1
|
Wannemacher R, Jubran-Rudolf L, Zdora I, Leitzen E, Rohn K, Sippel V, Paschen C, Blattmann P, Baumgärtner W, Gerhauser I, Steiner MA. Sinbaglustat ameliorates disease pathology in a murine model of G M1 gangliosidosis without affecting CNS ganglioside levels. Neurobiol Dis 2025; 210:106917. [PMID: 40250720 DOI: 10.1016/j.nbd.2025.106917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 04/02/2025] [Accepted: 04/14/2025] [Indexed: 04/20/2025] Open
Abstract
Sinbaglustat is a brain-penetrating small molecule that inhibits the non-lysosomal glucocerebrosidase (GBA2) and, with lower potency, glucosylceramide synthase (GCS). Sinbaglustat has passed clinical phase I. Our preclinical study assessed its efficacy in a transgenic mouse model of GM1 gangliosidosis, lacking a functional β-galactosidase enzyme (Glb1-/-). Starting at 4 weeks of age, mice were either treated with a nominal dose of 10 or 300 mg/kg/day of sinbaglustat or remained untreated. Wild-type (WT) mice served as control. Body weight, clinical and neurological signs, and motor function was assessed until 17-18 weeks (4 months) and 30 weeks (7 months) of age when mice were euthanized for ex vivo assessments. In comparison to WT, Glb1-/- mice showed the expected accumulation of GM1 gangliosidosis-related sphingolipids, neuropathology, and behavioral deficits. Both dosages of sinbaglustat left GM1 and lyso GM1 levels in the brain unaffected but delayed the onset of motor impairment and progression of clinical disease in Glb1-/- mice with the higher dose being more efficacious. Histologically and immunohistochemically, both treatment groups of Glb1-/- mice displayed reduced neuronal vacuolation. Only the higher dose of sinbaglustat decreased axonal damage and astrogliosis, which was also associated with a decrease of the axonal/neuronal damage marker plasma neurofilament light at 4 months (17-18 weeks). Both doses of sinbaglustat increased the GBA2 substrate glucosylceramide (GluCer) in the brain, while only the high dose reduced GluCer and other glycosphingolipids (GSLs) in the periphery indicating additional inhibition of GCS. We conclude that sinbaglustat had a therapeutic-like effect in the GM1 gangliosidosis mouse model.
Collapse
Affiliation(s)
- Rouven Wannemacher
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, Bünteweg 17, 30559 Hannover, Germany; Center for Systems Neuroscience, Hannover, Germany
| | - Lorna Jubran-Rudolf
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, Bünteweg 17, 30559 Hannover, Germany; Center for Systems Neuroscience, Hannover, Germany
| | - Isabel Zdora
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, Bünteweg 17, 30559 Hannover, Germany
| | - Eva Leitzen
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, Bünteweg 17, 30559 Hannover, Germany; Center for Systems Neuroscience, Hannover, Germany
| | - Karl Rohn
- Department of Biometry, Epidemiology and Data processing, University of Veterinary Medicine Hannover, Bünteweg 12, 30559 Hannover, Germany
| | - Virginie Sippel
- Idorsia Pharmaceuticals Ltd., Hegenheimermattweg 91, 4123 Allschwil, Switzerland
| | - Christoph Paschen
- Idorsia Pharmaceuticals Ltd., Hegenheimermattweg 91, 4123 Allschwil, Switzerland
| | - Peter Blattmann
- Idorsia Pharmaceuticals Ltd., Hegenheimermattweg 91, 4123 Allschwil, Switzerland
| | - Wolfgang Baumgärtner
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, Bünteweg 17, 30559 Hannover, Germany; Center for Systems Neuroscience, Hannover, Germany.
| | - Ingo Gerhauser
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, Bünteweg 17, 30559 Hannover, Germany; Center for Systems Neuroscience, Hannover, Germany
| | | |
Collapse
|
2
|
Menkovic I, Williams M, Makhijani N, Wei R, Young SP, El-Gharbawy A, Stiles AR. Persistent elevations of alkaline phosphatase as an early indicator of GM1 gangliosidosis. Mol Genet Metab Rep 2025; 42:101191. [PMID: 39897471 PMCID: PMC11786200 DOI: 10.1016/j.ymgmr.2025.101191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 12/09/2024] [Accepted: 01/13/2025] [Indexed: 02/04/2025] Open
Abstract
GLB1-related disorders are autosomal recessive lysosomal diseases caused by enzymatic deficiency of β-galactosidase. Enzymatic deficiency of β-galactosidase may lead to one of two phenotypes, GM1 gangliosidosis or mucopolysaccharidosis IVB (MPS IVB). GM1 gangliosidosis is a neurodegenerative disorder with variable skeletal disease and involvement of other systems. The age of onset correlates with the extent of neurological involvement and established genotype/phenotype correlations. Mucopolysaccharidosis IVB is characterized by a skeletal dysplasia without neurological involvement. Diagnostic work-up for GLB1-related disorders includes enzyme analysis, biomarker analysis, molecular testing, and laboratory imaging studies. We report a patient who presented with persistent elevations of alkaline phosphatase (ALP) and subtle dysmorphic facial features. An initial skeletal survey at birth was unrevealing; however, a repeat at 3 months of age was abnormal with anterior beaking of the lumbar vertebrae and hemivertebrae of the lower cervical spine. Urinary glycosaminoglycan (GAG) analysis revealed a marked elevation of keratan sulfate (KS). Clinical exome sequencing revealed pathogenic heterozygous variants in GLB1, consistent with GLB1-related GM1 gangliosidosis. Our case demonstrates that persistent elevations of ALP may be an early indicator for GM1 gangliosidosis in an infant with progressive multisystem disease, indicating the need for early genetic consultation. This case also highlights the utility of repeat skeletal surveys with abnormalities detected at 3 months of age.
Collapse
Affiliation(s)
- Iskren Menkovic
- Biochemical Genetics Laboratory, Duke University Health System, Durham, NC, USA
| | - Monika Williams
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - Neelam Makhijani
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - Ruhan Wei
- Department of Pathology, Duke University Medical Center, Durham, NC, USA
- Duke University Health System Clinical Laboratories, Durham, NC, USA
| | - Sarah P. Young
- Biochemical Genetics Laboratory, Duke University Health System, Durham, NC, USA
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - Areeg El-Gharbawy
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - Ashlee R. Stiles
- Biochemical Genetics Laboratory, Duke University Health System, Durham, NC, USA
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
3
|
Hosseini K, Fallahi J, Aligholi H, Heidari Z, Nadimi E, Safari F, Sisakht M, Atapour A, Khajeh S, Tabei SMB, Razban V. Creation of an in vitro model of GM1 gangliosidosis by CRISPR/Cas9 knocking-out the GLB1 gene in SH-SY5Y human neuronal cell line. Cell Biochem Funct 2024; 42:e4102. [PMID: 39076066 DOI: 10.1002/cbf.4102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/01/2024] [Accepted: 07/14/2024] [Indexed: 07/31/2024]
Abstract
GM1 gangliosidosis is one type of hereditary error of metabolism that occurs due to the absence or reduction of β-galactosidase enzyme content in the lysosome of cells, including neurons. In vitro, the use of neural cell lines could facilitate the study of this disease. By creating a cell model of GM1 gangliosidosis on the SH-SY5Y human nerve cell line, it is possible to understand the main role of this enzyme in breaking down lipid substrate and other pathophysiologic phenomena this disease. To knock-out the human GLB1 gene, guides targeting exons 14 and 16 of the GLB1 gene were designed using the CRISPOR and CHOP-CHOP websites, and high-efficiency guides were selected for cloning in the PX458 vector. After confirming the cloning, the vectors were transformed into DH5α bacteria and then the target vector was extracted and transfected into human nerve cells (SH-SY5Y cell line) by electroporation. After 48 h, GFP+ cells were sorted using the FACS technique and homozygous (compound heterozygous) single cells were isolated using the serial dilution method and sequencing was done to confirm them. Finally, gap PCR tests, X-gal and Periodic acid-Schiff (PAS) staining, and qPCR were used to confirm the knock-out of the human GLB1 gene. Additionally, RNA sequencing data analysis from existing data of the Gene Expression Omnibus (GEO) was used to find the correlation of GLB1 with other genes, and then the top correlated genes were tested for further evaluation of knock-out effects. The nonviral introduction of two guides targeting exons 14 and 16 of the GLB1 gene into SH-SY5Y cells led to the deletion of a large fragment with a size of 4.62 kb. In contrast to the non-transfected cell, X-gal staining resulted in no blue color in GLB1 gene knock-out cells indicating the absence of β-galactosidase enzyme activity in these cells. Real-time PCR (qPCR) results confirmed the RNA-Seq analysis outcomes on the GEO data set and following the GLB1 gene knock-out, the expression of its downstream genes, NEU1 and CTSA, has been decreased. It has been also shown that the downregulation of GLB1-NEU1-CTSA complex gene was involved in suppressed proliferation and invasion ability of knock-out cells. This study proved that using dual guide RNA can be used as a simple and efficient tool for targeting the GLB1 gene in nerve cells and the knockout SH-SY5Y cells can be used as a model investigation of basic and therapeutic surveys for GM1 gangliosidosis disease.
Collapse
Affiliation(s)
- Kamran Hosseini
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Jafar Fallahi
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hadi Aligholi
- Department of Neuroscience, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Heidari
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Elham Nadimi
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Safari
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohsen Sisakht
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Atapour
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sahar Khajeh
- Bone and Joint Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Mohammad Bagher Tabei
- Department of Medical Genetics, School of Medical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Vahid Razban
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
4
|
Foster D, Williams L, Arnold N, Larsen J. Therapeutic developments for neurodegenerative GM1 gangliosidosis. Front Neurosci 2024; 18:1392683. [PMID: 38737101 PMCID: PMC11082364 DOI: 10.3389/fnins.2024.1392683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 04/15/2024] [Indexed: 05/14/2024] Open
Abstract
GM1 gangliosidosis (GM1) is a rare but fatal neurodegenerative disease caused by dysfunction or lack of production of lysosomal enzyme, β-galactosidase, leading to accumulation of substrates. The most promising treatments for GM1, include enzyme replacement therapy (ERT), substrate reduction therapy (SRT), stem cell therapy and gene editing. However, effectiveness is limited for neuropathic GM1 due to the restrictive nature of the blood-brain barrier (BBB). ERT and SRT alleviate substrate accumulation through exogenous supplementation over the patient's lifetime, while gene editing could be curative, fixing the causative gene, GLB1, to enable endogenous enzyme activity. Stem cell therapy can be a combination of both, with ex vivo gene editing of cells to cause the production of enzymes. These approaches require special considerations for brain delivery, which has led to novel formulations. A few therapeutic interventions have progressed to early-phase clinical trials, presenting a bright outlook for improved clinical management for GM1.
Collapse
Affiliation(s)
- Dorian Foster
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, SC, United States
| | - Lucian Williams
- Department of Bioengineering, Clemson University, Clemson, SC, United States
| | - Noah Arnold
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, SC, United States
| | - Jessica Larsen
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, SC, United States
- Department of Bioengineering, Clemson University, Clemson, SC, United States
| |
Collapse
|
5
|
Dallali D, Fakhfakh J, Paris C, Hamden K, Varbanov M, Allouche N. Fructooligosaccharides from Cynoglossum tubiflorus: Effect of the molecular size on their antidiabetic activity in high-fat diet and alloxan induced diabetic rats. Bioorg Chem 2024; 143:107100. [PMID: 38211550 DOI: 10.1016/j.bioorg.2024.107100] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/22/2023] [Accepted: 01/02/2024] [Indexed: 01/13/2024]
Abstract
The use of acetylation followed by silica gel column purification allowed the isolation of eight fructooligosaccharides (FOS) from the ethanol extract of Cynoglossum tubiflorus roots. Each FOS was identified by analyzing its FT-IR, HRMS/MS and NMR data, including 1H, 13C and 2D NMR HH COSY, HMBC and NOESY. In diabetic rats treated with a series of FOS from Glc-(Fru)3 to Glc-(Fru)7, a significant inhibition of intestinal α-amylase was observed. This activity increases proportionally with the FOS molecular size. It was found that they delay the absorption of total cholesterol (TC), ldl-cholesterol (LDL-C) and increase HDL-cholesterol (HDL-C) in a molecular size-dependent manner. This inhibitory effect on the activity of the digestive enzyme causes a significant (p < 0.05) reduction in the level of glucose in the blood as an anti-diabetic action. The ethanolic extract (E.E) exerts a significant effect against α-amylase as well as antihyperglycemic and antihyperlipidemic actions, while its acetylation suppresses these effects. Therefore, this study demonstrates for the first time that pure FOS act as an efficient agent in preventing hyperglycemia and hyperlipidemia and that this action evolves in the same manner with their molecular size.
Collapse
Affiliation(s)
- Dhouha Dallali
- Laboratory of Organic Chemistry LR17ES08, Natural Substances Team, Faculty of Sciences of Sfax, University of Sfax, P.B.1171, Sfax 3000, Tunisia
| | - Jawhar Fakhfakh
- Laboratory of Organic Chemistry LR17ES08, Natural Substances Team, Faculty of Sciences of Sfax, University of Sfax, P.B.1171, Sfax 3000, Tunisia.
| | - Cédric Paris
- Laboratory of Biomolecule Engineering (LIBio), Lorraine University, 2 Avenue de la Foret de Haye -TSA, Vandoeuvre Cedex 40602 54518, France
| | - Khaled Hamden
- Laboratory of Bioresources: Integrative Biology and Exploiting, Higher Institute of Biotechnology of Monastir, University of Monastir, Tunisia
| | - Mihayl Varbanov
- L2CM, Université de Lorraine, Centre National de la Recherche Scientifique (CNRS), F-54000 Nancy, France
| | - Noureddine Allouche
- Laboratory of Organic Chemistry LR17ES08, Natural Substances Team, Faculty of Sciences of Sfax, University of Sfax, P.B.1171, Sfax 3000, Tunisia
| |
Collapse
|
6
|
Ellison S, Parker H, Bigger B. Advances in therapies for neurological lysosomal storage disorders. J Inherit Metab Dis 2023; 46:874-905. [PMID: 37078180 DOI: 10.1002/jimd.12615] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 04/12/2023] [Accepted: 04/17/2023] [Indexed: 04/21/2023]
Abstract
Lysosomal Storage Disorders (LSDs) are a diverse group of inherited, monogenic diseases caused by functional defects in specific lysosomal proteins. The lysosome is a cellular organelle that plays a critical role in catabolism of waste products and recycling of macromolecules in the body. Disruption to the normal function of the lysosome can result in the toxic accumulation of storage products, often leading to irreparable cellular damage and organ dysfunction followed by premature death. The majority of LSDs have no curative treatment, with many clinical subtypes presenting in early infancy and childhood. Over two-thirds of LSDs present with progressive neurodegeneration, often in combination with other debilitating peripheral symptoms. Consequently, there is a pressing unmet clinical need to develop new therapeutic interventions to treat these conditions. The blood-brain barrier is a crucial hurdle that needs to be overcome in order to effectively treat the central nervous system (CNS), adding considerable complexity to therapeutic design and delivery. Enzyme replacement therapy (ERT) treatments aimed at either direct injection into the brain, or using blood-brain barrier constructs are discussed, alongside more conventional substrate reduction and other drug-related therapies. Other promising strategies developed in recent years, include gene therapy technologies specifically tailored for more effectively targeting treatment to the CNS. Here, we discuss the most recent advances in CNS-targeted treatments for neurological LSDs with a particular emphasis on gene therapy-based modalities, such as Adeno-Associated Virus and haematopoietic stem cell gene therapy approaches that encouragingly, at the time of writing are being evaluated in LSD clinical trials in increasing numbers. If safety, efficacy and improved quality of life can be demonstrated, these therapies have the potential to be the new standard of care treatments for LSD patients.
Collapse
Affiliation(s)
- S Ellison
- Division of Cell Matrix Biology and Regenerative Medicine, University of Manchester, Manchester, United Kingdom
| | - H Parker
- Division of Immunology, Immunity to Infection and Respiratory Medicine, University of Manchester, Manchester, United Kingdom
| | - B Bigger
- Division of Cell Matrix Biology and Regenerative Medicine, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
7
|
Leuzzi V, Galosi S. Experimental pharmacology: Targeting metabolic pathways. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 169:259-315. [PMID: 37482395 DOI: 10.1016/bs.irn.2023.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Since the discovery of the treatment for Wilson disease a growing number of treatable inherited dystonias have been identified and their search and treatment have progressively been implemented in the clinics of patients with dystonia. While waiting for gene therapy to be more widely and adequately translated into the clinical setting, the efforts to divert the natural course of dystonia reside in unveiling its pathogenesis. Specific metabolic treatments can rewrite the natural history of the disease by preventing neurotoxic metabolite accumulation or interfering with the cell accumulation of damaging metabolites, restoring energetic cell fuel, supplementing defective metabolites, and supplementing the defective enzyme. A metabolic derangement of cell homeostasis is part of the progression of many non-metabolic genetic lesions and could be the target for possible metabolic approaches. In this chapter, we provided an update on treatment strategies for treatable inherited dystonias and an overview of genetic dystonias with new experimental therapeutic approaches available or close to clinical translation.
Collapse
Affiliation(s)
- Vincenzo Leuzzi
- Department of Human Neuroscience, Sapienza University, Rome, Italy
| | - Serena Galosi
- Department of Human Neuroscience, Sapienza University, Rome, Italy.
| |
Collapse
|
8
|
Mignani L, Guerra J, Corli M, Capoferri D, Presta M. Zebra-Sphinx: Modeling Sphingolipidoses in Zebrafish. Int J Mol Sci 2023; 24:ijms24054747. [PMID: 36902174 PMCID: PMC10002607 DOI: 10.3390/ijms24054747] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
Sphingolipidoses are inborn errors of metabolism due to the pathogenic mutation of genes that encode for lysosomal enzymes, transporters, or enzyme cofactors that participate in the sphingolipid catabolism. They represent a subgroup of lysosomal storage diseases characterized by the gradual lysosomal accumulation of the substrate(s) of the defective proteins. The clinical presentation of patients affected by sphingolipid storage disorders ranges from a mild progression for some juvenile- or adult-onset forms to severe/fatal infantile forms. Despite significant therapeutic achievements, novel strategies are required at basic, clinical, and translational levels to improve patient outcomes. On these bases, the development of in vivo models is crucial for a better understanding of the pathogenesis of sphingolipidoses and for the development of efficacious therapeutic strategies. The teleost zebrafish (Danio rerio) has emerged as a useful platform to model several human genetic diseases owing to the high grade of genome conservation between human and zebrafish, combined with precise genome editing and the ease of manipulation. In addition, lipidomic studies have allowed the identification in zebrafish of all of the main classes of lipids present in mammals, supporting the possibility to model diseases of the lipidic metabolism in this animal species with the advantage of using mammalian lipid databases for data processing. This review highlights the use of zebrafish as an innovative model system to gain novel insights into the pathogenesis of sphingolipidoses, with possible implications for the identification of more efficacious therapeutic approaches.
Collapse
|
9
|
Li X, Ren X, Zhang Y, Ding L, Huo M, Li Q. Fabry disease: Mechanism and therapeutics strategies. Front Pharmacol 2022; 13:1025740. [PMID: 36386210 PMCID: PMC9643830 DOI: 10.3389/fphar.2022.1025740] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/10/2022] [Indexed: 12/04/2022] Open
Abstract
Fabry disease is a monogenic disease characterized by a deficiency or loss of the α-galactosidase A (GLA). The resulting impairment in lysosomal GLA enzymatic activity leads to the pathogenic accumulation of enzymatic substrate and, consequently, the progressive appearance of clinical symptoms in target organs, including the heart, kidney, and brain. However, the mechanisms involved in Fabry disease-mediated organ damage are largely ambiguous and poorly understood, which hinders the development of therapeutic strategies for the treatment of this disorder. Although currently available clinical approaches have shown some efficiency in the treatment of Fabry disease, they all exhibit limitations that need to be overcome. In this review, we first introduce current mechanistic knowledge of Fabry disease and discuss potential therapeutic strategies for its treatment. We then systemically summarize and discuss advances in research on therapeutic approaches, including enzyme replacement therapy (ERT), gene therapy, and chaperone therapy, as well as strategies targeting subcellular compartments, such as lysosomes, the endoplasmic reticulum, and the nucleus. Finally, the future development of potential therapeutic strategies is discussed based on the results of mechanistic studies and the limitations associated with these therapeutic approaches.
Collapse
Affiliation(s)
- Xi Li
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, China
| | - Xiangyi Ren
- Core Facilities of West China Hospital, Sichuan University, Chengdu, China
| | - Yabing Zhang
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, China
| | - Lin Ding
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, China
| | - Minfeng Huo
- Shanghai Tenth People’s Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, School of Medicine, Tongji University, Shanghai, China
- *Correspondence: Qian Li, ; Minfeng Huo,
| | - Qian Li
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, China
- *Correspondence: Qian Li, ; Minfeng Huo,
| |
Collapse
|
10
|
Fluorescent In Situ Staining and Flow Cytometric Procedures as New Pre-Diagnostic Tests for Sialidosis, GM1 Gangliosidosis and Niemann–Pick Type C. Biomedicines 2022; 10:biomedicines10081962. [PMID: 36009508 PMCID: PMC9405762 DOI: 10.3390/biomedicines10081962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/03/2022] [Accepted: 08/10/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Early diagnosis is essential in the field of lysosomal storage disorders for the proper management of patients and for starting therapies before irreversible damage occurs, particularly in neurodegenerative conditions. Currently, specific biomarkers for the diagnosis of lysosomal storage disorders are lacking in routine laboratory practice, except for enzymatic tests, which are available only in specialized metabolic centers. Recently, we established a method for measuring and verifying changes in GM1 ganglioside levels in peripheral blood lymphocytes in patients with GM1 gangliosidosis. However, fresh blood is not always available, and using frozen/thawed lymphocytes can lead to inaccurate results. Methods: We used frozen/thawed fibroblasts obtained from stored biopsies to explore the feasibility of fluorescent imaging and flow-cytometric methods to track changes in storage materials in fibroblasts from patients with three lysosomal neurodegenerative conditions: GM1 gangliosidosis, Sialidosis, and Niemann–Pick type C. We used specific markers for each pathology. Results and Conclusions: We demonstrated that with our methods, it is possible to clearly distinguish the levels of accumulated metabolites in fibroblasts from affected and unaffected patients for all the three pathologies considered. Our methods proved to be rapid, sensitive, unbiased, and potentially applicable to other LSDs.
Collapse
|
11
|
Processed pseudogene insertion in GLB1 causes Morquio B disease by altering intronic splicing regulatory landscape. NPJ Genom Med 2022; 7:44. [PMID: 35882863 PMCID: PMC9325892 DOI: 10.1038/s41525-022-00315-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 07/06/2022] [Indexed: 11/08/2022] Open
Abstract
Morquio B disease (MBD) is an ultra-rare lysosomal storage disease, which represents the relatively mild form of GLB1-associated disorders. In this article, we present the unique case of “pure” MBD associated with an insertion of the mobile genetic element from the class of retrotransposons. Using whole-genome sequencing (WGS), we identified an integration of the processed pseudogene NPM1 deep in the intron 5 of GLB1. The patient’s mRNA analysis and the detailed functional analysis revealed the underlying molecular genetic mechanism of pathogenesis, which is an alteration of the GLB1 normal splicing. By co-expression of minigenes and antisense splice-modulating oligonucleotides (ASMOs), we demonstrated that pseudogene-derived splicing regulatory motifs contributed to an activation of the cryptic exon located 36 bp upstream of the integration site. Blocking the cryptic exon with ASMOs incorporated in the modified U7 small nuclear RNA (modU7snRNA) almost completely restored the wild-type splicing in the model cell line, that could be further extended toward the personalized genetic therapy. To our knowledge, this is the second reported case of the processed pseudogene insertion for monogenic disorders. Our data emphasizes the unique role of WGS in identification of such rare and probably underrepresented in literature types of disease-associated genetic variants.
Collapse
|
12
|
Kong W, Lu C, Ding Y, Meng Y. Molecular environment and atypical function: What do we know about enzymes associated with Mucopolysaccharidoses? Orphanet J Rare Dis 2022; 17:112. [PMID: 35246201 PMCID: PMC8895820 DOI: 10.1186/s13023-022-02211-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 02/06/2022] [Indexed: 02/06/2023] Open
Abstract
Mucopolysaccharidoses are a group of lysosomal storage disorders caused by deficiency of enzymes involved in glycosaminoglycans degradation. Relationship between mucopolysaccharidoses and related enzymes has been clarified clearly. Based on such relationship, lots of therapies have been commercialized or are in the process of research and development. However, many potential treatments failed, because those treatments did not demonstrate expected efficacy or safety data. Molecular environment of enzyme, which is essential for their expression and activity, is fundamental for efficacy of therapy. In addition to enzyme activities, mucopolysaccharidoses-related enzymes have other atypical functions, such as regulation, which may cause side effects. This review tried to discuss molecular environment and atypical function of enzymes that are associated with mucopolysaccharidoses, which is very important for the efficacy and safety of potential therapies.
Collapse
Affiliation(s)
- Weijing Kong
- Department of Pediatrics, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Cheng Lu
- Beijing Hong Jian Medical Device Company, Beijing, 100176, China
| | - Yingxue Ding
- Department of Pediatrics, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China.
| | - Yan Meng
- Department of Pediatrics, Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
13
|
Stütz AE, Thonhofer M, Weber P, Wolfsgruber A, Wrodnigg TM. Pharmacological Chaperones for β-Galactosidase Related to G M1 -Gangliosidosis and Morquio B: Recent Advances. CHEM REC 2021; 21:2980-2989. [PMID: 34816592 DOI: 10.1002/tcr.202100269] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 10/30/2021] [Accepted: 11/02/2021] [Indexed: 12/21/2022]
Abstract
A short survey on selected β-galactosidase inhibitors as potential pharmacological chaperones for GM1 -gangliosidosis and Morquio B associated mutants of human lysosomal β-galactosidase is provided highlighting recent developments in this particular area of lysosomal storage disorders and orphan diseases.
Collapse
Affiliation(s)
- Arnold E Stütz
- Glycogroup, Institute of Chemistry and Technology of Biobased Systems, Graz University of Technology, Stremayrgasse 9, A-8010, Graz, Austria
| | - Martin Thonhofer
- Glycogroup, Institute of Chemistry and Technology of Biobased Systems, Graz University of Technology, Stremayrgasse 9, A-8010, Graz, Austria
| | - Patrick Weber
- Glycogroup, Institute of Chemistry and Technology of Biobased Systems, Graz University of Technology, Stremayrgasse 9, A-8010, Graz, Austria
| | - Andreas Wolfsgruber
- Glycogroup, Institute of Chemistry and Technology of Biobased Systems, Graz University of Technology, Stremayrgasse 9, A-8010, Graz, Austria
| | - Tanja M Wrodnigg
- Glycogroup, Institute of Chemistry and Technology of Biobased Systems, Graz University of Technology, Stremayrgasse 9, A-8010, Graz, Austria
| |
Collapse
|
14
|
Nicoli ER, Annunziata I, d’Azzo A, Platt FM, Tifft CJ, Stepien KM. GM1 Gangliosidosis-A Mini-Review. Front Genet 2021; 12:734878. [PMID: 34539759 PMCID: PMC8446533 DOI: 10.3389/fgene.2021.734878] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/16/2021] [Indexed: 11/13/2022] Open
Abstract
GM1 gangliosidosis is a progressive, neurosomatic, lysosomal storage disorder caused by mutations in the GLB1 gene encoding the enzyme β-galactosidase. Absent or reduced β-galactosidase activity leads to the accumulation of β-linked galactose-containing glycoconjugates including the glycosphingolipid (GSL) GM1-ganglioside in neuronal tissue. GM1-gangliosidosis is classified into three forms [Type I (infantile), Type II (late-infantile and juvenile), and Type III (adult)], based on the age of onset of clinical symptoms, although the disorder is really a continuum that correlates only partially with the levels of residual enzyme activity. Severe neurocognitive decline is a feature of Type I and II disease and is associated with premature mortality. Most of the disease-causing β-galactosidase mutations reported in the literature are clustered in exons 2, 6, 15, and 16 of the GLB1 gene. So far 261 pathogenic variants have been described, missense/nonsense mutations being the most prevalent. There are five mouse models of GM1-gangliosidosis reported in the literature generated using different targeting strategies of the Glb1 murine locus. Individual models differ in terms of age of onset of the clinical, biochemical, and pathological signs and symptoms, and overall lifespan. However, they do share the major abnormalities and neurological symptoms that are characteristic of the most severe forms of GM1-gangliosidosis. These mouse models have been used to study pathogenic mechanisms, to identify biomarkers, and to evaluate therapeutic strategies. Three GLB1 gene therapy trials are currently recruiting Type I and Type II patients (NCT04273269, NCT03952637, and NCT04713475) and Type II and Type III patients are being recruited for a trial utilizing the glucosylceramide synthase inhibitor, venglustat (NCT04221451).
Collapse
Affiliation(s)
- Elena-Raluca Nicoli
- Glycosphingolipid and Glycoprotein Disorders Unit, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
| | - Ida Annunziata
- Department of Genetics, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Alessandra d’Azzo
- Department of Genetics, St. Jude Children’s Research Hospital, Memphis, TN, United States
- Department of Anatomy and Neurobiology, College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Frances M. Platt
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Cynthia J. Tifft
- Glycosphingolipid and Glycoprotein Disorders Unit, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
- Office of the Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
| | - Karolina M. Stepien
- Adult Inherited Metabolic Disorders, Salford Royal NHS Foundation Trust, Salford, United Kingdom
- Division of Diabetes, Endocrinology and Gastroenterology, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
15
|
Graceffa V. Clinical Development of Cell Therapies to Halt Lysosomal Storage Diseases: Results and Lessons Learned. Curr Gene Ther 2021; 22:191-213. [PMID: 34323185 DOI: 10.2174/1566523221666210728141924] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 05/31/2021] [Accepted: 06/13/2021] [Indexed: 11/22/2022]
Abstract
Although cross-correction was discovered more than 50 years ago, and held the promise of drastically improving disease management, still no cure exists for lysosomal storage diseases (LSDs). Cell therapies hold the potential to halt disease progression: either a subset of autologous cells can be ex vivo/ in vivo transfected with the functional gene or allogenic wild type stem cells can be transplanted. However, majority of cell-based attempts have been ineffective, due to the difficulties in reversing neuronal symptomatology, in finding appropriate gene transfection approaches, in inducing immune tolerance, reducing the risk of graft versus host disease (GVHD) when allogenic cells are used and that of immune response when engineered viruses are administered, coupled with a limited secretion and uptake of some enzymes. In the last decade, due to advances in our understanding of lysosomal biology and mechanisms of cross-correction, coupled with progresses in gene therapy, ongoing pre-clinical and clinical investigations have remarkably increased. Even gene editing approaches are currently under clinical experimentation. This review proposes to critically discuss and compare trends and advances in cell-based and gene therapy for LSDs. Systemic gene delivery and transplantation of allogenic stem cells will be initially discussed, whereas proposed brain targeting methods will be then critically outlined.
Collapse
Affiliation(s)
- Valeria Graceffa
- Cellular Health and Toxicology Research Group (CHAT), Institute of Technology Sligo, Ash Ln, Bellanode, Sligo, Ireland
| |
Collapse
|
16
|
Genome editing in lysosomal disorders. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2021; 182:289-325. [PMID: 34175045 DOI: 10.1016/bs.pmbts.2021.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Lysosomal disorders are a group of heterogenous diseases caused by mutations in genes that encode for lysosomal proteins. With exception of some cases, these disorders still lack both knowledge of disease pathogenesis and specific therapies. In this sense, genome editing arises as a technique that allows both the creation of specific cell lines, animal models and gene therapy protocols for these disorders. Here we explain the main applications of genome editing for lysosomal diseases, with examples based on the literature. The ability to rewrite the genome will be of extreme importance to study and potentially treat these rare disorders.
Collapse
|
17
|
Parenti G, Medina DL, Ballabio A. The rapidly evolving view of lysosomal storage diseases. EMBO Mol Med 2021; 13:e12836. [PMID: 33459519 PMCID: PMC7863408 DOI: 10.15252/emmm.202012836] [Citation(s) in RCA: 131] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 12/17/2022] Open
Abstract
Lysosomal storage diseases are a group of metabolic disorders caused by deficiencies of several components of lysosomal function. Most commonly affected are lysosomal hydrolases, which are involved in the breakdown and recycling of a variety of complex molecules and cellular structures. The understanding of lysosomal biology has progressively improved over time. Lysosomes are no longer viewed as organelles exclusively involved in catabolic pathways, but rather as highly dynamic elements of the autophagic-lysosomal pathway, involved in multiple cellular functions, including signaling, and able to adapt to environmental stimuli. This refined vision of lysosomes has substantially impacted on our understanding of the pathophysiology of lysosomal disorders. It is now clear that substrate accumulation triggers complex pathogenetic cascades that are responsible for disease pathology, such as aberrant vesicle trafficking, impairment of autophagy, dysregulation of signaling pathways, abnormalities of calcium homeostasis, and mitochondrial dysfunction. Novel technologies, in most cases based on high-throughput approaches, have significantly contributed to the characterization of lysosomal biology or lysosomal dysfunction and have the potential to facilitate diagnostic processes, and to enable the identification of new therapeutic targets.
Collapse
Affiliation(s)
- Giancarlo Parenti
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy.,Department of Translational Medical Sciences, Section of Pediatrics, Federico II University, Naples, Italy
| | - Diego L Medina
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy.,Department of Translational Medical Sciences, Section of Pediatrics, Federico II University, Naples, Italy
| | - Andrea Ballabio
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy.,Department of Translational Medical Sciences, Section of Pediatrics, Federico II University, Naples, Italy.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.,Jan and Dan Duncan Neurological Research Institute, Texas Children Hospital, Houston, TX, USA.,SSM School for Advanced Studies, Federico II University, Naples, Italy
| |
Collapse
|
18
|
Yuskiv N, Higaki K, Stockler-Ipsiroglu S. Morquio B Disease. Disease Characteristics and Treatment Options of a Distinct GLB1-Related Dysostosis Multiplex. Int J Mol Sci 2020; 21:E9121. [PMID: 33266180 PMCID: PMC7729736 DOI: 10.3390/ijms21239121] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/16/2020] [Accepted: 11/20/2020] [Indexed: 12/17/2022] Open
Abstract
Morquio B disease (MBD) is an autosomal recessive GLB1-gene-related lysosomal storage disease, presenting with a peculiar type of dysostosis multiplex which is also observed in GALNS-related Morquio A disease. MBD may present as pure skeletal phenotype (pure MBD) or in combination with the neuronopathic manifestations seen in type 2 (juvenile) or type 3 (late onset) GM1 gangliosidosis (MBD plus). The main skeletal features are progressive growth impairment, kyphoscoliosis, coxa/genua valga, joint laxity, platyspondyly and odontoid hypoplasia. The main neuronopathic features are dystonia, ataxia, and intellectual/developmental/speech delay. Spinal cord compression occurs as a complication of spinal dysostosis. Chronic pain is reported, along with mobility issues and challenges with daily living and self-care activities, as the most common health concern. The most commonly reported orthopedic surgeries are hip and knee replacements. Keratan sulphate-derived oligosaccharides are characteristic biomarkers. Residual β-galactosidase activities measured against synthetic substrates do not correlate with the phenotype. W273 L and T500A are the most frequently observed GLB1 variants in MBD, W273L being invariably associated with pure MBD. Cytokines play a role in joint destruction and pain, providing a promising treatment target. In the future, patients may benefit from small molecule therapies, and gene and enzyme replacement therapies, which are currently being developed for GM1 gangliosidosis.
Collapse
Affiliation(s)
- Nataliya Yuskiv
- BC Children’s Hospital, University of British Columbia, Vancouver, BC V6H 3V4, Canada;
| | - Katsumi Higaki
- Research Initiative Center, Organization for Research Initiative and Promotion, Tottori University, Yonago 683-8503, Japan;
| | | |
Collapse
|
19
|
Fischetto R, Palladino V, Mancardi MM, Giacomini T, Palladino S, Gaeta A, Di Rocco M, Zampini L, Lassandro G, Favia V, Tripaldi ME, Strisciuglio P, Romano A, Severino M, Morrone A, Giordano P. Substrate reduction therapy with Miglustat in pediatric patients with GM1 type 2 gangliosidosis delays neurological involvement: A multicenter experience. Mol Genet Genomic Med 2020; 8:e1371. [PMID: 32779865 PMCID: PMC7549581 DOI: 10.1002/mgg3.1371] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/30/2020] [Accepted: 06/01/2020] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND In GM1 gangliosidosis the lack of function of β-galactosidase results in an accumulation of GM1 ganglioside and related glycoconjugates in visceral organs, and particularly in the central nervous system, leading to severe disability and premature death. In the type 2 form of the disease, early intervention would be important to avoid precocious complications. To date, there are no effective therapeutic options in preventing progressive neurological deterioration. Substrate reduction therapy with Miglustat, a N-alkylated sugar that inhibits the enzyme glucosylceramide synthase, has been proposed for the treatment of several lysosomal storage disorders such as Gaucher type 1 and Niemann Pick Type C diseases. However, data on Miglustat therapy in patients with GM1 gangliosidosis are still scarce. METHODS We report here the results of Miglustat administration in four Italian children (average age: 55 months, range 20-125) affected by GM1 gangliosidosis type 2 treated in three different Italian pediatric hospitals specialized in metabolic diseases. CONCLUSION This treatment was safe and relatively well tolerated by all patients, with stabilization and/or slowing down of the neurological progression in three subjects.
Collapse
Affiliation(s)
- Rita Fischetto
- Clinical Genetics Unit, Department of Pediatric Medicine, Giovanni XXIII Children's Hospital, Bari, Italy
| | - Valentina Palladino
- Department of Biomedical Science and Human Oncology, Pediatric Unit, University of Bari "Aldo Moro", Bari, Italy
| | - Maria M Mancardi
- Unit of Child Neuropsychiatry, Clinical and Surgical Neurosciences Department, IRCCS Institute Giannina Gaslini, Genoa, Italy
| | - Thea Giacomini
- Unit of Child Neuropsychiatry, Clinical and Surgical Neurosciences Department, IRCCS Institute Giannina Gaslini, Genoa, Italy
| | | | - Alberto Gaeta
- Radiology Unit, Pediatric Hospital Giovanni XXIII, Bari, Italy
| | - Maja Di Rocco
- Unit of Rare Diseases, IRCCS Institute Giannina Gaslini, Genoa, Italy
| | - Lucia Zampini
- Department of Clinical Sciences, Division of Pediatrics, Polytechnic University of Marche, OspedaliRiuniti, Presidio Salesi, Ancona, Italy
| | - Giuseppe Lassandro
- Department of Biomedical Science and Human Oncology, Pediatric Unit, University of Bari "Aldo Moro", Bari, Italy
| | - Vito Favia
- Clinical Genetics Unit, Department of Pediatric Medicine, Giovanni XXIII Children's Hospital, Bari, Italy
| | - Maria E Tripaldi
- Department of Biomedical Science and Human Oncology, Pediatric Unit, University of Bari "Aldo Moro", Bari, Italy
| | - Pietro Strisciuglio
- Department of Medical Translational Sciences Section of Pediatrics, University Federico II Naples, Napoli, Italy
| | - Alfonso Romano
- Department of Medical Translational Sciences Section of Pediatrics, University Federico II Naples, Napoli, Italy
| | | | - Amelia Morrone
- Paediatric Neurology Unit and Laboratories, Neuroscience Department, Meyer Children's Hospital, Florence, Italy
| | - Paola Giordano
- Department of Biomedical Science and Human Oncology, Pediatric Unit, University of Bari "Aldo Moro", Bari, Italy
| |
Collapse
|