-motor manifestations, including alexithymia. This condition is defined by difficulty in recognizing, articulating, and expressing one's emotional states. In this study, we conducted a systematic review and meta-analysis to compare the prevalence of alexithymia in PD patients and a healthy population, and to identify associated demographic and clinical factors. We identified 16 observational studies through Pubmed, EMBASE, PsycINFO, and SCOPUS, selecting articles published since 2002. Data were analyzed using a random-effects model. We conducted additional prevalence meta-analyses and correlation meta-analyses. We found that PD patients exhibit higher levels of alexithymia compared to the general population (combined effect size 0.65 [95% CI = 0.49-0.81; P <0.05]), and moderate but significant heterogeneity (I² = 52.42%, Q = 29.42, P <0.05), partially explained by regional differences, levodopa equivalent dosage (positive regression coefficient of 0.0006 [95% CI = 0.0001; 0.0011, P <0.05]); and cognitive scores (negative regression coefficient of -0.14 [95% CI = -0.24; -0.04, P<0.05]), after adjusting for covariates. The additional meta-analysis reported higher prevalence of alexithymia in PD and a pooled correlation coefficient of 0.496 (95% CI = 0.40-0.59, P <0.05) when we analyzed alexithymia and depression scores. To our knowledge, there are no previous meta-analysis applied to alexithymia in PD patients. Even though we could not determine whether alexithymia is a primary characteristic of PD, we found an association of higher levels of alexithymia with depression and higher levodopa equivalent daily dose. Furthermore, there are not enough studies to draw clear conclusions about the influence of cognitive status.
Collapse
Affiliation(s)
- Roberto Fernández-Fernández
- HM CINAC (Centro Integral de Neurociencias Abarca Campal) (RFF, CDTP, CGS), Hospital Universitario HM Puerta del Sur, HM Hospitales. Madrid, Spain; Instituto de Investigación Sanitaria HM Hospitales (RFF, CDTP, CGS), Madrid, Spain; Hospital Universitario Infanta Cristina (RFF), Madrid. Spain; PhD Program in Health Sciences (RFF), University of Alcalá de Henares, Madrid, Spain
| | - Javier Ibias
- Department of Behavioral Sciences and Methodology (JI), Faculty of Psychology, National Distance Education University (UNED), Madrid, Spain
| | - Cristina Del Toro-Pérez
- HM CINAC (Centro Integral de Neurociencias Abarca Campal) (RFF, CDTP, CGS), Hospital Universitario HM Puerta del Sur, HM Hospitales. Madrid, Spain; Instituto de Investigación Sanitaria HM Hospitales (RFF, CDTP, CGS), Madrid, Spain
| | - Guillermo Lahera
- Department of Medicine and Medical Specialities (GL), University of Alcala, Alcalá de Henares, Spain; Ramón y Cajal Institute of Sanitary Research (IRYCIS) (GL), Madrid, Spain; Psychiatry Service (GL, CGS), Center for Biomedical Research in the Mental Health Network, University Hospital Príncipe de Asturias, Alcalá de Henares, Spain
| | - Carmen Gasca-Salas
- HM CINAC (Centro Integral de Neurociencias Abarca Campal) (RFF, CDTP, CGS), Hospital Universitario HM Puerta del Sur, HM Hospitales. Madrid, Spain; Instituto de Investigación Sanitaria HM Hospitales (RFF, CDTP, CGS), Madrid, Spain; Network Center for Biomedical Research on Neurodegenerative Diseases (CIBERNED) (CGS), Instituto Carlos III, Madrid, Spain; University CEU-San Pablo (CGS), Madrid, Spain.
| |
Collapse
|
2
|
Rigon L, Fogliano C, Chaudhuri KR, Poplawska-Domaszewicz K, Falup-Pecurariu C, Murasan I, Wolfschlag M, Odin P, Antonini A. Managing impulse control and related behavioral disorders in Parkinson's disease: where we are in 2025? Expert Rev Neurother 2025:1-18. [PMID: 40152930 DOI: 10.1080/14737175.2025.2485337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 03/03/2025] [Accepted: 03/24/2025] [Indexed: 03/30/2025]
Abstract
INTRODUCTION Impulse control and related behavioral disorders (ICBDs) commonly complicate Parkinson's disease (PD) course. The ICBDs spectrum encompasses two groups of conditions, with distinct pathophysiology: proper 'impulse control disorders (ICDs)' (e.g. gambling) and the 'ICDs related disorders (ICDs-RD)' (e.g. punding). Behavioral disturbances are associated with dopamine replacement therapies. ICBDs affect quality of life of patients and caregivers, making their management essential for reducing PD overall burden. AREAS COVERED This article reviews current management strategies for ICBDs in PD. The authors highlight strengths and limitations of these strategies, and explore the potential role of emerging treatment options, giving particular focus to new compounds and invasive therapies. EXPERT OPINION Prevention, close monitoring, and caregiver involvement are essential in managing ICBDs in PD. Treatment approaches should be tailored to ICBDs' functional impact and aimed to reduce the pulsatile stimulation of dopamine receptors, especially D2. Dopamine agonist (DA) tapering remains the primary therapeutic approach, alongside psychotherapy and second-line agents, like atypical antipsychotics and serotonin-noradrenaline reuptake inhibitors. Insights into ICDs pathophysiology and DA-specific pharmacodynamics indicate safer profiles for certain preparations (e.g. rotigotine patches) and possibly for D1/D5 agonists like tavapadon. Invasive treatments, including deep brain stimulation and infusion therapies, should be prioritized in advanced-stage PD complicated by ICBDs.
Collapse
Affiliation(s)
- Leonardo Rigon
- Department of Neurorehabilitation, IRCCS San Camillo Hospital, Venice, Italy
- Padova Neuroscience Center (PNC), University of Padua, Padua, Italy
| | - Carmelo Fogliano
- Parkinson's Disease and Movement Disorders Unit, Department of Neuroscience, Centre for Rare Neurological Diseases (ERN-RND), University of Padova, Padova, Italy
| | - K Ray Chaudhuri
- Parkinson's Foundation Centre of Excellence, King's College Hospital, London, UK
| | - Karolina Poplawska-Domaszewicz
- Parkinson's Foundation Centre of Excellence, King's College Hospital, London, UK
- Department of Neurology, Poznan University of Medical Sciences, Poznan, Poland
| | - Cristian Falup-Pecurariu
- Faculty of Medicine, Transilvania University, Brasov, Romania
- Department of Neurology, County Clinic Hospital, Brasov, Romania
| | - Iulia Murasan
- Department of Neurology, County Clinic Hospital, Brasov, Romania
| | - Mirjam Wolfschlag
- Clinical Addiction Research Unit, Department of Clinical Sciences Lund, Psychiatry, Faculty of Medicine Lund University, Lund, Sweden
- Department of Psychiatry Malmö-Trelleborg, Region Skåne, Malmö Addiction Center, Kristianstad, Sweden
| | - Per Odin
- Division of Neurology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
- Department of Neurology, Rehabilitation Medicine, Memory and Geriatrics, Skåne University Hospital, Lund, Sweden
| | - Angelo Antonini
- Padova Neuroscience Center (PNC), University of Padua, Padua, Italy
- Parkinson's Disease and Movement Disorders Unit, Department of Neuroscience, Centre for Rare Neurological Diseases (ERN-RND), University of Padova, Padova, Italy
- Study Center for Neurodegeneration (CESNE), University of Padova, Padova, Italy
| |
Collapse
|
3
|
Jellinger KA. Behavioral disorders in Parkinson disease: current view. J Neural Transm (Vienna) 2025; 132:169-201. [PMID: 39453553 DOI: 10.1007/s00702-024-02846-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 10/02/2024] [Indexed: 10/26/2024]
Abstract
Patients with Parkinson disease (PD) frequently experience several behavioral symptoms, such as anxiety, apathy, irritability, agitation, impulsive control and obsessive-compulsive or REM sleep behavior disorders, which can cause severe psychosocial problems and impair quality of life. Occurring in 30-70% of PD patients, these symptoms can manifest at early stages of the disease, sometimes even before the appearance of classic motor symptoms, while others can develop later. Behavioral changes in PD show distinct patterns of brain atrophy, dopaminergic and serotonergic deterioration, altered neuronal connectivity in frontostriatal, corticolimbic, default mode and other networks due to a cascade linking molecular pathologies and deficits in multiple behavior domains. The changes suggest a multi-system neurodegenerative process in the context of a specific α-synucleinopathy inducing a variety of biochemical and functional changes, the neurobiological basis and clinical relevance of which await further elucidation. This paper is intended to review the recent literature with focus on the main behavioral disturbances in PD patients, their epidemiology, clinical features, risk factors, animal models, neuroimaging findings, pathophysiological backgrounds, and treatment options of these deleterious lesions.
Collapse
Affiliation(s)
- Kurt A Jellinger
- Institute of Clinical Neurobiology, Alberichgasse 5/13, 1150, Vienna, Austria.
| |
Collapse
|
4
|
Bernasconi E, Amstutz D, Averna A, Fischer P, Sousa M, Debove I, Petermann K, Alva L, Magalhães AD, Lachenmayer ML, Nguyen TAK, Schuepbach M, Nowacki A, Pollo C, Krack P, Tinkhauser G. Neurophysiological gradient in the Parkinsonian subthalamic nucleus as a marker for motor symptoms and apathy. NPJ Parkinsons Dis 2025; 11:4. [PMID: 39753562 PMCID: PMC11698975 DOI: 10.1038/s41531-024-00848-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 10/28/2024] [Indexed: 01/06/2025] Open
Abstract
Sensing-based deep brain stimulation should optimally consider both the motor and neuropsychiatric domain to maximize quality of life of Parkinson's disease (PD) patients. Here we characterize the neurophysiological properties of the subthalamic nucleus (STN) in 69 PD patients using a newly established neurophysiological gradient metric and contextualize it with motor symptoms and apathy. We could evidence a STN power gradient that holds most of the spectral information between 5 and 30 Hz spanning along the dorsal-ventral axis. It shows elevated power in the sub-beta range (8-12 Hz) toward the ventral STN, and elevated dorsal beta power (16-24 Hz) indicative for the hemispheres contralateral to the more affected hemi-body side. The rigidity response to DBS was highest dorsally on the axis. Importantly, apathetic symptoms can be related to reduced ventral alpha power. In conclusion, the STN spectral gradient may inform about the motor and neuropsychiatric domain, supporting integrative closed-loop strategies.
Collapse
Affiliation(s)
- Elena Bernasconi
- Department of Neurology, Bern University Hospital and University of Bern, Bern, Switzerland
- Graduate School of Cellular and Biomedical Sciences (GCB), University of Bern, Bern, Switzerland
- Department of Biomedical Research, University of Bern, Bern, Switzerland
| | - Deborah Amstutz
- Department of Neurology, Bern University Hospital and University of Bern, Bern, Switzerland
- Graduate School for Health Sciences, University of Bern, Bern, Switzerland
| | - Alberto Averna
- Department of Neurology, Bern University Hospital and University of Bern, Bern, Switzerland
- Department of Biomedical Research, University of Bern, Bern, Switzerland
| | - Petra Fischer
- School of Physiology, Pharmacology & Neuroscience, University of Bristol, University Walk, BS8 1TD, Bristol, UK
| | - Mario Sousa
- Department of Neurology, Bern University Hospital and University of Bern, Bern, Switzerland
- Graduate School for Health Sciences, University of Bern, Bern, Switzerland
| | - Ines Debove
- Department of Neurology, Bern University Hospital and University of Bern, Bern, Switzerland
| | - Katrin Petermann
- Department of Neurology, Bern University Hospital and University of Bern, Bern, Switzerland
| | - Laura Alva
- Department of Neurology, Bern University Hospital and University of Bern, Bern, Switzerland
| | - Andreia D Magalhães
- Department of Neurology, Bern University Hospital and University of Bern, Bern, Switzerland
| | - M Lenard Lachenmayer
- Department of Neurology, Bern University Hospital and University of Bern, Bern, Switzerland
| | - Thuy-Anh K Nguyen
- Department of Neurosurgery, Bern University Hospital and University of Bern, Bern, Switzerland
- ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
| | | | - Andreas Nowacki
- Department of Neurosurgery, Bern University Hospital and University of Bern, Bern, Switzerland
| | - Claudio Pollo
- Department of Neurosurgery, Bern University Hospital and University of Bern, Bern, Switzerland
| | - Paul Krack
- Department of Neurology, Bern University Hospital and University of Bern, Bern, Switzerland
| | - Gerd Tinkhauser
- Department of Neurology, Bern University Hospital and University of Bern, Bern, Switzerland.
- Department of Biomedical Research, University of Bern, Bern, Switzerland.
| |
Collapse
|
5
|
Onofrj M, De Rosa MA, Russo M, Ajdinaj P, Calisi D, Thomas A, Sensi SL. Psychiatric Disorders and Cognitive Fluctuations in Parkinson's Disease: Changing Approaches in the First Decades of the 21st Century. Brain Sci 2024; 14:1233. [PMID: 39766432 PMCID: PMC11727288 DOI: 10.3390/brainsci14121233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 11/29/2024] [Accepted: 12/03/2024] [Indexed: 01/15/2025] Open
Abstract
Parkinson's Disease (PD) is a multifaceted neurodegenerative disorder characterized, in addition to the well-recognized motor disturbances, by a complex interplay between cognitive and psychiatric manifestations. We dissect the complex landscape of PD-related psychiatric symptoms, taking into account the impact of functional neurological disorders, somatic delusions, impulse control disorders, and conditions within the bipolar spectrum. The newer entities of somatoform and functional neurological disorders, as well as preexisting bipolar spectrum disorders, are analyzed in detail. Moreover, we emphasize the need for a holistic understanding of PD, wherein the cognitive and psychiatric dimensions are valued alongside motor symptoms. Such an approach aims to facilitate early detection and personalized interventions, and enhance the overall quality of life for individuals suffering from this neurodegenerative disorder.
Collapse
Affiliation(s)
- Marco Onofrj
- Department of Neuroscience, Imaging and Clinical Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (M.A.D.R.); (M.R.); (P.A.); (D.C.); (A.T.); (S.L.S.)
| | - Matteo Alessandro De Rosa
- Department of Neuroscience, Imaging and Clinical Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (M.A.D.R.); (M.R.); (P.A.); (D.C.); (A.T.); (S.L.S.)
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
- Neurology Institute, SS. Annunziata University Hospital, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Mirella Russo
- Department of Neuroscience, Imaging and Clinical Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (M.A.D.R.); (M.R.); (P.A.); (D.C.); (A.T.); (S.L.S.)
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
- Neurology Institute, SS. Annunziata University Hospital, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Paola Ajdinaj
- Department of Neuroscience, Imaging and Clinical Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (M.A.D.R.); (M.R.); (P.A.); (D.C.); (A.T.); (S.L.S.)
| | - Dario Calisi
- Department of Neuroscience, Imaging and Clinical Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (M.A.D.R.); (M.R.); (P.A.); (D.C.); (A.T.); (S.L.S.)
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
- Neurology Institute, SS. Annunziata University Hospital, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Astrid Thomas
- Department of Neuroscience, Imaging and Clinical Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (M.A.D.R.); (M.R.); (P.A.); (D.C.); (A.T.); (S.L.S.)
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Stefano Luca Sensi
- Department of Neuroscience, Imaging and Clinical Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (M.A.D.R.); (M.R.); (P.A.); (D.C.); (A.T.); (S.L.S.)
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
- Neurology Institute, SS. Annunziata University Hospital, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
- Institute for Advanced Biomedical Technologies (ITAB), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| |
Collapse
|
6
|
Witt K, Levin J, van Eimeren T, Hasan A, Ebersbach G. Diagnostics and treatment of impulse control disorders, psychosis and delirium: systemic review-based recommendations - guideline "Parkinson's disease" of the German Society of Neurology. J Neurol 2024; 271:7402-7421. [PMID: 39046524 PMCID: PMC11588934 DOI: 10.1007/s00415-024-12576-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/05/2024] [Accepted: 07/07/2024] [Indexed: 07/25/2024]
Abstract
BACKGROUND AND OBJECTIVE Impulse control disorders (ICD), psychosis and delirium are part of the spectrum of behavioural changes associated with Parkinson's disease (PD). The diagnostic and therapeutic management of these rather complex neuropsychiatric conditions has been updated in the clinical guideline by the German Society of Neurology (DGN). METHODS Recommendations are based on a systematic literature reviews, other relevant guidelines and expert opinion. RESULTS Patients receiving dopamine agonists (DA) therapy should be informed about the symptoms and risks of an ICD and should be routinely screened for ICD symptoms. In the presence of an ICD, DA should be reduced or discontinued and psychotherapeutic treatment may be considered. Non-oral therapies (levodopa/carbidopa intestinal gel infusion or deep brain stimulation) may also be an option for appropriate candidates. Psychosis in PD often has a gradual onset. Cognitive and affective disorders, psychiatric and medical comorbidities as well as polypharmacy are risk factors for a psychosis. Non-pharmacological treatments should be implemented as soon as possible and anti-parkinsonian medications should be adjusted/reduced if feasible. For psychosis associated with PD, quetiapine or clozapine should be used on an as-needed basis and for as short a time as is necessary, with safety monitoring. Delirium in PD may be underdiagnosed due to an overlap with chronic neuropsychiatric features of PD. Although transient by definition, delirium in PD can lead to permanent cognitive decline, motor impairment and increased mortality. Management of delirium includes pharmacological and non-pharmacological interventions. CONCLUSION The updated guideline encompasses the evidence-based diagnostic, non-pharmacological and pharmacological management of ICD, psychosis and delirium in PD.
Collapse
Affiliation(s)
- Karsten Witt
- Department of Neurology, School of Medicine and Health Sciences, Carl von Ossietzky University of Oldenburg, Marienstrasse 15, 26121, Oldenburg, Germany.
- University Clinic of Neurology, Evangelical Hospital, Oldenburg, Germany.
- Center of Neurosensory Sciences, University of Oldenburg, Oldenburg, Germany.
| | - Johannes Levin
- Department of Neurology, LMU University Hospital, LMU Munich, Munich, Germany
- German Center for Neurodegenerative Diseases, Site Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | | | - Alkomiet Hasan
- Department of Psychiatry, Psychotherapy and Psychosomatics, Faculty of Medicine, University of Augsburg, Augsburg, Germany
- DZPG (German Center for Mental Health), Partner Site München/Augsburg, Augsburg, Germany
| | | |
Collapse
|
7
|
Li H, Yang Y, Yang L, Xie A. Clinical management model for impulse control disorders in Parkinson's disease. CNS Spectr 2024:1-10. [PMID: 39468854 DOI: 10.1017/s1092852924000403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Over the last decade, we have gained a better understanding of impulse control disorder in Parkinson's disease (PD-ICD), a medication complication in PD. Researchers were aware of its complexity and took efforts to learn more about its diagnostic and treatment possibilities. Nevertheless, clinical management for it is currently neglected. We conducted a narrative overview of literature published from 2012 to October 2023 on various aspects of clinical management for PD-ICD. A potential "susceptibility-catalytic-stress" model in the development of PD-ICD was proposed and a profile encoding predictors for PD-ICD was created. Based on these predictors, some methods for prediction were recently developed for better prediction, such as the polymorphic dopamine genetic risk score and the clinic-genetic ICD-risk score. A variety of treatment options, including dose reduction of dopamine receptor agonists (DAs), DAs removal, DAs switch, and add-on therapy, are investigated with inconsistent reports. Based on current findings, we developed a clinical management model prototype centered on prevention, consisting of prediction, prevention, follow-up and monitoring, therapy, and recurrence prevention, for clinical reference, and further proposed 4 key clinical management principles, including standardization, prediction centered, persistence, and whole course.
Collapse
Affiliation(s)
- Han Li
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yong Yang
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Liying Yang
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Anmu Xie
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
- Institute of Cerebrovascular Diseases, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
8
|
Barbosa RMG, Soares MC, Portela DMMC, Guimarães TG, Cury RG. New Perspectives of Deep Brain Stimulation Indications for Parkinson's Disease: A Critical Review. Brain Sci 2024; 14:638. [PMID: 39061379 PMCID: PMC11274985 DOI: 10.3390/brainsci14070638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 06/23/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024] Open
Abstract
Deep Brain Stimulation (DBS) is an effective treatment option for patients with dopaminergic complications of Parkinson's disease (PD) and drug-refractory PD tremor. However, DBS and its indications can be challenging, and they are not often debated in the medical community. Through a critical narrative review, the objective of this paper is to improve the comprehension of DBS indications and help to solve the puzzle that this process can be. Proper patient selection is the first step for a good surgical outcome. In this review, then, relevant considerations are discussed, involving PD genes, PD phenotypes, indications of early stages, non-motor symptoms, neuroimaging predictors, comorbidities, and age. Individualized approaches are encouraged, including clinical and radiological factors. Social support during the whole follow-up and expectations alignment are necessary through this process and are also debated.
Collapse
Affiliation(s)
- Renata Montes Garcia Barbosa
- Movement Disorders Center, Department of Neurology, School of Medicine, University of São Paulo, São Paulo 05403-010, Brazil; (R.M.G.B.); (M.C.S.); (T.G.G.)
| | - Miriam Carvalho Soares
- Movement Disorders Center, Department of Neurology, School of Medicine, University of São Paulo, São Paulo 05403-010, Brazil; (R.M.G.B.); (M.C.S.); (T.G.G.)
| | - Denise Maria Meneses Cury Portela
- Movement Disorders Center, Department of Neurology, School of Medicine, Centro Universitário Uninovafapi (UNINOVAFAPI), Teresina 64073505, Brazil;
| | - Thiago Gonçalves Guimarães
- Movement Disorders Center, Department of Neurology, School of Medicine, University of São Paulo, São Paulo 05403-010, Brazil; (R.M.G.B.); (M.C.S.); (T.G.G.)
| | - Rubens Gisbert Cury
- Movement Disorders Center, Department of Neurology, School of Medicine, University of São Paulo, São Paulo 05403-010, Brazil; (R.M.G.B.); (M.C.S.); (T.G.G.)
| |
Collapse
|
9
|
Wirth T, Goetsch T, Corvol JC, Roze E, Mariani LL, Vidailhet M, Grabli D, Mallet L, Pelissolo A, Rascol O, Brefel-Courbon C, Ory-Magne F, Arbus C, Bekadar S, Krystkowiak P, Marques A, Llorca M, Krack P, Castrioto A, Fraix V, Maltete D, Defebvre L, Kreisler A, Houeto JL, Tranchant C, Meyer N, Anheim M. Prognosis of impulse control disorders in Parkinson's disease: a prospective controlled study. J Neurol 2024; 271:2412-2422. [PMID: 38214756 DOI: 10.1007/s00415-023-12170-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 12/21/2023] [Accepted: 12/23/2023] [Indexed: 01/13/2024]
Abstract
BACKGROUND The long-term prognosis of impulsive compulsive disorders (ICD) remains poorly studied in Parkinson's disease (PD). OBJECTIVE Evaluating the natural history of ICD and its impact on PD symptoms including cognition and treatment adjustments. MATERIALS AND METHODS We assessed PD patients at baseline (BL) with (BL-ICD+) or without (BL-ICD-) ICD despite dopamine agonist (DA) exposure of > 300 mg levodopa-equivalent daily dose for > 12 months at baseline and after more than two years of follow-up. ICD were assessed using the Ardouin's Scale of Behaviors in PD (ASBPD), cognition using the Mattis scale, and PD symptoms using the UPDRS score. Treatment adjustments, DA withdrawal-associated symptoms, and ICDs social consequences were recorded. RESULTS 149 patients were included (78 cases and 71 controls), mean duration of follow-up was 4.4 ± 1 years. At baseline, psychiatric disorders were more common among BL-ICD + (42.3 vs 12.3% among BL-ICD-, p < 0.01). At follow-up, 53.8% of BL-ICD + were not ICD-free while 21.1% of BL-ICD- had developed ICD. BL-ICD + more frequently experienced akinesia (21.8 vs 8.5%, p = 0.043) and rigidity worsening (11.5 vs 1.4%, p = 0.019) following therapeutic modifications. Decision to decrease > 50% DA doses (12.8 vs 1.4%, p = 0.019) or to withdraw DA (19.2 vs 5.6%, p = 0.025) was more frequently considered among BL-ICD+ . At follow-up, the prevalence of cognitive decline was lower among BL-ICD + (19.2 vs 37.1%, p = 0.025). CONCLUSION ICDs were associated with increased psychiatric burden at baseline and better cognitive prognosis. Most patients were still showing ICDs at the follow-up visit, suggesting ICD to be considered as a chronic, neuropsychiatric disorder.
Collapse
Affiliation(s)
- Thomas Wirth
- Service de Neurologie, Hôpitaux Universitaires de Strasbourg, 67098, Strasbourg, France.
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, INSERM-U964/CNRS-UMR7104/Université de Strasbourg, Illkirch-Graffenstaden, France.
- Fédération de Médecine Translationnelle de Strasbourg, Université de Strasbourg, Strasbourg, France.
| | - Thibaut Goetsch
- Service de santé Publique, GMRC, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Jean-Christophe Corvol
- Assistance Publique Hôpitaux de Paris, Paris Brain Institute-ICM, Inserm, CNRS, Departement de neurology, Clinical Investigation Center for neurosciences, Pitié-Salpêtrière Hospital, Sorbonne Université, Paris, France
| | - Emmanuel Roze
- Assistance Publique Hôpitaux de Paris, Paris Brain Institute-ICM, Inserm, CNRS, Departement de neurology, Clinical Investigation Center for neurosciences, Pitié-Salpêtrière Hospital, Sorbonne Université, Paris, France
| | - Louise-Laure Mariani
- Assistance Publique Hôpitaux de Paris, Paris Brain Institute-ICM, Inserm, CNRS, Departement de neurology, Clinical Investigation Center for neurosciences, Pitié-Salpêtrière Hospital, Sorbonne Université, Paris, France
| | - Marie Vidailhet
- Assistance Publique Hôpitaux de Paris, Paris Brain Institute-ICM, Inserm, CNRS, Departement de neurology, Clinical Investigation Center for neurosciences, Pitié-Salpêtrière Hospital, Sorbonne Université, Paris, France
| | - David Grabli
- Assistance Publique Hôpitaux de Paris, Paris Brain Institute-ICM, Inserm, CNRS, Departement de neurology, Clinical Investigation Center for neurosciences, Pitié-Salpêtrière Hospital, Sorbonne Université, Paris, France
| | - Luc Mallet
- Assistance Publique Hôpitaux de Paris, Paris Brain Institute-ICM, Inserm, CNRS, Departement de neurology, Clinical Investigation Center for neurosciences, Pitié-Salpêtrière Hospital, Sorbonne Université, Paris, France
- Department of Mental Health and Psychiatry, University of Geneva, Geneva, Switzerland
| | - Antoine Pelissolo
- INSERM U955, Laboratoire Neuro-Psychiatrie Translationnelle, Créteil, France
- AP-HP, DMU IMPACT, Service de Psychiatrie, Hôpitaux Universitaires Henri-Mondor, Créteil, France
| | - Olivier Rascol
- Service de neurologie B8, CHU Toulouse, Toulouse, France
- Centre d'investigations Clinique, CHU Toulouse, Toulouse, France
| | | | | | - Christophe Arbus
- Pôle de psychiatrie, Universitaire, CHU de Toulouse, Université Paul Sabatier Toulouse, Toulouse, France
| | - Samir Bekadar
- Assistance Publique Hôpitaux de Paris, Paris Brain Institute-ICM, Inserm, CNRS, Departement de neurology, Clinical Investigation Center for neurosciences, Pitié-Salpêtrière Hospital, Sorbonne Université, Paris, France
| | - Pierre Krystkowiak
- Service de Neurologie, Centre Hospitalo-Universitaire d'Amiens, Amiens, France
| | - Ana Marques
- CHU, CNRS, Clermont Auvergne INP, Institut Pascal, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Michel Llorca
- Service de Psychiatrie, Centre Hospitalo-universitaire de Clermont-Ferrand, Clermont-Ferrand, France
| | - Paul Krack
- Department of Neurology, Bern University Hospital and University of Bern, Bern, Switzerland
| | - Anna Castrioto
- Neurology Department, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, University Grenoble Alpes, 38000, Grenoble, France
| | - Valérie Fraix
- Neurology Department, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, University Grenoble Alpes, 38000, Grenoble, France
| | - David Maltete
- Service de Neurologie, Centre Hospitalier Universitaire, Rouen, France
| | - Luc Defebvre
- Neurologie and Pathologie du Mouvement, CHU de Lille, Lille, France
| | | | | | - Christine Tranchant
- Service de Neurologie, Hôpitaux Universitaires de Strasbourg, 67098, Strasbourg, France
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, INSERM-U964/CNRS-UMR7104/Université de Strasbourg, Illkirch-Graffenstaden, France
- Fédération de Médecine Translationnelle de Strasbourg, Université de Strasbourg, Strasbourg, France
| | - Nicolas Meyer
- Service de santé Publique, GMRC, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Mathieu Anheim
- Service de Neurologie, Hôpitaux Universitaires de Strasbourg, 67098, Strasbourg, France
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, INSERM-U964/CNRS-UMR7104/Université de Strasbourg, Illkirch-Graffenstaden, France
- Fédération de Médecine Translationnelle de Strasbourg, Université de Strasbourg, Strasbourg, France
| |
Collapse
|
10
|
Barbosa RP, Moreau C, Rolland AS, Rascol O, Brefel-Courbon C, Ory-Magne F, Bastos P, de Barros A, Hainque E, Rouaud T, Marques A, Eusebio A, Benatru I, Drapier S, Guehl D, Maltete D, Tranchant C, Wirth T, Giordana C, Tir M, Thobois S, Hopes L, Hubsch C, Jarraya B, Corvol JC, Bereau M, Devos D, Fabbri M. The impact of subthalamic deep-brain stimulation in restoring motor symmetry in Parkinson's disease patients: a prospective study. J Neurol 2024; 271:2582-2595. [PMID: 38334813 DOI: 10.1007/s00415-023-12162-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/15/2023] [Accepted: 12/16/2023] [Indexed: 02/10/2024]
Abstract
BACKGROUND AND OBJECTIVES The impact of subthalamic deep-brain stimulation (STN-DBS) on motor asymmetry and its influence on both motor and non-motor outcomes remain unclear. The present study aims at assessing the role of STN-DBS on motor asymmetry and how its modulation translates into benefits in motor function, activities of daily living (ADLs) and quality of life (QoL). METHODS Postoperative motor asymmetry has been assessed on the multicentric, prospective Predictive Factors and Subthalamic Stimulation in Parkinson's Disease cohort. Asymmetry was evaluated at both baseline (pre-DBS) and 1 year after STN-DBS. A patient was considered asymmetric when the right-to-left MDS-UPDRS part III difference was ≥ 5. In parallel, analyses have been carried out using the absolute right-to-left difference. The proportion of asymmetric patients at baseline was compared to that in the post-surgery evaluation across different medication/stimulation conditions. RESULTS 537 PD patients have been included. The proportion of asymmetric patients was significantly reduced after both STN-DBS and medication administration (asymmetric patients: 50% in pre-DBS MedOFF, 35% in MedOFF/StimON, 26% in MedON/StimOFF, and 12% in MedON/StimON state). Older patients at surgery and with higher baseline UPDRS II scores were significantly less likely to benefit from STN-DBS at the level of motor asymmetry. No significant correlation between motor asymmetry and ADLs (UPDRS II) or overall QoL (PDQ-39) score was observed. Asymmetric patients had significantly higher mobility, communication, and daily living PDQ-39 sub-scores. CONCLUSIONS Both STN-DBS and levodopa lead to a reduction in motor asymmetry. Motor symmetry is associated with improvements in certain QoL sub-scores.
Collapse
Affiliation(s)
- Raquel Pinheiro Barbosa
- Department of Clinical Pharmacology and Neurosciences, Parkinson Expert Center, Centre d'Investigation Clinique CIC1436, NeuroToul COEN Center, Toulouse, NS-PARK/FCRIN Network, University Hospital of Toulouse, Toulouse, France
| | - Caroline Moreau
- Department of Medical Pharmacology, Neurology, Referent Center of Parkinson's Disease, CHU of Lille, Univ. Lille Neuroscience & Cognition, Inserm, UMR-S1172, Licend, NS-PARK/FCRIN Network, 59000, Lille, France
- Movement Disorders Department, Referent Center of Parkinson's Disease, CHU of Lille, Univ. Lille Neuroscience & Cognition, Inserm, UMR-S1172, Licend, NS-PARK/FCRIN Network, 59000, Lille, France
| | - Anne Sophie Rolland
- Department of Medical Pharmacology, Neurology, Referent Center of Parkinson's Disease, CHU of Lille, Univ. Lille Neuroscience & Cognition, Inserm, UMR-S1172, Licend, NS-PARK/FCRIN Network, 59000, Lille, France
- Movement Disorders Department, Referent Center of Parkinson's Disease, CHU of Lille, Univ. Lille Neuroscience & Cognition, Inserm, UMR-S1172, Licend, NS-PARK/FCRIN Network, 59000, Lille, France
| | - Olivier Rascol
- Department of Clinical Pharmacology and Neurosciences, Parkinson Expert Center, Centre d'Investigation Clinique CIC1436, NeuroToul COEN Center, Toulouse, NS-PARK/FCRIN Network, University Hospital of Toulouse, Toulouse, France
| | - Christine Brefel-Courbon
- Department of Clinical Pharmacology and Neurosciences, Parkinson Expert Center, Centre d'Investigation Clinique CIC1436, NeuroToul COEN Center, Toulouse, NS-PARK/FCRIN Network, University Hospital of Toulouse, Toulouse, France
| | - Fabienne Ory-Magne
- Department of Clinical Pharmacology and Neurosciences, Parkinson Expert Center, Centre d'Investigation Clinique CIC1436, NeuroToul COEN Center, Toulouse, NS-PARK/FCRIN Network, University Hospital of Toulouse, Toulouse, France
| | - Paulo Bastos
- Department of Clinical Pharmacology and Neurosciences, Parkinson Expert Center, Centre d'Investigation Clinique CIC1436, NeuroToul COEN Center, Toulouse, NS-PARK/FCRIN Network, University Hospital of Toulouse, Toulouse, France
| | - Amaury de Barros
- Department of Clinical Pharmacology and Neurosciences, Parkinson Expert Center, Centre d'Investigation Clinique CIC1436, NeuroToul COEN Center, Toulouse, NS-PARK/FCRIN Network, University Hospital of Toulouse, Toulouse, France
| | - Elodie Hainque
- Department of Neurology, NS-PARK/FCRIN Network, France, Sorbonne Université, Paris Brain Institute-ICM, Inserm, CNRS, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Tiphaine Rouaud
- Department of Neurology, NS-PARK/FCRIN Network, Nantes University Hospital, 44093, Nantes Cedex, France
| | - Ana Marques
- Neurology Department, NS-PARK/FCRIN Network, Université Clermont Auvergne, EA7280, Clermont-Ferrand University Hospital, 63000, Clermont-Ferrand, France
| | - Alexandre Eusebio
- Aix Marseille Université, AP-HM, Hôpital de La Timone, Service de Neurologie et Pathologie du Mouvement, and UMR CNRS, Marseille et Versailles, France
| | - Isabelle Benatru
- Service de Neurologie, Centre Expert Parkinson, NS-PARK/FCRIN Network, CIC-INSERM 1402, CHU Poitiers, 86000, Poitiers, France
| | - Sophie Drapier
- Department of Neurology, NS-PARK/FCRIN Network, Rennes University Hospital, CIC-INSERM 1414, 35033, Rennes Cedex, France
| | - Dominique Guehl
- CHU de Bordeaux, Centre Expert Parkinson, Institut des Maladies Neuro-Dégénératives, 33000, Bordeaux, France
| | - David Maltete
- Department of Neurology, Rouen University Hospital and University of Rouen, Rouen, France
- Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, NS-PARK/FCRIN Network, INSERM U1239, Mont-Saint-Aignan, France
| | - Christine Tranchant
- Service de Neurologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
- Institut de Génétique Et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM-U964/CNRS-UMR7104/Université de Strasbourg, Illkirch, France
- NS-PARK/FCRIN Network, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
| | - Thomas Wirth
- Service de Neurologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
- Institut de Génétique Et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM-U964/CNRS-UMR7104/Université de Strasbourg, Illkirch, France
- NS-PARK/FCRIN Network, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
| | - Caroline Giordana
- Neurology Department, Centre Hospitalier Universitaire de Nice, Université Côte d'Azur, Nice, France
| | - Melissa Tir
- Department of Neurology, Expert Centre for Parkinson's Disease, NS-PARK/FCRIN Network, Amiens University Hospital, EA 4559 Laboratoire de Neurosciences Fonctionnelles et Pathologie (LNFP) Université de Picardie Jules Verne, University of Picardy Jules Verne (UPJV), Amiens, France
- Department of Neurosurgery, Expert Centre for Parkinson's Disease, NS-PARK/FCRIN Network, Amiens University Hospital, EA 4559 Laboratoire de Neurosciences Fonctionnelles Et Pathologie (LNFP) Université de Picardie Jules Verne, University of Picardy Jules Verne (UPJV), Versailles, France
| | - Stephane Thobois
- Univ Lyon, Université Claude Bernard Lyon 1, Faculté de Médecine Lyon Sud Charles Mérieux; CNRS, Institut Des Sciences Cognitives, UMR 5229, Bron, France
- NS-PARK/FCRIN Network, Centre Expert Parkinson, Hôpital Neurologique "Pierre Wertheimer", Hospices Civils de Lyon, Lyon, France
| | - Lucie Hopes
- Neurology Department, Nancy University Hospital, 54000, Nancy, France
| | - Cecile Hubsch
- NS-PARK/FCRIN Network, Hôpital Fondation Ophtalmologique A de Rothschild, Unité James Parkinson, 75019, Paris, France
| | - Bechir Jarraya
- Pôle Neurosciences, Foch Hospital, Suresnes, France
- Université de Versailles Paris-Saclay, INSERM U992, CEA Neurospin, Marseille et Versailles, France
| | - Jean Christophe Corvol
- Department of Neurology, NS-PARK/FCRIN Network, France, Sorbonne Université, Paris Brain Institute-ICM, Inserm, CNRS, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Matthieu Bereau
- Department of Neurology, NS-PARK/F-CRIN network, University Hospital of Besançon, 25030, Besançon Cedex, France
- Université de Franche-Comté, UR LINC 481, F-2500, Besançon, France
| | - David Devos
- Department of Medical Pharmacology, Neurology, Referent Center of Parkinson's Disease, CHU of Lille, Univ. Lille Neuroscience & Cognition, Inserm, UMR-S1172, Licend, NS-PARK/FCRIN Network, 59000, Lille, France
- Movement Disorders Department, Referent Center of Parkinson's Disease, CHU of Lille, Univ. Lille Neuroscience & Cognition, Inserm, UMR-S1172, Licend, NS-PARK/FCRIN Network, 59000, Lille, France
| | - Margherita Fabbri
- Department of Clinical Pharmacology and Neurosciences, Parkinson Expert Center, Centre d'Investigation Clinique CIC1436, NeuroToul COEN Center, Toulouse, NS-PARK/FCRIN Network, University Hospital of Toulouse, Toulouse, France.
| |
Collapse
|
11
|
Brinker D, Smilowska K, Paschen S, Antonini A, Moro E, Deuschl G. How to Use the New European Academy of Neurology/Movement Disorder Society European Section Guideline for Invasive Therapies in Parkinson's Disease. Mov Disord Clin Pract 2024; 11:209-219. [PMID: 38214401 DOI: 10.1002/mdc3.13962] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/28/2023] [Accepted: 12/13/2023] [Indexed: 01/13/2024] Open
Abstract
BACKGROUND The decision to choose invasive treatments for Parkinson's disease (PD) is complex and needs careful consideration. OBJECTIVES Although the recommendations of the European Academy of Neurology/Movement Disorder Society European Section guideline for invasive therapies of PD are useful, the different clinical profiles of people with PD who seek advice for possible invasive therapy need further attention. METHODS AND RESULTS Here we describe 8 clinical standard situations of people with PD unsatisfied with their current oral treatment where invasive therapies may be considered. These are PD patients presenting with the following symptoms: (1) severe motor fluctuations, (2) beginning of levodopa-responsive fluctuations, severe tremor at (3) young or (4) advanced age, (5) impulse control disorders and related behavioral disorders, (6) hallucinations and psychosis, (7) minimal cognitive impairment or mild dementia, and (8) patients in need of palliative care. For some of these conditions, evidence at lower level or simple clinical considerations exist. CONCLUSIONS There are no one-fits-all answers, but physician and patient should discuss each option carefully considering symptom profile, psychosocial context, availability of therapy alternatives, and many other factors. The current paper outlines our proposed approach to these circumstances.
Collapse
Affiliation(s)
- Dana Brinker
- Department of Neurology, UKSH, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Katarzyna Smilowska
- Department of Neurology, UKSH, Christian-Albrechts-University Kiel, Kiel, Germany
- Department of Neurology, Regional Specialist Hospital im. Św. Barbary, Sonowiec, Poland
| | - Steffen Paschen
- Department of Neurology, UKSH, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Angelo Antonini
- Parkinson and Movement Disorders Unit, Study Center for Neurodegenerative Diseases (CESNE), Department of Neuroscience, University of Padua, Padua, Italy
| | - Elena Moro
- Grenoble Alpes University, Chu of Grenoble, Division of Neurology, Grenoble Institute of Neurosciences, Grenoble, France
| | - Günther Deuschl
- Department of Neurology, UKSH, Christian-Albrechts-University Kiel, Kiel, Germany
| |
Collapse
|
12
|
Béreau M, Kibleur A, Servant M, Clément G, Dujardin K, Rolland AS, Wirth T, Lagha-Boukbiza O, Voirin J, Santin MDN, Hainque E, Grabli D, Comte A, Drapier S, Durif F, Marques A, Eusebio A, Azulay JP, Giordana C, Houeto JL, Jarraya B, Maltete D, Rascol O, Rouaud T, Tir M, Moreau C, Danaila T, Prange S, Tatu L, Tranchant C, Corvol JC, Devos D, Thobois S, Desmarets M, Anheim M. Motivational and cognitive predictors of apathy after subthalamic nucleus stimulation in Parkinson's disease. Brain 2024; 147:472-485. [PMID: 37787488 DOI: 10.1093/brain/awad324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 07/13/2023] [Accepted: 08/21/2023] [Indexed: 10/04/2023] Open
Abstract
Postoperative apathy is a frequent symptom in Parkinson's disease patients who have undergone bilateral deep brain stimulation of the subthalamic nucleus. Two main hypotheses for postoperative apathy have been suggested: (i) dopaminergic withdrawal syndrome relative to postoperative dopaminergic drug tapering; and (ii) direct effect of chronic stimulation of the subthalamic nucleus. The primary objective of our study was to describe preoperative and 1-year postoperative apathy in Parkinson's disease patients who underwent chronic bilateral deep brain stimulation of the subthalamic nucleus. We also aimed to identify factors associated with 1-year postoperative apathy considering: (i) preoperative clinical phenotype; (ii) dopaminergic drug management; and (iii) volume of tissue activated within the subthalamic nucleus and the surrounding structures. We investigated a prospective clinical cohort of 367 patients before and 1 year after chronic bilateral deep brain stimulation of the subthalamic nucleus. We assessed apathy using the Lille Apathy Rating Scale and carried out a systematic evaluation of motor, cognitive and behavioural signs. We modelled the volume of tissue activated in 161 patients using the Lead-DBS toolbox and analysed overlaps within motor, cognitive and limbic parts of the subthalamic nucleus. Of the 367 patients, 94 (25.6%) exhibited 1-year postoperative apathy: 67 (18.2%) with 'de novo apathy' and 27 (7.4%) with 'sustained apathy'. We observed disappearance of preoperative apathy in 22 (6.0%) patients, who were classified as having 'reversed apathy'. Lastly, 251 (68.4%) patients had neither preoperative nor postoperative apathy and were classified as having 'no apathy'. We identified preoperative apathy score [odds ratio (OR) 1.16; 95% confidence interval (CI) 1.10, 1.22; P < 0.001], preoperative episodic memory free recall score (OR 0.93; 95% CI 0.88, 0.97; P = 0.003) and 1-year postoperative motor responsiveness (OR 0.98; 95% CI 0.96, 0.99; P = 0.009) as the main factors associated with postoperative apathy. We showed that neither dopaminergic dose reduction nor subthalamic stimulation were associated with postoperative apathy. Patients with 'sustained apathy' had poorer preoperative fronto-striatal cognitive status and a higher preoperative action initiation apathy subscore. In these patients, apathy score and cognitive status worsened postoperatively despite significantly lower reduction in dopamine agonists (P = 0.023), suggesting cognitive dopa-resistant apathy. Patients with 'reversed apathy' benefited from the psychostimulant effect of chronic stimulation of the limbic part of the left subthalamic nucleus (P = 0.043), suggesting motivational apathy. Our results highlight the need for careful preoperative assessment of motivational and cognitive components of apathy as well as executive functions in order to better prevent or manage postoperative apathy.
Collapse
Affiliation(s)
- Matthieu Béreau
- Department of Neurology, NS-PARK/F-CRIN network, University Hospital of Besançon, 25030 Besançon Cedex, France
- UR LINC 481, Université de Franche-Comté, F-2500 Besançon, France
| | - Astrid Kibleur
- LIP/PC2S, Université Grenoble Alpes, Université Savoie Mont Blanc, 38040 Grenoble Cedex 9, France
| | - Mathieu Servant
- UR LINC 481, Université de Franche-Comté, F-2500 Besançon, France
| | - Gautier Clément
- Department of Neurology, NS-PARK/F-CRIN network, University Hospital of Besançon, 25030 Besançon Cedex, France
| | - Kathy Dujardin
- Lille Neurosciences and Cognition, CHU-Lille, Neurology and Movement Disorders department, NS-Park/F-CRIN network, Univ. Lille, 59037 Lille, France
| | - Anne-Sophie Rolland
- Lille Neurosciences and Cognition, CHU-Lille, Department of Medical Pharmacology, NS-Park/F-CRIN, Univ. Lille, Inserm, 59045 Lille, France
| | - Thomas Wirth
- Service de Neurologie, NS-Park/F-CRIN network, Hôpitaux Universitaires de Strasbourg et Fédération de Médecine Translationnelle de Médecine de Strasbourg, 67200 Strasbourg, France
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, INSERM-U964/CNRS-UMR7104/Université de Strasbourg, 67400 Illkirch, France
| | - Ouhaid Lagha-Boukbiza
- Service de Neurologie, NS-Park/F-CRIN network, Hôpitaux Universitaires de Strasbourg et Fédération de Médecine Translationnelle de Médecine de Strasbourg, 67200 Strasbourg, France
| | - Jimmy Voirin
- Department of Neurosurgery, NS-PARK/F-CRIN network, Strasbourg University Hospital, 67200 Strasbourg, France
| | - Marie des Neiges Santin
- Department of Neurosurgery, NS-PARK/F-CRIN network, Strasbourg University Hospital, 67200 Strasbourg, France
| | - Elodie Hainque
- Assistance publique Hôpitaux de Paris, Inserm, CNRS, Hôpital Pitié-Salpêtrière, Department of Neurology, NS-Park/F-CRIN network, Sorbonne Université, Paris Brain Institute-ICM, 75014 Paris, France
| | - David Grabli
- Assistance publique Hôpitaux de Paris, Inserm, CNRS, Hôpital Pitié-Salpêtrière, Department of Neurology, NS-Park/F-CRIN network, Sorbonne Université, Paris Brain Institute-ICM, 75014 Paris, France
| | - Alexandre Comte
- UR LINC 481, Université de Franche-Comté, F-2500 Besançon, France
- Centre d'investigation clinique Inserm CIC 1431, CHU Besançon, F-25000 Besançon, France
| | - Sophie Drapier
- Department of Neurology, NS-PARK/F-CRIN network, University Hospital of Rennes, 35000 Rennes, France
| | - Franck Durif
- CNRS, Clermont Auvergne INP, Institut Pascal, Clermont-Ferrand University Hospital, Neurology department, NS-Park/F-CRIN network, Université Clermont Auvergne, 63000 Clermont-Ferrand, France
| | - Ana Marques
- CNRS, Clermont Auvergne INP, Institut Pascal, Clermont-Ferrand University Hospital, Neurology department, NS-Park/F-CRIN network, Université Clermont Auvergne, 63000 Clermont-Ferrand, France
| | - Alexandre Eusebio
- Department of Neurology and Movement Disorders, APHM, Hôpital Universitaire Timone, 13005 Marseille, France
- CNRS, Institut de Neurosciences de la Timone, Aix Marseille Univ., 13005 Marseille, France
| | - Jean-Philippe Azulay
- Department of Neurology and Movement Disorders, APHM, Hôpital Universitaire Timone, 13005 Marseille, France
- CNRS, Institut de Neurosciences de la Timone, Aix Marseille Univ., 13005 Marseille, France
| | - Caroline Giordana
- Department of Neurology, NS-Park/F-CRIN network, Centre Hospitalier Universitaire de Nice, 06002 Nice, France
| | - Jean-Luc Houeto
- Department of Neurology, NS-Park/F-CRIN network, Limoges University Hospital, Inserm, U1094, EpiMaCT-Epidemiology of chronic diseases in tropical zone, Limoges University Hospital,87042 Limoges, France
| | - Béchir Jarraya
- Neuroscience Pole, NS-Park/F-CRIN network, Hôpital Foch, Suresnes, University of Versailles Paris-Saclay, INSERM-CEA NeuroSpin, 91191 Gif-sur-Yvette, France
| | - David Maltete
- Department of Neurology, NS-Park/F-CRIN network, Rouen University Hospital and University of Rouen, 76000 Rouen, France
- INSERM U1239, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, 76130 Mont-Saint-Aignan, France
| | - Olivier Rascol
- Department of Clinical Pharmacology and Neuroscience, CIC1436, NS-Park/F-CRIN network, NeuroToul Center of Excellence, Toulouse University Hospital, INSERM, CHU of Toulouse, 31000 Toulouse, France
| | - Tiphaine Rouaud
- Department of Neurology, Centre Expert Parkinson, NS-Park/F-CRIN network, CHU Nantes, 44093 Nantes, France
| | - Mélissa Tir
- Department of Neurology, NS-Park/F-CRIN network, Amiens University Hospital, 80000 Amiens, France
| | - Caroline Moreau
- Lille Neurosciences and Cognition, CHU-Lille, Neurology and Movement Disorders department, NS-Park/F-CRIN network, Univ. Lille, 59037 Lille, France
| | - Teodor Danaila
- Department of Neurology, NS-Park/F-CRIN network, Amiens University Hospital, 80000 Amiens, France
| | - Stéphane Prange
- Department of Neurology, NS-Park/F-CRIN network, Amiens University Hospital, 80000 Amiens, France
- Service de Neurologie C, NS-Park/F-CRIN network, Hospices Civils de Lyon, Hôpital Neurologique Pierre Wertheimer, 69500 Bron, France
| | - Laurent Tatu
- Department of Neurology, NS-PARK/F-CRIN network, University Hospital of Besançon, 25030 Besançon Cedex, France
| | - Christine Tranchant
- Service de Neurologie, NS-Park/F-CRIN network, Hôpitaux Universitaires de Strasbourg et Fédération de Médecine Translationnelle de Médecine de Strasbourg, 67200 Strasbourg, France
| | - Jean-Christophe Corvol
- Assistance publique Hôpitaux de Paris, Inserm, CNRS, Hôpital Pitié-Salpêtrière, Department of Neurology, NS-Park/F-CRIN network, Sorbonne Université, Paris Brain Institute-ICM, 75014 Paris, France
| | - David Devos
- Lille Neurosciences and Cognition, CHU-Lille, Neurology and Movement Disorders department, NS-Park/F-CRIN network, Univ. Lille, 59037 Lille, France
- Lille Neurosciences and Cognition, CHU-Lille, Department of Medical Pharmacology, NS-Park/F-CRIN, Univ. Lille, Inserm, 59045 Lille, France
| | - Stephane Thobois
- Service de Neurologie C, NS-Park/F-CRIN network, Hospices Civils de Lyon, Hôpital Neurologique Pierre Wertheimer, 69500 Bron, France
- Institut des Sciences Cognitives Marc Jeannerot, CNRS, UMR5229, 69675 Bron, France
| | - Maxime Desmarets
- Centre d'investigation clinique Inserm CIC 1431, CHU Besançon, F-25000 Besançon, France
- Université de Franche-Comté, EFS, INSERM, UMR RIGHT, 25000 Besançon, France
| | - Mathieu Anheim
- Service de Neurologie, NS-Park/F-CRIN network, Hôpitaux Universitaires de Strasbourg et Fédération de Médecine Translationnelle de Médecine de Strasbourg, 67200 Strasbourg, France
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, INSERM-U964/CNRS-UMR7104/Université de Strasbourg, 67400 Illkirch, France
| |
Collapse
|
13
|
Theis H, Prange S, Bischof GN, Hoenig MC, Tittgemeyer M, Timmermann L, Fink GR, Drzezga A, Eggers C, van Eimeren T. Impulsive-compulsive behaviour in early Parkinson's disease is determined by apathy and dopamine receptor D3 polymorphism. NPJ Parkinsons Dis 2023; 9:154. [PMID: 37968562 PMCID: PMC10651866 DOI: 10.1038/s41531-023-00596-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 10/25/2023] [Indexed: 11/17/2023] Open
Abstract
Impulsive-compulsive behaviour (ICB) is a frequently observed non-motor symptom in early Parkinson's disease after initiating dopamine replacement therapy. At the opposite end of the motivated behaviour spectrum, apathy occurs in early Parkinson's disease even before dopamine replacement is started. The co-occurrence of these behavioural conditions in Parkinson's disease raises questions about their relationship and underlying pathophysiological determinants. In previous imaging or genetic studies, both conditions have been associated with the limbic dopaminergic system. The risk variant of the Ser9Gly polymorphism of the dopamine receptor D3 (DRD3) is linked to increased dopamine affinity in the limbic striatum. With this in mind, we investigated how ICB expression is explained by apathy and DRD3 polymorphisms and their effects on grey matter volume and dopamine synthesis capacity. Fifty-four patients with early Parkinson's disease took part in anatomical T1-weighted MRI. Forty of them also underwent dynamic PET imaging using [18F]DOPA to measure striatal dopamine synthesis capacity. Further, Ser9Gly (rs6280) gene polymorphism influencing the DRD3 dopamine-binding affinity was determined in all patients. The severity of impulsive-compulsive behaviour and apathy was assessed using the Questionnaire for Impulsive-Compulsive Disorders Rating Scale and the Apathy Evaluation Scale. ICB and the severity of apathy were indeed positively correlated. Apathy and the DRD3 polymorphism were interactive risk factors for ICB severity. Apathy was significantly linked to atrophy of the bilateral putamen. Patients with the DRD3 risk type had reduced dopamine synthesis capacity in the putamen and limbic striatum, apathy was associated with reduced dopamine synthesis capacity in the limbic striatum. The results of [18F]DOPA reached only trend significance. Apathy in drug-naïve PD patients might be a consequence of impaired striatal dopaminergic tone. This may represent a predisposing factor for the development of ICB after the initiation of dopamine replacement therapy. The risk type of DRD3 could further amplify this predisposition due to its higher affinity to dopamine.
Collapse
Affiliation(s)
- Hendrik Theis
- Faculty of Medicine and University Hospital Cologne, Department of Nuclear Medicine, Multimodal Neuroimaging Group, University of Cologne, 50937, Cologne, Germany
- Faculty of Medicine and University Hospital Cologne, Department of Neurology, University of Cologne, 50937, Cologne, Germany
| | - Stéphane Prange
- Faculty of Medicine and University Hospital Cologne, Department of Nuclear Medicine, Multimodal Neuroimaging Group, University of Cologne, 50937, Cologne, Germany
- Université de Lyon, CNRS, UMR 5229, Institut des Sciences Cognitives Marc Jeannerod, Lyon, 69500, France
| | - Gérard N Bischof
- Faculty of Medicine and University Hospital Cologne, Department of Nuclear Medicine, Multimodal Neuroimaging Group, University of Cologne, 50937, Cologne, Germany
- Forschungszentrum Jülich, Institute for Neuroscience and Medicine (INM-2), Molecular Organization of the Brain, 52428, Jülich, Germany
| | - Merle C Hoenig
- Faculty of Medicine and University Hospital Cologne, Department of Nuclear Medicine, Multimodal Neuroimaging Group, University of Cologne, 50937, Cologne, Germany
- Forschungszentrum Jülich, Institute for Neuroscience and Medicine (INM-2), Molecular Organization of the Brain, 52428, Jülich, Germany
| | - Marc Tittgemeyer
- Max Planck Institute for Metabolism Research, 50931, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931, Cologne, Germany
| | - Lars Timmermann
- Faculty of Medicine and University Hospital Marburg, Department of Neurology, University of Marburg, 35043, Marburg, Germany
| | - Gereon R Fink
- Faculty of Medicine and University Hospital Cologne, Department of Neurology, University of Cologne, 50937, Cologne, Germany
- Forschungszentrum Jülich, Institute of Neuroscience and Medicine (INM-3), Cognitive Neuroscience, 52428, Jülich, Germany
| | - Alexander Drzezga
- Faculty of Medicine and University Hospital Cologne, Department of Nuclear Medicine, Multimodal Neuroimaging Group, University of Cologne, 50937, Cologne, Germany
- Forschungszentrum Jülich, Institute for Neuroscience and Medicine (INM-2), Molecular Organization of the Brain, 52428, Jülich, Germany
- German Center for Neurodegenerative Diseases (DZNE), 53127, Bonn-Cologne, Germany
| | - Carsten Eggers
- Department of Neurology, Knappschaftskrankenhaus Bottrop, 46242, Bottrop, Germany
| | - Thilo van Eimeren
- Faculty of Medicine and University Hospital Cologne, Department of Nuclear Medicine, Multimodal Neuroimaging Group, University of Cologne, 50937, Cologne, Germany.
- Faculty of Medicine and University Hospital Cologne, Department of Neurology, University of Cologne, 50937, Cologne, Germany.
| |
Collapse
|
14
|
Hui T, Guo S. Early onset Parkinson's disease in the cycle of 3,4-methylenedioxymethamphetamine and substance use: a case report. J Med Case Rep 2023; 17:405. [PMID: 37740189 PMCID: PMC10517548 DOI: 10.1186/s13256-023-04147-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 08/27/2023] [Indexed: 09/24/2023] Open
Abstract
BACKGROUND Current evidence linking the development of Parkinson's disease after the use of 3,4-methylenedioxymethamphetamine is mixed and limited, with only a few positive case reports demonstrating this. CASE PRESENTATION We examine this interesting case of a 49-year-old Chinese gentleman who used 3,4-methylenedioxymethamphetamine and subsequently developed early onset Parkinson's disease at age 38 years. He had a family history of Parkinson's disease, though the onset of his symptoms was significantly earlier than those of his family members. MDMA was a likely precipitating factor for the early onset of his symptoms. He then conversely used methamphetamines to augment his treatment of Parkinson's symptoms. In the treatment of his Parkinson's disease, dopamine replacement therapy and deep brain stimulation could perpetuate addictive behaviors such as dopamine dysregulation syndrome, and similarly perpetuate substance use in vulnerable individuals. He had also been diagnosed with a human immunodeficiency virus infection at age 43, and his antiretroviral therapy contributed to depressive symptoms, which then complicated the management of his substance use. We examined the importance of managing his subsequent psychiatric and medical comorbidities to prevent their debilitating psychosocial impacts. CONCLUSIONS This case implies that 3,4-methylenedioxymethamphetamine use may precipitate the early development of Parkinson's disease in patients with genetic vulnerability. This highlights the risk in patients potentially paradoxically using substances to alleviate symptoms of Parkinson's, which can in turn perpetuate the disease process.
Collapse
Affiliation(s)
- Tianyi Hui
- National Addictions Management Service, Institute of Mental Health, 10 Buangkok View, Buangkok Green, Medical Park, Singapore, 539747, Singapore.
| | - Song Guo
- National Addictions Management Service, Institute of Mental Health, 10 Buangkok View, Buangkok Green, Medical Park, Singapore, 539747, Singapore
| |
Collapse
|
15
|
Hernandez‐Con P, Lin I, Mamikonyan E, Deeb W, Feldman R, Althouse A, Barmore R, Eisinger RS, Spindler M, Okun MS, Weintraub D, Chahine LM. Course of Impulse Control Disorder Symptoms in Parkinson's Disease: Deep Brain Stimulation Versus Medications. Mov Disord Clin Pract 2023; 10:903-913. [PMID: 37332637 PMCID: PMC10272921 DOI: 10.1002/mdc3.13738] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 02/22/2023] [Accepted: 03/18/2023] [Indexed: 06/20/2023] Open
Abstract
Background The effect of surgery on impulse control disorders (ICDs) remains unclear in Parkinson's disease (PD) patients undergoing deep brain stimulation (DBS). Objective To examine changes in ICD symptoms in PD patients undergoing DBS compared to a medication-only control group. Methods The study was a 2-center, 12-month, prospective, observational investigation of PD patients undergoing DBS and a control group matched on age, sex, dopamine agonist use, and baseline presence of ICDs. Questionnaire for Impulsive-Compulsive Disorders in Parkinson's Disease-Rating Scale (QUIP-RS) and total levodopa equivalent daily dose (LEDD) were collected at baseline, 3, 6, and 12 months. Linear mixed-effects models assessed changes in mean QUIP-RS score (sum of buying, eating, gambling, and hypersexuality items). Results The cohort included 54 participants (DBS = 26, controls = 28), mean (SD) age 64.3 (8.1) and PD duration 8.0 (5.2) years. Mean baseline QUIP-RS was higher in the DBS group at baseline (8.6 (10.7) vs. 5.3 (6.9), P = 0.18). However, scores at 12 months follow-up were nearly identical (6.6 (7.3) vs. 6.0 (6.9) P = 0.79). Predictors of change in QUIP-RS score were baseline QUIP-RS score (β = 0.483, P < 0.001) and time-varying LEDD (β = 0.003, P = 0.02). Eight patients (four in each group) developed de novo ICD symptoms during follow-up, although none met diagnostic criteria for an impulse control disorder. Conclusions ICD symptoms (including de novo symptoms) at 12 months follow-up were similar between PD patients undergoing DBS and patients treated with pharmacological therapy only. Monitoring for emergence of ICD symptoms is important in both surgically- and medication-only-treated PD patients.
Collapse
Affiliation(s)
- Pilar Hernandez‐Con
- Department of Pharmaceutical Outcomes and PolicyUniversity of FloridaGainesvilleFloridaUSA
| | - Iris Lin
- Department of NeurologyUniversity of CincinnatiCincinnatiOhioUSA
| | - Eugenia Mamikonyan
- Department of PsychiatryUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Wissam Deeb
- Department of NeurologyUniversity of MassachusettsAmherstMassachusettsUSA
| | - Robert Feldman
- Center for Research on Health Care Data CenterUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Andrew Althouse
- Center for Research on Health Care Data CenterUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Ryan Barmore
- Department of NeurologyBanner HealthPhoenixArizonaUSA
| | - Robert S. Eisinger
- Department of NeurologyUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Department of NeurologyNorman Fixel Institute for Neurological Diseases, University of FloridaGainesvilleFloridaUSA
| | - Meredith Spindler
- Department of NeurologyUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Michael S. Okun
- Department of NeurologyNorman Fixel Institute for Neurological Diseases, University of FloridaGainesvilleFloridaUSA
| | - Daniel Weintraub
- Department of PsychiatryUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Department of NeurologyUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Lana M. Chahine
- Department of NeurologyUniversity of PittsburghPittsburghPennsylvaniaUSA
| |
Collapse
|
16
|
Jiang Y, Yuan TS, Chen YC, Guo P, Lian TH, Liu YY, Liu W, Bai YT, Zhang Q, Zhang W, Zhang JG. Deep brain stimulation of the nucleus basalis of Meynert modulates hippocampal-frontoparietal networks in patients with advanced Alzheimer's disease. Transl Neurodegener 2022; 11:51. [PMID: 36471370 PMCID: PMC9721033 DOI: 10.1186/s40035-022-00327-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 11/17/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Deep brain stimulation (DBS) of the nucleus basalis of Meynert (NBM) has shown potential for the treatment of mild-to-moderate Alzheimer's disease (AD). However, there is little evidence of whether NBM-DBS can improve cognitive functioning in patients with advanced AD. In addition, the mechanisms underlying the modulation of brain networks remain unclear. This study was aimed to assess the cognitive function and the resting-state connectivity following NBM-DBS in patients with advanced AD. METHODS Eight patients with advanced AD underwent bilateral NBM-DBS and were followed up for 12 months. Clinical outcomes were assessed by neuropsychological examinations using the Mini-Mental State Examination (MMSE) and Alzheimer's Disease Assessment Scale. Resting-state functional magnetic resonance imaging and positron emission tomography data were also collected. RESULTS The cognitive functioning of AD patients did not change from baseline to the 12-month follow-up. Interestingly, the MMSE score indicated clinical efficacy at 1 month of follow-up. At this time point, the connectivity between the hippocampal network and frontoparietal network tended to increase in the DBS-on state compared to the DBS-off state. Additionally, the increased functional connectivity between the parahippocampal gyrus (PHG) and the parietal cortex was associated with cognitive improvement. Further dynamic functional network analysis showed that NBM-DBS increased the proportion of the PHG-related connections, which was related to improved cognitive performance. CONCLUSION The results indicated that NBM-DBS improves short-term cognitive performance in patients with advanced AD, which may be related to the modulation of multi-network connectivity patterns, and the hippocampus plays an important role within these networks. TRIAL REGISTRATION ChiCTR, ChiCTR1900022324. Registered 5 April 2019-Prospective registration. https://www.chictr.org.cn/showproj.aspx?proj=37712.
Collapse
Affiliation(s)
- Yin Jiang
- grid.24696.3f0000 0004 0369 153XDepartment of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100070 China
| | - Tian-Shuo Yuan
- grid.24696.3f0000 0004 0369 153XDepartment of Functional Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070 China
| | - Ying-Chuan Chen
- grid.24696.3f0000 0004 0369 153XDepartment of Functional Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070 China
| | - Peng Guo
- grid.24696.3f0000 0004 0369 153XCenter for Cognitive Neurology, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070 China
| | - Teng-Hong Lian
- grid.24696.3f0000 0004 0369 153XCenter for Cognitive Neurology, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070 China
| | - Yu-Ye Liu
- grid.24696.3f0000 0004 0369 153XDepartment of Functional Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070 China
| | - Wei Liu
- grid.24696.3f0000 0004 0369 153XDepartment of Functional Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070 China
| | - Yu-Tong Bai
- grid.24696.3f0000 0004 0369 153XDepartment of Functional Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070 China
| | - Quan Zhang
- grid.24696.3f0000 0004 0369 153XDepartment of Functional Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070 China
| | - Wei Zhang
- grid.24696.3f0000 0004 0369 153XCenter for Cognitive Neurology, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070 China
| | - Jian-Guo Zhang
- grid.24696.3f0000 0004 0369 153XDepartment of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100070 China ,grid.24696.3f0000 0004 0369 153XDepartment of Functional Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070 China ,grid.413259.80000 0004 0632 3337Beijing Key Laboratory of Neurostimulation, Beijing, 100070 China
| |
Collapse
|
17
|
Pfister R. Tiefe Hirnstimulation beim idiopathischen Parkinson-Syndrom. SPRACHE · STIMME · GEHÖR 2022. [DOI: 10.1055/a-1941-3571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
18
|
Krause P, Reimer J, Kaplan J, Borngräber F, Schneider GH, Faust K, Kühn AA. Deep brain stimulation in Early Onset Parkinson's disease. Front Neurol 2022; 13:1041449. [PMID: 36468049 PMCID: PMC9713840 DOI: 10.3389/fneur.2022.1041449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 10/24/2022] [Indexed: 10/27/2023] Open
Abstract
INTRODUCTION Subthalamic Deep Brain Stimulation (STN-DBS) is a safe and well-established therapy for the management of motor symptoms refractory to best medical treatment in patients with Parkinson's disease (PD). Early intervention is discussed especially for Early-onset PD (EOPD) patients that present with an age of onset ≤ 45-50 years and see themselves often confronted with high psychosocial demands. METHODS We retrospectively assessed the effect of STN-DBS at 12 months follow-up (12-MFU) in 46 EOPD-patients. Effects of stimulation were evaluated by comparison of disease-specific scores for motor and non-motor symptoms including impulsiveness, apathy, mood, quality of life (QoL), cognition before surgery and in the stimulation ON-state without medication. Further, change in levodopa equivalent dosage (LEDD) after surgery, DBS parameter, lead localization, adverse and serious adverse events as well as and possible additional clinical features were assessed. RESULTS PD-associated gene mutations were found in 15% of our EOPD-cohort. At 12-MFU, mean motor scores had improved by 52.4 ± 17.6% in the STIM-ON/MED-OFF state compared to the MED-OFF state at baseline (p = 0.00; n = 42). These improvements were accompanied by a significant 59% LEDD reduction (p < 0.001), a significant 6.6 ± 16.1 points reduction of impulsivity (p = 0.02; n = 35) and a significant 30 ± 50% improvement of QoL (p = 0.01). At 12-MFU, 9 patients still worked full- and 6 part-time. Additionally documented motor and/or neuropsychiatric features decreased from n = 41 at baseline to n = 14 at 12-MFU. CONCLUSION The present study-results demonstrate that EOPD patients with and without known genetic background benefit from STN-DBS with significant improvement in motor as well as non-motor symptoms. In line with this, patients experienced a meaningful reduction of additional neuropsychiatric features. Physicians as well as patients have an utmost interest in possible predictors for the putative DBS outcome in a cohort with such a highly complex clinical profile. Longitudinal monitoring of DBS-EOPD-patients over long-term intervals with standardized comprehensive clinical assessment, accurate phenotypic characterization and documentation of clinical outcomes might help to gain insights into disease etiology, to contextualize genomic information and to identify predictors of optimal DBS candidates as well as those in danger of deterioration and/or non-response in the future.
Collapse
Affiliation(s)
- Patricia Krause
- Movement Disorder and Neuromodulation Unit, Charité University Medicine Berlin, Berlin, Germany
| | - Johanna Reimer
- Movement Disorder and Neuromodulation Unit, Charité University Medicine Berlin, Berlin, Germany
| | - Jonathan Kaplan
- Movement Disorder and Neuromodulation Unit, Charité University Medicine Berlin, Berlin, Germany
| | - Friederike Borngräber
- Movement Disorder and Neuromodulation Unit, Charité University Medicine Berlin, Berlin, Germany
| | | | - Katharina Faust
- Department of Neurosurgery, Charité University Medicine Berlin, Berlin, Germany
| | - Andrea A. Kühn
- Movement Disorder and Neuromodulation Unit, Charité University Medicine Berlin, Berlin, Germany
| |
Collapse
|
19
|
Weintraub D, Aarsland D, Biundo R, Dobkin R, Goldman J, Lewis S. Management of psychiatric and cognitive complications in Parkinson's disease. BMJ 2022; 379:e068718. [PMID: 36280256 DOI: 10.1136/bmj-2021-068718] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Neuropsychiatric symptoms (NPSs) such as affective disorders, psychosis, behavioral changes, and cognitive impairment are common in Parkinson's disease (PD). However, NPSs remain under-recognized and under-treated, often leading to adverse outcomes. Their epidemiology, presentation, risk factors, neural substrate, and management strategies are incompletely understood. While psychological and psychosocial factors may contribute, hallmark PD neuropathophysiological changes, plus the associations between exposure to dopaminergic medications and occurrence of some symptoms, suggest a neurobiological basis for many NPSs. A range of psychotropic medications, psychotherapeutic techniques, stimulation therapies, and other non-pharmacological treatments have been studied, are used clinically, and are beneficial for managing NPSs in PD. Appropriate management of NPSs is critical for comprehensive PD care, from recognizing their presentations and timing throughout the disease course, to the incorporation of different therapeutic strategies (ie, pharmacological and non-pharmacological) that utilize a multidisciplinary approach.
Collapse
Affiliation(s)
- Daniel Weintraub
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
- Parkinson's Disease Research, Education and Clinical Center (PADRECC), Philadelphia Veterans Affairs Medical Center, Philadelphia, PA
| | - Dag Aarsland
- Department of Old Age Psychiatry, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, England
- Centre for Age-Related Diseases, Stavanger University Hospital, Stavanger, Norway
| | - Roberta Biundo
- Department of General Psychology, University of Padua, Padua, Italy
- Study Center for Neurodegeneration (CESNE), Department of Neuroscience, University of Padua, Padua, Italy
| | - Roseanne Dobkin
- Department of Psychiatry, Rutgers-The State University of New Jersey, Robert Wood Johnson Medical School, New Brunswick, NJ
| | - Jennifer Goldman
- Shirley Ryan AbilityLab, Parkinson's Disease and Movement Disorders, Chicago, IL
- Departments of Physical Medicine and Rehabilitation and Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Simon Lewis
- ForeFront Parkinson's Disease Research Clinic, Brain and Mind Centre, School of Medical Sciences, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
20
|
Cometa A, Falasconi A, Biasizzo M, Carpaneto J, Horn A, Mazzoni A, Micera S. Clinical neuroscience and neurotechnology: An amazing symbiosis. iScience 2022; 25:105124. [PMID: 36193050 PMCID: PMC9526189 DOI: 10.1016/j.isci.2022.105124] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In the last decades, clinical neuroscience found a novel ally in neurotechnologies, devices able to record and stimulate electrical activity in the nervous system. These technologies improved the ability to diagnose and treat neural disorders. Neurotechnologies are concurrently enabling a deeper understanding of healthy and pathological dynamics of the nervous system through stimulation and recordings during brain implants. On the other hand, clinical neurosciences are not only driving neuroengineering toward the most relevant clinical issues, but are also shaping the neurotechnologies thanks to clinical advancements. For instance, understanding the etiology of a disease informs the location of a therapeutic stimulation, but also the way stimulation patterns should be designed to be more effective/naturalistic. Here, we describe cases of fruitful integration such as Deep Brain Stimulation and cortical interfaces to highlight how this symbiosis between clinical neuroscience and neurotechnology is closer to a novel integrated framework than to a simple interdisciplinary interaction.
Collapse
Affiliation(s)
- Andrea Cometa
- The Biorobotics Institute, Scuola Superiore Sant’Anna, 56127 Pisa, Italy
- Department of Excellence in Robotics and AI, Scuola Superiore Sant'Anna, 56127 Pisa, Italy
| | - Antonio Falasconi
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
- Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - Marco Biasizzo
- The Biorobotics Institute, Scuola Superiore Sant’Anna, 56127 Pisa, Italy
- Department of Excellence in Robotics and AI, Scuola Superiore Sant'Anna, 56127 Pisa, Italy
| | - Jacopo Carpaneto
- The Biorobotics Institute, Scuola Superiore Sant’Anna, 56127 Pisa, Italy
- Department of Excellence in Robotics and AI, Scuola Superiore Sant'Anna, 56127 Pisa, Italy
| | - Andreas Horn
- Center for Brain Circuit Therapeutics Department of Neurology Brigham & Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- MGH Neurosurgery & Center for Neurotechnology and Neurorecovery (CNTR) at MGH Neurology Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt- Universität zu Berlin, Department of Neurology, 10117 Berlin, Germany
| | - Alberto Mazzoni
- The Biorobotics Institute, Scuola Superiore Sant’Anna, 56127 Pisa, Italy
- Department of Excellence in Robotics and AI, Scuola Superiore Sant'Anna, 56127 Pisa, Italy
| | - Silvestro Micera
- The Biorobotics Institute, Scuola Superiore Sant’Anna, 56127 Pisa, Italy
- Department of Excellence in Robotics and AI, Scuola Superiore Sant'Anna, 56127 Pisa, Italy
- Translational Neural Engineering Lab, School of Engineering, École Polytechnique Fèdèrale de Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
21
|
Weintraub D, Irwin D. Diagnosis and Treatment of Cognitive and Neuropsychiatric Symptoms in Parkinson Disease and Dementia With Lewy Bodies. Continuum (Minneap Minn) 2022; 28:1314-1332. [DOI: 10.1212/con.0000000000001151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
22
|
Lamy F, Lagha-Boukbiza O, Wirth T, Philipps C, Longato N, Gebus O, Montaut S, Mengin A, Voirin J, Proust F, Tuzin N, Anheim M, Tranchant C. Early hyperdopaminergic state following sub-thalamic nucleus deep brain stimulation in Parkinson disease. Rev Neurol (Paris) 2022; 178:896-906. [PMID: 36153257 DOI: 10.1016/j.neurol.2022.07.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 04/26/2022] [Accepted: 07/17/2022] [Indexed: 10/14/2022]
Abstract
BACKGROUND Hyperdopaminergic state (HS), especially impulse control behaviors (ICBs), are not rare in Parkinson's disease (PD). Controversial data regarding HS prevalence one year following sub-thalamic nucleus deep brain stimulation (STN-DBS) are reported. OBJECTIVE Our objectives were to describe early postoperative HS (PoOHS) including ICBs, hypomania and psychotic symptoms during the first 3 months following STN-DBS (V1) and their prognosis at 1 year (V2). METHODS This descriptive study included 24 PD patients treated successively with bilateral STN-DBS between 2017 and 2019. The primary endpoint was prevalence of PoOHS at V1 according to the Ardouin Scale of Behaviour in Parkinson's Disease. RESULTS Prior to STN-DBS (V0), 25% patients had HS (only ICBs) whereas at V1 (during the 3 first months), 10 patients (41.7%) had one or several HS (P=0.22) (de novo in 29.2%): 7 (29.2%) ICBs, 4 (16.7%) hypomanic mood, 1 (4.7%) psychotic symptoms. At V2, all V0 and V1 HS had disappeared, while 1 patient (4.2%) presented de novo HS (P<0.01). No correlation was found between the occurrence of PoOHS at V1 and any V0 data. Higher levodopa equivalent dose of dopamine agonists at V1 was correlated with ICB at V1 (P=0.04). CONCLUSION We found that early PoOHS are frequent in PD after STN-DBS, mostly de novo, with ICBs and hypomania being the most frequent. Despite a good prognosis of PoOHS at one year, our work emphasizes the importance of both a cautious adjustment of dopamine agonist doses and a close non-motor monitoring pre- and post-STN-DBS in PD.
Collapse
Affiliation(s)
- F Lamy
- Service de neurologie, département de neurologie, hôpitaux universitaires de Strasbourg, hôpital de Hautepierre, 1, avenue Molière, 67200 Strasbourg cedex, France; Département de neurologie fonctionnelle et d'épileptologie, hospices civils de Lyon, université de Lyon, Lyon, France
| | - O Lagha-Boukbiza
- Service de neurologie, département de neurologie, hôpitaux universitaires de Strasbourg, hôpital de Hautepierre, 1, avenue Molière, 67200 Strasbourg cedex, France
| | - T Wirth
- Service de neurologie, département de neurologie, hôpitaux universitaires de Strasbourg, hôpital de Hautepierre, 1, avenue Molière, 67200 Strasbourg cedex, France
| | - C Philipps
- Service de neurologie, département de neurologie, hôpitaux universitaires de Strasbourg, hôpital de Hautepierre, 1, avenue Molière, 67200 Strasbourg cedex, France
| | - N Longato
- Service de neurologie, département de neurologie, hôpitaux universitaires de Strasbourg, hôpital de Hautepierre, 1, avenue Molière, 67200 Strasbourg cedex, France
| | - O Gebus
- Service de neurologie, département de neurologie, hôpitaux universitaires de Strasbourg, hôpital de Hautepierre, 1, avenue Molière, 67200 Strasbourg cedex, France
| | - S Montaut
- Service de neurologie, département de neurologie, hôpitaux universitaires de Strasbourg, hôpital de Hautepierre, 1, avenue Molière, 67200 Strasbourg cedex, France
| | - A Mengin
- Clinique psychiatrique, hôpitaux universitaires de Strasbourg, 1, place de l'Hôpital, Strasbourg cedex, France
| | - J Voirin
- Service de neurochirurgie, hôpitaux universitaires de Strasbourg, hôpital de Hautepierre, 1, avenue Molière, 67200 Strasbourg cedex, France
| | - F Proust
- Service de neurochirurgie, hôpitaux universitaires de Strasbourg, hôpital de Hautepierre, 1, avenue Molière, 67200 Strasbourg cedex, France
| | - N Tuzin
- Département de santé publique, hôpitaux universitaires de Strasbourg, Strasbourg, France
| | - M Anheim
- Service de neurologie, département de neurologie, hôpitaux universitaires de Strasbourg, hôpital de Hautepierre, 1, avenue Molière, 67200 Strasbourg cedex, France; Inserm-U964/CNRS-UMR7104, institut de génétique et de biologie moléculaire et cellulaire (IGBMC), université de Strasbourg, Illkirch, France; Fédération de médecine translationnelle de Strasbourg (FMTS), université de Strasbourg, Strasbourg, France
| | - C Tranchant
- Service de neurologie, département de neurologie, hôpitaux universitaires de Strasbourg, hôpital de Hautepierre, 1, avenue Molière, 67200 Strasbourg cedex, France; Inserm-U964/CNRS-UMR7104, institut de génétique et de biologie moléculaire et cellulaire (IGBMC), université de Strasbourg, Illkirch, France; Fédération de médecine translationnelle de Strasbourg (FMTS), université de Strasbourg, Strasbourg, France.
| |
Collapse
|
23
|
Healy S, Shepherd H, Mooney N, Da Costa A, Osman-Farah J, Macerollo A. The effect of deep brain stimulation on impulse control related disorders in Parkinson's disease - A 10-year retrospective study of 137 patients. J Neurol Sci 2022; 440:120339. [PMID: 35853293 DOI: 10.1016/j.jns.2022.120339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 06/14/2022] [Accepted: 07/06/2022] [Indexed: 11/17/2022]
Affiliation(s)
- Sarah Healy
- The Walton Centre NHS Foundation Trust for Neurology and Neurosurgery, Liverpool, UK
| | - Hilary Shepherd
- The Walton Centre NHS Foundation Trust for Neurology and Neurosurgery, Liverpool, UK; University of Liverpool Medical School, Liverpool, UK
| | - Nicole Mooney
- The Walton Centre NHS Foundation Trust for Neurology and Neurosurgery, Liverpool, UK
| | - Antonio Da Costa
- The Walton Centre NHS Foundation Trust for Neurology and Neurosurgery, Liverpool, UK
| | - Jibril Osman-Farah
- The Walton Centre NHS Foundation Trust for Neurology and Neurosurgery, Liverpool, UK
| | - Antonella Macerollo
- The Walton Centre NHS Foundation Trust for Neurology and Neurosurgery, Liverpool, UK; Institute of Systems, Molecular and Integrative Biology, University of Liverpool, UK.
| |
Collapse
|
24
|
Prange S, Lin Z, Nourredine M, Danaila T, Laurencin C, Lagha-Boukbiza O, Anheim M, Klinger H, Longato N, Phillipps C, Voirin J, Polo G, Simon E, Mertens P, Rolland AS, Devos D, Metereau E, Tranchant C, Thobois S. Limbic stimulation drives mania in STN-DBS in Parkinson disease: a prospective study. Ann Neurol 2022; 92:411-417. [PMID: 35703252 DOI: 10.1002/ana.26434] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 05/30/2022] [Accepted: 06/05/2022] [Indexed: 11/10/2022]
Abstract
In this one-year prospective study, Parkinson's disease (PD) patients with or without mania following STN-DBS were compared to investigate risk and etiological factors, clinical management and consequences. Eighteen (16.2%) out of 111 consecutive PD patients developed mania, of whom 17 were males. No preoperative risk factor was identified. Postoperative mania was related to ventral limbic subthalamic stimulation in 15 (83%) patients, and resolved as stimulation was relocated to the sensorimotor STN, besides discontinuation or reduction of dopamine agonists and use of low-dose clozapine in 12 patients, while motor and nonmotor outcomes were similar. These findings underpin the prominent role of limbic subthalamic stimulation in postoperative mania. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Stéphane Prange
- Univ Lyon, Institut des Sciences Cognitives Marc Jeannerod, CNRS, UMR 5229, Bron, France.,Hospices Civils de Lyon, Hôpital Neurologique Pierre Wertheimer, Service de Neurologie C, Centre Expert Parkinson NS-PARK/FCRIN network, Bron, France.,University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Nuclear Medicine, Cologne, Germany
| | - Zhengyu Lin
- Service de Neurochirurgie fonctionnelle, Hôpital Neurologique et Neurochirurgical Pierre Wertheimer, Hospices Civils de Lyon 59 Bd Pinel, 69500, Bron, France.,Department of Neurosurgery, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Center for Functional Neurosurgery, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | | - Teodor Danaila
- Univ Lyon, Institut des Sciences Cognitives Marc Jeannerod, CNRS, UMR 5229, Bron, France.,Hospices Civils de Lyon, Hôpital Neurologique Pierre Wertheimer, Service de Neurologie C, Centre Expert Parkinson NS-PARK/FCRIN network, Bron, France
| | - Chloé Laurencin
- Univ Lyon, Institut des Sciences Cognitives Marc Jeannerod, CNRS, UMR 5229, Bron, France.,Hospices Civils de Lyon, Hôpital Neurologique Pierre Wertheimer, Service de Neurologie C, Centre Expert Parkinson NS-PARK/FCRIN network, Bron, France
| | - Ouhaid Lagha-Boukbiza
- Service de Neurologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France.,Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
| | - Mathieu Anheim
- Service de Neurologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France.,Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France.,Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM-U964/CNRS-UMR7104/Université de Strasbourg, Illkirch-Graffenstaden, France
| | - Hélène Klinger
- Hospices Civils de Lyon, Hôpital Neurologique Pierre Wertheimer, Service de Neurologie C, Centre Expert Parkinson NS-PARK/FCRIN network, Bron, France
| | - Nadine Longato
- Service de Neurologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Clelie Phillipps
- Service de Neurologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Jimmy Voirin
- Department of Neurosurgery, NS-PARK/F-CRIN, Strasbourg University Hospital, Strasbourg, France
| | - Gustavo Polo
- Service de Neurochirurgie fonctionnelle, Hôpital Neurologique et Neurochirurgical Pierre Wertheimer, Hospices Civils de Lyon 59 Bd Pinel, 69500, Bron, France
| | - Emile Simon
- Service de Neurochirurgie fonctionnelle, Hôpital Neurologique et Neurochirurgical Pierre Wertheimer, Hospices Civils de Lyon 59 Bd Pinel, 69500, Bron, France
| | - Patrick Mertens
- Service de Neurochirurgie fonctionnelle, Hôpital Neurologique et Neurochirurgical Pierre Wertheimer, Hospices Civils de Lyon 59 Bd Pinel, 69500, Bron, France
| | - Anne-Sophie Rolland
- Univ Lille, CHU-Lille, Medical Pharmacology & Neurology, Expert center for Parkinson, Lille Neuroscience & Cognition, Inserm, UMR-S1172, LICEND, NS-Park network, F-59000, Lille, France
| | - David Devos
- Univ Lille, CHU-Lille, Medical Pharmacology & Neurology, Expert center for Parkinson, Lille Neuroscience & Cognition, Inserm, UMR-S1172, LICEND, NS-Park network, F-59000, Lille, France
| | - Elise Metereau
- Univ Lyon, Institut des Sciences Cognitives Marc Jeannerod, CNRS, UMR 5229, Bron, France.,Hospices Civils de Lyon, Hôpital Neurologique Pierre Wertheimer, Service de Neurologie C, Centre Expert Parkinson NS-PARK/FCRIN network, Bron, France
| | - Christine Tranchant
- Service de Neurologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France.,Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France.,Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM-U964/CNRS-UMR7104/Université de Strasbourg, Illkirch-Graffenstaden, France
| | - Stéphane Thobois
- Univ Lyon, Institut des Sciences Cognitives Marc Jeannerod, CNRS, UMR 5229, Bron, France.,Hospices Civils de Lyon, Hôpital Neurologique Pierre Wertheimer, Service de Neurologie C, Centre Expert Parkinson NS-PARK/FCRIN network, Bron, France.,Univ Lyon, Université Claude Bernard Lyon 1, Faculté de Médecine et de Maïeutique Lyon Sud Charles Mérieux, Oullins, France
| | | |
Collapse
|
25
|
Alonso-Frech F, Fernandez-Garcia C, Gómez-Mayordomo V, Monje MHG, Delgado-Suarez C, Villanueva-Iza C, Catalan-Alonso MJ. Non-motor Adverse Effects Avoided by Directional Stimulation in Parkinson's Disease: A Case Report. Front Neurol 2022; 12:786166. [PMID: 35173666 PMCID: PMC8843015 DOI: 10.3389/fneur.2021.786166] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/29/2021] [Indexed: 11/13/2022] Open
Abstract
Introduction Deep brain stimulation (DBS) is widely used for treatment of advanced, medication-refractory Parkinson's disease (PD). However, a significant proportion of patients may suffer adverse effects; up to 10% will present one or more transient or permanent neurobehavioral events. Patient and Methods In our case study, a 44-year-old woman diagnosed with PD 6 years previously who was suffering from motor fluctuations, dyskinesia, and freezing of gait episodes was submitted for DBS and implanted with directional electrodes. Intraoperative local field potentials (LFPs) were recorded. After surgery, conventional monopolar revision was performed. Preoperative 3T MRI studies and postoperative 3D and X-ray data were integrated using the Guide DTI software application (Brainlab), and diffusion tensor imaging tractography traced from cortical areas to each subthalamic nucleus (STN) using Elements software (Brainlab). Results We observed that left STN stimulation in the ring mode significantly improved motor symptoms, but the patient presented uncontrollable mirthful laughter. Stimulation was then switched to the directional mode; laughter remained when using the more posteromedial contact (3-C+) but not 2-C+ or 4-C+ at the same parameters. Interestingly, LFP recordings showed the highest beta-band activity over contacts 4 and 2, and very scarce beta power over contact 3. The orientation of the directional leads was selected based on the 3D postoperative X-rays. Associative fibers showed the shortest distance to contact number 3. Conclusion Stimulation of the STN can affect motor and associative loops. The use of directional electrodes is a good option to avoid not only undesirable capsular or lemniscal effects, but also limbic/associative events. Oscillatory activity in the beta range that preferentially takes place over the somatomotor STN region and is closely related to motor improvement, provides a reliable guide for optimizing the DBS programming. The importance of the exact location of electrical stimulation to determine the non-motor symptoms such as mood, apathy, attention, and memory, as well as the usefulness of biological markers such as LFP for optimal programming, is discussed in relation to this case.
Collapse
Affiliation(s)
- Fernando Alonso-Frech
- Department of Neurology, San Carlos Research Health Institute (IdISSC), Hospital Clínico San Carlos, Madrid, Spain
- *Correspondence: Fernando Alonso-Frech
| | - Carla Fernandez-Garcia
- Department of Neurosurgery, San Carlos Research Health Institute (IdISSC), Hospital Clínico San Carlos, Madrid, Spain
- Carla Fernandez-Garcia
| | - Victor Gómez-Mayordomo
- Department of Neurology, San Carlos Research Health Institute (IdISSC), Hospital Clínico San Carlos, Madrid, Spain
| | - Mariana H. G. Monje
- Department of Neurology, San Carlos Research Health Institute (IdISSC), Hospital Clínico San Carlos, Madrid, Spain
| | | | - Clara Villanueva-Iza
- Department of Neurology, San Carlos Research Health Institute (IdISSC), Hospital Clínico San Carlos, Madrid, Spain
| | - Maria Jose Catalan-Alonso
- Department of Neurology, San Carlos Research Health Institute (IdISSC), Hospital Clínico San Carlos, Madrid, Spain
| |
Collapse
|
26
|
Weintraub D, Aarsland D, Chaudhuri KR, Dobkin RD, Leentjens AF, Rodriguez-Violante M, Schrag A. The neuropsychiatry of Parkinson's disease: advances and challenges. Lancet Neurol 2022; 21:89-102. [PMID: 34942142 PMCID: PMC8800169 DOI: 10.1016/s1474-4422(21)00330-6] [Citation(s) in RCA: 181] [Impact Index Per Article: 60.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 08/21/2021] [Accepted: 09/20/2021] [Indexed: 01/03/2023]
Abstract
In people with Parkinson's disease, neuropsychiatric signs and symptoms are common throughout the disease course. These symptoms can be disabling and as clinically relevant as motor symptoms, and their presentation can be similar to, or distinct from, their counterparts in the general population. Correlates and risk factors for developing neuropsychiatric signs and symptoms include demographic, clinical, and psychosocial characteristics. The underlying neurobiology of these presentations is complex and not well understood, with the strongest evidence for neuropathological changes associated with Parkinson's disease, mechanisms linked to dopaminergic therapy, and effects not specific to Parkinson's disease. Assessment instruments and formal diagnostic criteria exist, but there is little routine screening of these signs and symptoms in clinical practice. Mounting evidence supports a range of pharmacological and non-pharmacological interventions, but relatively few efficacious treatment options exist. Optimising the management of neuropsychiatric presentations in people with Parkinson's disease will require additional research, raised awareness, specialised training, and development of innovative models of care.
Collapse
Affiliation(s)
- Daniel Weintraub
- Departments of Psychiatry and Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Parkinson's Disease Research, Education and Clinical Center, Corporal Michael J Crescenz Philadelphia Veterans Affairs Medical Center, Philadelphia, PA, USA.
| | - Dag Aarsland
- Department of Neurosciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; Centre for Age-Related Disease, Stavanger University Hospital, Stavanger, Norway
| | - Kallol Ray Chaudhuri
- Department of Neurosciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; Parkinson's Foundation Centre of Excellence, King's College Hospital, King's College London, London, UK
| | - Roseanne D Dobkin
- Department of Psychiatry, Rutgers University, Robert Wood Johnson Medical School, Piscataway, NJ, USA
| | - Albert Fg Leentjens
- Department of Psychiatry, and School for Mental Health and Neuroscience, Maastricht University Hospital, Maastricht, Netherlands
| | - Mayela Rodriguez-Violante
- Clinical Neurodegenerative Diseases Research Unit, National Institute of Neurology and Neurosurgery, Mexico City, Mexico
| | - Anette Schrag
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, UCL, London, UK
| |
Collapse
|
27
|
Moussawi K, Kim MJ, Baybayan S, Wood M, Mills KA. Deep brain stimulation effect on anterior pallidum reduces motor impulsivity in Parkinson's disease. Brain Stimul 2022; 15:23-31. [PMID: 34749005 PMCID: PMC8816820 DOI: 10.1016/j.brs.2021.11.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 10/09/2021] [Accepted: 11/04/2021] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Deep Brain Stimulation (DBS) of the subthalamic nucleus or globus pallidus internus is used to treat the motor symptoms of Parkinson's disease. The former can worsen impulsive and compulsive behaviors after controlling for the reduction of dopaminergic medications. However, the effect of pallidal DBS on such behaviors in PD patients is less clear. OBJECTIVE/HYPOTHESIS We hypothesized that greater stimulation spread to the pallidum with prefrontal connectivity would reduce motor impulsivity. METHODS Seven Parkinson's patients with stable globus pallidus internus DBS settings for 3 months, disease duration of 13 ± 1.3 years, and Montreal Cognitive Assessment of 26.8 ± 1.1 each had two stimulation settings defined based on reconstructions of lead placement and volume of tissue activation targeting either a dorsal or ventral position along the DBS electrode but still within the globus pallidus internus. Subjects performed a stop signal reaction time task with the DBS turned off vs. on in each of the defined stimulation settings, which was correlated with the degree of stimulation effect on pallidal subregions. RESULTS A shorter distance between the volume of tissue activation and the right prefrontally-connected GPi correlated with less impulsivity on the stop signal reaction time task (r = 0.69, p < 0.05). Greater volume of tissue activation overlap with the non-prefrontally-connected globus pallidus internus was associated with increased impulsivity. CONCLUSION These data can be leveraged to optimize DBS programming in PD patients with problematic impulsivity or in other disorders involving impulsive behaviors such as substance use disorders.
Collapse
Affiliation(s)
- Khaled Moussawi
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Corresponding Author: Kelly A. Mills, Johns Hopkins University School of Medicine, Dept. of Neurology, Meyer 6-181D, 600 N. Wolfe Street, Baltimore, MD 21287, Phone: 410-502-0133,
| | - Min Jae Kim
- Department of Neurology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Department of Biomedical Engineering, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Sydney Baybayan
- Department of Neurology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Myles Wood
- Department of Neurology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Kelly A. Mills
- Department of Neurology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Corresponding Author: Kelly A. Mills, Johns Hopkins University School of Medicine, Dept. of Neurology, Meyer 6-181D, 600 N. Wolfe Street, Baltimore, MD 21287, Phone: 410-502-0133,
| |
Collapse
|
28
|
Sauerbier A, Loehrer P, Jost ST, Heil S, Petry-Schmelzer JN, Herberg J, Bachon P, Aloui S, Gronostay A, Klingelhoefer L, Baldermann JC, Huys D, Nimsky C, Barbe MT, Fink GR, Martinez-Martin P, Ray Chaudhuri K, Visser-Vandewalle V, Timmermann L, Weintraub D, Dafsari HS. Predictors of short-term impulsive and compulsive behaviour after subthalamic stimulation in Parkinson disease. J Neurol Neurosurg Psychiatry 2021; 92:1313-1318. [PMID: 34510000 PMCID: PMC8606469 DOI: 10.1136/jnnp-2021-326131] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 06/20/2021] [Indexed: 12/19/2022]
Abstract
BACKGROUND The effects of subthalamic stimulation (subthalamic nucleus-deep brain stimulation, STN-DBS) on impulsive and compulsive behaviours (ICB) in Parkinson's disease (PD) are understudied. OBJECTIVE To investigate clinical predictors of STN-DBS effects on ICB. METHODS In this prospective, open-label, multicentre study in patients with PD undergoing bilateral STN-DBS, we assessed patients preoperatively and at 6-month follow-up postoperatively. Clinical scales included the Questionnaire for Impulsive-Compulsive Disorders in PD-Rating Scale (QUIP-RS), PD Questionnaire-8, Non-Motor Symptom Scale (NMSS), Unified PD Rating Scale in addition to levodopa-equivalent daily dose total (LEDD-total) and dopamine agonists (LEDD-DA). Changes at follow-up were analysed with Wilcoxon signed-rank test and corrected for multiple comparisons (Bonferroni method). We explored predictors of QUIP-RS changes using correlations and linear regressions. Finally, we dichotomised patients into 'QUIP-RS improvement or worsening' and analysed between-group differences. RESULTS We included 55 patients aged 61.7 years±8.4 with 9.8 years±4.6 PD duration. QUIP-RS cut-offs and psychiatric assessments identified patients with preoperative ICB. In patients with ICB, QUIP-RS improved significantly. However, we observed considerable interindividual variability of clinically relevant QUIP-RS outcomes as 27.3% experienced worsening and 29.1% an improvement. In post hoc analyses, higher baseline QUIP-RS and lower baseline LEDD-DA were associated with greater QUIP-RS improvements. Additionally, the 'QUIP-RS worsening' group had more severe baseline impairment in the NMSS attention/memory domain. CONCLUSIONS Our results show favourable ICB outcomes in patients with higher preoperative ICB severity and lower preoperative DA doses, and worse outcomes in patients with more severe baseline attention/memory deficits. These findings emphasise the need for comprehensive non-motor and motor symptoms assessments in patients undergoing STN-DBS. TRIAL REGISTRATION NUMBER DRKS00006735.
Collapse
Affiliation(s)
- Anna Sauerbier
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK .,Department of Neurology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Philipp Loehrer
- Department of Neurology, University of Marburg and University Hospital Giessen and Marburg, Campus Marburg, Marburg, Germany
| | - Stefanie T Jost
- Department of Neurology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Shania Heil
- Department of Neurology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Jan N Petry-Schmelzer
- Department of Neurology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Johanna Herberg
- Department of Neurology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Pia Bachon
- Department of Neurology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Salima Aloui
- Department of Neurology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Alexandra Gronostay
- Department of Neurology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Lisa Klingelhoefer
- Deptartment of Neurology, University of Dresden and University Hospital Dresden, Dresden, Germany
| | - J Carlos Baldermann
- Department of Neurology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.,Department of Psychiatry, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Daniel Huys
- Department of Psychiatry, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Christopher Nimsky
- Department of Neurosurgery, University of Marburg and University Hospital Giessen and Marburg, Campus Marburg, Marburg, Germany
| | - Michael T Barbe
- Department of Neurology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Gereon R Fink
- Department of Neurology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.,Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Center Jülich, Jülich, Germany
| | - Pablo Martinez-Martin
- Center for Networked Biomedical Research in Neurodegenerative Diseases (CIBERNED), Carlos III Institute of Health, Madrid, Spain
| | - K Ray Chaudhuri
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.,Parkinson's Centre of Excellence, Department of Neurology, King's College Hospital NHS Foundation Trust, London, UK.,NIHR Mental Health Biomedical Research Centre and Dementia Biomedical Research Unit, South London and Maudsley NHS Foundation Trust and King's College London, London, UK
| | - Veerle Visser-Vandewalle
- Department of Stereotaxy and Functional Neurosurgery, University of Cologne and University Hospital Cologne, Cologne, Germany
| | - Lars Timmermann
- Department of Neurology, University of Marburg and University Hospital Giessen and Marburg, Campus Marburg, Marburg, Germany
| | - Daniel Weintraub
- Departments of Psychiatry and Neurology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Haidar S Dafsari
- Department of Neurology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | | |
Collapse
|
29
|
Schedlich-Teufer C, Jost ST, Krack P, Witt K, Weintraub D, Baldermann JC, Sommerauer M, Amstutz D, van Eimeren T, Dafsari HS, Kalbe E, Visser-Vandewalle V, Fink GR, Kessler J, Barbe MT. Assessment of Affective-Behavioral States in Parkinson's Disease Patients: Towards a New Screening Tool. JOURNAL OF PARKINSONS DISEASE 2021; 11:1417-1430. [PMID: 33967055 DOI: 10.3233/jpd-202375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Assessment of affective-behavioral states in patients with Parkinson's disease (PD) undergoing deep brain stimulation (DBS) is essential. OBJECTIVE To analyze well-established questionnaires as a pilot-study with the long term aim to develop a screening tool evaluating affective-behavioral dysfunction, including depression, anxiety, apathy, mania, and impulse control disorders, in PD patients screened for DBS. METHODS Two hundred ninety-seven inpatients with PD underwent standardized neuropsychiatric testing including German versions of Beck Depression Inventory-II, Hospital Anxiety and Depression Scale, Apathy Evaluation Scale, Self-Report Manic Inventory, and Questionnaire for Impulsive-Compulsive Disorders in PD-Rating Scale, to assess appropriateness for DBS. Statistical item reduction was based on exploratory factor analysis, Cronbach's alpha, item-total correlations, item difficulty, and inter-item correlations. Confirmatory factor analysis was conducted to assess factorial validity. An expert rating was performed to identify clinically relevant items in the context of PD and DBS, to maintain content validity. We compared the shortened subscales with the original questionnaires using correlations. To determine cutoff points, receiver operating characteristics analysis was performed. RESULTS The items of the initial questionnaires were reduced from 129 to 38 items. Results of confirmatory factor analyses supported the validity of the shortened pool. It demonstrated high internal consistency (Cronbach's alpha = 0.72-0.83 across subscales), and the individual subscales were correlated with the corresponding original scales (rs = 0.84-0.95). Sensitivities and specificities exceeded 0.7. CONCLUSION The shortened item pool, including 38 items, provides a good basis for the development of a screening tool, capturing affective-behavioral symptoms in PD patients before DBS implantation. Confirmation of the validity of such a screening tool in an independent sample of PD patients is warranted.
Collapse
Affiliation(s)
- Charlotte Schedlich-Teufer
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Stefanie Theresa Jost
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Paul Krack
- Department of Neurology, Bern University Hospital and University of Bern, Bern, Switzerland
| | - Karsten Witt
- Department of Neurology, School of Medicine and Health Sciences, University of Oldenburg, Oldenburg, Germany.,Research Center Neurosensory Science, University of Oldenburg, Oldenburg, Germany
| | - Daniel Weintraub
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Parkinson's Disease Research, Education and Clinical Center, Philadelphia Veterans Affairs Medical Center, Philadelphia, PA, USA
| | - Juan Carlos Baldermann
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.,Department of Psychiatry and Psychotherapy, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Michael Sommerauer
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Deborah Amstutz
- Department of Neurology, Bern University Hospital and University of Bern, Bern, Switzerland
| | - Thilo van Eimeren
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.,Department of Nuclear Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.,German Center for Neurodegenerative Diseases (DZNE), Bonn-Cologne, Germany
| | - Haidar Salimi Dafsari
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Elke Kalbe
- Department of Medical Psychology, Neuropsychology and Gender Studies & Center for Neuropsychological Diagnostics and Intervention (CeNDI), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Veerle Visser-Vandewalle
- Department of Stereotactic and Functional Neurosurgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Gereon Rudolf Fink
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.,Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Center Jülich, Jülich, Germany
| | - Josef Kessler
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Michael Thomas Barbe
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
30
|
Weiss D, Volkmann J, Fasano A, Kühn A, Krack P, Deuschl G. Changing Gears - DBS For Dopaminergic Desensitization in Parkinson's Disease? Ann Neurol 2021; 90:699-710. [PMID: 34235776 DOI: 10.1002/ana.26164] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 07/06/2021] [Accepted: 07/06/2021] [Indexed: 12/19/2022]
Abstract
In Parkinson's disease, both motor and neuropsychiatric complications unfold as a consequence of both incremental striatal dopaminergic denervation and intensifying long-term dopaminergic treatment. Together, this leads to 'dopaminergic sensitization' steadily increasing motor and behavioral responses to dopaminergic medication that result in the detrimental sequalae of long-term dopaminergic treatment. We review the clinical presentations of 'dopaminergic sensitization', including rebound off and dyskinesia in the motor domain, and neuropsychiatric fluctuations and behavioral addictions with impulse control disorders and dopamine dysregulation syndrome in the neuropsychiatric domain. We summarize state-of-the-art deep brain stimulation, and show that STN-DBS allows dopaminergic medication to be tapered, thus supporting dopaminergic desensitization. In this framework, we develop our integrated debatable viewpoint of "changing gears", that is we suggest rethinking earlier use of subthalamic nucleus deep brain stimulation, when the first clinical signs of dopaminergic motor or neuropsychiatric complications emerge over the steadily progressive disease course. In this sense, subthalamic deep brain stimulation may help reduce longitudinal motor and neuropsychiatric symptom expression - importantly, not by neuroprotection but by supporting dopaminergic desensitization through postoperative medication reduction. Therefore, we suggest considering STN-DBS early enough before patients encounter potentially irreversible psychosocial consequences of dopaminergic complications, but importantly not before a patient shows first clinical signs of dopaminergic complications. We propose to consider neuropsychiatric dopaminergic complications as a new inclusion criterion in addition to established motor criteria, but this concept will require validation in future clinical trials. ANN NEUROL 2021.
Collapse
Affiliation(s)
- Daniel Weiss
- Centre for Neurology, Department for Neurodegenerative Diseases, and Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Jens Volkmann
- Department of Neurology, University Hospital and Julius-Maximilian-University, Würzburg, Germany
| | - Alfonso Fasano
- Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, UHN, Toronto, ON, Canada.,Division of Neurology, University of Toronto, Toronto, ON, Canada.,Krembil Brain Institute, Toronto, ON, Canada.,Center for Advancing Neurotechnological Innovation to Application (CRANIA), Toronto, ON, Canada
| | - Andrea Kühn
- Department of Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Paul Krack
- Department of Neurology, Bern University Hospital and University of Bern, Bern, Switzerland
| | - Günther Deuschl
- Department of Neurology, University Hospital Schleswig Holstein (UKSH), Christian-Albrechts-University Kiel, Kiel, Germany
| |
Collapse
|
31
|
Impulse control disorders and related behaviors in Parkinson's disease: risk factors, clinical and genetic aspects, and management. Curr Opin Neurol 2021; 34:547-555. [PMID: 33967198 DOI: 10.1097/wco.0000000000000955] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW To review recent findings and research directions on impulse control disorders and related behaviors (ICDRBs) in Parkinson's disease (PD). RECENT FINDINGS Longitudinal studies found that prevalence increases during PD progression, incident ICDRBs being around 10% per year in patients treated with dopaminergic therapies. Screening tools and severity scales already developed have been validated and are available in several countries and languages. The main clinical risk factors include young age, male gender, type, doses and duration of dopaminergic therapy, PD motor severity and dyskinesia, depression, anxiety, apathy, sleep disorders, and impulsivity traits. Genetic factors are suspected by a high estimated heritability, but individual genes and variants remain to be replicated. Management of ICDRBs is centered on dopamine agonist decrease, with the risk to develop withdrawal symptoms. Cognitive behavioral therapy and subthalamic nucleus deep brain stimulation also improve ICDRBs. In the perspective of precision medicine, new individual prediction models of these disorders have been proposed, but they need further independent replication. SUMMARY Regular monitoring of ICDRB during the course of PD is needed, particularly in the subject at high risk of developing these complications. Precision medicine will require the appropriate use of machine learning to be reached in the clinical setting.
Collapse
|
32
|
Augustine A, Winstanley CA, Krishnan V. Impulse Control Disorders in Parkinson's Disease: From Bench to Bedside. Front Neurosci 2021; 15:654238. [PMID: 33790738 PMCID: PMC8006437 DOI: 10.3389/fnins.2021.654238] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 02/22/2021] [Indexed: 12/16/2022] Open
Abstract
Parkinson’s disease (PD) is a neurodegenerative disorder that is characterized by symptoms that impact both motor and non-motor domains. Outside of motor impairments, PD patients are at risk for impulse control disorders (ICDs), which include excessively disabling impulsive and compulsive behaviors. ICD symptoms in PD (PD + ICD) can be broadly conceptualized as a synergistic interaction between dopamine agonist therapy and the many molecular and circuit-level changes intrinsic to PD. Aside from discontinuing dopamine agonist treatment, there remains a lack of consensus on how to best address ICD symptoms in PD. In this review, we explore recent advances in the molecular and neuroanatomical mechanisms underlying ICD symptoms in PD by summarizing a rapidly accumulating body of clinical and preclinical studies, with a special focus on the utility of rodent models in gaining new insights into the neurochemical basis of PD + ICD. We also discuss the relevance of these findings to the broader problem of impulsive and compulsive behaviors that impact a range of neuropsychiatric syndromes.
Collapse
Affiliation(s)
- Andrea Augustine
- Department of BioSciences, Rice University, Houston, TX, United States
| | - Catharine A Winstanley
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, The University of British Columbia, Vancouver, BC, Canada
| | - Vaishnav Krishnan
- Departments of Neurology, Neuroscience and Psychiatry & Behavioral Sciences, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|