1
|
Dong Y, Liao H, Huang F, Bao Y, Guo W, Tan Z. Machine learning approaches reveal methylation signatures associated with pediatric acute myeloid leukemia recurrence. Sci Rep 2025; 15:15815. [PMID: 40328883 PMCID: PMC12056120 DOI: 10.1038/s41598-025-99258-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Accepted: 04/18/2025] [Indexed: 05/08/2025] Open
Abstract
Acute myeloid leukemia (AML) is a severe hematological malignancy characterized by high recurrence rates, especially in pediatric patients, highlighting the need for reliable prognostic markers. This study proposes methylation signatures associated with AML recurrence using computational methods. DNA methylation data from 696 newly diagnosed and 194 relapsed pediatric AML patients were analyzed. Feature selection algorithms, including Boruta, least absolute shrinkage and selection operator, light gradient boosting machine, and Monte Carlo feature selection, were employed to screen and rank methylation sites strongly correlated with AML recurrence. Incremental Feature Selection was performed to evaluate these results, and optimal subsets were identified using Decision Tree and Random Forest methods. Several important methylation features, such as modifications in SLC45A4, S100PBP, TSPAN9, PTPRG, ERBB4, and PRKCZ, emerged from the intersection of all feature selection algorithms. Functional enrichment analysis indicated these genes participate in biological processes, including calcium-mediated signaling and regulation of binding. These findings are consistent with existing literature, suggesting that identified methylation features likely contribute to AML progression through alterations in gene expression levels. Therefore, this study provides a valuable reference for enhancing recurrence risk prediction models in AML and clarifying disease pathogenesis, as well as offering broader insights into mechanisms underlying other major diseases.
Collapse
Affiliation(s)
- Yushuang Dong
- Department of Pediatric Hematology and Oncology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | | | - Feiming Huang
- School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - YuSheng Bao
- School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Wei Guo
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Zhen Tan
- Department of Pediatric Hematology and Oncology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| |
Collapse
|
2
|
Rodrigues Toledo C, Tantawy AA, Lima Fuscaldi L, Malavolta L, de Aguiar Ferreira C. EGFR- and Integrin α Vβ 3-Targeting Peptides as Potential Radiometal-Labeled Radiopharmaceuticals for Cancer Theranostics. Int J Mol Sci 2024; 25:8553. [PMID: 39126121 PMCID: PMC11313252 DOI: 10.3390/ijms25158553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024] Open
Abstract
The burgeoning field of cancer theranostics has witnessed advancements through the development of targeted molecular agents, particularly peptides. These agents exploit the overexpression or mutations of specific receptors, such as the Epidermal Growth Factor receptor (EGFR) and αVβ3 integrin, which are pivotal in tumor growth, angiogenesis, and metastasis. Despite the extensive research into and promising outcomes associated with antibody-based therapies, peptides offer a compelling alternative due to their smaller size, ease of modification, and rapid bioavailability, factors which potentially enhance tumor penetration and reduce systemic toxicity. However, the application of peptides in clinical settings has challenges. Their lower binding affinity and rapid clearance from the bloodstream compared to antibodies often limit their therapeutic efficacy and diagnostic accuracy. This overview sets the stage for a comprehensive review of the current research landscape as it relates to EGFR- and integrin αVβ3-targeting peptides. We aim to delve into their synthesis, radiolabeling techniques, and preclinical and clinical evaluations, highlighting their potential and limitations in cancer theranostics. This review not only synthesizes the extant literature to outline the advancements in peptide-based agents targeting EGFR and integrin αVβ3 but also identifies critical gaps that could inform future research directions. By addressing these gaps, we contribute to the broader discourse on enhancing the diagnostic precision and therapeutic outcomes of cancer treatments.
Collapse
Affiliation(s)
- Cibele Rodrigues Toledo
- The Institute for Quantitative Health Science & Engineering, Michigan State University, East Lansing, MI 48824, USA; (C.R.T.); (A.A.T.)
| | - Ahmed A. Tantawy
- The Institute for Quantitative Health Science & Engineering, Michigan State University, East Lansing, MI 48824, USA; (C.R.T.); (A.A.T.)
- Comparative Medicine and Integrative Biology, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA
| | - Leonardo Lima Fuscaldi
- Department of Physiological Sciences, Santa Casa de Sao Paulo School of Medical Sciences, São Paulo 01221-020, Brazil; (L.L.F.); (L.M.)
| | - Luciana Malavolta
- Department of Physiological Sciences, Santa Casa de Sao Paulo School of Medical Sciences, São Paulo 01221-020, Brazil; (L.L.F.); (L.M.)
| | - Carolina de Aguiar Ferreira
- The Institute for Quantitative Health Science & Engineering, Michigan State University, East Lansing, MI 48824, USA; (C.R.T.); (A.A.T.)
- Department of Radiology, Michigan State University, East Lansing, MI 48824, USA
- Department of Pharmacology & Toxicology, Michigan State University, East Lansing, MI 48824, USA
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
3
|
Zhu Y, Ye X, Wu Y, Shen H, Cai Z, Xia F, Min W, Hou Y, Wang L, Wang X, Xiao Y, Yang P. Design, Synthesis, and Biological Evaluation of Novel EGFR PROTACs Targeting C797S Mutation. J Med Chem 2024; 67:7283-7300. [PMID: 38676656 DOI: 10.1021/acs.jmedchem.4c00107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2024]
Abstract
The epidermal growth factor receptor (EGFR) tertiary C797S mutation is an important cause of resistance to Osimertinib, which seriously hinders the clinical application of Osimertinib. Developing proteolysis-targeting chimeras (PROTACs) targeting EGFR mutants can offer a promising strategy to overcome drug resistance. In this study, some novel PROTACs targeting C797S mutation were designed and synthesized based on a new EGFR inhibitor and displayed a potent degradation effect in H1975-TM cells harboring EGFRL858R/T790M/C797S. The representative compound C6 exhibited a DC50 of 10.2 nM against EGFRL858R/T790M/C797S and an IC50 of 10.3 nM against H1975-TM. Furthermore, C6 also showed potent degradation activity against various main EGFR mutants, including EGFRDel19/T790M/C797S. Mechanistic studies revealed that the protein degradation was achieved through the ubiquitin-proteasome system. Finally, C6 inhibited tumor growth in the H1975-TM xenograft tumor model effectively and safely. This study identifies a novel and potent EGFR PROTAC to overcome Osimertinib resistance mediated by C797S mutation.
Collapse
Affiliation(s)
- Yasheng Zhu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing 211198, China
| | - Xiuquan Ye
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Yuxing Wu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Hao Shen
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing 211198, China
| | - Zeyu Cai
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing 211198, China
| | - Fei Xia
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing 211198, China
| | - Wenjian Min
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing 211198, China
| | - Yi Hou
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing 211198, China
| | - Liping Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing 211198, China
| | - Xiao Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing 211198, China
| | - Yibei Xiao
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Chongqing Innovation Institute of China Pharmaceutical University, Chongqing 401135, China
| | - Peng Yang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
4
|
Budipramana K, Sangande F. Structural and molecular insights from dual inhibitors of EGFR and VEGFR2 as a strategy to improve the efficacy of cancer therapy. Chem Biol Drug Des 2024; 103:e14534. [PMID: 38697951 DOI: 10.1111/cbdd.14534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 03/29/2024] [Accepted: 04/19/2024] [Indexed: 05/05/2024]
Abstract
Epidermal growth factor receptor (EGFR) and vascular endothelial growth factor 2 (VEGFR2) are known as valid targets for cancer therapy. Overexpression of EGFR induces uncontrolled cell proliferation and VEGF expression triggering angiogenesis via VEGFR2 signaling. On the other hand, VEGF expression independent of EGFR signaling is already known as one of the mechanisms of resistance to anti-EGFR therapy. Therefore, drugs that act as dual inhibitors of EGFR and VEGFR2 can be a solution to the problem of drug resistance and increase the effectiveness of therapy. In this review, we summarize the relationship between EGFR and VEGFR2 signal transduction in promoting cancer growth and how their kinase domain structures can affect the selectivity of an inhibitor as the basis for designing dual inhibitors. In addition, several recent studies on the development of dual EGFR and VEGFR2 inhibitors involving docking simulations were highlighted in this paper to provide some references such as pharmacophore features of inhibitors and key residues for further research, especially in computer-aided drug design.
Collapse
Affiliation(s)
- Krisyanti Budipramana
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Surabaya, Surabaya, Indonesia
| | - Frangky Sangande
- Research Center for Pharmaceutical Ingredient and Traditional Medicine, National Research and Innovation Agency (BRIN), Cibinong Science Center, Bogor, Indonesia
| |
Collapse
|
5
|
Dhiwar PS, Purawarga Matada GS, Pal R, Singh E, Ghara A, Maji L, Sengupta S, Andhale G. An assessment of EGFR and HER2 inhibitors with structure activity relationship of fused pyrimidine derivatives for breast cancer: a brief review. J Biomol Struct Dyn 2024; 42:1564-1581. [PMID: 37158086 DOI: 10.1080/07391102.2023.2204351] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 03/30/2023] [Indexed: 05/10/2023]
Abstract
Epidermal growth factor receptor (EGFR) and its subtype human epidermal growth factor receptor 2 (HER2) gets activated when its endogenous ligand(s) bind to its ATP binding site of target receptors. In breast cancer (BC), EGFR and HER2 are two proteins are overexpressed which leads to overexpression of cells proliferation and decreases cell death/apoptosis. Pyrimidine is one of the most widely studied heterocyclic scaffolds for EGFR as well as HER2 inhibition. We gather some remarkable results for fused-pyrimidine derivatives on various cancerous cell lines (in-vitro) and animal (in-vivo) evaluation to highlight their potency. The heterocyclic (five, six-membered, etc.) moieties which are coupled with pyrimidine moiety are potent against EGFR and HER2 inhibitions. Hence structure-activity relationship (SAR) plays important role in study of heterocyclic moiety along pyrimidine and effects of substituents, groups for increase or decrease in the cancerous activity and toxicity. By thoughtful of fused pyrimidines SAR study, it facilitates in receiving excellent overview of the compounds by concerning of efficacy and potential summary for future EGFR inhibitors. Furthermore, we studied the in-silico interactions of synthesized compounds to evaluate binding affinity towards the key amino acids..Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Prasad Sanjay Dhiwar
- Intergrated drug discovery center, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, India
| | | | - Rohit Pal
- Intergrated drug discovery center, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, India
| | - Ekta Singh
- Intergrated drug discovery center, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, India
| | - Abhishek Ghara
- Intergrated drug discovery center, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, India
| | - Lalmohan Maji
- Intergrated drug discovery center, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, India
| | - Sindhuja Sengupta
- Intergrated drug discovery center, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, India
| | - Ganesh Andhale
- Department of Pharmaceutical Chemistry, Alard College of Pharmacy, Pune, India
| |
Collapse
|
6
|
Fan M, Hu L, Shi S, Song X, He H, Qi B. Design, synthesis and biological evaluation of EGFR kinase inhibitors that spans the orthosteric and allosteric sites. Bioorg Med Chem 2023; 96:117534. [PMID: 37952262 DOI: 10.1016/j.bmc.2023.117534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/17/2023] [Accepted: 11/08/2023] [Indexed: 11/14/2023]
Abstract
Acquired drug resistance occurred in the treatment of non-small-cell lung cancer is a persistent challenge, especially in EGFR mutant type. In this study, we present design, synthesis and biological evaluation of novel quinazoline and pyrrolopyrimidine derivatives that simultaneously occupy the orthosteric and allosteric sites of EGFR. Among them, compound A-7 was confirmed as a potential EGFRL858R/T790M/C797S and EGFRDel19/T790M/C797S inhibitor. Docking study indicated that compound A-7 could simultaneously occupy two binding sites of EGFR and form three key H-bonds with the residues Met793, Lys745 and Met766 in two regions.
Collapse
Affiliation(s)
- Mengmeng Fan
- School of Bioengineering, Zunyi Medical University, Zhuhai 519041, China; Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Zunyi Medical University, Zunyi 563000, China
| | - Liping Hu
- School of Bioengineering, Zunyi Medical University, Zhuhai 519041, China; Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Zunyi Medical University, Zunyi 563000, China
| | - Shengmin Shi
- School of Bioengineering, Zunyi Medical University, Zhuhai 519041, China; Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Zunyi Medical University, Zunyi 563000, China
| | - Xiaomeng Song
- School of Bioengineering, Zunyi Medical University, Zhuhai 519041, China; Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Zunyi Medical University, Zunyi 563000, China
| | - Huan He
- School of Bioengineering, Zunyi Medical University, Zhuhai 519041, China.
| | - Baohui Qi
- School of Bioengineering, Zunyi Medical University, Zhuhai 519041, China; Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Zunyi Medical University, Zunyi 563000, China.
| |
Collapse
|
7
|
Fadaly WAA, Zidan TH, Kahk NM, Mohamed FEA, Abdelhakeem MM, Khalil RG, Nemr MTM. New pyrazolyl-thiazolidinone/thiazole derivatives as celecoxib/dasatinib analogues with selective COX-2, HER-2 and EGFR inhibitory effects: design, synthesis, anti-inflammatory/anti-proliferative activities, apoptosis, molecular modelling and ADME studies. J Enzyme Inhib Med Chem 2023; 38:2281262. [PMID: 38010912 PMCID: PMC11003491 DOI: 10.1080/14756366.2023.2281262] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 11/05/2023] [Indexed: 11/29/2023] Open
Abstract
Two new series of pyrazolyl-thiazolidinone/thiazole derivatives 16a-b and 18a-j were synthesised, merging the scaffolds of celecoxib and dasatinib. Compounds 16a, 16b and 18f inhibit COX-2 with S.I. 134.6, 26.08 and 42.13 respectively (celecoxib S.I. = 24.09). Compounds 16a, 16b, 18c, 18d and 18f inhibit MCF-7 with IC50 = 0.73-6.25 μM (dasatinib IC50 = 7.99 μM) and (doxorubicin IC50 = 3.1 μM) and inhibit A549 with IC50 = 1.64-14.3 μM (dasatinib IC50 = 11.8 μM and doxorubicin IC50 = 2.42 μM) with S.I. (F180/MCF7) of 33.15, 7.13, 18.72, 13.25 and 8.28 respectively higher than dasatinib (4.03) and doxorubicin (3.02) and S.I. (F180/A549) of 14.75, 12.96, 4.16, 7.07 and 18.88 respectively higher than that of dasatinib (S.I. = 2.72) and doxorubicin (S.I = 3.88). Derivatives 16a, 18c, 18d, 18f inhibit EGFR and HER-2 IC50 for EGFR of 0.043, 0.226, 0.388, 0.19 μM respectively and for HER-2 of 0.032, 0.144, 0.195, 0.201 μM respectively.
Collapse
Affiliation(s)
- Wael A. A. Fadaly
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Taha H. Zidan
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Nesma M. Kahk
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Fatma E. A. Mohamed
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Marwa M. Abdelhakeem
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Rehab G. Khalil
- Immunology Division, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Mohamed T. M. Nemr
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
8
|
Abida Ejaz S, Sajjad Bilal M, Aziz M, Wani TA, Zargar S, Fayyaz A, Hassan S, Ahmed A, Al Kahtani HM, Siddique F. Computational Exploration of Fluorocyclopentenyl-purines and-pyrimidines Derivatives as Potential Inhibitors of Epidermal Growth Factor Receptor (EGFR) for the Treatment of Breast Cancer. Chem Biodivers 2023; 20:e202301190. [PMID: 37963090 DOI: 10.1002/cbdv.202301190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/07/2023] [Accepted: 11/12/2023] [Indexed: 11/16/2023]
Abstract
The Epidermal Growth Factor Receptor (EGFR) is an important therapeutic target for the treatment of a variety of epithelial malignancies, including breast cancer, in which EGFR is aberrantly expressed.The fluorocyclopentenyl-purine-pyrimidines derivatives, which have previously been described as powerful compounds against breast cancer, were selected to investigate their potential against EGFR using computational tools in an effort to obtain potent inhibitors with fewer adverse effects. The molecule's chemical reactivity and stability were assessed by determining the HOMO-LUMO energy gap using density functional theory (DFT) calculations. Among all the selected compounds, PU4 displayed a HOMO-LUMO gap of 0.191 eV. Additionally, molecular docking analysis was performed to assess the binding affinities of PU4 within the active pocket of EGFR-TK. The compound PU4 showed potent interactions with EGFR exhibiting -32.3 kJ/mol binding energy which was found best as compared to gefitinib i. e., -27.4 kJ/mol which was further validated by molecular dynamics simulations and ADMET analysis. The results of these analyses indicate that the top hits obtained from the virtual screening possess the ability to act as effective EGFR inhibitor. Therefore, it is recommended to further investigate the inhibitory potential of these identified compounds using in vitro and in vivo approaches.
Collapse
Affiliation(s)
- Syeda Abida Ejaz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacv, The Islamia University of, Bahawalpur, 63100, Pakistan
| | - Muhammad Sajjad Bilal
- Department of Pharmaceutical Chemistry, Faculty of Pharmacv, The Islamia University of, Bahawalpur, 63100, Pakistan
| | - Mubashir Aziz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacv, The Islamia University of, Bahawalpur, 63100, Pakistan
| | - Tanveer A Wani
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh, 11451, Saudi Arabia
| | - Seema Zargar
- Department of Biochemistry, College of Science, King Saud University, P.O. Box, 22452, Riyadh 11451, Saudi Arabia
| | - Ammara Fayyaz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacv, The Islamia University of, Bahawalpur, 63100, Pakistan
| | - Sidra Hassan
- Bahawalpur College of Pharmacy, Bahawalpur Medical and Dental College, Bahawalpur, Pakistan
| | - Aftab Ahmed
- Department of Pharmaceutical Chemistry, Faculty of Pharmacv, The Islamia University of, Bahawalpur, 63100, Pakistan
| | - Hammad M Al Kahtani
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh, 11451, Saudi Arabia
| | - Farhan Siddique
- Department of Pharmacy, Royal Institute of Medical Sciences (RIMS) Multan 60000, Pakistan
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, 79409-1061, USA
| |
Collapse
|
9
|
Fu Z, Gao C, Xie J, Zhang C, Li S, Gu M, Shi C. Incidence and risk of fatal adverse events in cancer patients treated with HER2-targeted antibody-drug conjugates: a systematic review and meta-analysis of randomized controlled trials. BMC Cancer 2023; 23:960. [PMID: 37817092 PMCID: PMC10563201 DOI: 10.1186/s12885-023-11250-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 08/03/2023] [Indexed: 10/12/2023] Open
Abstract
OBJECTIVE Antibody-drug conjugates (ADCs) that target human epidermal growth factor receptor 2 (HER2) are leading a new era of targeted cancer therapy. These drugs have also been associated with several fatal adverse events, such as pneumonia, interstitial lung disease, and infection. We performed a meta-analysis of randomized controlled trials (RCTs) to estimate the incidence and risk of fatal adverse events in cancer patients treated with HER2-targeted ADCs. METHODS We performed a systematic search in Embase, PubMed, Web of Science, and Scopus databases from inception to February 1, 2022, and the last search was updated to July 1, 2023. The eligible studies for inclusion in our analysis were limited to RCTs of HER2-targeted ADCs that were approved by the US Food and Drug Administration and examined on cancer patients with available data on fatal adverse events. The protocol for this study was registered in PROSPERO (No. CRD42022331627). RESULTS Fifteen studies (13 RCTs) involving 7,277 patients were finally included for meta-analysis. Of these patients, 4,246 received HER2-targeted ADCs and 3,481 received the control treatment. The data were combined using Bayesian hierarchical modeling, which allowed for the estimation of the mean incidence of fatal adverse events to be 0.78% (95% CrI: 0.28-1.37%, τ = 0.006) for the patients treated with HER2-targeted ADCs. The relative risk was 0.80 (95% CrI, 0.5-1.26, τ = 0.17) compared to control patients. Among 43 reported deaths caused by HER2-targeted ADCs, the most common fatal adverse event was respiratory toxicity, including pneumonia, pneumonitis, and interstitial lung disease. On subgroup analysis, no difference in the risk of fatal adverse events was found between different HER2-targeted ADCs or cancer types. CONCLUSION Our findings suggest that the risk of fatal adverse events with HER2-targeted ADCs may be lower compared to standard control therapies in cancer patients, and there is no significant difference in risk observed between different HER2-targeted ADCs or cancer types. However, the most common fatal adverse event was respiratory toxicity, suggesting that cancer patients who use the above drugs should strengthen respiratory system monitoring and take preventive measures in some severe cases.
Collapse
Affiliation(s)
- Zhiwen Fu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
- Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, 1277 Jiefang Avenue, Jianghan District, Wuhan, Hubei Province, 430000, China
| | - Chen Gao
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
- Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, 1277 Jiefang Avenue, Jianghan District, Wuhan, Hubei Province, 430000, China
| | - Jiyi Xie
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
- Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, 1277 Jiefang Avenue, Jianghan District, Wuhan, Hubei Province, 430000, China
| | - Cong Zhang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
- Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, 1277 Jiefang Avenue, Jianghan District, Wuhan, Hubei Province, 430000, China
| | - Shijun Li
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
- Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, 1277 Jiefang Avenue, Jianghan District, Wuhan, Hubei Province, 430000, China
| | - Ming Gu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China.
- Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, 1277 Jiefang Avenue, Jianghan District, Wuhan, Hubei Province, 430000, China.
| | - Chen Shi
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China.
- Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, 1277 Jiefang Avenue, Jianghan District, Wuhan, Hubei Province, 430000, China.
| |
Collapse
|
10
|
Phuong DTL, Van Phuong N, Le Tuan N, Cong NT, Hang NT, Thanh LN, Hue VT, Vuong NQ, Ha NTT, Popova M, Trusheva B, Bankova V. Antimicrobial, Cytotoxic, and α-Glucosidase Inhibitory Activities of Ethanol Extract and Chemical Constituents Isolated from Homotrigona apicalis Propolis-In Vitro and Molecular Docking Studies. Life (Basel) 2023; 13:1682. [PMID: 37629539 PMCID: PMC10455239 DOI: 10.3390/life13081682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/29/2023] [Accepted: 08/01/2023] [Indexed: 08/27/2023] Open
Abstract
The chemical investigation of Homotrigona apicalis propolis collected in Binh Dinh province, Vietnam, led to the isolation of nine compounds, including four sesquiterpenes: spathulenol (1), 1αH,5βH-aromandendrane-4β,10α-diol (2), 1β,6α-dihydroxy-4(15)-eudesmene (3), and 1βH,5βH-aromandendrane-4α,10β-diol (4); three triterpenes: acetyl oleanolic acid (5), 3α-hydroxytirucalla-8,24-dien-21-oic acid (6), and ursolic acid (7); and two xanthones: cochinchinone A (8) and α-mangostin (9). Sesquiterpens 1-4 and triterpene 6 were isolated for the first time from stingless bee propolis. Plants in the Cratoxylum and Aglaia genus were suggested as resin sources of the propolis sample. In the antibacterial activity evaluation, the EtOH extract only showed moderate activity on S. aureus, while the isolated compounds 7-9 showed good antibacterial activity, with IC50 values of 0.56 to 17.33 µg/mL. The EtOH extract displayed selective cytotoxicity against the A-549 cancer cell line, with IC50 values of 22.82 ± 0.86 µg/mL, and the xanthones 8 and 9 exhibited good activity against the KB, HepG-2, and A-549 cancer cell lines, with IC50 values ranging from 7.55 ± 0.25 µg/mL to 29.27 ± 2.07 µg/mL. The cytotoxic effects of xanthones 8 and 9 were determined by the inhibition of the EGFR and HER2 pathways using a molecular docking study. Compounds 8 and 9 displayed strong binding affinity with EFGR and HER2, with values of -9.3 to -9.9 kcal/mol. Compounds 5, 8, and 9 showed potential α-glucosidase inhibitory activities, which were further confirmed by computational studies. The binding energies of compounds 5, 8, and 9 were lower than that of arcabose.
Collapse
Affiliation(s)
| | - Nguyen Van Phuong
- Department of Pharmacognosy, Faculty of Pharmacognosy and Traditional Medicines, Hanoi University of Pharmacy, Hanoi 11000, Vietnam; (N.V.P.); (N.T.C.); (N.T.H.)
| | - Nguyen Le Tuan
- Faculty of Natural Sciences, Quy Nhon University, Binh Dinh 55000, Vietnam;
| | - Nguyen Thanh Cong
- Department of Pharmacognosy, Faculty of Pharmacognosy and Traditional Medicines, Hanoi University of Pharmacy, Hanoi 11000, Vietnam; (N.V.P.); (N.T.C.); (N.T.H.)
- Department of Pharmacy, Dai Nam University, Hanoi 10000, Vietnam
| | - Nguyen Thu Hang
- Department of Pharmacognosy, Faculty of Pharmacognosy and Traditional Medicines, Hanoi University of Pharmacy, Hanoi 11000, Vietnam; (N.V.P.); (N.T.C.); (N.T.H.)
| | - Le Nguyen Thanh
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology (VAST), Hanoi 10000, Vietnam; (N.Q.V.); (N.T.T.H.)
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology (VAST), Hanoi 10000, Vietnam;
| | - Vu Thi Hue
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology (VAST), Hanoi 10000, Vietnam;
| | - Nguyen Quoc Vuong
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology (VAST), Hanoi 10000, Vietnam; (N.Q.V.); (N.T.T.H.)
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology (VAST), Hanoi 10000, Vietnam;
| | - Nguyen Thi Thu Ha
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology (VAST), Hanoi 10000, Vietnam; (N.Q.V.); (N.T.T.H.)
- Institute of Chemistry, Vietnam Academy of Science and Technology (VAST), Hanoi 10000, Vietnam
| | - Milena Popova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 9, 1113 Sofia, Bulgaria; (M.P.); (B.T.); (V.B.)
| | - Boryana Trusheva
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 9, 1113 Sofia, Bulgaria; (M.P.); (B.T.); (V.B.)
| | - Vassya Bankova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 9, 1113 Sofia, Bulgaria; (M.P.); (B.T.); (V.B.)
| |
Collapse
|
11
|
Hong L, Li W, Li Y, Yin S. Nanoparticle-based drug delivery systems targeting cancer cell surfaces. RSC Adv 2023; 13:21365-21382. [PMID: 37465582 PMCID: PMC10350659 DOI: 10.1039/d3ra02969g] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 07/11/2023] [Indexed: 07/20/2023] Open
Abstract
Traditional cancer chemotherapy easily produces serious toxic and side effects due to the lack of specific selection of tumor cells, which restricts its curative effect. Targeted delivery can increase the concentration of drugs in the target site and reduce their toxic and side effects on normal tissues and cells. Biocompatible and surface-modifiable nanocarriers are novel drug delivery systems, which are used to specifically target tumor sites in a controllable way. One of the effective ways to design effective targeting nanocarriers is to decorate with functional ligands, which can bind to specific receptors overexpressed on the surfaces of cancer cells. Various functional ligands, including transferrin, folic acid, polypeptide and hyaluronic acid, have been widely explored to develop tumor-selective drug delivery systems. This review focuses on the research progress of various receptors overexpressed on the surfaces of cancer cells and different nano-delivery systems of anticancer drugs targeted on the surfaces of cancer cells. We believe that through continuous research and development, actively targeted cancer nano-drugs will make a breakthrough and become an indispensable platform for accurate cancer treatment.
Collapse
Affiliation(s)
- Liquan Hong
- Deqing Hospital of Hangzhou Normal University, The Third People's Hospital of Deqing Deqing 313200 China
| | - Wen Li
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology Zhejiang Province Hangzhou 311121 China
| | - Yang Li
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology Zhejiang Province Hangzhou 311121 China
| | - Shouchun Yin
- Deqing Hospital of Hangzhou Normal University, The Third People's Hospital of Deqing Deqing 313200 China
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology Zhejiang Province Hangzhou 311121 China
| |
Collapse
|
12
|
Kesternich V, Pérez-Fehrmann M, Quezada V, Castroagudín M, Nelson R, Martínez R. A simple and efficient synthesis of N-[3-chloro-4-(4-chlorophenoxy)-phenyl]-2-hydroxy-3,5-diiodobenzamide, rafoxanide. CHEMICKE ZVESTI 2023; 77:1-5. [PMID: 37362790 PMCID: PMC10176281 DOI: 10.1007/s11696-023-02846-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 04/28/2023] [Indexed: 06/28/2023]
Abstract
A method for the synthesis of rafoxanide 6, a halogenated salicylanilide used as an efficient anthelmintic in sheep and cattle, is presented. Rafoxanide 6 was synthesized in only three steps from readily available 4-chlorophenol with 74% overall yield. The synthesis has two key stages: the first was salicylic acid iodination, adding iodine in the presence of hydrogen peroxide, which allowed obtaining a 95% yield. The second key stage was the reaction of 3,5-diiodosalicylic acid 5 with aminoether 4, where salicylic acid chloride was formed in situ with PCl3 achieving 82% yield. Chemical characterization of both intermediates and final product was achieved through physical and spectroscopic (IR, NMR and MS) techniques. Supplementary Information The online version contains supplementary material available at 10.1007/s11696-023-02846-9.
Collapse
Affiliation(s)
- Víctor Kesternich
- Departamento de Química, Facultad de Ciencias, Universidad Católica del Norte, Avda. Angamos 0610, Antofagasta, Chile
| | - Marcia Pérez-Fehrmann
- Departamento de Química, Facultad de Ciencias, Universidad Católica del Norte, Avda. Angamos 0610, Antofagasta, Chile
| | - Víctor Quezada
- Departamento de Química, Facultad de Ciencias, Universidad Católica del Norte, Avda. Angamos 0610, Antofagasta, Chile
| | - Mariña Castroagudín
- Departamento de Química, Facultad de Ciencias, Universidad Católica del Norte, Avda. Angamos 0610, Antofagasta, Chile
| | - Ronald Nelson
- Departamento de Química, Facultad de Ciencias, Universidad Católica del Norte, Avda. Angamos 0610, Antofagasta, Chile
| | - Rolando Martínez
- Departamento de Química, Facultad de Ciencias, Universidad Católica del Norte, Avda. Angamos 0610, Antofagasta, Chile
| |
Collapse
|
13
|
Kauerová T, Pérez-Pérez MJ, Kollar P. Salicylanilides and Their Anticancer Properties. Int J Mol Sci 2023; 24:ijms24021728. [PMID: 36675241 PMCID: PMC9861143 DOI: 10.3390/ijms24021728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 01/17/2023] Open
Abstract
Salicylanilides are pharmacologically active compounds with a wide spectrum of biological effects. Halogenated salicylanilides, which have been used for decades in human and veterinary medicine as anthelmintics, have recently emerged as candidates for drug repurposing in oncology. The most prominent example of salicylanilide anthelmintic, that is intensively studied for its potential anticancer properties, is niclosamide. Nevertheless, recent studies have discovered extensive anticancer potential in a number of other salicylanilides. This potential of their anticancer action is mediated most likely by diverse mechanisms of action such as uncoupling of oxidative phosphorylation, inhibition of protein tyrosine kinase epidermal growth factor receptor, modulation of different signaling pathways as Wnt/β-catenin, mTORC1, STAT3, NF-κB and Notch signaling pathways or induction of B-Raf V600E inhibition. Here we provide a comprehensive overview of the current knowledge about the proposed mechanisms of action of anticancer activity of salicylanilides based on preclinical in vitro and in vivo studies, or structural requirements for such an activity.
Collapse
Affiliation(s)
- Tereza Kauerová
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Masaryk University, Palackého tř. 1946/1, 612 42 Brno, Czech Republic
| | | | - Peter Kollar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Masaryk University, Palackého tř. 1946/1, 612 42 Brno, Czech Republic
- Correspondence: ; Tel.: +420-541-562-892
| |
Collapse
|
14
|
Bao L, Wang Z, Wu Z, Luo H, Yu J, Kang Y, Cao D, Hou T. Kinome-wide polypharmacology profiling of small molecules by multi-task graph isomorphism network approach. Acta Pharm Sin B 2023; 13:54-67. [PMID: 36815050 PMCID: PMC9939366 DOI: 10.1016/j.apsb.2022.05.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/15/2022] [Accepted: 04/30/2022] [Indexed: 11/18/2022] Open
Abstract
Prediction of the interactions between small molecules and their targets play important roles in various applications of drug development, such as lead discovery, drug repurposing and elucidation of potential drug side effects. Therefore, a variety of machine learning-based models have been developed to predict these interactions. In this study, a model called auxiliary multi-task graph isomorphism network with uncertainty weighting (AMGU) was developed to predict the inhibitory activities of small molecules against 204 different kinases based on the multi-task Graph Isomorphism Network (MT-GIN) with the auxiliary learning and uncertainty weighting strategy. The calculation results illustrate that the AMGU model outperformed the descriptor-based models and state-of-the-art graph neural networks (GNN) models on the internal test set. Furthermore, it also exhibited much better performance on two external test sets, suggesting that the AMGU model has enhanced generalizability due to its great transfer learning capacity. Then, a naïve model-agnostic interpretable method for GNN called edges masking was devised to explain the underlying predictive mechanisms, and the consistency of the interpretability results for 5 typical epidermal growth factor receptor (EGFR) inhibitors with their structure‒activity relationships could be observed. Finally, a free online web server called KIP was developed to predict the kinome-wide polypharmacology effects of small molecules (http://cadd.zju.edu.cn/kip).
Collapse
Affiliation(s)
- Lingjie Bao
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhe Wang
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhenxing Wu
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hao Luo
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jiahui Yu
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yu Kang
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Corresponding authors. Tel./fax: +86 571 88208412.
| | - Dongsheng Cao
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
- Corresponding authors. Tel./fax: +86 571 88208412.
| | - Tingjun Hou
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- State Key Lab of CAD&CG, Zhejiang University, Hangzhou 310058, China
- Corresponding authors. Tel./fax: +86 571 88208412.
| |
Collapse
|
15
|
Kozyra P, Pitucha M. Terminal Phenoxy Group as a Privileged Moiety of the Drug Scaffold-A Short Review of Most Recent Studies 2013-2022. Int J Mol Sci 2022; 23:8874. [PMID: 36012142 PMCID: PMC9408176 DOI: 10.3390/ijms23168874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/03/2022] [Accepted: 08/07/2022] [Indexed: 11/16/2022] Open
Abstract
The terminal phenoxy group is a moiety of many drugs in use today. Numerous literature reports indicated its crucial importance for biological activity; thus, it is a privileged scaffold in medicinal chemistry. This review focuses on the latest achievements in the field of novel potential agents bearing a terminal phenoxy group in 2013-2022. The article provided information on neurological, anticancer, potential lymphoma agent, anti-HIV, antimicrobial, antiparasitic, analgesic, anti-diabetic as well as larvicidal, cholesterol esterase inhibitors, and antithrombotic or agonistic activities towards the adrenergic receptor. Additionally, for selected agents, the Structure-Activity-Relationship (SAR) is also discussed. Thus, this study may help the readers to better understand the nature of the phenoxy group, which will translate into rational drug design and the development of a more efficient drug. To the best of our knowledge, this is the first review devoted to an in-depth analysis of the various activities of compounds bearing terminal phenoxy moiety.
Collapse
Affiliation(s)
- Paweł Kozyra
- Independent Radiopharmacy Unit, Faculty of Pharmacy, Medical University of Lublin, 20-093 Lublin, Poland
| | - Monika Pitucha
- Independent Radiopharmacy Unit, Faculty of Pharmacy, Medical University of Lublin, 20-093 Lublin, Poland
| |
Collapse
|
16
|
Wang Y, Yin X, Chen L, Yin Z, Zuo Z. Discovery and evaluation of cytisine n-isoflavones as novel egfr/her2 dual inhibitors. Bioorg Chem 2022; 127:105868. [DOI: 10.1016/j.bioorg.2022.105868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 05/06/2022] [Accepted: 05/07/2022] [Indexed: 11/17/2022]
|
17
|
Milik SN, Abdel-Aziz AK, El-Hendawy MM, El-Gogary RI, Saadeldin MK, Minucci S, Klein CD, Abouzid KA. Insights into the design of inhibitors of the EGFR family with anticancer activity overcoming resistance: A case of optimizing thieno[2,3-d]pyrimidine-based EGFR inhibitors. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132724] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
18
|
Unadkat V, Rohit S, Parikh P, Patel K, Sanna V, Singh S. Identification of 1,2,4-Oxadiazoles-Based Novel EGFR Inhibitors: Molecular Dynamics Simulation-Guided Identification and in vitro ADME Studies. Onco Targets Ther 2022; 15:479-495. [PMID: 35535170 PMCID: PMC9077134 DOI: 10.2147/ott.s357765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 04/04/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND In this work, we have identified heterocyclic derivatives with 1,2,4 oxadiazole scaffold mimicking the functions of tyrosine kinase inhibitors. Fourteen molecules that displayed the best fit were picked from the library of compounds and studied under in-silico and in-vitro conditions. Four compounds were selected for further cytotoxicity and ADME (Absorption, Distribution, Metabolism, Elimination) profiling showing IC50 (from 8-13 µM) values against EGFR positive cancer cell line (MCF7). METHODS A molecular dynamics simulation study was performed to understand the correlation of non-covalent binding energies with biological activity. The drug-like properties of the selected four compounds (7a, 7b, 7e, and 7m) were evaluated by in-vitro ADME studies. Compounds 7a, 7b, and 7m were the active compounds in the molecular dynamics simulations study. Further, EGFR binding activity was confirmed with EGFRWT and EGFRT790M kinase assay using a luminescence-based method. RESULTS These compounds (7a, 7b, and 7m) showed activity against EGFRWT and mutant EGFRT790M, exhibiting IC50 values of <10 and <50 micromolar, respectively. These compounds also possess moderate aqueous solubility in 40-70 µg/mL at pH 7.4 and 30-100 µg/mL at pH 4.0. Further, 7a, 7b, and 7m showed balanced lipophilicity with Log D values ranging from 1-3. They demonstrated a good correlation in Caco-2 permeability with Apparent permeability (Papp) 1 to 5 × 10-6 cm/s in comparison with 7e, which was found to be highly lipophilic (Log D >5) and showed high permeability (Papp 17 × 10-6 cm/s). Lastly, all these compounds were moderately stable in liver microsomes at alkaline pH with a half-life of 30-60 min, while at a highly acidic pH (2.0), the compounds were stable up to 15-20 min. CONCLUSION Overall, in-vitro ADME results of these molecules showed good drug-like properties, which are well correlated with the in-silico ADME data, making them ideal for developing an oral drug delivery formulation.
Collapse
Affiliation(s)
- Vishal Unadkat
- Kashiv Biosciences Pvt Ltd, Ahmedabad, 382210, Gujarat, India
- Division of Biological & Life Sciences (Formerly Institute of Life Sciences), School of Arts & Sciences, Ahmedabad University, Ahmedabad, 380009, Gujarat, India
| | - Shishir Rohit
- Kashiv Biosciences Pvt Ltd, Ahmedabad, 382210, Gujarat, India
| | - Paranjay Parikh
- Department of Advanced Organic Chemistry, P.D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, Changa, Gujarat, 388421, India
| | - Kaushal Patel
- Department of Advanced Organic Chemistry, P.D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, Changa, Gujarat, 388421, India
| | - Vinod Sanna
- Piramal Pharma Solutions, Ahmedabad, 382213, Gujarat, India
| | - Sanjay Singh
- Division of Biological & Life Sciences (Formerly Institute of Life Sciences), School of Arts & Sciences, Ahmedabad University, Ahmedabad, 380009, Gujarat, India
- National Institute of Animal Biotechnology, Hyderabad, 500032, Telangana, India
| |
Collapse
|
19
|
Neves da Silva HV, Placide J, Duong A, Ronquillo Y, McCabe S, Moshirfar M. Ocular adverse effects of therapeutic biologics. Ther Adv Ophthalmol 2022; 14:25158414211070878. [PMID: 35495617 PMCID: PMC9047051 DOI: 10.1177/25158414211070878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 12/13/2021] [Indexed: 11/17/2022] Open
Abstract
Biological drugs, termed biologics, are medications that contain or are derived from a living organism (human, animal, or microorganism). With new biological agents being approved by the Food and Drug Administration (FDA) every year, clinicians need to know potential ocular adverse effects that are associated with these drugs. This review provides an overview of ocular adverse effects of biological medications used to treat both ophthalmic and non-ophthalmic diseases. We searched PubMed for relevant case reports, case series, reviews, and clinical trials reporting ocular adverse effects caused by biologics. This review was conducted in June 2021 and investigated the drugs listed in the most updated (April 2021) FDA Purple Book Database of Licensed Biological Products. This review focuses on monoclonal antibodies, interleukins, and receptor fusion proteins. We explore ocular side effects of 33 biological drugs, stating whether they are frequent, common, or rare.
Collapse
Affiliation(s)
| | - John Placide
- McGovern Medical School, The University of Texas Health Science Center, Houston, TX, USA
| | - Anne Duong
- McGovern Medical School, The University of Texas Health Science Center, Houston, TX, USA
| | | | | | - Majid Moshirfar
- Hoopes Research Center, 11820 South State Street, Suite 200, Draper, UT 84020, USA
| |
Collapse
|
20
|
Cheng W, Li S, Wen X, Han S, Wang S, Wei H, Song Z, Wang Y, Tian X, Zhang X. Development of hypoxia-activated PROTAC exerting a more potent effect in tumor hypoxia than in normoxia. Chem Commun (Camb) 2021; 57:12852-12855. [PMID: 34788776 DOI: 10.1039/d1cc05715d] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hypoxia is a hallmark of many solid tumors, and it causes the overexpression of a variety of proteins including the epidermal growth factor receptor (EGFR). Many antitumor prodrugs have been designed to target hypoxia. Here we report the identification of a kind of hypoxia-activated proteolysis targeting chimera (ha-PROTAC) by introducing the hypoxia-activated leaving group (1-methyl-2-nitro-1H-imidazol-5-yl)methyl or 4-nitrobenzyl into the structure of an EGFRDel19-based PROTAC. Among the obtained molecules, ha-PROTAC 13 exhibits a more potent degradation activity for EGFRDel19 in hypoxia than in normoxia in HCC4006 cells. This is the first example of identifying a PROTAC to selectively act on tumors utilizing the characteristic of tumor hypoxia and provides a new approach for PROTAC development.
Collapse
Affiliation(s)
- Weiyan Cheng
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China. .,Henan Key Laboratory of Precision Clinical Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Shasha Li
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China. .,Henan Key Laboratory of Precision Clinical Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Xueqian Wen
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China. .,Henan Key Laboratory of Precision Clinical Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Siyuan Han
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China. .,Henan Key Laboratory of Precision Clinical Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Suhua Wang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China. .,Henan Key Laboratory of Precision Clinical Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Han Wei
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China. .,Henan Key Laboratory of Precision Clinical Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Zhizhen Song
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China. .,Henan Key Laboratory of Precision Clinical Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Yueqin Wang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China. .,Henan Key Laboratory of Precision Clinical Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Xin Tian
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China. .,Henan Key Laboratory of Precision Clinical Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Xiaojian Zhang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China. .,Henan Key Laboratory of Precision Clinical Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
21
|
Quantitative analysis and pharmacokinetic study of a novel diarylurea EGFR inhibitor (ZCJ14) in rat plasma using a validated LC-MS/MS method. ACTA PHARMACEUTICA (ZAGREB, CROATIA) 2021; 71:415-428. [PMID: 36654089 DOI: 10.2478/acph-2021-0024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/04/2020] [Indexed: 01/20/2023]
Abstract
1-(4-(Pyrrolidin-1-yl-methyl)phenyl)-3-(4-((3-(trifluoromethyl) phenyl)amino)quinazolin-6-yl)urea (ZCJ14), a novel epidermal growth factor receptor (EGFR) inhibitor, with diarylurea moiety, displays anticancer effect. In the present study, an LCMS/MS method was established to determine the concentration of ZCJ14 in rat plasma. Furthermore, the method was applied to investigate the pharmacokinetic characteristics of ZCJ14. Chromatographic separation of ZCJ14 and internal standard (IS) [1-phenyl-3-(4-((3-(trifluoromethyl)phenyl)amino) quinazolin-6-yl)urea] was accomplished by gradient elution using the Kromasil C18 column. The selected reaction monitoring transitions were performed at m/z 507.24→436.18 and 424.13→330.96 for ZCJ14 and IS, resp. The established method was linear over the concentration range of 10-1000 ng mL-1. The intra- and inter-day precisions were < 11.0 % (except for LLOQ which was up to 14.3 %) and the respective accuracies were within the range of 87.5-99.0 %. The extraction recovery and matrix effect were within the range of 88.4-104.5 % and 87.3-109.9 %, resp. ZCJ14 was stable under all storage conditions. The validated method was successfully applied to the pharmacokinetic study of ZCJ14 in rats, and the pharmacokinetic parameters have been determined. The oral bioavailability of ZCJ14 was found to be 46.1 %. Overall, this accurate and reliable quantification method might be useful for other diarylurea moiety-containing drugs.
Collapse
|
22
|
Lamie PF, El-Kalaawy AM, Abdel Latif NS, Rashed LA, Philoppes JN. Pyrazolo[3,4-d]pyrimidine-based dual EGFR T790M/HER2 inhibitors: Design, synthesis, structure-activity relationship and biological activity as potential antitumor and anticonvulsant agents. Eur J Med Chem 2021; 214:113222. [PMID: 33545637 DOI: 10.1016/j.ejmech.2021.113222] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 11/17/2022]
Abstract
A new series of pyrazolo[3,4-d]pyrimidine/triazine hybrids 6a-r was designed as antitumor and anticonvulsant agents. All the prepared compounds were evaluated against colon (HCT-116), breast (MCF-7) and normal human fibroblast (WI38) cell lines. The most potent derivatives against HCT-116 and MCF-7 cells were 6o and 6q, with IC50 = 4.80 and 6.50 nM, respectively, when compared to lapatinib, the reference drug (IC50 = 12.00 and 21.00 nM, on HCT-116 and MCF-7, sequentially). All other derivatives exhibited good to moderate cytotoxic activity. Four compounds 6f, 6j, 6o and 6q were evaluated for their EGFR T790M/HER2 inhibitory activity. They revealed 81.81-65.70% and 86.66-54.49% inhibitory activity against EGFR T790M and HER2 in a sequent. The most potent derivatives 6o and 6q were further estimated for cell cycle analysis showing pre G1 apoptotic activity and cell growth arrest at G2/M phase. Apoptotic marker proteins expression levels (caspase-3/7/9, Bax and Bcl-2) were measured for 6o and 6q. They showed pro-apoptotic effect by increasing caspase-3/7/9 protein levels and Bax/Bcl-2 ratio. Moreover, anticonvulsant activity for the prepared compounds 6a-r were evaluated in vivo using lithium-pilocarpine mice model of Status Epilepticus. EEG changes where recorded and MDA, GSH, GABA and glutamate were measured in brain tissue of different groups. All tested compounds revealed variable anti-epileptic effects, the most potent compounds were 6b and 6m. Also 6d, 6e, 6h, 6i, 6k, 6l and 6n compounds exhibited good anti-seizure activity, while compound 6j showed the lower activity. The rest of compounds displayed a neutral activity.
Collapse
Affiliation(s)
- Phoebe F Lamie
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt.
| | - Asmaa M El-Kalaawy
- Department of Pharmacology, Faculty of Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Noha S Abdel Latif
- Department of Medical Pharmacology, Faculty of Medicine, Cairo University, Egypt
| | - Laila A Rashed
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Egypt
| | - John N Philoppes
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
23
|
Sabbah DA, Hajjo R, Sweidan K. Review on Epidermal Growth Factor Receptor (EGFR) Structure, Signaling Pathways, Interactions, and Recent Updates of EGFR Inhibitors. Curr Top Med Chem 2021; 20:815-834. [PMID: 32124699 DOI: 10.2174/1568026620666200303123102] [Citation(s) in RCA: 295] [Impact Index Per Article: 73.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 11/21/2019] [Accepted: 12/10/2019] [Indexed: 12/13/2022]
Abstract
The epidermal growth factor receptor (EGFR) belongs to the ERBB family of tyrosine kinase receptors. EGFR signaling cascade is a key regulator in cell proliferation, differentiation, division, survival, and cancer development. In this review, the EGFR structure and its mutations, signaling pathway, ligand binding and EGFR dimerization, EGF/EGFR interaction, and the progress in the development of EGFR inhibitors have been explored.
Collapse
Affiliation(s)
- Dima A Sabbah
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, P.O. Box 130, Amman 11733, Jordan
| | - Rima Hajjo
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, P.O. Box 130, Amman 11733, Jordan
| | - Kamal Sweidan
- Department of Chemistry, The University of Jordan, Amman 11942, Jordan
| |
Collapse
|
24
|
Bansal R, Malhotra A. Therapeutic progression of quinazolines as targeted chemotherapeutic agents. Eur J Med Chem 2020; 211:113016. [PMID: 33243532 DOI: 10.1016/j.ejmech.2020.113016] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 06/16/2020] [Accepted: 11/08/2020] [Indexed: 02/08/2023]
Abstract
Presently cancer is a grave health issue with predominance beyond restrictions. It can affect any organ of the body. Most of the available chemotherapeutic drugs are highly toxic, not much selective and eventually lead to the development of resistance. Therefore, a target specific palliative approach for the treatment of cancer is required. Remarkable advancements in science have illuminated various molecular pathways responsible for cancer. This has resulted in abundant opportunities to develop targeted anticancer agents. Quinazoline nucleus is a privileged scaffold with significant diversified pharmacological activities. Numerous established anticancer quinazoline derivatives constitute a new class of chemotherapeutic agents which are found to act by inhibiting various protein kinases as well as other molecular targets. A recent update on various quinazoline derivatives acting on different types of molecular targets for the treatment of cancer has been compiled in this review. Brief SAR studies of quinazoline derivatives acting through different mechanisms of action have been highlighted. The comprehensive medicinal chemistry aspects of these agents in this review provide a panoramic view to the biologists as well as medicinal chemists working in this area and would assist them in their efforts to design and synthesize novel quinazoline based anticancer compounds.
Collapse
Affiliation(s)
- Ranju Bansal
- University Institute of Pharmaceutical Sciences, Sector-14, Panjab University, Chandigarh, 160014, India.
| | - Anjleena Malhotra
- University Institute of Pharmaceutical Sciences, Sector-14, Panjab University, Chandigarh, 160014, India
| |
Collapse
|
25
|
Mekheimer RA, Al-Sheikh MA, Medrasi HY, Bahatheg GA, Sadek KU. Chloroquinoline-3-carbonitriles: Synthesis and Reactions. CURR ORG CHEM 2019. [DOI: 10.2174/1385272823666190516120946] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We herein describe the first review which aims to focus soberly the various
synthetic methods and chemical reactions of chloroquinoline-3-carbonitrile derivatives.
The reactions are subdivided into groups that cover reactions of chloro substituent at 2 or
4 and 2,4 positions, as well as cyano substituent at 3 position and reactions which involve
both groups. Most types of reactions have been successfully applied and used in the production
of biologically active compounds.
Collapse
Affiliation(s)
- Ramadan A. Mekheimer
- Department of Chemistry, Faculty of Science, Minia University, Minia 61519, Egypt
| | - Mariam A. Al-Sheikh
- Department of Chemistry, Faculty of Science, University of Jeddah, P.O. Box 80327, Jeddah 21589, Saudi Arabia
| | - Hanadi Y. Medrasi
- Department of Chemistry, Faculty of Science, University of Jeddah, P.O. Box 80327, Jeddah 21589, Saudi Arabia
| | - Ghayah A. Bahatheg
- Department of Chemistry, Faculty of Science, University of Jeddah, P.O. Box 80327, Jeddah 21589, Saudi Arabia
| | - Kamal U. Sadek
- Department of Chemistry, Faculty of Science, Minia University, Minia 61519, Egypt
| |
Collapse
|
26
|
Exploration of N-alkyl-2-[(4-oxo-3-(4-sulfamoylphenyl)-3,4-dihydroquinazolin-2-yl)thio]acetamide derivatives as anticancer and radiosensitizing agents. Bioorg Chem 2019; 88:102956. [DOI: 10.1016/j.bioorg.2019.102956] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 04/25/2019] [Accepted: 04/26/2019] [Indexed: 12/19/2022]
|
27
|
Hameed R, Khan A, Khan S, Perveen S. Computational Approaches Towards Kinases as Attractive Targets for Anticancer Drug Discovery and Development. Anticancer Agents Med Chem 2018; 19:592-598. [PMID: 30306880 DOI: 10.2174/1871520618666181009163014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Revised: 04/09/2018] [Accepted: 09/03/2018] [Indexed: 01/07/2023]
Abstract
BACKGROUND One of the major goals of computational chemists is to determine and develop the pathways for anticancer drug discovery and development. In recent past, high performance computing systems elicited the desired results with little or no side effects. The aim of the current review is to evaluate the role of computational chemistry in ascertaining kinases as attractive targets for anticancer drug discovery and development. METHODS Research related to computational studies in the field of anticancer drug development is reviewed. Extensive literature on achievements of theorists in this regard has been compiled and presented with special emphasis on kinases being the attractive anticancer drug targets. RESULTS Different approaches to facilitate anticancer drug discovery include determination of actual targets, multi-targeted drug discovery, ligand-protein inverse docking, virtual screening of drug like compounds, formation of di-nuclear analogs of drugs, drug specific nano-carrier design, kinetic and trapping studies in drug design, multi-target QSAR (Quantitative Structure Activity Relationship) model, targeted co-delivery of anticancer drug and siRNA, formation of stable inclusion complex, determination of mechanism of drug resistance, and designing drug like libraries for the prediction of drug-like compounds. Protein kinases have gained enough popularity as attractive targets for anticancer drugs. These kinases are responsible for uncontrolled and deregulated differentiation, proliferation, and cell signaling of the malignant cells which result in cancer. CONCLUSION Interest in developing drugs through computational methods is a growing trend, which saves equally the cost and time. Kinases are the most popular targets among the other for anticancer drugs which demand attention. 3D-QSAR modelling, molecular docking, and other computational approaches have not only identified the target-inhibitor binding interactions for better anticancer drug discovery but are also designing and predicting new inhibitors, which serve as lead for the synthetic preparation of drugs. In light of computational studies made so far in this field, the current review highlights the importance of kinases as attractive targets for anticancer drug discovery and development.
Collapse
Affiliation(s)
- Rabia Hameed
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
| | - Afsar Khan
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
| | - Sehroon Khan
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 560201, Yunnan, China
| | - Shagufta Perveen
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| |
Collapse
|
28
|
Milik SN, Abdel-Aziz AK, Lasheen DS, Serya RAT, Minucci S, Abouzid KAM. Surmounting the resistance against EGFR inhibitors through the development of thieno[2,3-d]pyrimidine-based dual EGFR/HER2 inhibitors. Eur J Med Chem 2018; 155:316-336. [PMID: 29902719 DOI: 10.1016/j.ejmech.2018.06.011] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 05/11/2018] [Accepted: 06/04/2018] [Indexed: 12/31/2022]
Abstract
In light of the emergence of resistance against the currently available EGFR inhibitors, our study focuses on tackling this problem through the development of dual EGFR/HER2 inhibitors with improved enzymatic affinities. Guided by the binding mode of the marketed dual EGFR/HER2 inhibitor, Lapatinib, we proposed the design of dual EGFR/HER2 inhibitors based on the 6-phenylthieno[2,3-d]pyrimidine as a core scaffold and hinge binder. After two cycles of screening aiming to identify the optimum aniline headgroup and solubilizing group, we eventually identified 27b as a dual EGFR/HER2 inhibitor with IC50 values of 91.7 nM and 1.2 μM, respectively. Notably, 27b dramatically reduced the viability of various patient-derived cancer cells preferentially overexpressing EGFR/HER2 (A431, MDA-MBA-361 and SKBr3 with IC50 values of 1.45, 3.5 and 4.83 μM, respectively). Additionally, 27b efficiently thwarted the proliferation of lapatinib-resistant human non-small lung carcinoma (NCI-H1975) cells, harboring T790 M mutation, with IC50 of 4.2 μM. Consistently, 27b significantly blocked EGF-induced EGFR activation and inactivated its downstream AKT/mTOR/S6 signalling pathway triggering apoptotic cell death in NCI-H1975 cells. The present study presents a promising candidate for further design and development of novel EGFR/HER2 inhibitors capable of overcoming EGFR TKIs resistance.
Collapse
Affiliation(s)
- Sandra N Milik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo, 11566, Egypt.
| | - Amal Kamal Abdel-Aziz
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo, 11566, Egypt; Department of Experimental Oncology, European Institute of Oncology, Via Adamello 16, 20139, Milan, Italy
| | - Deena S Lasheen
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo, 11566, Egypt
| | - Rabah A T Serya
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo, 11566, Egypt
| | - Saverio Minucci
- Department of Experimental Oncology, European Institute of Oncology, Via Adamello 16, 20139, Milan, Italy; Department of Biosciences, University of Milan, Milan, 20100, Italy
| | - Khaled A M Abouzid
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo, 11566, Egypt.
| |
Collapse
|
29
|
Yamakawa M, Doh SJ, Santosa SM, Montana M, Qin EC, Kong H, Han KY, Yu C, Rosenblatt MI, Kazlauskas A, Chang JH, Azar DT. Potential lymphangiogenesis therapies: Learning from current antiangiogenesis therapies-A review. Med Res Rev 2018. [PMID: 29528507 DOI: 10.1002/med.21496] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In recent years, lymphangiogenesis, the process of lymphatic vessel formation from existing lymph vessels, has been demonstrated to have a significant role in diverse pathologies, including cancer metastasis, organ graft rejection, and lymphedema. Our understanding of the mechanisms of lymphangiogenesis has advanced on the heels of studies demonstrating vascular endothelial growth factor C as a central pro-lymphangiogenic regulator and others identifying multiple lymphatic endothelial biomarkers. Despite these breakthroughs and a growing appreciation of the signaling events that govern the lymphangiogenic process, there are no FDA-approved drugs that target lymphangiogenesis. In this review, we reflect on the lessons available from the development of antiangiogenic therapies (26 FDA-approved drugs to date), review current lymphangiogenesis research including nanotechnology in therapeutic drug delivery and imaging, and discuss molecules in the lymphangiogenic pathway that are promising therapeutic targets.
Collapse
Affiliation(s)
- Michael Yamakawa
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL
| | - Susan J Doh
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL
| | - Samuel M Santosa
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL
| | - Mario Montana
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL
| | - Ellen C Qin
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL
| | - Hyunjoon Kong
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL
| | - Kyu-Yeon Han
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL
| | - Charles Yu
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL
| | - Mark I Rosenblatt
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL
| | - Andrius Kazlauskas
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL.,Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, IL
| | - Jin-Hong Chang
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL
| | - Dimitri T Azar
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL
| |
Collapse
|
30
|
Ligand-Based Pharmacophore Screening Strategy: a Pragmatic Approach for Targeting HER Proteins. Appl Biochem Biotechnol 2018; 186:85-108. [PMID: 29508211 DOI: 10.1007/s12010-018-2724-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 02/19/2018] [Indexed: 02/07/2023]
Abstract
Targeting ErbB family of receptors is an important therapeutic option, because of its essential role in the broad spectrum of human cancers, including non-small cell lung cancer (NSCLC). Therefore, in the present work, considerable effort has been made to develop an inhibitor against HER family proteins, by combining the use of pharmacophore modelling, docking scoring functions, and ADME property analysis. Initially, a five-point pharmacophore model was developed using known HER family inhibitors. The generated model was then used as a query to screen a total of 468,880 compounds of three databases namely ZINC, ASINEX, and DrugBank. Subsequently, docking analysis was carried out to obtain hit molecules that could inhibit the HER receptors. Further, analysis of GLIDE scores and ADME properties resulted in one hit namely BAS01025917 with higher glide scores, increased CNS involvement, and good pharmaceutically relevant properties than reference ligand, afatinib. Furthermore, the inhibitory activity of the lead compounds was validated by performing molecular dynamic simulations. Of note, BAS01025917 was found to possess scaffolds with a broad spectrum of antitumor activity. We believe that this novel hit molecule can be further exploited for the development of a pan-HER inhibitor with low toxicity and greater potential.
Collapse
|
31
|
Milik SN, Lasheen DS, Serya RA, Abouzid KA. How to train your inhibitor: Design strategies to overcome resistance to Epidermal Growth Factor Receptor inhibitors. Eur J Med Chem 2017; 142:131-151. [DOI: 10.1016/j.ejmech.2017.07.023] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 07/11/2017] [Accepted: 07/14/2017] [Indexed: 01/05/2023]
|
32
|
Alanazi IO, Khan Z. Understanding EGFR Signaling in Breast Cancer and Breast Cancer Stem Cells: Overexpression and Therapeutic Implications. Asian Pac J Cancer Prev 2017; 17:445-53. [PMID: 26925626 DOI: 10.7314/apjcp.2016.17.2.445] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Epidermal growth factor receptors (EGFRs/HERs) and downstream signaling pathways have been implicated in the pathogenesis of several malignancies including breast cancer and its resistance to treatment with chemotherapeutic drugs. Consequently, several monoclonal antibodies as well as small molecule inhibitors targeting these pathways have emerged as therapeutic tools in the recent past. However, studies have shown that utilizing these molecules in combination with chemotherapy has yielded only limited success. This review describes the current understanding of EGFRs/HERs and associated signaling pathways in relation to development of breast cancer and responses to various cancer treatments in the hope of pointing to improved prevention, diagnosis and treatment. Also, we review the role of breast cancer stem cells (BCSCs) in disease and the potential to target these cells.
Collapse
Affiliation(s)
- Ibrahim O Alanazi
- King Abdulaziz City for Science and Technology, Genome Center, King Saud University, Riyadh, Kingdom of Saudi Arabia E-mail :
| | | |
Collapse
|
33
|
|
34
|
Ke S. Novel amide-type ligand bearing bis-pyridine cores: Synthesis, spectral characterizations and X-ray structure analyses. J Mol Struct 2016. [DOI: 10.1016/j.molstruc.2016.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
35
|
Zuo SJ, Zhang S, Mao S, Xie XX, Xiao X, Xin MH, Xuan W, He YY, Cao YX, Zhang SQ. Combination of 4-anilinoquinazoline, arylurea and tertiary amine moiety to discover novel anticancer agents. Bioorg Med Chem 2015; 24:179-90. [PMID: 26706113 DOI: 10.1016/j.bmc.2015.12.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 11/30/2015] [Accepted: 12/01/2015] [Indexed: 01/10/2023]
Abstract
In present study, 4-anilinoquinazolines scaffold, arylurea and tertiary amine moiety were combined to design, synthesize gefitinib analogs and discover novel anticancer agents. A series of 4-anilinoquinazoline derivatives (1, 2, 3 and 4) bearing arylurea and tertiary amine moiety at its 6-position were synthesized. Their antiproliferative activities in vitro were evaluated via MTT assay against A431 cell and A549 cell. The SAR of the title compounds was discussed. The compounds 2d, 2i and 2j with potent antiproliferative activities were evaluated their inhibitory activity against EGFR-TK. Compound 2j displayed potent inhibitory activity against EGFR-TK. In addition, compound 2j, at 50 mg/kg, can completely inhibit cancer growth in established nude mouse A549 xenograft model in vivo. These results suggest that the 4-anilinoquinazoline derivatives bearing diarylurea and tertiary amino moiety at its 6-position can serve as anticancer agents and EGFR inhibitors.
Collapse
Affiliation(s)
- Sai-Jie Zuo
- Department of Medicinal Chemistry, School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China
| | - Sai Zhang
- Department of Pharmacology, School of Basic Medical Science, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China
| | - Shuai Mao
- Department of Medicinal Chemistry, School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China
| | - Xiao-Xiao Xie
- Department of Medicinal Chemistry, School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China
| | - Xue Xiao
- Department of Pharmacology, School of Basic Medical Science, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China
| | - Min-Hnag Xin
- Department of Medicinal Chemistry, School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China
| | - Wei Xuan
- Department of Medicinal Chemistry, School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China
| | - Yuan-Yuan He
- Department of Medicinal Chemistry, School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China
| | - Yong-Xiao Cao
- Department of Pharmacology, School of Basic Medical Science, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China
| | - San-Qi Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China.
| |
Collapse
|
36
|
Mirallai SI, Manoli M, Koutentis PA. The reaction of 2-amino- N ′-arylbenzamidines with tetracyanoethene reinvestigated: routes to imidazoles, quinazolines and quinolino[2′,3′:4,5]imidazo[1,2- c ]quinazoline-8-carbonitrile. Tetrahedron 2015. [DOI: 10.1016/j.tet.2015.09.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
37
|
Mao Y, Zhu F, Chen W, Shen J, Jiang X. New Synthesis ofN-(4-Chloro-3-cyano-7-ethoxyquinolin-6-yl)acetamide. ORG PREP PROCED INT 2015. [DOI: 10.1080/00304948.2015.1005987] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
38
|
Kos J, Nevin E, Soral M, Kushkevych I, Gonec T, Bobal P, Kollar P, Coffey A, O'Mahony J, Liptaj T, Kralova K, Jampilek J. Synthesis and antimycobacterial properties of ring-substituted 6-hydroxynaphthalene-2-carboxanilides. Bioorg Med Chem 2015; 23:2035-43. [PMID: 25819330 DOI: 10.1016/j.bmc.2015.03.018] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2015] [Revised: 03/02/2015] [Accepted: 03/05/2015] [Indexed: 01/03/2023]
Abstract
In this study, a series of twenty-two ring-substituted 6-hydroxynaphthalene-2-carboxanilides was prepared and characterized. Primary in vitro screening of the synthesized compounds was performed against Mycobacterium tuberculosis H37Ra, Mycobacterium avium complex and M. avium subsp. paratuberculosis. Derivatives substituted by trifluoromethyl, bromo, methyl and methoxy moieties in C'(3) and C'(4) positions of the anilide ring showed 2-fold higher activity against M. tuberculosis than isoniazid and 4.5-fold higher activity against M. avium subsp. paratuberculosis than rifampicin. 6-Hydroxy-N-(2-methylphenyl)naphthalene-2-carboxamide had MIC=29 μM against M. avium complex. A significant decrease of mycobacterial cell metabolism (viability of M. tuberculosis H37Ra) was observed using MTT assay. Screening of the cytotoxicity of the most effective antimycobacterial compounds was performed using the THP-1 cells, and no significant lethal effect was observed. The structure-activity relationships are discussed.
Collapse
Affiliation(s)
- Jiri Kos
- Department of Chemical Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences, Palackeho 1/3, 612 42 Brno, Czech Republic
| | - Eoghan Nevin
- Department of Biological Sciences, Cork Institute of Technology, Bishopstown, Cork, Ireland
| | - Michal Soral
- Department of NMR Spectroscopy and Mass Spectrometry, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinskeho 9, 812 37 Bratislava, Slovakia
| | - Ivan Kushkevych
- Department of Human Pharmacology and Toxicology, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences, Palackeho 1/3, 612 42 Brno, Czech Republic
| | - Tomas Gonec
- Department of Chemical Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences, Palackeho 1/3, 612 42 Brno, Czech Republic
| | - Pavel Bobal
- Department of Chemical Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences, Palackeho 1/3, 612 42 Brno, Czech Republic
| | - Peter Kollar
- Department of Human Pharmacology and Toxicology, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences, Palackeho 1/3, 612 42 Brno, Czech Republic
| | - Aidan Coffey
- Department of Biological Sciences, Cork Institute of Technology, Bishopstown, Cork, Ireland
| | - Jim O'Mahony
- Department of Biological Sciences, Cork Institute of Technology, Bishopstown, Cork, Ireland
| | - Tibor Liptaj
- Department of NMR Spectroscopy and Mass Spectrometry, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinskeho 9, 812 37 Bratislava, Slovakia
| | - Katarina Kralova
- Institute of Chemistry, Faculty of Natural Sciences, Comenius University, Mlynska dolina Ch-2, 842 15 Bratislava, Slovakia
| | - Josef Jampilek
- Department of Chemical Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences, Palackeho 1/3, 612 42 Brno, Czech Republic.
| |
Collapse
|
39
|
Alanazi I, Ebrahimie E, Hoffmann P, Adelson DL. Combined gene expression and proteomic analysis of EGF induced apoptosis in A431 cells suggests multiple pathways trigger apoptosis. Apoptosis 2014; 18:1291-1305. [PMID: 23892916 DOI: 10.1007/s10495-013-0887-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A431 cells, derived from epidermoid carcinoma, overexpress the epidermal growth factor receptor (EGFR) and when treated with a high dose of EGF will undergo apoptosis. We exploited microarray and proteomics techniques and network prediction to study the regulatory mechanisms of EGF-induced apoptosis in A431 cells. We observed significant changes in gene expression in 162 genes, approximately evenly split between pro-apoptotic and anti-apoptotic genes and identified 30 proteins from the proteomic data that had either pro or anti-apoptotic annotation. Our correlation analysis of gene expression and proteome modeled a number of distinct sub-networks that are associated with the onset of apoptosis, allowing us to identify specific pathways and components. These include components of the interferon signalling pathway, and down stream components, including cytokines and suppressors of cytokine signalling. A central component of almost all gene expression sub-networks identified was TP53, which is mutated in A431 cells, and was down regulated. This down regulation of TP53 appeared to be correlated with proteomic sub-networks of cytoskeletal or cell adhesion components that might induce apoptosis by triggering cytochrome C release. Of the only three genes also differentially expressed as proteins, only serpinb1 had a known association with apoptosis. We confirmed that up regulation and cleavage of serpinb1 into L-DNAaseII was correlated with the induction of apoptosis. It is unlikely that a single pathway, but more likely a combination of pathways is needed to trigger EGF induced apoptosis in A431cells.
Collapse
Affiliation(s)
- Ibrahim Alanazi
- School of Molecular & Biomedical Science, The University of Adelaide, Adelaide, SA, Australia
| | - Esmaeil Ebrahimie
- School of Molecular & Biomedical Science, The University of Adelaide, Adelaide, SA, Australia
| | - Peter Hoffmann
- School of Molecular & Biomedical Science, The University of Adelaide, Adelaide, SA, Australia
| | - David L Adelson
- School of Molecular & Biomedical Science, The University of Adelaide, Adelaide, SA, Australia.
| |
Collapse
|
40
|
Ma W, Mao Y, Xie K, Zhu Q, Zhang R, Shen J, Sun H. New and Practical Synthesis of N-(3-Cyano-7-ethoxy-4-oxo-1,4-dihydroquinolin-6-yl)acetamide. J Heterocycl Chem 2014. [DOI: 10.1002/jhet.1901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Wenpeng Ma
- China Pharmaceutical University; 24 Tong Jia Xiang Nanjing 210009 China
| | - Yongjun Mao
- Shanghai Institute of Materia Medica; Chinese Academy of Sciences; 555 Zu Chong Zhi Road Pudong Shanghai 201203 China
| | - Kai Xie
- Topharman Shanghai Co., Ltd.; 1088 Chuansha Road Pudong Shanghai 201209 China
| | - Qifeng Zhu
- Topharman Shanghai Co., Ltd.; 1088 Chuansha Road Pudong Shanghai 201209 China
| | - Rongxia Zhang
- Shanghai Institute of Materia Medica; Chinese Academy of Sciences; 555 Zu Chong Zhi Road Pudong Shanghai 201203 China
| | - Jingshan Shen
- Shanghai Institute of Materia Medica; Chinese Academy of Sciences; 555 Zu Chong Zhi Road Pudong Shanghai 201203 China
| | - Hongbin Sun
- China Pharmaceutical University; 24 Tong Jia Xiang Nanjing 210009 China
| |
Collapse
|
41
|
Calderon LA, Sobrinho JC, Zaqueo KD, de Moura AA, Grabner AN, Mazzi MV, Marcussi S, Nomizo A, Fernandes CFC, Zuliani JP, Carvalho BMA, da Silva SL, Stábeli RG, Soares AM. Antitumoral activity of snake venom proteins: new trends in cancer therapy. BIOMED RESEARCH INTERNATIONAL 2014; 2014:203639. [PMID: 24683541 PMCID: PMC3943284 DOI: 10.1155/2014/203639] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Revised: 12/07/2013] [Accepted: 12/08/2013] [Indexed: 02/06/2023]
Abstract
For more than half a century, cytotoxic agents have been investigated as a possible treatment for cancer. Research on animal venoms has revealed their high toxicity on tissues and cell cultures, both normal and tumoral. Snake venoms show the highest cytotoxic potential, since ophidian accidents cause a large amount of tissue damage, suggesting a promising utilization of these venoms or their components as antitumoral agents. Over the last few years, we have studied the effects of snake venoms and their isolated enzymes on tumor cell cultures. Some in vivo assays showed antineoplastic activity against induced tumors in mice. In human beings, both the crude venom and isolated enzymes revealed antitumor activities in preliminary assays, with measurable clinical responses in the advanced treatment phase. These enzymes include metalloproteases (MP), disintegrins, L-amino acid oxidases (LAAOs), C-type lectins, and phospholipases A2 (PLA2s). Their mechanisms of action include direct toxic action (PLA2s), free radical generation (LAAOs), apoptosis induction (PLA2s, MP, and LAAOs), and antiangiogenesis (disintegrins and lectins). Higher cytotoxic and cytostatic activities upon tumor cells than normal cells suggest the possibility for clinical applications. Further studies should be conducted to ensure the efficacy and safety of different snake venom compounds for cancer drug development.
Collapse
Affiliation(s)
- Leonardo A. Calderon
- Centro de Estudos de Biomoléculas Aplicadas à Saúde, CEBio, Fundação Oswaldo Cruz, Fiocruz Rondônia e Departamento de Medicina, Universidade Federal de Rondônia, UNIR, Porto Velho, RO, Brazil
| | - Juliana C. Sobrinho
- Centro de Estudos de Biomoléculas Aplicadas à Saúde, CEBio, Fundação Oswaldo Cruz, Fiocruz Rondônia e Departamento de Medicina, Universidade Federal de Rondônia, UNIR, Porto Velho, RO, Brazil
| | - Kayena D. Zaqueo
- Centro de Estudos de Biomoléculas Aplicadas à Saúde, CEBio, Fundação Oswaldo Cruz, Fiocruz Rondônia e Departamento de Medicina, Universidade Federal de Rondônia, UNIR, Porto Velho, RO, Brazil
| | - Andrea A. de Moura
- Centro de Estudos de Biomoléculas Aplicadas à Saúde, CEBio, Fundação Oswaldo Cruz, Fiocruz Rondônia e Departamento de Medicina, Universidade Federal de Rondônia, UNIR, Porto Velho, RO, Brazil
| | - Amy N. Grabner
- Centro de Estudos de Biomoléculas Aplicadas à Saúde, CEBio, Fundação Oswaldo Cruz, Fiocruz Rondônia e Departamento de Medicina, Universidade Federal de Rondônia, UNIR, Porto Velho, RO, Brazil
| | - Maurício V. Mazzi
- Fundação Hermínio Ometto, UNIARARAS, Núcleo de Ciências da Saúde-NUCISA, 13607-339 Araras, SP, Brazil
| | - Silvana Marcussi
- Departamento de Química, Universidade Federal de Lavras, UFLA, 37200-000 Lavras, MG, Brazil
| | - Auro Nomizo
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, USP, Ribeirão Preto, SP, Brazil
| | - Carla F. C. Fernandes
- Centro de Estudos de Biomoléculas Aplicadas à Saúde, CEBio, Fundação Oswaldo Cruz, Fiocruz Rondônia e Departamento de Medicina, Universidade Federal de Rondônia, UNIR, Porto Velho, RO, Brazil
| | - Juliana P. Zuliani
- Centro de Estudos de Biomoléculas Aplicadas à Saúde, CEBio, Fundação Oswaldo Cruz, Fiocruz Rondônia e Departamento de Medicina, Universidade Federal de Rondônia, UNIR, Porto Velho, RO, Brazil
| | - Bruna M. A. Carvalho
- Departamento de Química, Biotecnologia e Engenharia de Bioprocessos, Universidade Federal de São João del Rei, UFSJ, Campus Alto paraopeba, Ouro Branco, MG, Brazil
| | - Saulo L. da Silva
- Departamento de Química, Biotecnologia e Engenharia de Bioprocessos, Universidade Federal de São João del Rei, UFSJ, Campus Alto paraopeba, Ouro Branco, MG, Brazil
| | - Rodrigo G. Stábeli
- Centro de Estudos de Biomoléculas Aplicadas à Saúde, CEBio, Fundação Oswaldo Cruz, Fiocruz Rondônia e Departamento de Medicina, Universidade Federal de Rondônia, UNIR, Porto Velho, RO, Brazil
| | - Andreimar M. Soares
- Centro de Estudos de Biomoléculas Aplicadas à Saúde, CEBio, Fundação Oswaldo Cruz, Fiocruz Rondônia e Departamento de Medicina, Universidade Federal de Rondônia, UNIR, Porto Velho, RO, Brazil
| |
Collapse
|
42
|
Rahman AFMM, Korashy HM, Kassem MG. Gefitinib. PROFILES OF DRUG SUBSTANCES, EXCIPIENTS, AND RELATED METHODOLOGY 2014; 39:239-264. [PMID: 24794908 DOI: 10.1016/b978-0-12-800173-8.00005-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Gefitinib (Iressa®) is a selective inhibitor of epidermal growth factor, a growth factor that plays a pivotal role in the control of cell growth, apoptosis, and angiogenesis. Gefitinib is clinically used for the treatment of chemoresistant non-small cell lung cancer patients. Gefitinib is freely soluble in dimethylsulphoxide but slightly soluble in methanol and ethanol. Several methods of gefitinib synthesis are included in this review. UV spectroscopy of gefitinib showed a λmax of approximately 331nm, whereas IR spectroscopy principal peaks were observed at 3400cm(-1) (NH), 2956cm(-1) (CH2, CH, alkyl), 1625cm(-1) (CC, CN), 1500cm(-1) (HCCH, aryl), 1110cm(-1) (CO), 1028cm(-1) (CF). In addition, different analytical methods for determination of gefitinib are also described in this review. Pharmacokinetically, after oral administration, gefitinib is slowly absorbed with bioavailability of approximately 60% in human. Gefitinib is metabolized extensively in the liver into five metabolites by cytochrome P450s, primarily by CYP3A4 and to a lesser extent by CYP3A5 and CYP2D6. Gefitinib is eliminated mainly hepatically with total plasma clearance of 595mL/min after intravenous administration. Most of the adverse effects associated with gefitinib therapy are mild to moderate in severity and are usually reversible and manageable with appropriate intervention, such as diarrhea, dry skin, rash, nausea, and vomiting.
Collapse
Affiliation(s)
- A F M Motiur Rahman
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Hesham M Korashy
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed Gabr Kassem
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
43
|
Zhang WM, Xing M, Zhao TT, Ren YJ, Yang XH, Yang YS, Lv PC, Zhu HL. Synthesis, molecular modeling and biological evaluation of cinnamic acid derivatives with pyrazole moieties as novel anticancer agents. RSC Adv 2014. [DOI: 10.1039/c4ra05257a] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Compound 30e with potent EGFR and HER-2 inhibitory activity may be a potential anticancer agent.
Collapse
Affiliation(s)
- Wei-Ming Zhang
- Nanjing Institute for the Comprehensive Utilization of Wild Plant
- Nanjing 210042, People's Republic of China
- State Key Laboratory of Pharmaceutical Biotechnology
- Nanjing University
- Nanjing 210093, People's Republic of China
| | - Man Xing
- Nanjing Institute for the Comprehensive Utilization of Wild Plant
- Nanjing 210042, People's Republic of China
- State Key Laboratory of Pharmaceutical Biotechnology
- Nanjing University
- Nanjing 210093, People's Republic of China
| | - Ting-Ting Zhao
- Nanjing Institute for the Comprehensive Utilization of Wild Plant
- Nanjing 210042, People's Republic of China
- State Key Laboratory of Pharmaceutical Biotechnology
- Nanjing University
- Nanjing 210093, People's Republic of China
| | - Yu-Jia Ren
- Nanjing Institute for the Comprehensive Utilization of Wild Plant
- Nanjing 210042, People's Republic of China
- State Key Laboratory of Pharmaceutical Biotechnology
- Nanjing University
- Nanjing 210093, People's Republic of China
| | - Xian-Hui Yang
- Nanjing Institute for the Comprehensive Utilization of Wild Plant
- Nanjing 210042, People's Republic of China
- State Key Laboratory of Pharmaceutical Biotechnology
- Nanjing University
- Nanjing 210093, People's Republic of China
| | - Yu-Shun Yang
- Nanjing Institute for the Comprehensive Utilization of Wild Plant
- Nanjing 210042, People's Republic of China
- State Key Laboratory of Pharmaceutical Biotechnology
- Nanjing University
- Nanjing 210093, People's Republic of China
| | - Peng-Cheng Lv
- Nanjing Institute for the Comprehensive Utilization of Wild Plant
- Nanjing 210042, People's Republic of China
- State Key Laboratory of Pharmaceutical Biotechnology
- Nanjing University
- Nanjing 210093, People's Republic of China
| | - Hai-Liang Zhu
- Nanjing Institute for the Comprehensive Utilization of Wild Plant
- Nanjing 210042, People's Republic of China
- State Key Laboratory of Pharmaceutical Biotechnology
- Nanjing University
- Nanjing 210093, People's Republic of China
| |
Collapse
|
44
|
Li J, Mao Y, He Y, Zhu F, Chen W, Shen J. New Synthesis of N-(4-Chloro-3-cyano-7-ethoxyquinolin-6-yl)acetamide. HETEROCYCLES 2014. [DOI: 10.3987/com-13-12830] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
45
|
Zhou M, Wang H, Zhou K, Luo X, Pan X, Shi B, Jiang H, Zhang J, Li K, Wang HM, Gao H, Lu S, Yao M, Mao Y, Wang HY, Yang S, Gu J, Li C, Li Z. A novel EGFR isoform confers increased invasiveness to cancer cells. Cancer Res 2013; 73:7056-67. [PMID: 24240702 DOI: 10.1158/0008-5472.can-13-0194] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
As a validated therapeutic target in several human cancers, the EGF receptor (EGFR) provides a focus to gain deeper insights into cancer pathophysiology. In this study, we report the identification of a naturally occurring and widely expressed EGFR isoform termed EGFRvA, which substitutes a Ser/Thr-rich peptide for part of the carboxyl-terminal regulatory domain of the receptor. Intriguingly, EGFRvA expression relates more closely to histopathologic grade and poor prognosis in patients with glioma. Ectopic expression of EGFRvA in cancer cells conferred a higher invasive capacity than EGFR in vitro and in vivo. Mechanistically, EGFRvA stimulated expression of STAT3, which upregulated heparin-binding EGF (HB-EGF). Reciprocally, HB-EGF stimulated phosphorylation of EGFRvA at Y845 along with STAT3, generating a positive feedback loop that may reinforce invasive function. The significance of EGFRvA expression was reinforced by findings that it is attenuated by miR-542-5p, a microRNA that is a known tumor suppressor. Taken together, our findings define this newfound EGFR isoform as a key theranostic molecule.
Collapse
Affiliation(s)
- Min Zhou
- Authors' Affiliations: State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine; Neurosurgery Department of Huashan Hospital, Fudan University; Shanghai Lung Tumor Clinical Medical Center, Chest Hospital Affiliated to Shanghai Jiao Tong University; Laboratory of Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, PR China; and Department of Dermatology, Duke University Medical Center, Durham, North Carolina
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Discovery of 2-aryl-8-hydroxy (or methoxy)-isoquinolin-1(2H)-ones as novel EGFR inhibitor by scaffold hopping. Bioorg Med Chem 2013; 21:6956-64. [DOI: 10.1016/j.bmc.2013.09.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 09/04/2013] [Accepted: 09/10/2013] [Indexed: 12/18/2022]
|
47
|
Gonec T, Kos J, Zadrazilova I, Pesko M, Keltosova S, Tengler J, Bobal P, Kollar P, Cizek A, Kralova K, Jampilek J. Antimycobacterial and herbicidal activity of ring-substituted 1-hydroxynaphthalene-2-carboxanilides. Bioorg Med Chem 2013; 21:6531-41. [PMID: 24075143 DOI: 10.1016/j.bmc.2013.08.030] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2013] [Revised: 08/10/2013] [Accepted: 08/16/2013] [Indexed: 11/16/2022]
Abstract
In this study, a series of 22 ring-substituted 1-hydroxynaphthalene-2-carboxanilides were prepared and characterized. Primary in vitro screening of the synthesized compounds was performed against Mycobacterium marinum, Mycobacterium kansasii and Mycobacterium smegmatis. The compounds were also tested for their activity related to inhibition of photosynthetic electron transport (PET) in spinach (Spinacia oleracea L.) chloroplasts. Most of tested compounds showed the antimycobacterial activity against the three strains comparable or higher than the standard isoniazid. N-(3-Fluorophenyl)-1-hydroxynaphthalene-2-carboxamide showed the highest biological activity (MIC=28.4μmol/L) against M. marinum, N-(4-fluorophenyl)-1-hydroxynaphthalene-2-carboxamide showed the highest biological activity (MIC=14.2μmol/L) against M. kansasii, and N-(4-bromophenyl)-1-hydroxynaphthalene-2-carboxamide expressed the highest biological activity (MIC=46.7μmol/L) against M. smegmatis. This compound and 1-hydroxy-N-(3-methylphenyl)naphthalene-2-carboxamide were the most active compounds against all three tested strains. The PET inhibition expressed by IC50 value of the most active compound 1-hydroxy-N-(3-trifluoromethylphenyl)naphthalene-2-carboxamide was 5.3μmol/L. The most effective compounds demonstrated insignificant toxicity against the human monocytic leukemia THP-1 cell line. For all compounds, structure-activity relationships are discussed.
Collapse
Affiliation(s)
- Tomas Gonec
- Department of Chemical Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences, Palackeho 1/3, 612 42 Brno, Czech Republic
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Pauk K, Zadražilová I, Imramovský A, Vinšová J, Pokorná M, Masaříková M, Cížek A, Jampílek J. New derivatives of salicylamides: Preparation and antimicrobial activity against various bacterial species. Bioorg Med Chem 2013; 21:6574-81. [PMID: 24045008 DOI: 10.1016/j.bmc.2013.08.029] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 08/12/2013] [Accepted: 08/14/2013] [Indexed: 01/27/2023]
Abstract
Three series of salicylanilides, esters of N-phenylsalicylamides and 2-hydroxy-N-[1-(2-hydroxyphenylamino)-1-oxoalkan-2-yl]benzamides, in total thirty target compounds were synthesized and characterized. The compounds were evaluated against seven bacterial and three mycobacterial strains. The antimicrobial activities of some compounds were comparable or higher than the standards ampicillin, ciprofloxacin or isoniazid. Derivatives 3f demonstrated high biological activity against Staphylococcus aureus (⩽0.03μmol/L), Mycobacterium marinum (⩽0.40μmol/L) and Mycobacterium kansasii (1.58μmol/L), 3g shows activity against Clostridium perfringens (⩽0.03μmol/L) and Bacillus cereus (0.09μmol/L), 3h against Pasteurella multocida (⩽0.03μmol/L) and M. kansasii (⩽0.43μmol/L), 3i against methicillin-resistant S. aureus and B. cereus (⩽0.03μmol/L). The structure-activity relationships are discussed for all the compounds.
Collapse
Affiliation(s)
- Karel Pauk
- Institute of Organic Chemistry and Technology, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10 Pardubice, Czech Republic
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Antibacterial and herbicidal activity of ring-substituted 2-hydroxynaphthalene-1-carboxanilides. Molecules 2013; 18:9397-419. [PMID: 23924993 PMCID: PMC6270026 DOI: 10.3390/molecules18089397] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 08/01/2013] [Accepted: 08/02/2013] [Indexed: 11/17/2022] Open
Abstract
In this study, a series of twenty-two ring-substituted 2-hydroxynaphthalene-1‑carboxanilides were prepared and characterized. Primary in vitro screening of the synthesized compounds was performed against Staphylococcus aureus, three methicillin-resistant S. aureus strains, Mycobacterium marinum, M. kasasii, M. smegmatis. and M. avium paratuberculosis. The compounds were also tested for their activity related to inhibition of photosynthetic electron transport (PET) in spinach (Spinacia oleracea L.) chloroplasts. 2-Hydroxy-N-phenylnaphthalene-1-carboxanilide and 2-hydroxy-N-(3-trifluoromethylphenyl)naphthalene-1-carboxamide (IC₅₀ = 29 µmol/L) were the most active PET inhibitors. Some of tested compounds showed the antibacterial and antimycobacterial activity against the tested strains comparable or higher than the standards ampicillin or isoniazid. Thus, for example, 2-hydroxy-N-(3-nitrophenyl)naphthalene-1-carboxamide showed MIC = 26.0 µmol/L against methicillin-resistant S. aureus and MIC = 51.9 µmol/L against M. marinum, or 2-hydroxy-N-phenylnaphthalene-1-carboxamide demonstrated MIC = 15.2 µmol/L against M. kansasii. The structure-activity relationships for all compounds are discussed.
Collapse
|
50
|
Mariamma KC, Varghese HT, Panicker CY, John K, Vinsova J, Van Alsenoy C. Vibrational spectroscopic investigations and computational study of 5-chloro-2-[4-(trifluoromethyl)phenylcarbamoyl]phenyl acetate. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2013; 112:161-168. [PMID: 23666351 DOI: 10.1016/j.saa.2013.04.052] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2012] [Revised: 04/06/2013] [Accepted: 04/10/2013] [Indexed: 06/02/2023]
Abstract
The optimized molecular structure, vibrational frequencies and corresponding vibrational assignments of 5-Chloro-2-[4-(trifluoromethyl)phenylcarbamoyl]phenyl acetate have been investigated experimentally and theoretically using Gaussian09 software package. Potential energy distribution of the normal modes of the vibrations was done using GAR2PED program. The HOMO and LUMO analysis is used to determine the charge transfer within the molecule. The stability of the molecule arising from hyper conjugative interaction and charge delocalization have been analyzed using NBO analysis. The calculated geometrical parameters are in agreement with that of similar derivatives. The calculated first hyperpolarizability is comparable with the reported values of similar derivatives and is an attractive object for future studies of nonlinear optics. The red shift of the NH stretching wave number in the IR spectrum with a strong intensity from the computed wave number indicates the weakening of the NH bond resulting in proton transfer to the neighboring oxygen.
Collapse
Affiliation(s)
- K C Mariamma
- Department of Chemistry, M.E.S. College, Nedumkandam, Kerala, India.
| | | | | | | | | | | |
Collapse
|