1
|
Vall-Palomar M, Torchia J, Morata J, Durán M, Tonda R, Ferrer M, Sánchez A, Cantero-Recasens G, Ariceta G, Meseguer A, Martinez C. Identification of modifier gene variants overrepresented in familial hypomagnesemia with hypercalciuria and nephrocalcinosis patients with a more aggressive renal phenotype. PLoS Genet 2025; 21:e1011568. [PMID: 40173198 PMCID: PMC12005529 DOI: 10.1371/journal.pgen.1011568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 04/17/2025] [Accepted: 01/08/2025] [Indexed: 04/04/2025] Open
Abstract
Familial hypomagnesemia with hypercalciuria and nephrocalcinosis (FHHNC) is an ultra-rare autosomal recessive renal tubular disease with an incidence of <1/1.000.000 individuals, caused by loss-of-function mutations in CLDN16 and CLDN19. Our study includes a unique cohort representing all known FHHNC patients in Spain, with 90% harbouring mutations in CLDN19. Of these, 70% carry the p.G20D mutation in homozygosis. Despite this high genetic homogeneity, our FHHNC cohort display a high phenotypic variability, even among siblings harbouring identical mutations. Patients were stratified at the extremes of the renal phenotype according to their estimated glomerular filtration rate annual decline and subjected to whole exome sequencing (WES) aiming to find candidate phenotype-modifier genes. Initial statistical analysis by SKAT-O identified numerous variants, which were then filtered based on P-value <0.01 and kidney expression. A thorough prioritization strategy was then applied by an exhaustive disease knowledge-driven exploitation of data from public databases (Human Protein Atlas, GWAS catalog, GTEx) to further refine candidate genes. Odds ratios were also calculated to identify potential risk variants. This analysis pipeline suggested several gene variants associated with a higher risk of developing a more aggressive renal phenotype. While these findings hint at the existence of genetic modifiers in FHHNC, further research is needed to confirm their role and potential clinical significance. Clinical decisions should not be based on these preliminary findings, and additional cohorts should be studied to validate and expand upon our results. This exploratory study provides a foundation for future investigations into the genetic factors influencing FHHNC progression and may contribute to our understanding of the disease's variable expressivity potentially enabling the implementation of more tailored therapeutic strategies.
Collapse
Affiliation(s)
- Monica Vall-Palomar
- Renal Physiopathology Group, Vall d’Hebron Research Institute (VHIR), Barcelona, Spain
| | - Julieta Torchia
- Renal Physiopathology Group, Vall d’Hebron Research Institute (VHIR), Barcelona, Spain
| | - Jordi Morata
- CNAG, Centro Nacional de Análisis Genómico, Barcelona, Spain
| | - Monica Durán
- Renal Physiopathology Group, Vall d’Hebron Research Institute (VHIR), Barcelona, Spain
| | - Raul Tonda
- CNAG, Centro Nacional de Análisis Genómico, Barcelona, Spain
| | - Mireia Ferrer
- Statistics and Bioinformatic Unit (UEB), Vall d’Hebron Research Institute (VHIR), Barcelona, Spain
| | - Alex Sánchez
- Statistics and Bioinformatic Unit (UEB), Vall d’Hebron Research Institute (VHIR), Barcelona, Spain
- Universitat de Barcelona, Barcelona, Spain
| | | | - Gema Ariceta
- Renal Physiopathology Group, Vall d’Hebron Research Institute (VHIR), Barcelona, Spain
- Pediatric Nephrology Department, Vall d’Hebron University Hospital, Barcelona, Spain
- Pediatrics Department, School of Medicine, Universitat Autònoma de Barcelona (UAB), Cerdañola del Vallés, Spain
| | - Anna Meseguer
- Renal Physiopathology Group, Vall d’Hebron Research Institute (VHIR), Barcelona, Spain
- Biochemistry and Molecular Biology Department, School of Medicine, Universitat Autònoma de Barcelona (UAB), Cerdañola del Vallés, Spain
| | - Cristina Martinez
- Renal Physiopathology Group, Vall d’Hebron Research Institute (VHIR), Barcelona, Spain
| |
Collapse
|
2
|
Yang D, Jiang Z, Huang H, Wang L, Ying C, Chen Y, Lu Y, Zhang T, Zhu Y, Wang S, Wang Y, Guo Y, Wang H, Cen Z, Luo W. Genetic Mutations in Cell Junction Proteins Associated with Brain Calcification. Mov Disord 2025; 40:400-419. [PMID: 39620489 DOI: 10.1002/mds.30068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 11/06/2024] [Accepted: 11/07/2024] [Indexed: 03/22/2025] Open
Abstract
Intracerebral calcium deposition, classified into primary familial brain calcification (PFBC) and secondary brain calcification, occurs within the brain parenchyma and vasculature. PFBC manifests with progressive motor decline, dysarthria, and cognitive impairment, with limited treatment options available. Recent research has suggested a link between dysfunction of the blood-brain barrier (BBB) and PFBC, with certain genetic variants potentially affecting neurovascular unit (NVU) function, thereby contributing to BBB integrity disruption and brain calcification. Cell junctions play an indispensable role in maintaining the function of NVUs. The pathogenic mechanisms of PFBC-causative genes, such as PDGFRB, PDGFB, MYORG, and JAM2, involve NVU disruption. Cell junctions, such as tight junctions, gap junctions, adherens junctions, desmosomes, hemidesmosomes, and focal adhesions, are vital for cell-cell and cell-extracellular matrix connections, maintaining barrier function, cell adhesion, and facilitating ion and metabolite exchange. Several recent studies have highlighted the role of mutations in genes encoding cell junction proteins in the onset and progression of brain calcification and its related phenotypes. This emerging body of research offers a unique perspective for investigating the underlying mechanisms driving brain calcification. In this review, we conducted an examination of the literature reporting on genetic variants in cell junction proteins associated with brain calcification to delineate potential molecular pathways and investigate genotype-phenotype correlations. This approach not only reinforces the rationale for molecular subtyping of brain calcification but also lays the groundwork for the discovery of novel causative genes involved in pathogenesis. © 2024 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Dehao Yang
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zihan Jiang
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Honghao Huang
- Department of Cardiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lebo Wang
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chenxin Ying
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yiqun Chen
- The First School of Medicine, School of Information and Engineering, Wenzhou Medical University, Wenzhou, China
| | - Yangguang Lu
- The First School of Medicine, School of Information and Engineering, Wenzhou Medical University, Wenzhou, China
| | - Tingxuan Zhang
- Renji College, Wenzhou Medical University, Wenzhou, China
| | - Yusheng Zhu
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Shiyue Wang
- The First School of Medicine, School of Information and Engineering, Wenzhou Medical University, Wenzhou, China
| | - Yaoting Wang
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Chu Kochen Honors College, Zhejiang University, Hangzhou, China
| | - Yuru Guo
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Chu Kochen Honors College, Zhejiang University, Hangzhou, China
| | - Haoyu Wang
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Chu Kochen Honors College, Zhejiang University, Hangzhou, China
| | - Zhidong Cen
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wei Luo
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
3
|
Thapa R, Roy A, Nayek K, Basu A. Identification of a Novel Homozygous Missense Mutation in the CLDN16 Gene to Decipher the Ambiguous Clinical Presentation Associated with Autosomal Dominant Hypocalcaemia and Familial Hypomagnesemia with Hypercalciuria and Nephrocalcinosis in an Indian Family. Calcif Tissue Int 2024; 114:110-118. [PMID: 38078932 DOI: 10.1007/s00223-023-01142-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 09/14/2023] [Indexed: 01/23/2024]
Abstract
Familial hypomagnesemia with hypercalciuria and nephrocalcinosis (FHNNC) is a rare autosomal recessive renal tubulopathy disorder characterized by excessive urinary loss of calcium and magnesium, polyuria, polydipsia, bilateral nephrocalcinosis, progressive chronic kidney disease, and renal failure. Also, sometimes amelogenesis imperfecta and severe ocular abnormalities are involved. The CLDN-16 and CLDN-19 genes encode the tight junction proteins claudin-16 and claudin-19, respectively, in the thick ascending loop of Henle in the kidney, epithelial cells of the retina, dental enamel, etc. Loss of function of the CLDN-16 and/or CLDN-19 genes leads to FHHNC. We present a case of FHHNC type 1, which was first confused with autosomal dominant hypocalcaemia (ADH) due to the presence of a very low serum parathyroid hormone (PTH) concentration and other similar clinical features before the genetic investigations. After the exome sequencing, FHHNC type 1 was confirmed by uncovering a novel homozygous missense mutation in the CLDN-16 gene (Exon 2, c.374 T > C) which causes, altered protein structure with F55S. Associated clinical, biochemical, and imaging findings also corroborate final diagnosis. Our findings expand the spectrum of the CLDN-16 mutation, which will further help in the genetic diagnosis and management of FHNNC.
Collapse
Affiliation(s)
- Rupesh Thapa
- The University of Burdwan, Burdwan, WB, India
- National Institute of Biomedical Genomics, Kalyani, WB, India
| | - Amaresh Roy
- Department of Paediatric Medicine, Burdwan Medical College, and Hospital, Burdwan, WB, India
| | - Kaustav Nayek
- Department of Paediatric Medicine, Burdwan Medical College, and Hospital, Burdwan, WB, India.
| | - Anupam Basu
- The University of Burdwan, Burdwan, WB, India.
- National Institute of Biomedical Genomics, Kalyani, WB, India.
| |
Collapse
|
4
|
Song Y, Zhao C, Li D. Research progress on renal calculus associate with inborn error of metabolism. Zhejiang Da Xue Xue Bao Yi Xue Ban 2023; 52:169-177. [PMID: 37283101 DOI: 10.3724/zdxbyxb-2022-0698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Renal calculus is a common disease with complex etiology and high recurrence rate. Recent studies have revealed that gene mutations may lead to metabolic defects which are associated with the formation of renal calculus, and single gene mutation is involved in relative high proportion of renal calculus. Gene mutations cause changes in enzyme function, metabolic pathway, ion transport, and receptor sensitivity, causing defects in oxalic acid metabolism, cystine metabolism, calcium ion metabolism, or purine metabolism, which may lead to the formation of renal calculus. The hereditary conditions associated with renal calculus include primary hyperoxaluria, cystinuria, Dent disease, familial hypomagnesemia with hypercalciuria and nephrocalcinosis, Bartter syndrome, primary distal renal tubular acidosis, infant hypercalcemia, hereditary hypophosphatemic rickets with hypercalciuria, adenine phosphoribosyltransferase deficiency, hypoxanthine-guanine phosphoribosyltransferase deficiency, and hereditary xanthinuria. This article reviews the research progress on renal calculus associated with inborn error of metabolism, to provide reference for early screening, diagnosis, treatment, prevention and recurrence of renal calculus.
Collapse
Affiliation(s)
- Yuanming Song
- Department of Urology, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou Province, China.
| | - Changyong Zhao
- Department of Urology, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou Province, China
| | - Daobing Li
- Department of Urology, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou Province, China.
| |
Collapse
|
5
|
Tseng MH, Konrad M, Ding JJ, Lin SH. Clinical and Genetic Approach to Renal Hypomagnesemia. Biomed J 2021; 45:74-87. [PMID: 34767995 PMCID: PMC9133307 DOI: 10.1016/j.bj.2021.11.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/01/2021] [Accepted: 11/03/2021] [Indexed: 12/03/2022] Open
Abstract
Magnesium (Mg2+) is an important intracellular cation and essential to maintain cell function including cell proliferation, immunity, cellular energy metabolism, protein and nucleic acid synthesis, and regulation of ion channels. Consequences of hypomagnesemia affecting multiple organs can be in overt or subtle presentations. Besides detailed history and complete physical examination, the assessment of urinary Mg2+ excretion is help to differentiate renal from extra-renal (gastrointestinal, tissue sequestration, and shifting) causes of hypomagnesemia. Renal hypomagnesemia can be caused by an increased glomerular filtration and impaired reabsorption in proximal tubular cells, thick ascending limb of the loop of Henle or distal convoluted tubules. A combination of renal Mg2+ wasting, familial history, age of onset, associated features, and exclusion of acquired etiologies point to inherited forms of renal hypomagnesemia. Based on clinical phenotypes, its definite genetic diagnosis can be simply grouped into specific, uncertain, and unknown gene mutations with a priority of genetic approach methods. An unequivocal molecular diagnosis could allow for prediction of clinical outcome, providing genetic counseling, avoiding unnecessary studies or interventions, and possibly uncovering the pathogenic mechanism. Given numerous identified genes responsible for Mg2+ transport in renal hypomagnesemia over the past two decades, several potential and specific molecular and cellular therapeutic strategies to correct hypomagnesemia are promising.
Collapse
Affiliation(s)
- Min-Hua Tseng
- Division of Nephrology, Department of Pediatrics, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan; Department of Pediatrics, Xiamen Chang Gung Hospital, China
| | - Martin Konrad
- Department of General Pediatrics, University Children's Hospital Münster, Münster, Germany
| | - Jhao-Jhuang Ding
- Department of Pediatrics, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Shih-Hua Lin
- Division of Nephrology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.
| |
Collapse
|
6
|
Vall-Palomar M, Madariaga L, Ariceta G. Familial hypomagnesemia with hypercalciuria and nephrocalcinosis. Pediatr Nephrol 2021; 36:3045-3055. [PMID: 33595712 DOI: 10.1007/s00467-021-04968-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 01/14/2021] [Accepted: 01/25/2021] [Indexed: 10/22/2022]
Abstract
Familial hypomagnesemia with hypercalciuria and nephrocalcinosis (FHHNC; OMIM 248250) is a rare autosomal recessive kidney disease caused by mutations in the CLDN16 or CLDN19 genes encoding the proteins claudin-16 and claudin-19, respectively. These are involved in paracellular magnesium and calcium transport in the thick ascending limb of Henle's loop and account for most of the magnesium reabsorption in the tubules. FHHNC is characterized by hypomagnesaemia, hypercalciuria, and nephrocalcinosis, and progresses to kidney failure, requiring dialysis and kidney transplantation mainly during the second to third decades of life. Patients carrying CLDN19 mutations frequently exhibit associated congenital ocular defects leading to variable visual impairment. Despite this severe clinical course, phenotype variability even among siblings has been described in this disease, suggesting unidentified epigenetic mechanisms or other genetic or environmental modifiers. Currently, there is no specific therapy for FHHNC. Supportive treatment with high fluid intake and dietary restrictions, as well as magnesium salts, thiazides, and citrate, are commonly used in an attempt to retard the progression of kidney failure. A kidney transplant remains the only curative option for kidney failure in these patients. In this review, we summarize the current knowledge about FHHNC and discuss the remaining open questions about this disorder.
Collapse
Affiliation(s)
- Mònica Vall-Palomar
- Fisiopatologia Renal, Centro de Investigaciones en Bioquímica y Biología Molecular (CIBBIM), Vall d'Hebron. Institut de Recerca (VHIR), Barcelona, Spain
| | - Leire Madariaga
- Biocruces Bizkaia Health Research Institute, Barakaldo, Bizkaia, Spain.,Pediatric Nephrology Department, Cruces University Hospital, UPV/EHU, Barakaldo, Spain
| | - Gema Ariceta
- Fisiopatologia Renal, Centro de Investigaciones en Bioquímica y Biología Molecular (CIBBIM), Vall d'Hebron. Institut de Recerca (VHIR), Barcelona, Spain. .,Pediatric Nephrology Department, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain. .,Servei Nefrología Pediátrica, Hospital Vall d' Hebron, Passeig de la Vall d'Hebron, 119-129, 08035, Barcelona, Spain.
| |
Collapse
|
7
|
García-Castaño A, Perdomo-Ramirez A, Vall-Palomar M, Ramos-Trujillo E, Madariaga L, Ariceta G, Claverie-Martin F. Novel compound heterozygous mutations of CLDN16 in a patient with familial hypomagnesemia with hypercalciuria and nephrocalcinosis. Mol Genet Genomic Med 2020; 8:e1475. [PMID: 32869508 PMCID: PMC7667358 DOI: 10.1002/mgg3.1475] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 07/13/2020] [Accepted: 08/04/2020] [Indexed: 12/23/2022] Open
Abstract
Background Familial hypomagnesemia with hypercalciuria and nephrocalcinosis (FHHNC) is an autosomal recessive tubulopathy characterized by excessive urinary wasting of magnesium and calcium, bilateral nephrocalcinosis, and progressive chronic renal failure in childhood or adolescence. FHHNC is caused by mutations in CLDN16 and CLDN19, which encode the tight‐junction proteins claudin‐16 and claudin‐19, respectively. Most of these mutations are missense mutations and large deletions are rare. Methods We examined the clinical and biochemical features of a Spanish boy with early onset of FHHNC symptoms. Exons and flanking intronic segments of CLDN16 and CLDN19 were analyzed by direct sequencing. We developed a new assay based on Quantitative Multiplex PCR of Short Fluorescent Fragments (QMPSF) to investigate large CLDN16 deletions. Results Genetic analysis revealed two novel compound heterozygous mutations of CLDN16, comprising a missense mutation, c.277G>A; p.(Ala93Thr), in one allele, and a gross deletion that lacked exons 4 and 5,c.(840+25_?)del, in the other allele. The patient inherited these variants from his mother and father, respectively. Conclusions Using direct sequencing and our QMPSF assay, we identified the genetic cause of FHHNC in our patient. This QMPSF assay should facilitate the genetic diagnosis of FHHNC. Our study provided additional data on the genotypic spectrum of the CLDN16 gene.
Collapse
Affiliation(s)
| | - Ana Perdomo-Ramirez
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
| | - Mònica Vall-Palomar
- Fisiopatologia Renal, Centro de Investigaciones en Bioquímica y Biología Molecular (CIBBIM), Vall d'Hebron Institut de Recerca (VHIR, Barcelona, Spain
| | - Elena Ramos-Trujillo
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
| | - Leire Madariaga
- Biocruces Bizkaia Research Institute, Barakaldo, Bizkaia, Spain.,Pediatric Nephrology Department, Cruces University Hospital, UPV/EHU, Barakaldo, Spain
| | - Gema Ariceta
- Fisiopatologia Renal, Centro de Investigaciones en Bioquímica y Biología Molecular (CIBBIM), Vall d'Hebron Institut de Recerca (VHIR, Barcelona, Spain.,Servicio de Nefrología Pediátrica, Hospital Universitari Vall d'Hebron, Barcelona, Spain.,Departamento de Pediatría, Universitat Autònoma de Barcelona, Bellaterra (Barcelona), Spain
| | - Felix Claverie-Martin
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
| |
Collapse
|