1
|
Goleij P, Amini A, Tabari MAK, Hadipour M, Sanaye PM, Alsharif KF, Daglia M, Larsen DS, Khan H. The role of interleukin (IL)-2 cytokine family in Parkinson's disease. Cytokine 2025; 191:156954. [PMID: 40318236 DOI: 10.1016/j.cyto.2025.156954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 04/03/2025] [Accepted: 04/24/2025] [Indexed: 05/07/2025]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder, which primarily impacts the nervous system, marked by its immune and inflammatory characteristics. The interleukin-2 (IL-2) cytokine family has a crucial role in regulating both neuroinflammation and immune activity, positioning it as one of the critical immune pathways in PD. Balancing pro-inflammatory and anti-inflammatory signals in PD heavily depends on the IL-2 cytokine family, that includes IL-2, IL-4, IL-7, IL-9, IL-15 and IL-21. This balance is vital for neuron survival and resistance to degeneration. Disruptions in IL-2 signaling can upset the equilibrium among regulatory T cells (Tregs) and pro-inflammatory T cells, such as Th1 and Th17, further aggravating the chronic neuroinflammation typical of PD. In PD, a decline in IL-2 or receptor dysfunction can hinder Treg activity, leading to increased inflammation and neurodegeneration. Similarly, IL-15 and IL-21 supports cytotoxic immune cell function, including natural killer (NK) cells and CD8+ T cells, which may exacerbate neuronal damage by sustaining pro-inflammatory processes. Moreover, IL-4 and IL-7 have anti-inflammatory roles in maintaining T cell homeostasis, and their dysregulation can contribute to interruption of the blood-brain barrier and increased infiltration of immune cells into the central nervous system. Targeting the IL-2 cytokine family in Parkinson's disease has shown therapeutic potential by expanding Tregs, which reduce neuroinflammation and promote dopaminergic neuron survival. Recombinant IL-2 and IL-2/anti-IL-2 complexes have demonstrated efficacy in animal models, enhancing Treg function and leading to improved neuroprotection. Additionally, IL-4-based therapies have been explored for their ability to shift microglia toward a neuroprotective phenotype, further enhancing neuronal survival by modulating inflammatory responses and cellular metabolism. Current research is exploring how to optimize cytokine delivery while minimizing immune side effects, with the goal of developing more targeted therapies for PD.
Collapse
Affiliation(s)
- Pouya Goleij
- USERN Office, Kermanshah University of Medical Sciences, Kermanshah 6715847141, Iran; Department of Genetics, Faculty of Biology, Sana Institute of Higher Education, Sari 4816118761, Iran.
| | - Alireza Amini
- Student Research Committee, School of Medicine, Mazandaran University of Medical Sciences, Mazandaran 4815733971, Iran
| | - Mohammad Amin Khazeei Tabari
- Student Research Committee, School of Medicine, Mazandaran University of Medical Sciences, Mazandaran 4815733971, Iran
| | - Mahboube Hadipour
- Department of Biochemistry, School of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas 7919693116, Iran
| | - Pantea Majma Sanaye
- School of Pharmacy, Zanjan University of Medical Sciences, Zanjan 4513956184, Iran
| | - Khalaf F Alsharif
- Department of Clinical Laboratory Science, College of Applied Medical Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia.
| | - Maria Daglia
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano 49, 80131 Naples, Italy; International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China.
| | - Danaé S Larsen
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland 1010, New Zealand.
| | - Haroon Khan
- Department of Pharmacy, Faculty of Chemical and Life Sciences, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan; Department of Pharmacy, Korea University, Sejong, 20019, South Korea.
| |
Collapse
|
2
|
Bovenzi R, Conti M, Simonetta C, Bissacco J, Mascioli D, Mancini M, Buttarazzi V, Veltri F, Sancesario GM, Bagetta S, D'Amaro F, Pieri M, Cerroni R, Liguori C, Chiurchiù V, Pierantozzi M, Stefani A, Mercuri NB, Schirinzi T. Sex-specific immune-biological profiles in Parkinson's disease. J Neuroimmunol 2025; 403:578610. [PMID: 40203520 DOI: 10.1016/j.jneuroim.2025.578610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/29/2025] [Accepted: 04/04/2025] [Indexed: 04/11/2025]
Abstract
Depending on age, both the risk and characteristics of Parkinson's disease (PD) differ between the sexes. The immune system might have a role; however, human-based evidence remains scarce. Here, we investigated the relationship between peripheral immune cellular composition and the clinical-biological sexual dimorphism of PD. The leukocyte population count (neutrophils, lymphocytes, monocytes, eosinophils, and basophils), the neutrophil-to-lymphocyte ratio (NLR), and the monocytes-to-lymphocytes ratio (MLR) were collected and compared in 117 PD patients and 86 controls (CTLs), and then related to blood levels of sex hormones, CSF markers of neurodegeneration (α-synuclein, amyloid-β-42, amyloid-β-40, total tau, and phosphorylated-181-tau), and clinical features in male and female PD patients. Finally, a cluster analysis based on the three main leukocyte populations (neutrophils, lymphocytes, monocytes) was performed for the entire PD cohort. Male PD patients had lower lymphocyte counts and higher NLR than male CTLs. Females with PD had lower monocyte counts, NLR, and MLR than males with PD. Lymphocyte counts correlated with cognition in male, but not female, PD patients. Finally, two clusters of peripheral immune cellular composition were identified: the "high peripheral inflammation" one, mostly comprising male patients, with worse clinical features and greater central α-synuclein burden, and the "low peripheral inflammation cluster", which mainly comprised female patients, with milder clinical features and lower central synucleinopathy. In conclusion, the peripheral immune pattern entails sex-specific clinical-biological profiles in PD. Moreover, systemic inflammation clusters with sex, sexual hormones, clinical features, and central synucleinopathy in PD, supporting the relevance of immunity in sexual dimorphism of the disease.
Collapse
Affiliation(s)
- Roberta Bovenzi
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Matteo Conti
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Clara Simonetta
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Jacopo Bissacco
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Davide Mascioli
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Maria Mancini
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | | | - Federica Veltri
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Giulia Maria Sancesario
- Clinical Neurochemistry Unit and Biobank, IRCCS Fondazione Santa Lucia, European Centre for Brain Research, Rome, Italy
| | - Silvio Bagetta
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Francesca D'Amaro
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Massimo Pieri
- Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy; Department of Clinical Biochemistry, Tor Vergata University Hospital, Rome, Italy
| | - Rocco Cerroni
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy; Neurology Unit, University Hospital of Rome Tor Vergata, Rome, Italy
| | - Claudio Liguori
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy; Neurology Unit, University Hospital of Rome Tor Vergata, Rome, Italy
| | - Valerio Chiurchiù
- Institute of Translational Pharmacology, National Research Council, Rome, Italy; Laboratory of Resolution of Neuroinflammation, Santa Lucia Foundation IRCCS, Rome, Italy
| | - Mariangela Pierantozzi
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy; Neurology Unit, University Hospital of Rome Tor Vergata, Rome, Italy
| | - Alessandro Stefani
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy; Neurology Unit, University Hospital of Rome Tor Vergata, Rome, Italy; UOSD Parkinson Centre, Tor Vergata University Hospital, Rome, Italy
| | - Nicola Biagio Mercuri
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy; Neurology Unit, University Hospital of Rome Tor Vergata, Rome, Italy; Laboratory of Experimental Neuroscience, Santa Lucia Foundation IRCCS, Rome, Italy
| | - Tommaso Schirinzi
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy; Neurology Unit, University Hospital of Rome Tor Vergata, Rome, Italy.
| |
Collapse
|
3
|
Greenland JC, Holbrook J, Kahanawita L, Camacho M, Fryer TD, Hong YT, Williams-Gray CH. Peripheral-central immune crosstalk in Parkinson's disease and its association with clinical severity. Brain Behav Immun 2025; 128:558-570. [PMID: 40280259 DOI: 10.1016/j.bbi.2025.04.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 03/20/2025] [Accepted: 04/21/2025] [Indexed: 04/29/2025] Open
Abstract
BACKGROUND Increasingly, the immune system is implicated in the aetiology and progression of Parkinson's disease (PD). Immune activation is seen both peripherally in the blood, with a tendency towards a pro-inflammatory profile, and centrally in the cerebrospinal fluid and brain parenchyma, with microglial activation and increased numbers of immune cells in the central nervous system. However, the relationship between this peripheral and central immune profile, as well as the association with clinical measures of disease severity is not clear. METHODS 61 people with PD, within three years of diagnosis and no immune comorbidities, and 51 matched controls underwent detailed blood immunophenotyping using a flow cytometry panel with markers to characterise adaptive and innate immune populations. In the PD cohort, 35 also had cerebrospinal fluid (CSF) immune cell analysis and 31 underwent positron emission tomography (PET) brain imaging with the radioligand [11C]-PK11195 to assess microglial activation. PD participants were assessed with the Movement Disorder Society-Unified Parkinson's disease rating Scale (MDS-UPDRS) and the Addenbrooke's Cognitive Examination (ACE-III). The immune profiles of PD and control participants were compared. In the PD group, relationships between peripheral and CSF immune cell populations, [11C]-PK11195 binding, and clinical measures were investigated in exploratory analyses using multiple linear regression. RESULTS Compared to controls, PD participants had a pro-inflammatory profile in the blood with an elevated Systemic Inflammatory Index (SII) (p = 0.049), a higher percentage of classical monocytes (p = 0.046), and decreased expression of functional markers of T regulatory cells (FoxP3 (p = 0.030) and Helios (p = 0.015)) and B regulatory cells (CD1d (p = 0.031)). Immune cell subset numbers in blood and CSF were correlated for CD8+ cells (rho = 0.42, p = 0.011), CD16+ NK cells (rho = 0.49, p = 0.004) and classical monocytes (rho = -0.38, p = 0.028). CSF immune populations were also correlated with [11C]-PK11195 binding in disease-relevant regions of interest. Several blood and CSF immune cell subsets and regional [11C]-PK11195 binding showed relationships with motor and cognitive scores, with a consistent trend of pro-inflammatory markers being related to a more severe disease phenotype. Increased Toll-like receptor 2 expression on classical monocytes in the CSF and [11C]-PK11195 binding in the substantia nigra independently predicted motor score (MDS-UPDRS-III). CONCLUSION This exploratory study suggests that peripheral and central immune changes are closely linked in PD, and relevant to clinical disease severity. These findings warrant further validation and exploration to identify immune biomarkers linked to disease state, as well as candidate therapeutic targets.
Collapse
Affiliation(s)
- Julia C Greenland
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.
| | - Jonathan Holbrook
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Lakmini Kahanawita
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Marta Camacho
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Tim D Fryer
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK; Wolfson Brain Imaging Centre, University of Cambridge, Cambridge, UK
| | - Young T Hong
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK; Wolfson Brain Imaging Centre, University of Cambridge, Cambridge, UK
| | | |
Collapse
|
4
|
Weiner HL. Immune mechanisms and shared immune targets in neurodegenerative diseases. Nat Rev Neurol 2025; 21:67-85. [PMID: 39681722 DOI: 10.1038/s41582-024-01046-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/15/2024] [Indexed: 12/18/2024]
Abstract
The immune system plays a major part in neurodegenerative diseases. In some, such as multiple sclerosis, it is the primary driver of the disease. In others, such as Alzheimer disease, amyotrophic lateral sclerosis and Parkinson disease, it has an amplifying role. Immunotherapeutic approaches that target the adaptive and innate immune systems are being explored for the treatment of almost all neurological diseases, and the targets and approaches are often common across diseases. Microglia are the primary immune cells in the brain that contribute to disease pathogenesis, and are consequently a common immune target for therapy. Other therapeutic approaches target components of the peripheral immune system, such as regulatory T cells and monocytes, which in turn act within the CNS. This Review considers in detail how microglia, monocytes and T cells contribute to the pathogenesis of multiple sclerosis, Alzheimer disease, amyotrophic lateral sclerosis and Parkinson disease, and their potential as shared therapeutic targets across these diseases. The microbiome is also highlighted as an emerging therapeutic target that indirectly modulates the immune system. Therapeutic approaches being developed to target immune function in neurodegenerative diseases are discussed, highlighting how immune-based approaches developed to treat one disease could be applicable to multiple other neurological diseases.
Collapse
Affiliation(s)
- Howard L Weiner
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
5
|
Kodosaki E, Bell R, Sogorb-Esteve A, Wiltshire K, Zetterberg H, Heslegrave A. More than microglia: myeloid cells and biomarkers in neurodegeneration. Front Neurosci 2024; 18:1499458. [PMID: 39544911 PMCID: PMC11560917 DOI: 10.3389/fnins.2024.1499458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 10/16/2024] [Indexed: 11/17/2024] Open
Abstract
The role of myeloid cells (granulocytes and monocytes) in neurodegeneration and neurodegenerative disorders (NDD) is indisputable. Here we discuss the roles of myeloid cells in neurodegenerative diseases, and the recent advances in biofluid and imaging myeloid biomarker research with a focus on methods that can be used in the clinic. For this review, evidence from three neurodegenerative diseases will be included, Alzheimer's disease (AD), Parkinson's disease (PD), and multiple sclerosis (MS). We discuss the potential for these biomarkers to be used in humans with suspected NDD as prognostic, diagnostic, or monitoring tools, identify knowledge gaps in literature, and propose potential approaches to further elucidate the role of myeloid cells in neurodegeneration and better utilize myeloid biomarkers in the understanding and treatment of NDD.
Collapse
Affiliation(s)
- Eleftheria Kodosaki
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, United Kingdom
- UK Dementia Research Institute at UCL, London, United Kingdom
| | - Rosie Bell
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, United Kingdom
- UK Dementia Research Institute at UCL, London, United Kingdom
| | - Aitana Sogorb-Esteve
- UK Dementia Research Institute at UCL, London, United Kingdom
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Katharine Wiltshire
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Henrik Zetterberg
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, United Kingdom
- UK Dementia Research Institute at UCL, London, United Kingdom
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong SAR, China
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Amanda Heslegrave
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, United Kingdom
- UK Dementia Research Institute at UCL, London, United Kingdom
| |
Collapse
|
6
|
Roodveldt C, Bernardino L, Oztop-Cakmak O, Dragic M, Fladmark KE, Ertan S, Aktas B, Pita C, Ciglar L, Garraux G, Williams-Gray C, Pacheco R, Romero-Ramos M. The immune system in Parkinson's disease: what we know so far. Brain 2024; 147:3306-3324. [PMID: 38833182 PMCID: PMC11449148 DOI: 10.1093/brain/awae177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/02/2024] [Accepted: 05/13/2024] [Indexed: 06/06/2024] Open
Abstract
Parkinson's disease is characterized neuropathologically by the degeneration of dopaminergic neurons in the ventral midbrain, the accumulation of α-synuclein (α-syn) aggregates in neurons and chronic neuroinflammation. In the past two decades, in vitro, ex vivo and in vivo studies have consistently shown the involvement of inflammatory responses mediated by microglia and astrocytes, which may be elicited by pathological α-syn or signals from affected neurons and other cell types, and are directly linked to neurodegeneration and disease development. Apart from the prominent immune alterations seen in the CNS, including the infiltration of T cells into the brain, more recent studies have demonstrated important changes in the peripheral immune profile within both the innate and adaptive compartments, particularly involving monocytes, CD4+ and CD8+ T cells. This review aims to integrate the consolidated understanding of immune-related processes underlying the pathogenesis of Parkinson's disease, focusing on both central and peripheral immune cells, neuron-glia crosstalk as well as the central-peripheral immune interaction during the development of Parkinson's disease. Our analysis seeks to provide a comprehensive view of the emerging knowledge of the mechanisms of immunity in Parkinson's disease and the implications of this for better understanding the overall pathogenesis of this disease.
Collapse
Affiliation(s)
- Cintia Roodveldt
- Centre for Molecular Biology and Regenerative Medicine-CABIMER, University of Seville-CSIC, Seville 41092, Spain
- Department of Medical Biochemistry, Molecular Biology and Immunology, Faculty of Medicine, University of Seville, Seville 41009, Spain
| | - Liliana Bernardino
- Health Sciences Research Center (CICS-UBI), Faculty of Health Sciences, University of Beira Interior, 6200-506, Covilhã, Portugal
| | - Ozgur Oztop-Cakmak
- Department of Neurology, Faculty of Medicine, Koç University, Istanbul 34010, Turkey
| | - Milorad Dragic
- Laboratory for Neurobiology, Department of General Physiology and Biophysics, Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia
- Department of Molecular Biology and Endocrinology, ‘VINČA’ Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia
| | - Kari E Fladmark
- Department of Biological Science, University of Bergen, 5006 Bergen, Norway
| | - Sibel Ertan
- Department of Neurology, Faculty of Medicine, Koç University, Istanbul 34010, Turkey
| | - Busra Aktas
- Department of Molecular Biology and Genetics, Burdur Mehmet Akif Ersoy University, Burdur 15200, Turkey
| | - Carlos Pita
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal
| | - Lucia Ciglar
- Center Health & Bioresources, Competence Unit Molecular Diagnostics, AIT Austrian Institute of Technology GmbH, 1210 Vienna, Austria
| | - Gaetan Garraux
- Movere Group, Faculty of Medicine, GIGA Institute, University of Liège, Liège 4000, Belgium
| | | | - Rodrigo Pacheco
- Laboratorio de Neuroinmunología, Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Huechuraba 8580702, Santiago, Chile
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Providencia 7510156, Santiago, Chile
| | - Marina Romero-Ramos
- Department of Biomedicine & The Danish Research Institute of Translational Neuroscience—DANDRITE, Aarhus University, DK-8000 Aarhus C, Denmark
| |
Collapse
|
7
|
Mendez-Victoriano G, Zhu Y, Middleton F, Massa PT, Ajulu K, Webster MJ, Weickert CS. Increased Parenchymal Macrophages are associated with decreased Tyrosine Hydroxylase mRNA levels in the Substantia Nigra of people with Schizophrenia and Bipolar Disorder. Psychiatry Res 2024; 340:116141. [PMID: 39153291 DOI: 10.1016/j.psychres.2024.116141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 07/09/2024] [Accepted: 08/10/2024] [Indexed: 08/19/2024]
Abstract
Increased activation of inflammatory macrophages and altered expression of dopamine markers are found in the midbrains of people with schizophrenia (SZ). The relationship of midbrain macrophages to dopamine neurons has not been explored, nor is it known if changes in midbrain macrophages are also present in bipolar disorder (BD) or major depressive disorder (MDD). Herein, we determined whether there were differences in CD163+ cell density in the Substantia Nigra (SN), and cerebral peduncles (CP) of SZ, BD, and MDD compared to controls (CTRL). We also analyzed whether CD163 protein and dopamine-synthesizing enzyme tyrosine hydroxylase (TH) mRNA levels differed among diagnostic groups and if they correlated with the density of macrophages. Overall, perivascular CD163+ cell density was higher in the gray matter (SN) than in the white matter (CP). Compared to CTRL, we found increased density of parenchymal CD163+ cells in the SN of the three psychiatric groups and increased CD163 protein levels in SZ. CD163 protein was positively correlated with density of perivascular CD163+ cells. TH mRNA was reduced in SZ and BD and negatively correlated with parenchymal CD163+ cell density. We provide the first quantitative and molecular evidence of an increase in the density of parenchymal macrophages in the midbrain of major mental illnesses and show that the presence of these macrophages may negatively impact dopaminergic neurons.
Collapse
Affiliation(s)
- Gerardo Mendez-Victoriano
- Department of Neuroscience and Physiology, Upstate Medical University, Syracuse, NY, USA; Neuroscience Research Australia, Sydney, NSW, Australia; School of Clinical Medicine, Faculty of Medicine & Health, University of New South Wales, Sydney, NSW 2052, Australia
| | - Yunting Zhu
- Department of Neuroscience and Physiology, Upstate Medical University, Syracuse, NY, USA
| | - Frank Middleton
- Department of Neuroscience and Physiology, Upstate Medical University, Syracuse, NY, USA
| | - Paul T Massa
- Department of Neuroscience and Physiology, Upstate Medical University, Syracuse, NY, USA
| | - Kachikwulu Ajulu
- Department of Neuroscience and Physiology, Upstate Medical University, Syracuse, NY, USA
| | - Maree J Webster
- Laboratory of Brain Research, Stanley Medical Research Institute, 9800 Medical Center Drive, Rockville, MD, USA
| | - Cynthia S Weickert
- Department of Neuroscience and Physiology, Upstate Medical University, Syracuse, NY, USA; Neuroscience Research Australia, Sydney, NSW, Australia; School of Clinical Medicine, Faculty of Medicine & Health, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
8
|
Demirci SC, Barun S, Özaslan A, Gülbahar Ö, Bulut TSD, Çamurdan AD, İşeri E. Investigating the Relationship of Serum CD163, YKL40 and VILIP-1 Levels with Autism Severity and Language-cognitive Development in Preschool Children with Autism. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE : THE OFFICIAL SCIENTIFIC JOURNAL OF THE KOREAN COLLEGE OF NEUROPSYCHOPHARMACOLOGY 2024; 22:473-483. [PMID: 39069687 PMCID: PMC11289611 DOI: 10.9758/cpn.23.1149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/17/2024] [Accepted: 03/27/2024] [Indexed: 07/30/2024]
Abstract
Objective This study aimed to compare serum levels of CD163, YKL-40, and VILIP-1 between children with autism spectrum disorder (ASD) and healthy controls, while also investigating their association with the severity of ASD and language development. Methods The study included 40 ASD-diagnosed patients (aged 18-72 months) and 40 age-matched healthy controls. Childhood Autism Rating Scale, Preschool Language Scale-4, and Ankara Development Screening Inventory were administered to children in the ASD group. Serum CD163, YKL-40 and VILIP-1 levels were measured with an enzyme- linked immunosorbent assay kit. Results In the ASD group compared to the control group, serum VILIP-1 levels were significantly higher (p = 0.046). No significant differences were observed in mean serum CD163 and YKL-40 levels between patients and controls (p = 0.613, p = 0.769). Interestingly, a positive correlation was observed between CD163 and YKL-40 levels and ASD severity (p < 0.001 for both). Additionally, CD163 and YKL-40 levels showed significant predictive value for ASD severity. While no significant associations were found between CD163 and YKL-40 levels and language development, a negative correlation was observed between VILIP-1 levels and language development (p < 0.001). Conclusion Our findings highlight that the levels of CD163 and YKL-40 significantly predicted ASD severity, indicating a potential role of neuroinflammation in the development of ASD.
Collapse
Affiliation(s)
- Samet Can Demirci
- Department of Child and Adolescent Psychiatry, Gazi University Medical Faculty, Ankara, Turkey
- Department of Child and Adolescent Psychiatry, Ardahan State Hospital, Ardahan, Turkey
| | - Süreyya Barun
- Department of Medical Pharmacology, Gazi University Medical Faculty, Ankara, Turkey
| | - Ahmet Özaslan
- Department of Child and Adolescent Psychiatry, Gazi University Medical Faculty, Ankara, Turkey
- Autism and Developmental Disorders Application and Research Center, Gazi University, Ankara, Turkey
| | - Özlem Gülbahar
- Department of Medical Biochemistry, Gazi University Medical Faculty, Ankara, Turkey
| | | | - Aysu Duyan Çamurdan
- Department of Child Health and Diseases, Gazi University Medical Faculty, Ankara, Turkey
| | - Elvan İşeri
- Department of Child and Adolescent Psychiatry, Gazi University Medical Faculty, Ankara, Turkey
| |
Collapse
|
9
|
Freuchet A, Pinçon A, Sette A, Lindestam Arlehamn CS. Inflammation and heterogeneity in synucleinopathies. Front Immunol 2024; 15:1432342. [PMID: 39281666 PMCID: PMC11392857 DOI: 10.3389/fimmu.2024.1432342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 08/15/2024] [Indexed: 09/18/2024] Open
Abstract
Neurodegenerative diseases represent a huge healthcare challenge which is predicted to increase with an aging population. Synucleinopathies, including Parkinson's disease (PD), dementia with Lewy bodies (DLB), and multiple system atrophy (MSA), present complex challenges in understanding their onset and progression. They are characterized by the abnormal aggregation of α-synuclein in the brain leading to neurodegeneration. Accumulating evidence supports the existence of distinct subtypes based on the site of α-synuclein aggregation initiation, genetics, and, more recently, neuroinflammation. Mediated by both central nervous system-resident cells, peripheral immune cells, and gut dysbiosis, neuroinflammation appears as a key process in the onset and progression of neuronal loss. Sex-based differences add another layer of complexity to synucleinopathies, influencing disease prevalence - with a known higher incidence of PD in males compared to females - as well as phenotype and immune responses. Biological sex affects neuroinflammatory pathways and the immune response, suggesting the need for sex-specific therapeutic strategies and biomarker identification. Here, we review the heterogeneity of synucleinopathies, describing the etiology, the mechanisms by which the inflammatory processes contribute to the pathology, and the consideration of sex-based differences to highlight the need for personalized therapeutics.
Collapse
Affiliation(s)
- Antoine Freuchet
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, San Diego, CA, United States
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, United States
| | - Anaëlle Pinçon
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, San Diego, CA, United States
- Master de Biologie, Ecole Normale Superieure de Lyon, University of Lyon, Lyon, France
| | - Alessandro Sette
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, San Diego, CA, United States
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, United States
- Department of Medicine, University of California, San Diego, San Diego, CA, United States
| | - Cecilia S Lindestam Arlehamn
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, San Diego, CA, United States
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, United States
| |
Collapse
|
10
|
Gonçalves M, Rodrigues-Santos P, Januário C, Cosentino M, Pereira FC. Indoleamine 2,3-dioxygenase (IDO1) - Can dendritic cells and monocytes expressing this moonlight enzyme change the phase of Parkinson's Disease? Int Immunopharmacol 2024; 133:112062. [PMID: 38652967 DOI: 10.1016/j.intimp.2024.112062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/31/2024] [Accepted: 04/08/2024] [Indexed: 04/25/2024]
Abstract
Parkinson's Disease (PD) is the second most common neurodegenerative disease where central and peripheral immune dysfunctions have been pointed out as a critical component of susceptibility and progression of this disease. Dendritic cells (DCs) and monocytes are key players in promoting immune response regulation and can induce the enzyme indoleamine 2,3-dioxygenase 1 (IDO1) under pro-inflammatory environments. This enzyme with catalytic and signaling activity supports the axis IDO1-KYN-aryl hydrocarbon receptor (AhR), promoting disease-specific immunomodulatory effects. IDO1 is a rate-limiting enzyme of the kynurenine pathway (KP) that begins tryptophan (Trp) catabolism across this pathway. The immune functions of the pathway, which are extensively described in cancer, have been forgotten so far in neurodegenerative diseases, where a chronic inflammatory environment underlines the progression of the disease. Despite dysfunctions of KP have been described in PD, these are mainly associated with neurotoxic functions. With this review, we aim to focus on the immune properties of IDO1+DCs and IDO1+monocytes as a possible strategy to balance the pro-inflammatory profile described in PD. We also highlight the importance of exploring the role of dopaminergic therapeutics in IDO1 modulation to possibly optimize current PD therapeutic strategies.
Collapse
Affiliation(s)
- Milene Gonçalves
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal; Univ Coimbra, Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, Coimbra, Portugal; Univ Coimbra, CIBB - Centre for Innovative Biomedicine and Biotechnology, Coimbra, Portugal; Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal; University of Coimbra, Institute for Interdisciplinary Research, Doctoral Programme in Experimental Biology and Biomedicine (PDBEB), Portugal
| | - Paulo Rodrigues-Santos
- Univ Coimbra, Institute of Immunology, Faculty of Medicine, Coimbra, Portugal; Univ Coimbra, Center for Neuroscience and Cell Biology, Coimbra, Portugal
| | - Cristina Januário
- Univ Coimbra, CIBIT - Coimbra Institute for Biomedical Imaging and Translational Research, Coimbra, Portugal
| | - Marco Cosentino
- Univ Insubria, Center for Research in Medical Pharmacology, Varese, Italy
| | - Frederico C Pereira
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal; Univ Coimbra, Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, Coimbra, Portugal; Univ Coimbra, CIBB - Centre for Innovative Biomedicine and Biotechnology, Coimbra, Portugal; Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal.
| |
Collapse
|
11
|
Song D, Zheng X. Serum monocyte chemotactic protein 1 and soluble mannose receptor aid predictive diagnosis of pediatric sepsis. Am J Transl Res 2024; 16:964-972. [PMID: 38586091 PMCID: PMC10994783 DOI: 10.62347/fzmm3162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 11/06/2023] [Indexed: 04/09/2024]
Abstract
BACKGROUND To investigate the value of serum monocyte chemotactic protein 1 (MCP-1) and soluble mannose receptor (sMR) for predictive diagnosis of pediatric sepsis. METHODS This study retrospectively analyzed the data of 82 children with acute and severe signs of inflammation. According to the diagnostic criteria of sepsis, these children were divided into a sepsis group (40 cases) and a non-sepsis group (42 cases). In addition, 50 children who received health examinations during the same time period in Cangzhou Central Hospital were selected as a control group. According to the prognosis of the children in the sepsis group, they were further divided into a survival group (33 cases) and a death group (7 cases). The levels of blood indicators, inflammatory markers, liver and kidney function indicators, MCP-1 level, and sMR were collected from the children. The efficacy of using sMR and MCP-1 levels in the predictive diagnosis of sepsis was analyzed by using the area under the ROC curve (AUC). RESULTS Serum levels of MCP-1 and sMR were (452.32±2.79) μg/ml and (97.23±.15) μg/ml, respectively, in the sepsis group, significantly higher than those in all controls (P<0.001). In the death group, the levels of white blood cells (WBC), C-reactive protein (CRP), procalcitonin (PCT), sMR, and MCP-1 were significantly higher compared to the survival group (P<0.05). The AUC for CRP in predictive diagnosis of sepsis was 0.9075; the AUC for PCT was 0.8759; the AUC for sMR was 0.9244; and the AUC for MCP-1 was 0.9406. CONCLUSIONS Serum sMR and MCP-1 levels can help predict the diagnosis of pediatric sepsis.
Collapse
Affiliation(s)
- Danyang Song
- Tianjin Medical UniversityTianjing 300203, China
- Department of Emergency, Cangzhou Central HospitalCangzhou 061000, Hebei, China
| | | |
Collapse
|
12
|
Ferreira SA, Li C, Klæstrup IH, Vitic Z, Rasmussen RK, Kirkegaard A, Toft GU, Betzer C, Svendsen P, Jensen PH, Luo Y, Etzerodt A, Moestrup SK, Romero-Ramos M. Sex-dimorphic neuroprotective effect of CD163 in an α-synuclein mouse model of Parkinson's disease. NPJ Parkinsons Dis 2023; 9:164. [PMID: 38092806 PMCID: PMC10719342 DOI: 10.1038/s41531-023-00606-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 11/24/2023] [Indexed: 12/17/2023] Open
Abstract
Alpha-synuclein (α-syn) aggregation and immune activation represent hallmark pathological events in Parkinson's disease (PD). The PD-associated immune response encompasses both brain and peripheral immune cells, although little is known about the immune proteins relevant for such a response. We propose that the upregulation of CD163 observed in blood monocytes and in the responsive microglia in PD patients is a protective mechanism in the disease. To investigate this, we used the PD model based on intrastriatal injections of murine α-syn pre-formed fibrils in CD163 knockout (KO) mice and wild-type littermates. CD163KO females revealed an impaired and differential early immune response to α-syn pathology as revealed by immunohistochemical and transcriptomic analysis. After 6 months, CD163KO females showed an exacerbated immune response and α-syn pathology, which ultimately led to dopaminergic neurodegeneration of greater magnitude. These findings support a sex-dimorphic neuroprotective role for CD163 during α-syn-induced neurodegeneration.
Collapse
Affiliation(s)
- Sara A Ferreira
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Danish Research Institute of Translational Neuroscience - DANDRITE, Aarhus University, Aarhus, Denmark
| | - Conghui Li
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Ida H Klæstrup
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Danish Research Institute of Translational Neuroscience - DANDRITE, Aarhus University, Aarhus, Denmark
| | - Zagorka Vitic
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Danish Research Institute of Translational Neuroscience - DANDRITE, Aarhus University, Aarhus, Denmark
| | | | - Asger Kirkegaard
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Danish Research Institute of Translational Neuroscience - DANDRITE, Aarhus University, Aarhus, Denmark
| | - Gitte U Toft
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Danish Research Institute of Translational Neuroscience - DANDRITE, Aarhus University, Aarhus, Denmark
| | - Cristine Betzer
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Danish Research Institute of Translational Neuroscience - DANDRITE, Aarhus University, Aarhus, Denmark
| | - Pia Svendsen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Poul H Jensen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Danish Research Institute of Translational Neuroscience - DANDRITE, Aarhus University, Aarhus, Denmark
| | - Yonglun Luo
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Danish Research Institute of Translational Neuroscience - DANDRITE, Aarhus University, Aarhus, Denmark
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
| | - Anders Etzerodt
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Søren K Moestrup
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Marina Romero-Ramos
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.
- Danish Research Institute of Translational Neuroscience - DANDRITE, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
13
|
Dzamko N. Cytokine activity in Parkinson's disease. Neuronal Signal 2023; 7:NS20220063. [PMID: 38059210 PMCID: PMC10695743 DOI: 10.1042/ns20220063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 11/14/2023] [Accepted: 11/16/2023] [Indexed: 12/08/2023] Open
Abstract
The contribution of the immune system to the pathophysiology of neurodegenerative Parkinson's disease (PD) is increasingly being recognised, with alterations in the innate and adaptive arms of the immune system underlying central and peripheral inflammation in PD. As chief modulators of the immune response, cytokines have been intensely studied in the field of PD both in terms of trying to understand their contribution to disease pathogenesis, and if they may comprise much needed therapeutic targets for a disease with no current modifying therapy. This review summarises current knowledge on key cytokines implicated in PD (TNFα, IL-6, IL-1β, IL-10, IL-4 and IL-1RA) that can modulate both pro-inflammatory and anti-inflammatory effects. Cytokine activity in PD is clearly a complicated process mediated by substantial cross-talk of signalling pathways and the need to balance pro- and anti-inflammatory effects. However, understanding cytokine activity may hold promise for unlocking new insight into PD and how it may be halted.
Collapse
Affiliation(s)
- Nicolas Dzamko
- School of Medical Sciences, Faculty of Medicine and Health and the Charles Perkins Centre, University of Sydney, Camperdown, NSW, 2050, Australia
| |
Collapse
|
14
|
Ma DR, Li SJ, Shi JJ, Liang YY, Hu ZW, Hao XY, Li MJ, Guo MN, Zuo CY, Yu WK, Mao CY, Tang MB, Zhang C, Xu YM, Wu J, Sun SL, Shi CH. Shared Genetic Architecture between Parkinson's Disease and Brain Structural Phenotypes. Mov Disord 2023; 38:2258-2268. [PMID: 37990409 DOI: 10.1002/mds.29598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 08/02/2023] [Accepted: 08/21/2023] [Indexed: 11/23/2023] Open
Abstract
BACKGROUND Patients with Parkinson's disease (PD) have consistently demonstrated brain structure abnormalities, indicating the presence of shared etiological and pathological processes between PD and brain structures; however, the genetic relationship remains poorly understood. OBJECTIVE The aim of this study was to investigate the extent of shared genetic architecture between PD and brain structural phenotypes (BSPs) and to identify shared genomic loci. METHODS We used the summary statistics from genome-wide association studies to conduct MiXeR and conditional/conjunctional false discovery rate analyses to investigate the shared genetic signatures between PD and BSPs. Subsequent expression quantitative trait loci mapping in the human brain and enrichment analyses were also performed. RESULTS MiXeR analysis identified genetic overlap between PD and various BSPs, including total cortical surface area, average cortical thickness, and specific brain volumetric structures. Further analysis using conditional false discovery rate (FDR) identified 21 novel PD risk loci on associations with BSPs at conditional FDR < 0.01, and the conjunctional FDR analysis demonstrated that PD shared several genomic loci with certain BSPs at conjunctional FDR < 0.05. Among the shared loci, 16 credible mapped genes showed high expression in the brain tissues and were primarily associated with immune function-related biological processes. CONCLUSIONS We confirmed the polygenic overlap with mixed directions of allelic effects between PD and BSPs and identified multiple shared genomic loci and risk genes, which are likely related to immune-related biological processes. These findings provide insight into the complex genetic architecture associated with PD. © 2023 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Dong-Rui Ma
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Shuang-Jie Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Jing-Jing Shi
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Yuan-Yuan Liang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Zheng-Wei Hu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Xiao-Yan Hao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Meng-Jie Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Meng-Nan Guo
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Chun-Yan Zuo
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Wen-Kai Yu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Cheng-Yuan Mao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Mi-Bo Tang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Chan Zhang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Yu-Ming Xu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, China
| | - Jun Wu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, China
| | - Shi-Lei Sun
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, China
| | - Chang-He Shi
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
15
|
Lauritsen J, Romero-Ramos M. The systemic immune response in Parkinson's disease: focus on the peripheral immune component. Trends Neurosci 2023; 46:863-878. [PMID: 37598092 DOI: 10.1016/j.tins.2023.07.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 05/19/2023] [Accepted: 07/24/2023] [Indexed: 08/21/2023]
Abstract
During Parkinson's disease (PD), both the central nervous system (CNS) and peripheral nervous system (PNS) are affected. In parallel, innate immune cells respond early to neuronal changes and alpha-synuclein (α-syn) pathology. Moreover, some of the affected neuronal groups innervate organs with a relevant role in immunity. Consequently, not only microglia, but also peripheral immune cells are altered, resulting in a systemic immune response. Innate and adaptive immune cells may participate in the neurodegenerative process by acting peripherally, infiltrating the brain, or releasing mediators that can protect or harm neurons. However, the sequence of the changes and the significance of each immune compartment in the disease remain to be clarified. In this review, we describe current understanding of the peripheral immune response in PD and discuss the road ahead.
Collapse
Affiliation(s)
- Johanne Lauritsen
- Department of Biomedicine, Health Faculty & Danish Research Institute of Translational Neuroscience - DANDRITE, Aarhus University, Aarhus, Denmark
| | - Marina Romero-Ramos
- Department of Biomedicine, Health Faculty & Danish Research Institute of Translational Neuroscience - DANDRITE, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
16
|
Furgiuele A, Pereira FC, Martini S, Marino F, Cosentino M. Dopaminergic regulation of inflammation and immunity in Parkinson's disease: friend or foe? Clin Transl Immunology 2023; 12:e1469. [PMID: 37781343 PMCID: PMC10540835 DOI: 10.1002/cti2.1469] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 02/11/2022] [Accepted: 09/16/2023] [Indexed: 10/03/2023] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disease affecting 7-10 million people worldwide. Currently, there is no treatment available to prevent or delay PD progression, partially due to the limited understanding of the pathological events which lead to the death of dopaminergic neurons in the substantia nigra in the brain, which is known to be the cause of PD symptoms. The current available treatments aim at compensating dopamine (DA) deficiency in the brain using its precursor levodopa, dopaminergic agonists and some indirect dopaminergic agents. The immune system is emerging as a critical player in PD. Therefore, immune-based approaches have recently been proposed to be used as potential antiparkinsonian agents. It has been well-known that dopaminergic pathways play a significant role in regulating immune responses in the brain. Although dopaminergic agents are the primary antiparkinsonian treatments, their immune regulatory effect has yet to be fully understood. The present review summarises the current available evidence of the immune regulatory effects of DA and its mimics and discusses dopaminergic agents as antiparkinsonian drugs. Based on the current understanding of their involvement in the regulation of neuroinflammation in PD, we propose that targeting immune pathways involved in PD pathology could offer a better treatment outcome for PD patients.
Collapse
Affiliation(s)
- Alessia Furgiuele
- Center for Research in Medical PharmacologyUniversity of InsubriaVareseItaly
| | - Frederico C Pereira
- Faculty of Medicine, Institute of Pharmacology and Experimental TherapeuticsUniversity of CoimbraCoimbraPortugal
- Faculty of Medicine, Institute for Clinical and Biomedical Research (iCBR)University of CoimbraCoimbraPortugal
- Center for Innovative Biomedicine and Biotechnology (CIBB)University of CoimbraCoimbraPortugal
- Clinical Academic Center of Coimbra (CACC)CoimbraPortugal
| | - Stefano Martini
- Center for Research in Medical PharmacologyUniversity of InsubriaVareseItaly
| | - Franca Marino
- Center for Research in Medical PharmacologyUniversity of InsubriaVareseItaly
| | - Marco Cosentino
- Center for Research in Medical PharmacologyUniversity of InsubriaVareseItaly
| |
Collapse
|
17
|
Zingaropoli MA, Pasculli P, Barbato C, Petrella C, Fiore M, Dominelli F, Latronico T, Ciccone F, Antonacci M, Liuzzi GM, Talarico G, Bruno G, Galardo G, Pugliese F, Lichtner M, Mastroianni CM, Minni A, Ciardi MR. Biomarkers of Neurological Damage: From Acute Stage to Post-Acute Sequelae of COVID-19. Cells 2023; 12:2270. [PMID: 37759493 PMCID: PMC10526816 DOI: 10.3390/cells12182270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/02/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Background: Neurological symptoms (NS) in COVID-19 are related to both acute stage and long-COVID. We explored levels of brain injury biomarkers (NfL and GFAP) and myeloid activation marker (sCD163) and their implications on the CNS. Materials and Methods: In hospitalized COVID-19 patients plasma samples were collected at two time points: on hospital admission (baseline) and three months after hospital discharge (Tpost). Patients were stratified according to COVID-19 severity based on acute respiratory distress syndrome (ARDS) onset (severe and non-severe groups). A further stratification according to the presence of NS (with and without groups) at baseline (requiring a puncture lumbar for diagnostic purposes) and according to NS self-referred at Tpost was performed. Finally, cerebrospinal fluid (CSF) samples were collected from patients with NS present at baseline. Results: We enrolled 144 COVID-19 patients (62 female/82 male; median age [interquartile range, IQR]): 64 [55-77]) and 53 heathy donors (HD, 30 female/23 male; median age [IQR]: 64 [59-69]). At baseline, higher plasma levels of NfL, GFAP and sCD163 in COVID-19 patients compared to HD were observed (p < 0.0001, p < 0.0001 and p < 0.0001, respectively), especially in those with severe COVID-19 (p < 0.0001, p < 0.0001 and p < 0.0001, respectively). Patients with NS showed higher plasma levels of NfL, GFAP and sCD163 compared to those without (p = 0.0023, p < 0.0001 and 0.0370, respectively). At baseline, in COVID-19 patients with NS, positive correlations between CSF levels of sCD163 and CSF levels of NfL (ρ = 0.7536, p = 0.0017) and GFAP were observed (ρ = 0.7036, p = 0.0045). At Tpost, the longitudinal evaluation performed on 77 COVID-19 patients showed a significant reduction in plasma levels of NfL, GFAP and sCD163 compared to baseline (p < 0.0001, p < 0.0001 and p = 0.0413, respectively). Finally, at Tpost, in the severe group, higher plasma levels of sCD163 in patients with NS compared to those without were reported (p < 0.0001). Conclusions: High plasma levels of NfL, GFAP and sCD163 could be due to a proinflammatory systemic and brain response involving microglial activation and subsequent CNS damage. Our data highlight the association between myeloid activation and CNS perturbations.
Collapse
Affiliation(s)
- Maria Antonella Zingaropoli
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (P.P.); (F.D.); (F.C.); (M.A.); (C.M.M.); (M.R.C.)
| | - Patrizia Pasculli
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (P.P.); (F.D.); (F.C.); (M.A.); (C.M.M.); (M.R.C.)
| | - Christian Barbato
- Department of Sense Organs, Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), Sapienza University of Rome, 00185 Rome, Italy; (C.B.); (C.P.); (M.F.)
| | - Carla Petrella
- Department of Sense Organs, Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), Sapienza University of Rome, 00185 Rome, Italy; (C.B.); (C.P.); (M.F.)
| | - Marco Fiore
- Department of Sense Organs, Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), Sapienza University of Rome, 00185 Rome, Italy; (C.B.); (C.P.); (M.F.)
| | - Federica Dominelli
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (P.P.); (F.D.); (F.C.); (M.A.); (C.M.M.); (M.R.C.)
| | - Tiziana Latronico
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, 70121 Bari, Italy; (T.L.); (G.M.L.)
| | - Federica Ciccone
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (P.P.); (F.D.); (F.C.); (M.A.); (C.M.M.); (M.R.C.)
| | - Michele Antonacci
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (P.P.); (F.D.); (F.C.); (M.A.); (C.M.M.); (M.R.C.)
| | - Grazia Maria Liuzzi
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, 70121 Bari, Italy; (T.L.); (G.M.L.)
| | - Giuseppina Talarico
- Department of Human Neuroscience, Sapienza University of Rome, 00185 Rome, Italy; (G.T.); (G.B.)
| | - Giuseppe Bruno
- Department of Human Neuroscience, Sapienza University of Rome, 00185 Rome, Italy; (G.T.); (G.B.)
| | - Gioacchino Galardo
- Medical Emergency Unit, Sapienza University of Rome, Policlinico Umberto I, 00161 Rome, Italy;
| | - Francesco Pugliese
- Department of Specialist Surgery and Organ Transplantation “Paride Stefanini”, Policlinico Umberto I, Sapienza University of Rome, 00161 Rome, Italy;
| | - Miriam Lichtner
- Infectious Diseases Unit, SM Goretti Hospital, Sapienza University of Rome, 00185 Latina, Italy;
- Department of Neurosciences, Mental Health, and Sense Organs, Sapienza University of Rome, 00185 Rome, Italy
| | - Claudio Maria Mastroianni
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (P.P.); (F.D.); (F.C.); (M.A.); (C.M.M.); (M.R.C.)
| | - Antonio Minni
- Department of Sensory Organs, Sapienza University of Rome, 00185 Rome, Italy;
- Division of Otolaryngology-Head and Neck Surgery, ASL Rieti-Sapienza University, Ospedale San Camillo de Lellis, Viale Kennedy, 02100 Rieti, Italy
| | - Maria Rosa Ciardi
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (P.P.); (F.D.); (F.C.); (M.A.); (C.M.M.); (M.R.C.)
| |
Collapse
|
18
|
Raheel K, Deegan G, Di Giulio I, Cash D, Ilic K, Gnoni V, Chaudhuri KR, Drakatos P, Moran R, Rosenzweig I. Sex differences in alpha-synucleinopathies: a systematic review. Front Neurol 2023; 14:1204104. [PMID: 37545736 PMCID: PMC10398394 DOI: 10.3389/fneur.2023.1204104] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 06/13/2023] [Indexed: 08/08/2023] Open
Abstract
Background Past research indicates a higher prevalence, incidence, and severe clinical manifestations of alpha-synucleinopathies in men, leading to a suggestion of neuroprotective properties of female sex hormones (especially estrogen). The potential pathomechanisms of any such effect on alpha-synucleinopathies, however, are far from understood. With that aim, we undertook to systematically review, and to critically assess, contemporary evidence on sex and gender differences in alpha-synucleinopathies using a bench-to-bedside approach. Methods In this systematic review, studies investigating sex and gender differences in alpha-synucleinopathies (Rapid Eye Movement (REM) Behavior Disorder (RBD), Parkinson's Disease (PD), Dementia with Lewy Bodies (DLB), Multiple System Atrophy (MSA)) from 2012 to 2022 were identified using electronic database searches of PubMed, Embase and Ovid. Results One hundred sixty-two studies were included; 5 RBD, 6 MSA, 20 DLB and 131 PD studies. Overall, there is conclusive evidence to suggest sex-and gender-specific manifestation in demographics, biomarkers, genetics, clinical features, interventions, and quality of life in alpha-synucleinopathies. Only limited data exists on the effects of distinct sex hormones, with majority of studies concentrating on estrogen and its speculated neuroprotective effects. Conclusion Future studies disentangling the underlying sex-specific mechanisms of alpha-synucleinopathies are urgently needed in order to enable novel sex-specific therapeutics.
Collapse
Affiliation(s)
- Kausar Raheel
- Sleep and Brain Plasticity Centre, Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King’s College London, London, United Kingdom
| | - Gemma Deegan
- Sleep and Brain Plasticity Centre, Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King’s College London, London, United Kingdom
- BRAIN, Imaging Centre, CNS, King’s College London, London, United Kingdom
| | - Irene Di Giulio
- Sleep and Brain Plasticity Centre, Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King’s College London, London, United Kingdom
- School of Basic and Medical Biosciences, Faculty of Life Science and Medicine, King’s College London, London, United Kingdom
| | - Diana Cash
- Sleep and Brain Plasticity Centre, Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King’s College London, London, United Kingdom
- BRAIN, Imaging Centre, CNS, King’s College London, London, United Kingdom
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King’s College London, London, United Kingdom
| | - Katarina Ilic
- Sleep and Brain Plasticity Centre, Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King’s College London, London, United Kingdom
- BRAIN, Imaging Centre, CNS, King’s College London, London, United Kingdom
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King’s College London, London, United Kingdom
| | - Valentina Gnoni
- Sleep and Brain Plasticity Centre, Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King’s College London, London, United Kingdom
- Center for Neurodegenerative Diseases and the Aging Brain, University of Bari Aldo Moro, Lecce, Italy
| | - K. Ray Chaudhuri
- Movement Disorders Unit, King’s College Hospital and Department of Clinical and Basic Neurosciences, Institute of Psychiatry, Psychology and Neuroscience and Parkinson Foundation Centre of Excellence, King’s College London, London, United Kingdom
| | - Panagis Drakatos
- School of Basic and Medical Biosciences, Faculty of Life Science and Medicine, King’s College London, London, United Kingdom
- Sleep Disorders Centre, Guy’s and St Thomas’ NHS Foundation Trust, London, United Kingdom
| | - Rosalyn Moran
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King’s College London, London, United Kingdom
| | - Ivana Rosenzweig
- Sleep and Brain Plasticity Centre, Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King’s College London, London, United Kingdom
- Sleep Disorders Centre, Guy’s and St Thomas’ NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
19
|
Ribeiro H, Alves R, Jorge J, Gonçalves AC, Sarmento-Ribeiro AB, Teixeira-Veríssimo M, Andrade JP, Dourado M. Monocytes in the Characterization of Pain in Palliative Patients with Severe Dementia-A Pilot Study. Int J Mol Sci 2023; 24:10723. [PMID: 37445910 DOI: 10.3390/ijms241310723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 06/20/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023] Open
Abstract
In assessing and managing pain, when obtaining a self-report is impossible, therapeutic decision-making becomes more challenging. This study aimed to investigate whether monocytes and some membrane monocyte proteins, identified as a cluster of differentiation (CD), could be potential non-invasive peripheral biomarkers in identifying and characterizing pain in patients with severe dementia. We used 53 blood samples from non-oncological palliative patients, 44 patients with pain (38 of whom had dementia) and 0 without pain or dementia (controls). We evaluated the levels of monocytes and their subtypes, including classic, intermediate, and non-classic, and characterized the levels of specific phenotypic markers, namely CD11c, CD86, CD163, and CD206. We found that the relative concentrations of monocytes, particularly the percentage of classic monocytes, may be a helpful pain biomarker. Furthermore, the CD11c expression levels were significantly higher in patients with mixed pain, while CD163 and CD206 expression levels were significantly higher in patients with nociceptive pain. These findings suggest that the levels of monocytes, particularly the classic subtype, and their phenotype markers CD11c, CD163, and CD206 could serve as pain biomarkers in patients with severe dementia.
Collapse
Affiliation(s)
- Hugo Ribeiro
- Community Support Team in Palliative Care-Group of Health Centers Gaia, 4400-043 Vila Nova de Gaia, Portugal
- Faculty of Medicine, University do Porto, 4200-219 Porto, Portugal
- Faculty of Medicine, University of Coimbra, 3004-304 Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR)-Group of Environment Genetics and Oncobiology (CIMAGO), FMUC, 3004-304 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), 3004-304 Coimbra, Portugal
| | - Raquel Alves
- Faculty of Medicine, University of Coimbra, 3004-304 Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR)-Group of Environment Genetics and Oncobiology (CIMAGO), FMUC, 3004-304 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), 3004-304 Coimbra, Portugal
- Laboratory of Oncobiology and Hematology (LOH), Faculty of Medicine, University of Coimbra, University Clinics of Hematology and Oncology, 3004-304 Coimbra, Portugal
| | - Joana Jorge
- Faculty of Medicine, University of Coimbra, 3004-304 Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR)-Group of Environment Genetics and Oncobiology (CIMAGO), FMUC, 3004-304 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), 3004-304 Coimbra, Portugal
- Laboratory of Oncobiology and Hematology (LOH), Faculty of Medicine, University of Coimbra, University Clinics of Hematology and Oncology, 3004-304 Coimbra, Portugal
| | - Ana Cristina Gonçalves
- Faculty of Medicine, University of Coimbra, 3004-304 Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR)-Group of Environment Genetics and Oncobiology (CIMAGO), FMUC, 3004-304 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), 3004-304 Coimbra, Portugal
- Laboratory of Oncobiology and Hematology (LOH), Faculty of Medicine, University of Coimbra, University Clinics of Hematology and Oncology, 3004-304 Coimbra, Portugal
| | - Ana Bela Sarmento-Ribeiro
- Faculty of Medicine, University of Coimbra, 3004-304 Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR)-Group of Environment Genetics and Oncobiology (CIMAGO), FMUC, 3004-304 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), 3004-304 Coimbra, Portugal
- Laboratory of Oncobiology and Hematology (LOH), Faculty of Medicine, University of Coimbra, University Clinics of Hematology and Oncology, 3004-304 Coimbra, Portugal
- Hematology Service, Centro Hospitalar e Universitário de Coimbra (CHUC), 3000-075 Coimbra, Portugal
| | - Manuel Teixeira-Veríssimo
- Faculty of Medicine, University of Coimbra, 3004-304 Coimbra, Portugal
- Hematology Service, Centro Hospitalar e Universitário de Coimbra (CHUC), 3000-075 Coimbra, Portugal
| | - José Paulo Andrade
- CINTESIS@RISE, Faculty of Medicine, University of Porto, 4200-219 Porto, Portugal
- Unit of Anatomy, Department of Biomedicine, Faculty of Medicine, University of Porto, 4200-219 Porto, Portugal
| | - Marília Dourado
- Faculty of Medicine, University of Coimbra, 3004-304 Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR)-Group of Environment Genetics and Oncobiology (CIMAGO), FMUC, 3004-304 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), 3004-304 Coimbra, Portugal
| |
Collapse
|
20
|
Strader S, West AB. The interplay between monocytes, α-synuclein and LRRK2 in Parkinson's disease. Biochem Soc Trans 2023; 51:747-758. [PMID: 37013975 PMCID: PMC11110874 DOI: 10.1042/bst20201091] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/15/2023] [Accepted: 03/17/2023] [Indexed: 04/05/2023]
Abstract
The accumulation of aggregated α-synuclein in susceptible neurons in the brain, together with robust activation of nearby myeloid cells, are pathological hallmarks of Parkinson's disease (PD). While microglia represent the dominant type of myeloid cell in the brain, recent genetic and whole-transcriptomic studies have implicated another type of myeloid cell, bone-marrow derived monocytes, in disease risk and progression. Monocytes in circulation harbor high concentrations of the PD-linked enzyme leucine-rich repeat kinase 2 (LRRK2) and respond to both intracellular and extracellular aggregated α-synuclein with a variety of strong pro-inflammatory responses. This review highlights recent findings from studies that functionally characterize monocytes in PD patients, monocytes that infiltrate into cerebrospinal fluid, and emerging analyses of whole myeloid cell populations in the PD-affected brain that include monocyte populations. Central controversies discussed include the relative contribution of monocytes acting in the periphery from those that might engraft in the brain to modify disease risk and progression. We conclude that further investigation into monocyte pathways and responses in PD, especially the discovery of additional markers, transcriptomic signatures, and functional classifications, that better distinguish monocyte lineages and responses in the brain from other types of myeloid cells may reveal points for therapeutic intervention, as well as a better understanding of ongoing inflammation associated with PD.
Collapse
Affiliation(s)
- Samuel Strader
- Duke Center for Neurodegeneration and Neurotherapeutics, Department of Pharmacology and Cancer Biology, Duke University, 3 Genome Court, Durham, 27710, North Carolina, U.S.A
| | - Andrew B. West
- Duke Center for Neurodegeneration and Neurotherapeutics, Department of Pharmacology and Cancer Biology, Duke University, 3 Genome Court, Durham, 27710, North Carolina, U.S.A
| |
Collapse
|
21
|
Ørbæk M, Gynthersen RMM, Mens H, Brandt C, Stenør C, Wiese L, Andersen ÅB, Møller HJ, Lebech AM. Cerebrospinal fluid levels of the macrophage-specific biomarker sCD163 are diagnostic for Lyme neuroborreliosis: an observational cohort study. Clin Chim Acta 2023; 543:117299. [PMID: 36931585 DOI: 10.1016/j.cca.2023.117299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/09/2023] [Accepted: 03/11/2023] [Indexed: 03/17/2023]
Abstract
OBJECTIVES We aimed to investigate levels of the macrophage-specific marker, sCD163, in cerebrospinal fluid and plasma in patients with Lyme neuroborreliosis. We tested the diagnostic value of CSF-sCD163 and ReaScan-CXCL13 and analyzed if plasma-sCD163 could monitor treatment response. METHODS An observational cohort study: Cohort 1-Cerebrospinal fluid from adults with neuroborreliosis (n=42), bacterial meningitis (n=16), enteroviral meningitis (n=29), and controls (n=33); Cohort 2-Plasma from 23 adults with neuroborreliosis collected at diagnosis, three, and six months. sCD163 was determined using an in-house sandwich ELISA. ReaScan-CXCL13 measured semiquantitative concentrations of CXCL13, cut-off ≥250 pg/ml diagnosed neuroborreliosis. Receiver Operating Characteristics analyzed the diagnostic strength. A linear mixed model including follow-up as categorical fixed effect analyzed differences in plasma-sCD163. RESULTS CSF-sCD163 was higher in neuroborreliosis (643 µg/l) than in enteroviral meningitis (106 µg/l, p<0.0001) and controls (87 µg/l, p<0.0001), but not bacterial meningitis (669 µg/l, p=0.9). The optimal cut-off was 210 µg/l, area under the curve (AUC) 0.85. Combining ReaScan-CXCL13 with CSF-sCD163 increased AUC to 0.89. Plasma-sCD163 showed little variation and was not elevated during the 6 months of follow-up. Conclusion CSF-sCD163 is diagnostic for neuroborreliosis with an optimal cut-off of 210 µg/l. Combining ReaScan-CXCL13 with CSF-sCD163 increases AUC. Plasma-sCD163 cannot monitor treatment response.
Collapse
Affiliation(s)
- Mathilde Ørbæk
- Department of Infectious Diseases, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark; Cluster for Molecular Imaging, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | | | - Helene Mens
- Department of Infectious Diseases, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Christian Brandt
- Department of Pulmonary and Infectious Diseases, Nordsjællands University Hospital, Hillerød, Denmark; Department of Infectious Diseases, Sjællands University Hospital, Roskilde, Denmark
| | - Christian Stenør
- Department of Neurology, Copenhagen University Hospital, Herlev, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Lothar Wiese
- Department of Infectious Diseases, Sjællands University Hospital, Roskilde, Denmark
| | - Åse Bengaard Andersen
- Department of Infectious Diseases, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Holger J Møller
- Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Anne-Mette Lebech
- Department of Infectious Diseases, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| |
Collapse
|
22
|
Muñoz-Castro C, Mejias-Ortega M, Sanchez-Mejias E, Navarro V, Trujillo-Estrada L, Jimenez S, Garcia-Leon JA, Fernandez-Valenzuela JJ, Sanchez-Mico MV, Romero-Molina C, Moreno-Gonzalez I, Baglietto-Vargas D, Vizuete M, Gutierrez A, Vitorica J. Monocyte-derived cells invade brain parenchyma and amyloid plaques in human Alzheimer's disease hippocampus. Acta Neuropathol Commun 2023; 11:31. [PMID: 36855152 PMCID: PMC9976401 DOI: 10.1186/s40478-023-01530-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 02/14/2023] [Indexed: 03/02/2023] Open
Abstract
Microglia are brain-resident myeloid cells and play a major role in the innate immune responses of the CNS and the pathogenesis of Alzheimer's disease (AD). However, the contribution of nonparenchymal or brain-infiltrated myeloid cells to disease progression remains to be demonstrated. Here, we show that monocyte-derived cells (MDC) invade brain parenchyma in advanced stages of AD continuum using transcriptional analysis and immunohistochemical characterization in post-mortem human hippocampus. Our findings demonstrated that a high proportion (60%) of demented Braak V-VI individuals was associated with up-regulation of genes rarely expressed by microglial cells and abundant in monocytes, among which stands the membrane-bound scavenger receptor for haptoglobin/hemoglobin complexes or Cd163. These Cd163-positive MDC invaded the hippocampal parenchyma, acquired a microglial-like morphology, and were located in close proximity to blood vessels. Moreover, and most interesting, these invading monocytes infiltrated the nearby amyloid plaques contributing to plaque-associated myeloid cell heterogeneity. However, in aged-matched control individuals with hippocampal amyloid pathology, no signs of MDC brain infiltration or plaque invasion were found. The previously reported microglial degeneration/dysfunction in AD hippocampus could be a key pathological factor inducing MDC recruitment. Our data suggest a clear association between MDC infiltration and endothelial activation which in turn may contribute to damage of the blood brain barrier integrity. The recruitment of monocytes could be a consequence rather than the cause of the severity of the disease. Whether monocyte infiltration is beneficial or detrimental to AD pathology remains to be fully elucidated. These findings open the opportunity to design targeted therapies, not only for microglia but also for the peripheral immune cell population to modulate amyloid pathology and provide a better understanding of the immunological mechanisms underlying the progression of AD.
Collapse
Affiliation(s)
- Clara Muñoz-Castro
- Dpto. Bioquimica Y Biologia Molecular, Facultad de Farmacia, Universidad de Sevilla, C/ Prof. Garcia Gonzalez 2, 41012, Seville, Spain
- Instituto de Biomedicina de Sevilla (IBiS)-Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013, Seville, Spain
- Centro de Investigacion Biomedica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 28031, Madrid, Spain
| | - Marina Mejias-Ortega
- Dpto. Biologia Celular, Genetica y Fisiologia, Instituto de Investigación Biomedica de Malaga-IBIMA, Facultad de Ciencias, Universidad de Malaga, Campus de Teatinos S/N, 29071, Malaga, Spain
- Centro de Investigacion Biomedica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 28031, Madrid, Spain
| | - Elisabeth Sanchez-Mejias
- Dpto. Biologia Celular, Genetica y Fisiologia, Instituto de Investigación Biomedica de Malaga-IBIMA, Facultad de Ciencias, Universidad de Malaga, Campus de Teatinos S/N, 29071, Malaga, Spain
- Centro de Investigacion Biomedica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 28031, Madrid, Spain
| | - Victoria Navarro
- Dpto. Bioquimica Y Biologia Molecular, Facultad de Farmacia, Universidad de Sevilla, C/ Prof. Garcia Gonzalez 2, 41012, Seville, Spain
- Instituto de Biomedicina de Sevilla (IBiS)-Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013, Seville, Spain
- Centro de Investigacion Biomedica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 28031, Madrid, Spain
| | - Laura Trujillo-Estrada
- Dpto. Biologia Celular, Genetica y Fisiologia, Instituto de Investigación Biomedica de Malaga-IBIMA, Facultad de Ciencias, Universidad de Malaga, Campus de Teatinos S/N, 29071, Malaga, Spain
- Centro de Investigacion Biomedica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 28031, Madrid, Spain
| | - Sebastian Jimenez
- Dpto. Bioquimica Y Biologia Molecular, Facultad de Farmacia, Universidad de Sevilla, C/ Prof. Garcia Gonzalez 2, 41012, Seville, Spain
- Instituto de Biomedicina de Sevilla (IBiS)-Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013, Seville, Spain
- Centro de Investigacion Biomedica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 28031, Madrid, Spain
| | - Juan Antonio Garcia-Leon
- Dpto. Biologia Celular, Genetica y Fisiologia, Instituto de Investigación Biomedica de Malaga-IBIMA, Facultad de Ciencias, Universidad de Malaga, Campus de Teatinos S/N, 29071, Malaga, Spain
- Centro de Investigacion Biomedica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 28031, Madrid, Spain
| | - Juan Jose Fernandez-Valenzuela
- Dpto. Biologia Celular, Genetica y Fisiologia, Instituto de Investigación Biomedica de Malaga-IBIMA, Facultad de Ciencias, Universidad de Malaga, Campus de Teatinos S/N, 29071, Malaga, Spain
- Centro de Investigacion Biomedica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 28031, Madrid, Spain
| | - Maria Virtudes Sanchez-Mico
- Dpto. Bioquimica Y Biologia Molecular, Facultad de Farmacia, Universidad de Sevilla, C/ Prof. Garcia Gonzalez 2, 41012, Seville, Spain
- Instituto de Biomedicina de Sevilla (IBiS)-Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013, Seville, Spain
- Centro de Investigacion Biomedica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 28031, Madrid, Spain
| | - Carmen Romero-Molina
- Dpto. Bioquimica Y Biologia Molecular, Facultad de Farmacia, Universidad de Sevilla, C/ Prof. Garcia Gonzalez 2, 41012, Seville, Spain
- Instituto de Biomedicina de Sevilla (IBiS)-Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013, Seville, Spain
- Centro de Investigacion Biomedica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 28031, Madrid, Spain
| | - Ines Moreno-Gonzalez
- Dpto. Biologia Celular, Genetica y Fisiologia, Instituto de Investigación Biomedica de Malaga-IBIMA, Facultad de Ciencias, Universidad de Malaga, Campus de Teatinos S/N, 29071, Malaga, Spain
- Centro de Investigacion Biomedica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 28031, Madrid, Spain
| | - David Baglietto-Vargas
- Dpto. Biologia Celular, Genetica y Fisiologia, Instituto de Investigación Biomedica de Malaga-IBIMA, Facultad de Ciencias, Universidad de Malaga, Campus de Teatinos S/N, 29071, Malaga, Spain
- Centro de Investigacion Biomedica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 28031, Madrid, Spain
| | - Marisa Vizuete
- Dpto. Bioquimica Y Biologia Molecular, Facultad de Farmacia, Universidad de Sevilla, C/ Prof. Garcia Gonzalez 2, 41012, Seville, Spain
- Instituto de Biomedicina de Sevilla (IBiS)-Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013, Seville, Spain
- Centro de Investigacion Biomedica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 28031, Madrid, Spain
| | - Antonia Gutierrez
- Dpto. Biologia Celular, Genetica y Fisiologia, Instituto de Investigación Biomedica de Malaga-IBIMA, Facultad de Ciencias, Universidad de Malaga, Campus de Teatinos S/N, 29071, Malaga, Spain.
- Centro de Investigacion Biomedica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 28031, Madrid, Spain.
| | - Javier Vitorica
- Dpto. Bioquimica Y Biologia Molecular, Facultad de Farmacia, Universidad de Sevilla, C/ Prof. Garcia Gonzalez 2, 41012, Seville, Spain.
- Instituto de Biomedicina de Sevilla (IBiS)-Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013, Seville, Spain.
- Centro de Investigacion Biomedica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 28031, Madrid, Spain.
| |
Collapse
|
23
|
Contaldi E, Magistrelli L, Comi C. Disease mechanisms as subtypes: Immune dysfunction in Parkinson's disease. HANDBOOK OF CLINICAL NEUROLOGY 2023; 193:67-93. [PMID: 36803824 DOI: 10.1016/b978-0-323-85555-6.00008-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
In recent years, the contraposition between inflammatory and neurodegenerative processes has been increasingly challenged. Inflammation has been emphasized as a key player in the onset and progression of Parkinson disease (PD) and other neurodegenerative disorders. The strongest indicators of the involvement of the immune system derived from evidence of microglial activation, profound imbalance in phenotype and composition of peripheral immune cells, and impaired humoral immune responses. Moreover, peripheral inflammatory mechanisms (e.g., involving the gut-brain axis) and immunogenetic factors are likely to be implicated. Even though several lines of preclinical and clinical studies are supporting and defining the complex relationship between the immune system and PD, the exact mechanisms are currently unknown. Similarly, the temporal and causal connections between innate and adaptive immune responses and neurodegeneration are unsettled, challenging our ambition to define an integrated and holistic model of the disease. Despite these difficulties, current evidence is providing the unique opportunity to develop immune-targeted approaches for PD, thus enriching our therapeutic armamentarium. This chapter aims to provide an extensive overview of past and present studies that explored the implication of the immune system in neurodegeneration, thus paving the road for the concept of disease modification in PD.
Collapse
Affiliation(s)
- Elena Contaldi
- Movement Disorders Centre, "Maggiore della Carità" University Hospital, Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - Luca Magistrelli
- Movement Disorders Centre, "Maggiore della Carità" University Hospital, Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - Cristoforo Comi
- Neurology Unit, S.Andrea Hospital, Department of Translational Medicine, University of Piemonte Orientale, Vercelli, Italy.
| |
Collapse
|
24
|
Bearoff F, Dhavale D, Kotzbauer P, Kortagere S. Aggregated alpha-synuclein transcriptionally activates pro-inflammatory canonical and non-canonical NF-κB signaling pathways in peripheral monocytic cells. Mol Immunol 2023; 154:1-10. [PMID: 36571978 PMCID: PMC9905308 DOI: 10.1016/j.molimm.2022.12.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/01/2022] [Accepted: 12/13/2022] [Indexed: 12/26/2022]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by chronic neuroinflammation, loss of dopaminergic neurons in the substantia nigra, and in several cases accumulation of alpha-synuclein fibril (α-syn) containing Lewy-bodies (LBs). Peripheral inflammation may play a causal role in inducing and perpetuating neuroinflammation in PD and accumulation of fibrillar α-syn has been reported at several peripheral sites including the gut and liver. Peripheral fibrillar α-syn may induce activation of monocytes via recognition by toll-like receptors (TLRs) and stimulation of downstream NF-κB signaling; however, the specific mechanism by which this occurs is not defined. In this study we utilized the THP-1 monocytic cell line to model the peripheral transcriptional response to preformed fibrillar (PFF) α-syn. Compared to monomeric α-syn, PFF α-syn displays overt inflammatory gene upregulation and pathway activation including broad pan-TLR signaling pathway activation and increases in TNF and IL1B gene expression. Notably, the non-canonical NF-κB signaling pathway gene and PD genome wide association study (GWAS) candidate NFKB2 was upregulated. Additionally, non-canonical NF-κB activation-associated RANK and CD40 pathways were also upregulated. Transcriptional-phenotype analysis suggests PFFs induce transcriptional programs associated with differentiation of monocytes towards macrophages and osteoclasts via non-canonical NF-κB signaling as a potential mechanism in which myeloid/monocyte cells may contribute to peripheral inflammation and pathogenesis in PD.
Collapse
Affiliation(s)
- Frank Bearoff
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19129, United States
| | - Dhruva Dhavale
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, United States
| | - Paul Kotzbauer
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, United States
| | - Sandhya Kortagere
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19129, United States.
| |
Collapse
|
25
|
Gelain DP, Bittencourt RR, Bastos Mendes LF, Moreira JCF, Outeiro TF. RAGE Against the Glycation Machine in Synucleinopathies: Time to Explore New Questions. JOURNAL OF PARKINSON'S DISEASE 2023; 13:717-728. [PMID: 37270812 PMCID: PMC10473104 DOI: 10.3233/jpd-230070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Oligomerization and aggregation of misfolded forms of α-synuclein are believed to be key molecular mechanisms in Parkinson's disease (PD) and other synucleinopathies, so extensive research has attempted to understand these processes. Among diverse post-translational modifications that impact α-synuclein aggregation, glycation may take place at several lysine sites and modify α-synuclein oligomerization, toxicity, and clearance. The receptor for advanced glycation end products (RAGE) is considered a key regulator of chronic neuroinflammation through microglial activation in response to advanced glycation end products, such as carboxy-ethyl-lysine, or carboxy-methyl-lysine. The presence of RAGE in the midbrain of PD patients has been reported in the last decades and this receptor was proposed to have a role in sustaining PD neuroinflammation. However, different PD animal models demonstrated that RAGE is preferentially expressed in neurons and astrocytes, while recent evidence demonstrated that fibrillar, non-glycated α-synuclein binds to RAGE. Here, we summarize the available data on α-synuclein glycation and RAGE in the context of PD, and discuss about the questions yet to be answered that may increase our understanding of the molecular bases of PD and synucleinopathies.
Collapse
Affiliation(s)
- Daniel Pens Gelain
- Center for Oxidative Stress Studies, Department of Biochemistry, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
- Programa de Pós-Graduação em Biologia Celular e Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Reykla Ramon Bittencourt
- Center for Oxidative Stress Studies, Department of Biochemistry, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
- Programa de Pós-Graduação em Biologia Celular e Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Luiz Filipe Bastos Mendes
- Center for Oxidative Stress Studies, Department of Biochemistry, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - José Claudio Fonseca Moreira
- Center for Oxidative Stress Studies, Department of Biochemistry, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
- Programa de Pós-Graduação em Biologia Celular e Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Tiago Fleming Outeiro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
- Max Planck Institute for Natural Sciences, Göttingen, Germany
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle Upon Tyne, UK
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Göttingen, Germany
| |
Collapse
|
26
|
Nuber-Champier A, Voruz P, Jacot de Alcântara I, Breville G, Allali G, Lalive P, Assal F, Péron J. Monocytosis in the acute phase of SARS-CoV-2 infection predicts the presence of anosognosia for cognitive deficits in the chronic phase. Brain Behav Immun Health 2022; 26:100511. [PMID: 36128057 PMCID: PMC9477785 DOI: 10.1016/j.bbih.2022.100511] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 08/22/2022] [Accepted: 09/11/2022] [Indexed: 12/01/2022] Open
Abstract
Reduced awareness of neuropsychological disorders (i.e., anosognosia) is a striking symptom of post-COVID-19 condition. Some leukocyte markers in the acute phase may predict the presence of anosognosia in the chronic phase, but they have not yet been identified. This study aimed to determine whether patients with anosognosia for their memory deficits in the chronic phase presented specific leukocyte distribution in the acute phase, and if so, whether these leukocyte levels might be predictive of anosognosia. First, we compared the acute immunological data (i.e., white blood cell differentiation count) of 20 patients who displayed anosognosia 6–9 months after being infected with SARS-CoV-2 (230.25 ± 46.65 days) versus 41 patients infected with SARS-Cov-2 who did not develop anosognosia. Second, we performed an ROC analysis to evaluate the predictive value of the leukocyte markers that emerged from this comparison. Blood circulating monocytes (%) in the acute phase of SARS-CoV-2 infection were associated with long-term post-COVID-19 anosognosia. A monocyte percentage of 7.35% of the total number of leukocytes at admission seemed to predict the presence of chronic anosognosia 6–9 months after infection.
Collapse
Affiliation(s)
- A. Nuber-Champier
- Clinical and Experimental Neuropsychology Laboratory, Faculty of Psychology, University of Geneva, Switzerland
- Neurology Division, Geneva University Hospitals, Switzerland
| | - P. Voruz
- Clinical and Experimental Neuropsychology Laboratory, Faculty of Psychology, University of Geneva, Switzerland
- Neurology Division, Geneva University Hospitals, Switzerland
- Faculty of Medicine, University of Geneva, Switzerland
| | - I. Jacot de Alcântara
- Clinical and Experimental Neuropsychology Laboratory, Faculty of Psychology, University of Geneva, Switzerland
- Neurology Division, Geneva University Hospitals, Switzerland
| | - G. Breville
- Neurology Division, Geneva University Hospitals, Switzerland
| | - G. Allali
- Leenaards Memory Center, Lausanne University Hospital and University of Lausanne, Switzerland
| | - P.H. Lalive
- Neurology Division, Geneva University Hospitals, Switzerland
- Faculty of Medicine, University of Geneva, Switzerland
| | - F. Assal
- Neurology Division, Geneva University Hospitals, Switzerland
- Faculty of Medicine, University of Geneva, Switzerland
| | - J.A. Péron
- Clinical and Experimental Neuropsychology Laboratory, Faculty of Psychology, University of Geneva, Switzerland
- Neurology Division, Geneva University Hospitals, Switzerland
- Corresponding author. Faculté de Psychologie et des Sciences de l'Education, 40 bd du Pont d’Arve, 1205, Geneva, Switzerland.
| |
Collapse
|
27
|
Associations between cardiorespiratory fitness, monocyte polarization, and exercise-related changes in mnemonic discrimination performance in older adults. Exp Gerontol 2022; 169:111973. [PMID: 36206875 DOI: 10.1016/j.exger.2022.111973] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/23/2022] [Accepted: 09/27/2022] [Indexed: 12/15/2022]
Abstract
Biological aging is accompanied by a chronic pro-inflammatory state that may facilitate losses in hippocampal-dependent mnemonic discrimination. Aerobic exercise training promotes adaptations that include improved immune competency, higher cardiorespiratory fitness, and maintenance of hippocampal function. However, it is poorly understood whether, in active older adults, baseline immune cell profiles and cardiorespiratory fitness are possible mechanisms that facilitate the long-term benefits to hippocampal dependent mnemonic discrimination performance. This within-subjects study with counterbalanced conditions aimed to investigate whether baseline monocyte polarization and cardiorespiratory fitness influenced performance in the mnemonic similarity task (MST) and related Lure Discrimination Index (LDI) score after an acute bout of exercise. Twenty-one active older adults (M = 68 ± 5 yrs) underwent baseline testing in which blood samples were collected and cardiorespiratory fitness measured. Participants then returned and completed a seated rest or moderate intensity aerobic exercise condition in which the MST was proctored prior to and 5 min after each condition. A linear mixed effects model was used in which Participant ID was a random effect and Condition (rest v. exercise), Time (pre- v post-), and order were fixed main effects. Simple linear regression models were used to determine the variance accounted for by monocyte phenotypes and cardiorespiratory fitness for LDI scores post-condition. Post-rest LDI scores were significantly lower than post-exercise LDI scores (t(20) = -2.65, p < 0.02, d = -0.57). Intermediate monocytes were significant predictors of the change in pre- to post-exercise LDI scores (F(1, 19) = 6.03, p = 0.024, R2 = 0.24) and cardiorespiratory fitness was a significant predictor of the difference between post-condition LDI scores (F(1, 19) = 6.71, p = 0.018, R2 = 0.26). Our results suggest baseline cardiorespiratory fitness and intermediate monocytes may relate to the integrity of hippocampal-dependent mnemonic discrimination performance, and possibly the degree of responsiveness to aerobic exercise interventions.
Collapse
|
28
|
Zheng H, Wang T, Shi C, Fan L, Su Y, Fan Y, Li X, Yang J, Mao C, Xu Y. Increased PRR14 and VCAM-1 level in serum of patients with Parkinson's disease. Front Neurol 2022; 13:993940. [PMID: 36247752 PMCID: PMC9561935 DOI: 10.3389/fneur.2022.993940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 09/07/2022] [Indexed: 11/24/2022] Open
Abstract
Background Regarding the complexity of Parkinson's disease (PD), the identification of reliable biomarkers is of great significance for improving the accuracy of diagnosis and monitoring disease progression. Recently, some studies suggested that serum proline-rich protein 14 (PRR14), vascular cell adhesion molecule-1 (VCAM-1), and soluble CD163 (sCD163) factors may be associated with PD, even as potential biomarkers. However, the role of these serum factors is still unclear. Objectives This study aimed to explore the alterations of serum PRR14, VCAM-1, and sCD163 levels during PD progression, and their association with disease-related variables of PD. Methods We performed the assessment of scale tests and the detection of serum samples in patients with PD (n = 100) and healthy controls (HCs, n = 100). Furthermore, we investigated the association between serum factors and sex, cognitive impairments, H&Y (Hohn and Yahr), age at onset (AAO), and other variables in patients with PD. Results Patients with PD exhibited increased PRR14 and VCAM-1 serum levels compared with HCs. No significant differences were found in serum levels of sCD163. Subgroup analysis uncovered increased VCAM-1 in the female and male subgroups (PD and HCs). Among patients with PD, decreased PRR14 and increased VCAM-1 were associated with severer cognitive impairments and severer PD (H&Y), respectively. Bivariate correlation analysis revealed that there was a positive correlation between VCAM-1 and AAO. Conclusions Increased serum levels of PRR14 and VCAM-1 suggest that inflammation and defective autophagy may play vital roles in the pathogenesis of PD. However, the potential mechanisms remain to be elucidated.
Collapse
Affiliation(s)
- Huimin Zheng
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- The Academy of Medical Sciences of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Tai Wang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- The Academy of Medical Sciences of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Department of Neurology, Nanyang Central Hospital, Nanyang, China
| | - Changhe Shi
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, China
| | - Liyuan Fan
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- The Academy of Medical Sciences of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Yun Su
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- The Academy of Medical Sciences of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Yu Fan
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- The Academy of Medical Sciences of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Xinwei Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- The Academy of Medical Sciences of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Jing Yang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, China
| | - Chengyuan Mao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- The Academy of Medical Sciences of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, China
- *Correspondence: Chengyuan Mao
| | - Yuming Xu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, China
- Yuming Xu
| |
Collapse
|
29
|
Su Y, Shi C, Wang T, Liu C, Yang J, Zhang S, Fan L, Zheng H, Li X, Luo H, Zhang S, Hu Z, Fan Y, Hao X, Zhang C, Song B, Mao C, Xu Y. Dysregulation of peripheral monocytes and pro-inflammation of alpha-synuclein in Parkinson's disease. J Neurol 2022; 269:6386-6394. [PMID: 35895134 DOI: 10.1007/s00415-022-11258-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND AND OBJECTIVES Mounting evidence indicates the involvement of the innate immune system in Parkinson's disease (PD). Nevertheless, the implications of peripheral monocytes have not been fully elucidated. Although alpha-synuclein (α-synuclein) has been described as a pathological hallmark of PD, the proinflammatory effect of α-synuclein on monocytes is understudied. This study aimed to comprehensively characterize peripheral monocytes in PD patients and to investigate the proinflammatory magnitude of fibrillar α-synuclein. METHODS Using flow cytometry, we explored the distribution of monocytic subpopulations. We also investigated the actions of peripheral monocytes in response to lipopolysaccharides (LPS) and to fibrillar α-synuclein stimuli by measuring inflammatory molecule levels in post-culture supernatants. RESULTS Classical monocytes were enriched, in parallel with lower proportions of intermediate and nonclassical monocytes in patients with PD than in controls. Lower levels of TNF-α and IL-6 were spontaneously produced by unstimulated monocytes in patients with PD. LPS and fibrillar α-synuclein stimuli induced high levels of TNF-α, IL-1β, IL-6, and sCD163 in the PD and control groups. Strikingly, the fold induction of TNF-α and IL-6 was lower in patients with PD than that in normal controls under the same stimulation. CONCLUSION Our results revealed a strong dysregulation of peripheral monocytes in PD patients, including subpopulation shifts and impaired response to specific stimuli, and the proinflammatory effect of α-synuclein on monocytes. Further studies are needed to clarify the specific mechanisms by which these immunological abnormalities are present in PD to open the possibility of immunoregulatory therapy.
Collapse
Affiliation(s)
- Yun Su
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, No. 1 Eastern Jian-she Road, Zhengzhou, 450052, Henan, China
- The Academy of Medical Sciences of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Changhe Shi
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, No. 1 Eastern Jian-she Road, Zhengzhou, 450052, Henan, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Tai Wang
- Department of Neurology, Nanyang Central Hospital, Nanyang, Henan, China
| | - Chen Liu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, No. 1 Eastern Jian-she Road, Zhengzhou, 450052, Henan, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Jing Yang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, No. 1 Eastern Jian-she Road, Zhengzhou, 450052, Henan, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Shuyu Zhang
- Neuro-Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Liyuan Fan
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, No. 1 Eastern Jian-she Road, Zhengzhou, 450052, Henan, China
- The Academy of Medical Sciences of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Huimin Zheng
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, No. 1 Eastern Jian-she Road, Zhengzhou, 450052, Henan, China
- The Academy of Medical Sciences of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Xinwei Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, No. 1 Eastern Jian-she Road, Zhengzhou, 450052, Henan, China
- The Academy of Medical Sciences of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Haiyang Luo
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, No. 1 Eastern Jian-she Road, Zhengzhou, 450052, Henan, China
- The Academy of Medical Sciences of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Shuo Zhang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, No. 1 Eastern Jian-she Road, Zhengzhou, 450052, Henan, China
- The Academy of Medical Sciences of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Zhengwei Hu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, No. 1 Eastern Jian-she Road, Zhengzhou, 450052, Henan, China
- The Academy of Medical Sciences of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Yu Fan
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, No. 1 Eastern Jian-she Road, Zhengzhou, 450052, Henan, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Xiaoyan Hao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, No. 1 Eastern Jian-she Road, Zhengzhou, 450052, Henan, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Chenglin Zhang
- The Academy of Medical Sciences of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
- Sino-British Research Centre for Molecular Oncology, School of Basic Medical Sciences, National Centre for International Research in Cell and Gene Therapy, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Bo Song
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, No. 1 Eastern Jian-she Road, Zhengzhou, 450052, Henan, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Chengyuan Mao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, No. 1 Eastern Jian-she Road, Zhengzhou, 450052, Henan, China.
- The Academy of Medical Sciences of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.
- Sino-British Research Centre for Molecular Oncology, School of Basic Medical Sciences, National Centre for International Research in Cell and Gene Therapy, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China.
| | - Yuming Xu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, No. 1 Eastern Jian-she Road, Zhengzhou, 450052, Henan, China.
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, Zhengzhou, Henan, China.
| |
Collapse
|
30
|
Bartl M, Xylaki M, Bähr M, Weber S, Trenkwalder C, Mollenhauer B. Evidence for immune system alterations in peripheral biological fluids in Parkinson's disease. Neurobiol Dis 2022; 170:105744. [DOI: 10.1016/j.nbd.2022.105744] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/19/2022] [Accepted: 04/26/2022] [Indexed: 12/16/2022] Open
|
31
|
Tajbakhsh A, Gheibihayat SM, Taheri RA, Fasihi-Ramandi M, Bajestani AN, Taheri A. Potential diagnostic and prognostic of efferocytosis-related unwanted soluble receptors/ligands as new non-invasive biomarkers in disorders: a review. Mol Biol Rep 2022; 49:5133-5152. [PMID: 35419645 DOI: 10.1007/s11033-022-07224-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 02/02/2022] [Indexed: 11/25/2022]
Abstract
Efferocytosis is the process by which apoptotic cells are removed without inflammation to maintain tissue homeostasis, prevent unwanted inflammatory responses, and inhibit autoimmune responses. Coordination of efferocytosis occurs via many surfaces and chemotactic molecules and adaptors. Recently, soluble positive or negative mediators of efferocytosis, have been more noticeable as non-invasive valuable biomarkers in prognosis and targeted therapy. These soluble factors can be detected in different bodily fluids, such as serum, plasma, and urine as a non-invasive method. There are lots of studies that have tried to show the importance of receptors and ligands in disorders; while a few studies tried to indicate the importance of soluble forms of receptors/ligands and their clinical aspects as a systemic compound and shedding of targets related to efferocytosis. Some of these soluble forms also can be as sensitive as specific biomarkers for certain diseases compared with routine biomarkers, such as soluble circulatory Lectin-like oxidized low-density lipoprotein receptor-1 vs. troponin T in the acute coronary syndrome. Thus, this review tried to gain more understanding about efferocytosis-related unwanted soluble receptors/ligands, their roles, the clinical significance, and potential for diagnosis, and prognosis related to different diseases.
Collapse
Affiliation(s)
- Amir Tajbakhsh
- Molecular Biology Research Center, Systems Biology and Poisoning Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Seyed Mohammad Gheibihayat
- Department of Medical Biotechnology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Ramezan Ali Taheri
- Nanobiotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mahdi Fasihi-Ramandi
- Molecular Biology Research Center, Systems Biology and Poisoning Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Abolfazl Nesaei Bajestani
- Department of Medical Genetics, Ayatollah Madani Hospital, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Abolfazl Taheri
- School of Medicine, New Hearing Technologies Research Center, Baghiyyatollah Al-Azam Hospital, Baqiyatallah University of Medical Sciences, Tehran, Iran.
- Department of ENT, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
32
|
Changes in CD163+, CD11b+, and CCR2+ peripheral monocytes relate to Parkinson's disease and cognition. Brain Behav Immun 2022; 101:182-193. [PMID: 35026420 DOI: 10.1016/j.bbi.2022.01.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 01/04/2022] [Accepted: 01/07/2022] [Indexed: 12/15/2022] Open
Abstract
Alpha-synuclein pathology is associated with immune activation and neurodegeneration in Parkinson's disease. The immune activation involves not only microglia but also peripheral immune cells, such as mononuclear phagocytes found in blood and infiltrated in the brain. Understanding peripheral immune involvement is essential for developing immunomodulatory treatment. Therefore, we aimed to study circulating mononuclear phagocytes in early- and late-stage Parkinson's disease, defined by disease duration of less or more than five years, respectively, and analyze their association with clinical phenotypes. We performed a cross-sectional multi-color flow cytometry study on 78 sex-balanced individuals with sporadic Parkinson's disease, 28 controls, and longitudinal samples from seven patients and one control. Cell frequencies and surface marker expressions on natural killer cells, monocyte subtypes, and dendritic cells were compared between groups and correlated with standardized clinical scores. We found elevated frequencies and surface levels of migration- (CCR2, CD11b) and phagocytic- (CD163) markers, particularly on classical and intermediate monocytes in early Parkinson's disease. HLA-DR expression was increased in advanced stages of the disease, whereas TLR4 expression was decreased in women with Parkinson's Disease. The disease-associated immune changes of CCR2 and CD11b correlated with worse cognition. Increased TLR2 expression was related to worse motor symptoms. In conclusion, our data highlights the TLR2 relevance in the symptomatic motor presentation of the disease and a role for peripheral CD163+ and migration-competent monocytes in Parkinson's disease cognitive defects. Our study suggests that the peripheral immune system is dynamically altered in Parkinson's disease stages and directly related to both symptoms and the sex bias of the disease.
Collapse
|
33
|
Kasen A, Houck C, Burmeister AR, Sha Q, Brundin L, Brundin P. Upregulation of α-synuclein following immune activation: Possible trigger of Parkinson's disease. Neurobiol Dis 2022; 166:105654. [DOI: 10.1016/j.nbd.2022.105654] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 01/31/2022] [Accepted: 02/03/2022] [Indexed: 12/20/2022] Open
|
34
|
Fleming SM, Davis A, Simons E. Targeting alpha-synuclein via the immune system in Parkinson's disease: Current vaccine therapies. Neuropharmacology 2022; 202:108870. [PMID: 34742741 DOI: 10.1016/j.neuropharm.2021.108870] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/29/2021] [Accepted: 11/01/2021] [Indexed: 02/09/2023]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder and is defined pathologically by the abnormal accumulation of the presynaptic protein alpha-synuclein (aSyn) in the form of Lewy bodies and Lewy neurites and loss of midbrain dopaminergic neurons in the substantia nigra pars compacta. Because of aSyn's involvement in both sporadic and familial forms of PD, it has become a key target for the development of novel therapeutics. Aberrant aSyn is associated with multiple mechanisms of neuronal dysfunction and degeneration including inflammation, impaired mitochondrial function, altered protein degradation systems, and oxidative stress. Inflammation, in particular, has emerged as a potential significant contributor early in the disease making it an attractive target for disease modification and neuroprotection. Thus, immunotherapies targeting aSyn are currently being investigated in pre-clinical and clinical trials. The focus of this review is to highlight the role of aSyn in neuroinflammation and discuss the current status of aSyn-directed immunotherapies in pre-clinical and clinical trials for PD.
Collapse
Affiliation(s)
- Sheila M Fleming
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, USA.
| | - Ashley Davis
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, USA
| | - Emily Simons
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, USA
| |
Collapse
|
35
|
Koros C, Stefanis L, Scarmeas N. Parkinsonism and dementia. J Neurol Sci 2021; 433:120015. [PMID: 34642023 DOI: 10.1016/j.jns.2021.120015] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 09/01/2021] [Accepted: 09/29/2021] [Indexed: 12/13/2022]
Abstract
The aim of the present review is to summarize literature data on dementia in parkinsonian disorders. Cognitive decline and the gradual development of dementia are considered to be key features in the majority of parkinsonian conditions. The burden of dementia in everyday life of parkinsonian patients and their caregivers is vast and can be even more challenging to handle than the motor component of the disease. Common pathogenetic mechanisms involve the aggregation and spreading of abnormal proteins like alpha-synuclein, tau or amyloid in cortical and subcortical regions with subsequent dysregulation of multiple neurotransmitter systems. The degree of cognitive deterioration in these disorders is variable and ranges from mild cognitive impairment to severe cognitive dysfunction. There is also variation in the number and type of affected cognitive domains which can involve either a single domain like executive or visuospatial function or multiple ones. Novel genetic, biological fluid or imaging biomarkers appear promising in facilitating the diagnosis and staging of dementia in parkinsonian conditions. A significant part of current research in Parkinson's disease and other parkinsonian syndromes is targeted towards the cognitive aspects of these disorders. Stabilization or amelioration of cognitive outcomes represents a primary endpoint in many ongoing clinical trials for novel disease modifying treatments in this field. This article is part of the Special Issue "Parkinsonism across the spectrum of movement disorders and beyond" edited by Joseph Jankovic, Daniel D. Truong and Matteo Bologna.
Collapse
Affiliation(s)
- Christos Koros
- 1st Department of Neurology, Aeginition University, Hospital, National and Kapodistrian University of Athens, Medical School, Athens, Greece
| | - Leonidas Stefanis
- 1st Department of Neurology, Aeginition University, Hospital, National and Kapodistrian University of Athens, Medical School, Athens, Greece; Center of Clinical Research, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Nikolaos Scarmeas
- 1st Department of Neurology, Aeginition University, Hospital, National and Kapodistrian University of Athens, Medical School, Athens, Greece; The Gertrude H. Sergievsky Center, Department of Neurology, Taub Institute for Research in Alzheimer's, Disease and the Aging Brain, Columbia University, New York, USA.
| |
Collapse
|
36
|
Thaler A, Omer N, Giladi N, Gurevich T, Bar-Shira A, Gana-Weisz M, Goldstein O, Kestenbaum M, Shirvan JC, Cedarbaum JM, Orr-Urtreger A, Regev K, Shenhar-Tsarfaty S, Mirelman A. Mutations in GBA and LRRK2 Are Not Associated with Increased Inflammatory Markers. JOURNAL OF PARKINSONS DISEASE 2021; 11:1285-1296. [PMID: 33998549 PMCID: PMC8461659 DOI: 10.3233/jpd-212624] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Background: Inflammation is an integral part of neurodegeneration including in Parkinson’s disease (PD). Ashkenazi Jews have high rates of genetic PD with divergent phenotypes among GBA-PD and LRRK2-PD. The role of inflammation in the prodromal phase of PD and the association with disease phenotype has yet to be elucidated. Objective: To assess central and peripheral cytokines among PD patients with mutations in the LRRK2 and GBA genes and among non-manifesting carriers (NMC) of these mutations in order to determine the role of inflammation in genetic PD. Methods: The following cytokines were assessed from peripheral blood and cerebrospinal fluid (CSF): TNF-α, IL-1β, IL-2, IL-4, IL-6, IL-8, IL-10 and INF- γ. A comprehensive intake including general medical conditions, use of anti-inflammatory treatments, motor and cognitive assessments and additional laboratory measures were recorded, enabling the construction of the MDS probable prodromal score. Results: Data from 362 participants was collected: 31 idiopathic PD (iPD), 30 LRRK2-PD, 77 GBA-PD, 3 homozygote GBA-PD, 3 GBA-LRRK2-PD, 67 LRRK2-NMC, 105 GBA-NMC, 14 LRRK2-GBA-NMC, and 32 healthy controls. No between-group differences in peripheral or CSF cytokines were detected. No correlation between disease characteristics or risk for prodromal PD could be associated with any inflammatory measure. Conclusion: In this study, we could not detect any evidence on dysregulated immune response among GBA and LRRK2 PD patients and non-manifesting mutation carriers.
Collapse
Affiliation(s)
- Avner Thaler
- Movement Disorders Unit, Neurological Institute, Tel-Aviv Medical Center, Tel-Aviv, Israel.,Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel.,Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel.,Laboratory of Early Markers of Neurodegeneration, Neurological Institute, Tel-Aviv Medical Center, Tel-Aviv, Israel
| | - Nurit Omer
- Movement Disorders Unit, Neurological Institute, Tel-Aviv Medical Center, Tel-Aviv, Israel.,Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel.,Laboratory of Early Markers of Neurodegeneration, Neurological Institute, Tel-Aviv Medical Center, Tel-Aviv, Israel
| | - Nir Giladi
- Movement Disorders Unit, Neurological Institute, Tel-Aviv Medical Center, Tel-Aviv, Israel.,Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel.,Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel
| | - Tanya Gurevich
- Movement Disorders Unit, Neurological Institute, Tel-Aviv Medical Center, Tel-Aviv, Israel.,Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel.,Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel
| | - Anat Bar-Shira
- Genetic Institute, Tel-Aviv Medical Center, Tel-Aviv, Israel
| | - Mali Gana-Weisz
- Genomic Research Laboratory for Neurodegeneration, Tel-Aviv Medical Center, Tel-Aviv, Israel
| | - Orly Goldstein
- Genomic Research Laboratory for Neurodegeneration, Tel-Aviv Medical Center, Tel-Aviv, Israel
| | - Meir Kestenbaum
- Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel.,Neurology Department, Meir Hospital, Kfar-Saba, Israel
| | | | - Jesse M Cedarbaum
- Biogen Inc, Cambridge, MA, USA.,Coeruleus Clinical Sciences LLC, Woodbridge, CT, USA
| | - Avi Orr-Urtreger
- Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel.,Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel.,Genomic Research Laboratory for Neurodegeneration, Tel-Aviv Medical Center, Tel-Aviv, Israel
| | - Keren Regev
- Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel.,Neuroimmunology Unit, Neurological Institute, Tel-Aviv Medical Center, Tel-Aviv, Israel
| | - Shani Shenhar-Tsarfaty
- Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel.,Department of Internal Medicine "C", "D", and "E", Tel-Aviv Medical Center, Tel-Aviv, Israel
| | - Anat Mirelman
- Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel.,Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel.,Laboratory of Early Markers of Neurodegeneration, Neurological Institute, Tel-Aviv Medical Center, Tel-Aviv, Israel
| |
Collapse
|
37
|
Human Monocytes Plasticity in Neurodegeneration. Biomedicines 2021; 9:biomedicines9070717. [PMID: 34201693 PMCID: PMC8301413 DOI: 10.3390/biomedicines9070717] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/11/2021] [Accepted: 06/21/2021] [Indexed: 01/09/2023] Open
Abstract
Monocytes play a crucial role in immunity and tissue homeostasis. They constitute the first line of defense during the inflammatory process, playing a role in the pathogenesis and progression of diseases, making them an attractive therapeutic target. They are heterogeneous in morphology and surface marker expression, which suggest different molecular and physiological properties. Recent evidences have demonstrated their ability to enter the brain, and, as a consequence, their hypothetical role in different neurodegenerative diseases. In this review, we will discuss the current knowledge about the correlation between monocyte dysregulation in the brain and/or in the periphery and neurological diseases in humans. Here we will focus on the most common neurodegenerative disorders, such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis and multiple sclerosis.
Collapse
|
38
|
Harms AS, Ferreira SA, Romero-Ramos M. Periphery and brain, innate and adaptive immunity in Parkinson's disease. Acta Neuropathol 2021; 141:527-545. [PMID: 33555429 PMCID: PMC7952334 DOI: 10.1007/s00401-021-02268-5] [Citation(s) in RCA: 173] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 12/29/2020] [Accepted: 01/18/2021] [Indexed: 12/21/2022]
Abstract
Parkinson’s disease (PD) is a neurodegenerative disorder where alpha-synuclein plays a central role in the death and dysfunction of neurons, both, in central, as well as in the peripheral nervous system. Besides the neuronal events observed in patients, PD also includes a significant immune component. It is suggested that the PD-associated immune response will have consequences on neuronal health, thus opening immunomodulation as a potential therapeutic strategy in PD. The immune changes during the disease occur in the brain, involving microglia, but also in the periphery with changes in cells of the innate immune system, particularly monocytes, as well as those of adaptive immunity, such as T-cells. This realization arises from multiple patient studies, but also from data in animal models of the disease, providing strong evidence for innate and adaptive immune system crosstalk in the central nervous system and periphery in PD. Here we review the data showing that alpha-synuclein plays a crucial role in the activation of the innate and adaptive immune system. We will also describe the studies suggesting that inflammation in PD includes early changes in innate and adaptive immune cells that develop dynamically through time during disease, contributing to neuronal degeneration and symptomatology in patients. This novel finding has contributed to the definition of PD as a multisystem disease that should be approached in a more integratory manner rather than a brain-focused classical approach.
Collapse
Affiliation(s)
- Ashley S Harms
- Department of Neurology and Center for Neurodegeneration and Experimental Therapeutics, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Sara A Ferreira
- Department of Biomedicine and CNS Disease Modelling Group, Aarhus University, Høegh-Guldbergsgade 10, 8000C, Aarhus, Denmark
| | - Marina Romero-Ramos
- Department of Biomedicine and CNS Disease Modelling Group, Aarhus University, Høegh-Guldbergsgade 10, 8000C, Aarhus, Denmark.
| |
Collapse
|
39
|
Wang T, Shi C, Luo H, Zheng H, Fan L, Tang M, Su Y, Yang J, Mao C, Xu Y. Neuroinflammation in Parkinson's Disease: Triggers, Mechanisms, and Immunotherapies. Neuroscientist 2021; 28:364-381. [PMID: 33576313 DOI: 10.1177/1073858421991066] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Parkinson's disease (PD) is a heterogeneous neurodegenerative disease involving multiple etiologies and pathogenesis, in which neuroinflammation is a common factor. Both preclinical experiments and clinical studies provide evidence for the involvement of neuroinflammation in the pathophysiology of PD, although there are a number of key issues related to neuroinflammatory processes in PD that remain to be addressed. In this review, we highlight the relationship between the common pathological mechanisms of PD and neuroinflammation, including aggregation of α-synuclein, genetic factors, mitochondrial dysfunction, and gut microbiome dysbiosis. We also describe the two positive feedback loops initiated in PD after the immune system is activated, and their role in the pathogenesis of PD. In addition, the interconnections and differences between the central and peripheral immune systems are discussed. Finally, we review the latest progress in immunotherapy research for PD patients, and propose future directions for clinical research.
Collapse
Affiliation(s)
- Tai Wang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.,The Academy of Medical Sciences of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Changhe Shi
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.,Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.,Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan, China
| | - Haiyang Luo
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.,The Academy of Medical Sciences of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.,Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Huimin Zheng
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.,The Academy of Medical Sciences of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.,Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Liyuan Fan
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.,The Academy of Medical Sciences of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.,Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Mibo Tang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.,The Academy of Medical Sciences of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.,Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Yun Su
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.,The Academy of Medical Sciences of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.,Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Jing Yang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.,Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.,Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan, China
| | - Chengyuan Mao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.,The Academy of Medical Sciences of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.,Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.,Sino-British Research Centre for Molecular Oncology, National Centre for International Research in Cell and Gene Therapy, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Yuming Xu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.,Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.,Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|