1
|
Candidate Genes Encoding Dopamine Receptors as Predictors of the Risk of Antipsychotic-Induced Parkinsonism and Tardive Dyskinesia in Schizophrenic Patients. Biomedicines 2021; 9:biomedicines9080879. [PMID: 34440083 PMCID: PMC8389582 DOI: 10.3390/biomedicines9080879] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/01/2021] [Accepted: 07/19/2021] [Indexed: 11/17/2022] Open
Abstract
(1) Introduction: Extrapyramidal disorders form the so-called extrapyramidal syndrome (EPS), which is characterized by the occurrence of motor disorders as a result of damage to the basal ganglia and the subcortical-thalamic connections. Often, this syndrome develops while taking medications, in particular antipsychotics (APs). (2) Purpose: To review studies of candidate genes encoding dopamine receptors as genetic predictors of development of AP-induced parkinsonism (AIP) and AP-induced tardive dyskinesia (AITD) in patients with schizophrenia. (3) Materials and Methods: A search was carried out for publications of PubMed, Web of Science, Springer, and e-Library databases by keywords and their combinations over the last 10 years. In addition, the review includes earlier publications of historical interest. Despite extensive searches of these commonly used databases and search terms, it cannot be ruled out that some publications were possibly missed. (4) Results: The review considers candidate genes encoding dopamine receptors involved in pharmacodynamics, including genes DRD1, DRD2, DRD3, and DRD4. We analyzed 18 genome-wide studies examining 37 genetic variations, including single nucleotide variants (SNVs)/polymorphisms of four candidate genes involved in the development of AIP and AITD in patients with schizophrenia. Among such a set of obtained results, only 14 positive associations were revealed: rs1799732 (141CIns/Del), rs1800497 (C/T), rs6275 (C/T), rs6275 (C/T) DRD2; rs167771 (G/A) DRD3 with AIP and rs4532 (A/G) DRD1, rs6277 (C/T), rs6275 (C/T), rs1800497 (C/T), rs1079597 (A/G), rs1799732 (141CIns/Del), rs1045280 (C/G) DRD2, rs6280 (C/T), rs905568 (C/G) DRD3 with AITD. However, at present, it should be recognized that there is no final or unique decision on the leading role of any particular SNVs/polymorphisms in the development of AIP and AITD. (5) Conclusion: Disclosure of genetic predictors of the development of AIP and AITD, as the most common neurological adverse drug reactions (ADRs) in the treatment of patients with psychiatric disorders, may provide a key to the development of a strategy for personalized prevention and treatment of the considered complication of AP therapy for schizophrenia in real clinical practice.
Collapse
|
2
|
Wonodi I, Adami H, Sherr J, Avila M, Hong LE, Thaker GK. Naltrexone treatment of tardive dyskinesia in patients with schizophrenia. J Clin Psychopharmacol 2004; 24:441-5. [PMID: 15232337 DOI: 10.1097/01.jcp.0000132440.27854.44] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Treatment of dyskinetic disorders, in general, and of tardive dyskinesia (TD), in particular, is difficult. The opiate peptide enkephalin coexits with gamma aminobutyric acid in the projection neurons of striatum forming the "indirect" pathway. Several lines of preclinical evidence implicate this enkephalin-comediated pathway in the pathophysiology and therapeutics of dyskinesia. However, previous studies, most using relatively low doses of opioid antagonists, showed mixed results. The goal of the current study was to test whether moderately high doses of naltrexone, alone or in combination with a subtherapeutic dose of a gamma aminobutyric acid agonist, improve TD. METHODS In 2 double-blind, placebo-controlled, randomized, crossover trials, effects of naltrexone alone (n = 9) and in combination with clonazepam (n = 14) were tested on TD. In both trials, patients' antipsychotic medication and dose remained unchanged through the trial. Naltrexone dose was increased over a period of 3 weeks to 200 mg/d and maintained at that dose for another week. In the second study, patients were first stabilized on low dose (0.25 to 0.5 mg) of clonazepam for 4 weeks or longer. In addition to the TD scores, saccadic peak velocity and latency, as measures of vigilance, and antisaccade error rate were obtained during the fourth week of placebo and naltrexone in a subgroup of patients. RESULTS There were no significant effects of naltrexone alone on TD (mean +/- SD decrease in TD score = 0.1 +/- 4.8), psychosis scores, or eye movement measures. Low dose of clonazepam had no effect on TD. However, addition of naltrexone significantly improved TD (mean, SD decrease in TD score 4.0 +/- 3.6). There was no clinical or laboratory evidence of increased sedation during treatment with naltrexone compared to placebo. There were no significant effects on the antisaccade error rate or psychosis scores. CONCLUSION These findings suggest effectiveness of a strategy of combining a GABA(gamma aminobutyric acid)mimetic drug with an enkephalin antagonist to treat dyskinesia.
Collapse
Affiliation(s)
- Ikwunga Wonodi
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD 21228, USA
| | | | | | | | | | | |
Collapse
|
3
|
McCormick SE, Stoessl AJ. Central administration of the neurotensin receptor antagonist SR48692 attenuates vacuous chewing movements in a rodent model of tardive dyskinesia. Neuroscience 2003; 119:547-55. [PMID: 12770567 DOI: 10.1016/s0306-4522(03)00170-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Tardive dyskinesia is a movement disorder that develops in 20-30% of patients treated with chronic neuroleptics. Whilst the pathogenesis of tardive dyskinesia remains unclear, altered expression of neuropeptides in the basal ganglia has been implicated in its emergence. The peptide neurotensin is expressed in both dopamine D1 receptor-bearing neurons of the direct striatonigral pathway and dopamine D2 receptor-bearing neurons of the indirect striatopallidal pathway. Increased levels of striatal neurotensin messenger RNA (mRNA) are reported following chronic neuroleptic therapy. Chronic treatment with the typical antipsychotic haloperidol elicits neurotensin immunoreactivity in a large number of striatopallidal and a modest number of striatonigral projection neurons, whilst treatment with the potent dopamine releaser, methamphetamine, induces intense neurotensin immunoreactivity in striatonigral projection neurons. In order to determine whether increased levels of striatal neurotensin mRNA in the direct striatonigral or the indirect striatopallidal pathway play a more influential role in the development of tardive dyskinesia, we explored the effects of a specific neurotensin antagonist in a rodent model (vacuous chewing movements [VCMs] induced by chronic neuroleptics). Three groups of animals received injections of fluphenazine decanoate (25 mg/kg) or its vehicle sesame oil every 3 weeks for at least 18 weeks. They were then surgically implanted with bilateral guide cannulae aimed at the striatum, the substantia nigra pars reticulata, or the globus pallidus respectively. After recovery, animals were infused with 2-[(1-(7-chloro-4-quinolinyl)-5-(2,6-imethoxyphenyl)pyrazol-3-yl)carbonylamino]tricyclo(3.3.1.1.(3.7))decan-2-carboxylic acid (SR48692; 0.25, 0.50, and 1.0 nmol/microl), or its vehicle (10% dimethyl sulfoxide [DMSO] in saline) and observed for 60 min. Intra-striatal, intra-nigral or intra-pallidal infusion of SR48692 attenuated neuroleptic-induced VCMs. These findings lend further support to a role for neurotensin in the development of VCMs but do not clarify which pathway plays a more important role. Thus, treatments that reduce or prevent the effects of increased neurotensin expression and release may be useful in the management of tardive dyskinesia.
Collapse
Affiliation(s)
- S E McCormick
- Pacific Parkinson's Research Centre, Faculty of Medicine, University of British Columbia,Vancouver BC V6T 2B5, Canada
| | | |
Collapse
|
4
|
McCormick SE, Stoessl AJ. Blockade of nigral and pallidal opioid receptors suppresses vacuous chewing movements in a rodent model of tardive dyskinesia. Neuroscience 2002; 112:851-9. [PMID: 12088744 DOI: 10.1016/s0306-4522(02)00127-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Chronic neuroleptic treatment leads to the development of tardive dyskinesia in 20-30% of patients. While the pathogenesis of tardive dyskinesia remains elusive, altered opioid peptide function in striatal projection pathways of the basal ganglia has been implicated. Using a rodent model of vacuous chewing movements induced by chronic neuroleptic administration, we investigated regional involvement of opioid transmission in tardive dyskinesia. We examined the role of dynorphin in the direct striatonigral pathway by infusing nor-binaltorphimine, a selective kappa opioid receptor antagonist, into the substantia nigra pars reticulata. As well, infusions of naloxone (a non-specific opioid receptor antagonist), D-Phe-Cys-Tyr-D-Trp-Orn-Thr-Pen-Thr amide (CTOP; a mu opioid receptor antagonist) or naltrindole (a delta opioid receptor antagonist) into the globus pallidus were used to establish the contribution of the striatopallidal pathway. Chronic fluphenazine treatment (25 mg/kg i.m. every 3 weeks for 18 weeks) resulted in a robust increase in vacuous chewing movements. Infusion of nor-binaltorphimine (5.0 nmol) into the substantia nigra pars reticulata significantly attenuated vacuous chewing movements. Infusion of naloxone (0.5 and 2.0 nmol) into the globus pallidus also significantly attenuated vacuous chewing. Infusion of naltrindole into the globus pallidus blocked vacuous chewing at all doses administered (0.5, 1.0, 2.0 nmol) while CTOP was only effective at the two higher doses. From these results we suggest that increases in dynorphin in the direct striatonigral pathway and enkephalin in the indirect striatopallidal pathway following chronic neuroleptic administration are both likely to contribute to tardive dyskinesia.
Collapse
Affiliation(s)
- S E McCormick
- Pacific Parkinson's Research Centre, Faculty of Medicine, University of British Columbia, Vancouver, Canada V6T 2B5
| | | |
Collapse
|
5
|
Turrone P, Remington G, Nobrega JN. The vacuous chewing movement (VCM) model of tardive dyskinesia revisited: is there a relationship to dopamine D(2) receptor occupancy? Neurosci Biobehav Rev 2002; 26:361-80. [PMID: 12034136 DOI: 10.1016/s0149-7634(02)00008-8] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Tardive dyskinesia (TD) is a late side effect of long-term antipsychotic use in humans, and the vacuous chewing movement (VCM) model has been used routinely to study this movement disorder in rats. Recent receptor occupancy studies in humans and rats have found that antipsychotics given in doses which lead to moderate levels of D(2) receptor blockade can achieve optimal clinical response while minimizing the emergence of acute motor side effects. This suggests that clinicians may have been using inappropriately high doses of antipsychotics. A review of the existing VCM literature indicates that most animal studies have similarly employed antipsychotic doses that are high, i.e. doses that lead to near complete D(2) receptor saturation. To verify whether the incidence or severity of VCMs would decrease with lower antipsychotic doses, we conducted initial experiments with different doses of haloperidol (HAL) given either as repeated daily injections or as depot injections over the course of several weeks. Our results demonstrate that (1) the incidence of VCMs is significantly related to HAL dose, and (2) significant levels of VCMs only emerge when haloperidol is continually present. These findings are consistent with the possibility that total D(2) occupancy, as well as 'transience' of receptor occupation, may be important in the development of late-onset antipsychotic-induced dyskinetic syndromes.
Collapse
Affiliation(s)
- Peter Turrone
- Institute of Medical Science, University of Toronto, Toronto, Ont., Canada.
| | | | | |
Collapse
|
6
|
Bezard E, Brotchie JM, Gross CE. Pathophysiology of levodopa-induced dyskinesia: potential for new therapies. Nat Rev Neurosci 2001; 2:577-88. [PMID: 11484001 DOI: 10.1038/35086062] [Citation(s) in RCA: 369] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Involuntary movements--or dyskinesias--are a debilitating complication of levodopa therapy for Parkinson's disease, and is experienced in most patients. Despite the importance of this problem, little was known about the cause of dyskinesia until recently; however, this situation has changed significantly in the past few years. Our increased understanding of levodopa-induced dyskinesia is not only valuable for improving patient care, but also in providing us with new insights into the functional organization of the basal ganglia and motor systems.
Collapse
Affiliation(s)
- E Bezard
- Basal Gang, Laboratoire de Neurophysiologie, CNRS UMR 5543, Université Victor Segalen Bordeaux 2, 146 rue Léo Saignat, 33076 Bordeaux Cedex, France
| | | | | |
Collapse
|
7
|
Abstract
The endomorphins are recently discovered endogenous agonists for the mu-opioid receptor (Zadina et al., 1997). Endomorphins produce analgesia; however, their role in other brain functions has not been elucidated. We have investigated the behavioral effects of endomorphin-1 in the globus pallidus, a brain region that is rich in mu-opioid receptors and involved in motor control. Bilateral administration of endomorphin-1 in the globus pallidus of rats induced orofacial dyskinesia. This effect was dose-dependent and at the highest dose tested (18 pmol per side) was sustained during the 60 min of observation, indicating that endomorphin-1 does not induce rapid desensitization of this motor response. In agreement with a lack of desensitization of mu-opioid receptors, 3 hr of continuous exposure of the cloned mu receptor to endomorphin-1 did not diminish the subsequent ability of the agonist to inhibit adenylate cyclase activity in cells expressing the cloned mu-opioid receptor. Confirming the involvement of mu-opioid receptors, the behavioral effect of endomorphin-1 in the globus pallidus was blocked by the opioid antagonist naloxone and the mu-selective peptide antagonist Cys(2)-Tyr(3)-Orn(5)-Pen(7) amide (CTOP). Furthermore, the selective mu receptor agonist [d-Ala(2)-N-Me-Phe(4)-Glycol(5)]-enkephalin (DAMGO) also stimulated orofacial dyskinesia when infused into the globus pallidus, albeit transiently. Our findings suggest that endogenous mu agonists may play a role in hyperkinetic movement disorders by inducing sustained activation of pallidal opioid receptors.
Collapse
|
8
|
Liu N, Rockhold RW, Ho IK. Electrical stimulation of nucleus paragigantocellularis induces opioid withdrawal-like behaviors in the rat. Pharmacol Biochem Behav 1999; 62:263-71. [PMID: 9972693 DOI: 10.1016/s0091-3057(98)00164-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
To examine a role for the medullary nucleus paragigantocellularis (PGi) in mediation of the symptomatology of opioid withdrawal, bilateral electrical stimulation of the PGi was performed in conscious, unrestrained, opioid naive (nondependent) rats. A characteristic series of behaviors was elicited during each 30-min session of PGi stimulation. The profile of these behaviors resembled qualitatively, but was not quantitatively identical with those seen during precipitated withdrawal from opioid dependence. This behavioral syndrome has been termed, opioid withdrawal-like behavior. The opioid withdrawal-like behaviors were voltage-, but not frequency-, dependent. Tolerance to repeated stimulation of the PGi did not develop following a series of 30-min runs of stimulation over 3.5 h. Intracerebroventricular (i.c.v.) injections of the nonselective opioid antagonist, naloxone, significantly decreased (by 40-50%) the intensity of stimulation-induced behavioral responses, as did injections of either the mu-selective (beta-funaltrexamine, beta-FNA) or the delta-selective (naltrindole, NTI) opioid antagonists. In contrast, similar i.c.v. injections of the kappa-selective antagonist, nor-binaltorphimine (nor-BNI), did not block behavioral responses to PGi stimulation. The results indicate that activation of the PGi by electrical stimulation can elicit behaviors similar to those observed during opioid withdrawal. Endogenous opioids, acting through mu- and delta-, but not kappa-opioid receptors, participate in mediating opioid withdrawal-like behaviors induced by PGi stimulation.
Collapse
Affiliation(s)
- N Liu
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson 39216-4505, USA
| | | | | |
Collapse
|
9
|
Mijnster MJ, Schotte A, Docter GJ, Voorn P. Effects of risperidone and haloperidol on tachykinin and opioid precursor peptide mRNA levels in the caudate-putamen and nucleus accumbens of the rat. Synapse 1998; 28:302-12. [PMID: 9517839 DOI: 10.1002/(sici)1098-2396(199804)28:4<302::aid-syn6>3.0.co;2-d] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We investigated whether the two output pathways of the striatum are differently affected by the novel atypical drug risperidone and the conventional typical antipsychotic drug haloperidol. To this end, changes in mRNA levels of preproenkephalin-A, preproenkephalin-B, and preprotachykinin were determined in the rat striatum following chronic drug treatment for 14 days, using quantitative in situ hybridization. Furthermore, we studied the contribution of the dopamine D2 and serotonin 5-HT2A antagonist components of risperidone in establishing its effects on neuropeptide mRNA levels in the striatum. The results showed that both risperidone and haloperidol had major effects on the preproenkephalin-A mRNA and thus on the indirect striatal output route, whereas they had minor effects on preproenkephalin-B and preprotachykinin mRNA, contained by the direct output route. When both drugs were administered in the same dose, preproenkephalin-A mRNA was much more elevated by haloperidol than by risperidone. However, when doses of risperidone and haloperidol were modified to attain comparable dopamine D2 receptor occupancy, the drugs had comparable effects on preproenkephalin-A mRNA levels. It was further found that 5-HT2A/C receptor blockade with ritanserin had only modest effects on preproenkephalin-B and preprotachykinin mRNA levels and did not affect preproenkephalin-A mRNA levels. We conclude that risperidone and haloperidol, administered in the same dose, differently affect the striatal output routes. Furthermore, the results suggest that the effects of risperidone on neuropeptide mRNA levels are fully accounted for by its D2 antagonism and that no indication exists for a role of 5-HT2A receptor blockade in this action.
Collapse
Affiliation(s)
- M J Mijnster
- Graduate School of Neurosciences Amsterdam, Department of Anatomy, Vrije Universiteit, The Netherlands
| | | | | | | |
Collapse
|
10
|
Piccini P, Weeks RA, Brooks DJ. Alterations in opioid receptor binding in Parkinson's disease patients with levodopa-induced dyskinesias. Ann Neurol 1997; 42:720-6. [PMID: 9392571 DOI: 10.1002/ana.410420508] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Levodopa-induced dyskinesias remain a major challenge in the therapeutic management of Parkinson's disease (PD). Their etiology is unknown although dysfunction of striatal opioid transmission has been implicated in experimental models of PD. To determine whether the opioid system is involved in human dyskinetic PD, we measured in vivo opioid receptor binding in PD patients with and without levodopa-induced dyskinesias, using positron emission tomography (PET) and the opioid receptor ligand [11C]diprenorphine. Striatal and thalamic/occipital uptake ratios were calculated using a region of interest (ROI) approach. In addition, we used statistical parametric mapping (SPM) and images reflecting the volume of distribution of [11C]diprenorphine to assess changes in cerebral receptor binding on a voxel-by-voxel basis. By using the ROI approach, we found significantly reduced striatal and thalamic opioid binding in dyskinetic, but not in nondyskinetic, PD patients. The SPM approach confirmed reduced availability in these areas and, in addition, showed decreased cingulate and increased prefrontal opioid receptor binding in the dyskinetic patients. Our findings confirm that altered opioid transmission is part of the pathophysiology of levodopa-induced dyskinesias in PD and support further investigation into the role of opioid agents in the management of these involuntary movements.
Collapse
Affiliation(s)
- P Piccini
- MRC Cyclotron Unit, Hammersmith Hospital, London, UK
| | | | | |
Collapse
|
11
|
|
12
|
Voorn P, Brady LS, Berendse HW, Richfield EK. Densitometrical analysis of opioid receptor ligand binding in the human striatum--I. Distribution of mu opioid receptor defines shell and core of the ventral striatum. Neuroscience 1996; 75:777-92. [PMID: 8951872 DOI: 10.1016/0306-4522(96)00271-0] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Changes in opioid neurotransmission have been implicated in several basal ganglia-related neurological and psychiatric disorders. To gain a better insight into the opioid receptor distribution in the normal human striatum, we examined in post mortem brain the distribution of the mu opioid receptor using ligand binding of [3H]O-ala2-N-methyl-phe4, gly-ol5-enkephalin. Our results indicate at the regional level the presence of a dorsal-to-ventral high-to-low density gradient in the striatum, with lowest densities in the ventral one-third of the putamen and in the nucleus accumbens. At the subregional level, the nucleus accumbens shows two major types of heterogeneities. First, low vs intermediate binding densities distinguish the core and shell subdivisions, respectively. The low-density core and intermediate-density shell regions extend into the putamen and are therefore characteristic for the entire ventral striatum. The second type of heterogeneity is formed by small areas located along the ventral contours of the nucleus accumbens and putamen that display the highest binding density of the entire striatum. Since these areas can also be recognized in the distribution patterns of other markers and in the cytoarchitecture, they appear to possess a separate identity. To emphasize their special neurochemical characteristics we propose the description "neurochemically unique domains in the accumbens and putamen". The present results, with the difference between core and shell of the ventral striatum as the most prominent outcome, together with the notion that the connectional relationships and neurochemical organization of the striatum are very heterogeneous, suggest a strong regional functional differentiation for mu receptor function in the human striatum.
Collapse
Affiliation(s)
- P Voorn
- Vrije Universiteit Department of Anatomy and Embryology, Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
13
|
Henry B, Brotchie JM. Potential of opioid antagonists in the treatment of levodopa-induced dyskinesias in Parkinson's disease. Drugs Aging 1996; 9:149-58. [PMID: 8877309 DOI: 10.2165/00002512-199609030-00001] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Current treatments for Parkinson's disease (PD) rely on dopamine-replacing strategies, and centre around dopamine precursors (e.g. levodopa) or directly acting dopamine agonists. With long-term therapy these agents lose much of their clinical utility due to the appearance of adverse effects such as dyskinesias and/or a wearing off of efficacy. Although dyskinesias in Huntington's disease, hemiballism and experimental animals are thought to be associated with reductions in amino acid transmission within the lateral and medial segments of the globus pallidus, the neural mechanisms underlying treatment-related dyskinesias in PD are poorly understood. Recent evidence suggests that, within these regions of the brain, the opioid peptides enkephalin and dynorphin, acting at delta and kappa opioid receptors, respectively, can reduce the release of amino acid transmitters. Furthermore, the synthesis of these peptides appears to be enhanced in neurons projecting to the pallidal complex in animal models of PD following repeated treatment with dopamine-replacing agents that also cause dyskinetic adverse effects (e.g. levodopa and apomorphine). In contrast, dopamine receptor agonists such as bromocriptine and lisuride do not cause dyskinetic adverse effects following long-term treatment, and do not elevate peptide synthesis when given de novo. These data, together with recent data on the behavioural effects of opioid antagonists in a rodent model of levodopa-induced dyskinesia in PD, suggest the possibility that antagonists of opioid receptors may prove useful as adjuncts to levodopa. By limiting the severity of dyskinetic adverse effects, these drugs may help extend the time for which the antiparkinsonian effects of such compounds can be usefully exploited.
Collapse
Affiliation(s)
- B Henry
- Division of Neuroscience, School of Biological Sciences, University of Manchester, England
| | | |
Collapse
|
14
|
Stoessl AJ. Dopamine D1 receptor agonist-induced grooming is blocked by the opioid receptor antagonist naloxone. Eur J Pharmacol 1994; 259:301-3. [PMID: 7982457 DOI: 10.1016/0014-2999(94)90657-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The effects of the opioid receptor antagonist naloxone on behavioural responses to the dopamine D1 receptor agonist SKF 38393 ((+/-)-1-phenyl-2,3,4,5-tetrahydro-(1H)-3-benzazepine-7,8-diol hydrochloride) were assessed in the rat. SKF 38393 (5 mg/kg s.c.) induced grooming and vacuous chewing mouth movements. SKF 38393-induced grooming was dose-dependently attenuated by naloxone (0.375-1.5 mg/kg s.c), while vacuous chewing movements were unaffected. These findings suggest that dopamine D1 receptor agonist-induced grooming is dependent upon opioid systems, while vacuous chewing movements are likely to be mediated via different pathways.
Collapse
MESH Headings
- 2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine/antagonists & inhibitors
- 2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine/pharmacology
- Animals
- Dose-Response Relationship, Drug
- Grooming/drug effects
- Male
- Movement/drug effects
- Naloxone/pharmacology
- Rats
- Rats, Sprague-Dawley
- Receptors, Dopamine D1/agonists
Collapse
Affiliation(s)
- A J Stoessl
- Department of Clinical Neurological Sciences, University of Western Ontario, London, Canada
| |
Collapse
|
15
|
Abstract
This paper is the sixteenth installment of our annual review of research concerning the opiate system. It is restricted to papers published during 1993 that concern the behavioral effects of the endogenous opiate peptides, and does not include papers dealing only with their analgesic properties. The specific topics this year include stress; tolerance and dependence; eating; drinking; gastrointestinal, renal, and hepatic function; mental illness and mood; learning, memory, and reward; cardiovascular responses; respiration and thermoregulation; seizures and other neurological disorders; electrical-related activity; general activity and locomotion; development; immunological responses; and other behaviors.
Collapse
Affiliation(s)
- G A Olson
- Department of Psychology, University of New Orleans, LA 70148
| | | | | |
Collapse
|