1
|
Hodgson AKO, Baxandall L, Aiyedun D, Li A, Au PYB, Bain JM, Gillentine MA, Goel H, Kline AD, Ricupero CL, Sánchez-Carpintero R, Seward EP, Sidlow R, Wilson SA, Balasubramanian M. Expanding the Phenotypic Spectrum of HNRNPU-Related Disorder, Documenting the First Familial Presentation and Comprehensive Review. Am J Med Genet A 2025; 197:e64013. [PMID: 39976380 DOI: 10.1002/ajmg.a.64013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 12/20/2024] [Accepted: 01/19/2025] [Indexed: 02/21/2025]
Abstract
HNRNPU-related neurodevelopmental disorder (HNRNPU-NDD) is caused by pathogenic and likely pathogenic variants in HNRNPU. With increasing accessibility to advanced genetic investigations, children presenting with developmental delay and intellectual disability will often undergo genomic testing; hence, the number of patients found to be affected by HNRNPU-NDD is increasing. We document a cohort of 17 previously unpublished patients with HNRNPU variants, including the first familial case, building on those previously published by our group. A comprehensive literature review was performed, identifying previously published patients and phenotypes for comparison. Eighty-four patients have been published in previous studies with pathogenic variants in HNRNPU with the following phenotypes: Global developmental delay, moderate to severe intellectual disability, early-onset seizures, and dysmorphic features. In addition to these phenotypes previously described, we have recognized ophthalmic abnormalities, cardiac abnormalities, and short stature in our cohort. We provide information on patients with a milder phenotype, enhancing our knowledge of phenotypic variability in HNRNPU-NDD.
Collapse
Affiliation(s)
- A K O Hodgson
- Sheffield Medical School, University of Sheffield, Sheffield, UK
| | - L Baxandall
- Sheffield Diagnostic Genetics Service, Sheffield Children's NHS Foundation Trust, Sheffield, UK
| | - D Aiyedun
- Division of Clinical Medicine, University of Sheffield, Sheffield, UK
| | - A Li
- School of Biosciences, University of Sheffield, Sheffield, UK
| | - P Y B Au
- Department of Medical Genetics, Cumming School of Medicine, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - J M Bain
- Division of Child Neurology, Department of Neurology, Columbia University Irving Medical Centre, New York, New York, USA
| | | | - H Goel
- Hunter Genetics, Waratah, Australia
- University of Newcastle, Callaghan, Australia
| | - A D Kline
- Harvey Institute for Human Genetics, Greater Baltimore Medical Center, Baltimore, Maryland, USA
| | - C L Ricupero
- Center for Dental and Craniofacial Research, College of Dental Medicine, Columbia University Irving Medical Center, New York, USA
| | - R Sánchez-Carpintero
- Paediatric Neurology Unit, Department of Paediatrics, Clinica Universidad de Navarra, Pamplona, Spain
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| | - E P Seward
- School of Biosciences, University of Sheffield, Sheffield, UK
| | - R Sidlow
- Department of Medical Genetics and Metabolism, Valley Children's Hospital, Madera, California, USA
| | - S A Wilson
- School of Biosciences, University of Sheffield, Sheffield, UK
| | - M Balasubramanian
- Division of Clinical Medicine, University of Sheffield, Sheffield, UK
- Sheffield Clinical Genetics Service, Sheffield Children's NHS Foundation Trust, Sheffield, UK
| |
Collapse
|
2
|
Bortolami A, Forzisi Kathera-Ibarra E, Balatsky A, Dubey M, Amin R, Venkateswaran S, Dutto S, Seth I, Ashor A, Nwandiko A, Pan PY, Crockett DP, Sesti F. Abnormal cytoskeletal remodeling but normal neuronal excitability in a mouse model of the recurrent developmental and epileptic encephalopathy-susceptibility KCNB1-p.R312H variant. Commun Biol 2024; 7:1713. [PMID: 39738805 DOI: 10.1038/s42003-024-07344-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 12/02/2024] [Indexed: 01/02/2025] Open
Abstract
Integrin_K+ Channel_Complexes (IKCs), are implicated in neurodevelopment and cause developmental and epileptic encephalopathy (DEE) through mechanisms that were poorly understood. Here, we investigate the function of neocortical IKCs formed by voltage-gated potassium (Kv) channels Kcnb1 and α5β5 integrin dimers in wild-type (WT) and homozygous knock-in (KI) Kcnb1R312H(+/+) mouse model of DEE. Kcnb1R312H(+/+) mice suffer from severe cognitive deficit and compulsive behavior. Their brains show neuronal damage in multiple areas and disrupted corticocortical and corticothalamic connectivity along with aberrant glutamatergic vesicular transport. Surprisingly, the electrical properties of Kcnb1R312H(+/+) pyramidal neurons are similar to those of WT neurons, indicating that the arginine to histidine replacement does not affect the conducting properties of the mutant channel. In contrast, fluorescence recovery after photobleaching, biochemistry, and immunofluorescence, reveal marked differences in the way WT and Kcnb1R312H(+/+) neurons modulate the remodeling of the actin cytoskeleton, a key player in the processes underlying neurodevelopment. Together these results demonstrate that Kv channels can cause multiple conditions, including epileptic seizures, through mechanisms that do not involve their conducting functions and put forward the idea that the etiology of DEE may be primarily non-ionic.
Collapse
Affiliation(s)
- Alessandro Bortolami
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, USA
| | - Elena Forzisi Kathera-Ibarra
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, USA
| | - Anastasia Balatsky
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, USA
| | - Mansi Dubey
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, USA
| | - Rusheel Amin
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, USA
| | - Srinidi Venkateswaran
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, USA
| | - Stefania Dutto
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, USA
| | - Ishan Seth
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, USA
| | - Adam Ashor
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, USA
- Nilo Therapeutics, New York, NY, USA
| | - Angel Nwandiko
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, USA
| | - Ping-Yue Pan
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, USA
| | - David P Crockett
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, USA
| | - Federico Sesti
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, USA.
| |
Collapse
|
3
|
Paulet A, Bennett-Ness C, Ageorges F, Trost D, Green A, Goudie D, Jewell R, Kraatari-Tiri M, Piard J, Coubes C, Lam W, Lynch SA, Groeschel S, Ramond F, Fluss J, Fagerberg C, Brasch Andersen C, Varvagiannis K, Kleefstra T, Gérard B, Fradin M, Vitobello A, Tenconi R, Denommé-Pichon AS, Vincent-Devulder A, Haack T, Marsh JA, Laulund LW, Grimmel M, Riess A, de Boer E, Padilla-Lopez S, Bakhtiari S, Ostendorf A, Zweier C, Smol T, Willems M, Faivre L, Scala M, Striano P, Bagnasco I, Koboldt D, Iascone M, Suerink M, Kruer MC, Levy J, Verloes A, Abbott CM, Ruaud L. Expansion of the neurodevelopmental phenotype of individuals with EEF1A2 variants and genotype-phenotype study. Eur J Hum Genet 2024; 32:1144-1149. [PMID: 38355961 PMCID: PMC11369172 DOI: 10.1038/s41431-024-01560-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 01/10/2024] [Accepted: 02/01/2024] [Indexed: 02/16/2024] Open
Abstract
Translation elongation factor eEF1A2 constitutes the alpha subunit of the elongation factor-1 complex, responsible for the enzymatic binding of aminoacyl-tRNA to the ribosome. Since 2012, 21 pathogenic missense variants affecting EEF1A2 have been described in 42 individuals with a severe neurodevelopmental phenotype including epileptic encephalopathy and moderate to profound intellectual disability (ID), with neurological regression in some patients. Through international collaborative call, we collected 26 patients with EEF1A2 variants and compared them to the literature. Our cohort shows a significantly milder phenotype. 83% of the patients are walking (vs. 29% in the literature), and 84% of the patients have language skills (vs. 15%). Three of our patients do not have ID. Epilepsy is present in 63% (vs. 93%). Neurological examination shows a less severe phenotype with significantly less hypotonia (58% vs. 96%), and pyramidal signs (24% vs. 68%). Cognitive regression was noted in 4% (vs. 56% in the literature). Among individuals over 10 years, 56% disclosed neurocognitive regression, with a mean age of onset at 2 years. We describe 8 novel missense variants of EEF1A2. Modeling of the different amino-acid sites shows that the variants associated with a severe phenotype, and the majority of those associated with a moderate phenotype, cluster within the switch II region of the protein and thus may affect GTP exchange. In contrast, variants associated with milder phenotypes may impact secondary functions such as actin binding. We report the largest cohort of individuals with EEF1A2 variants thus far, allowing us to expand the phenotype spectrum and reveal genotype-phenotype correlations.
Collapse
Affiliation(s)
- Alix Paulet
- Département de Génétique, Hôpital Robert-Debré, Paris, France.
| | - Cavan Bennett-Ness
- Centre for Genomic and Experimental Medicine and Simons Initiative for the Developing Brain, Institute of Genetics and Cancer, Edinburgh, Scotland, UK
| | | | | | - Andrew Green
- UCD School of Medicine and Medical Science Consultant in Clinical Genetics, Dublin, Ireland
| | - David Goudie
- Regional Genetics Service, NHS Tayside, Dundee, Scotland, UK
| | - Rosalyn Jewell
- Yorkshire Regional Genetics Service, Leeds Teaching Hospitals NHS Trust, Leeds, England, UK
| | - Minna Kraatari-Tiri
- Department of Clinical Genetics, Research unit of Clinical Medicine, Medical Research Center Oulu, Oulu, Finland
- Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Juliette Piard
- Centre de Génétique Humaine, CHU Besançon, Besançon, France
| | - Christine Coubes
- Service de Génétique Médicale, CHU de Montpellier, Montpellier, France
| | - Wayne Lam
- South-East of Scotland Clinical Genetics Service, General Hospital, Edinburgh, Scotland, UK
| | - Sally Ann Lynch
- Clinical Genetics, Children's Health Ireland, Dublin, Ireland
| | - Samuel Groeschel
- Department of Neuropediatrics, University Children's Hospital, Tuebingen, Germany
| | - Francis Ramond
- Service de Génétique, CHU Saint-Etienne - Hôpital Nord, Saint-Etienne, France
| | - Joël Fluss
- University Hospitals of Geneva, Geneva, Switzerland
| | - Christina Fagerberg
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
| | | | | | - Tjitske Kleefstra
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
- Center of Excellence for Neuropsychiatry, Vincent van Gogh Institute for Psychiatry, Venray, The Netherlands
| | | | - Mélanie Fradin
- Service de Génétique Médicale, Hôpital Sud, CHU de Rennes, Rennes, France
| | - Antonio Vitobello
- UMR-Inserm, Génétique des Anomalies du développement, Université de Bourgogne Franche-Comté, Dijon, France
| | - Romano Tenconi
- Servizio di Genetica Medica, Dipartimento di Pediatra, Padova, Italia
| | - Anne-Sophie Denommé-Pichon
- Unité Fonctionnelle Innovation en Diagnostic génomique des maladies rares, FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, France
- UMR1231 GAD, Inserm - Université Bourgogne-Franche Comté, Dijon, France
| | | | - Tobias Haack
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Joseph A Marsh
- MRC Human Genetics Unit, Western General Hospital, University of Edinburgh, Edinburgh, Scotland, UK
| | | | - Mona Grimmel
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Angelika Riess
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Elke de Boer
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Sergio Padilla-Lopez
- Pediatric Movement Disorders Program, Division of Pediatric Neurology, Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, AZ, USA
| | - Somayeh Bakhtiari
- Pediatric Movement Disorders Program, Division of Pediatric Neurology, Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, AZ, USA
| | - Adam Ostendorf
- Steve and Cindy Rasmussen Institute for Genomic Medicine Nationwide Children's Hospital, Colombus, Ohio, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Colombus, USA
| | - Christiane Zweier
- Department of Human Genetics, Inselspital Bern, University of Bern, 3010, Bern, Switzerland
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - Thomas Smol
- University of Lille, EA7364-RADEME, Medical Genetics Institute, Chu Lille, Lille, France
| | - Marjolaine Willems
- Medical Genetic Department for Rare Diseases and Personalized Medicine, Reference Center AD SOOR, AnDDI-RARE, Groupe DI, Inserm U1298, INM, Montpellier University, Montpellier, France
- Centre Hospitalier Universitaire de Montpellier, Montpellier, France
| | - Laurence Faivre
- UMR1231 GAD, Inserm, Université de Bourgogne-Franche Comté, Dijon, France
- Centre de Référence Maladies Rares « Anomalies du développement et syndromes malformatifs », Centre de Génétique, FHU-TRANSLAD et Institut GIMI, CHU dijon, Bourgogne, Dijon, France
| | - Marcello Scala
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
| | - Pasquale Striano
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
| | - Irene Bagnasco
- Division of Child Neuropsychiatry, Martini Hospital, Torino, Italy
| | - Daniel Koboldt
- Steve and Cindy Rasmussen Institute for Genomic Medicine Nationwide Children's Hospital, Colombus, Ohio, USA
| | | | - Manon Suerink
- Department of Clinical Genetics, Leiden University Medical Centre, Leiden, the Netherlands
| | - Michael C Kruer
- Pediatric Movement Disorders Program, Division of Pediatric Neurology, Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, AZ, USA
| | - Jonathan Levy
- Département de Génétique, Hôpital Robert-Debré, Paris, France
| | - Alain Verloes
- Département de Génétique, Hôpital Robert-Debré, Paris, France
| | - Catherine M Abbott
- Centre for Genomic and Experimental Medicine and Simons Initiative for the Developing Brain, Institute of Genetics and Cancer, Edinburgh, Scotland, UK
| | - Lyse Ruaud
- Département de Génétique, Hôpital Robert-Debré, Paris, France
| |
Collapse
|
4
|
Shin HJ, Ko A, Kim SH, Lee JS, Kang HC. Unusual Voltage-Gated Sodium and Potassium Channelopathies Related to Epilepsy. J Clin Neurol 2024; 20:402-411. [PMID: 38951973 PMCID: PMC11220354 DOI: 10.3988/jcn.2023.0435] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/03/2024] [Accepted: 01/23/2024] [Indexed: 07/03/2024] Open
Abstract
BACKGROUND AND PURPOSE There is extensive literature on monogenic epilepsies caused by mutations in familiar channelopathy genes such as SCN1A. However, information on other less-common channelopathy genes is scarce. This study aimed to explore the genetic and clinical characteristics of patients diagnosed with unusual voltage-gated sodium and potassium channelopathies related to epilepsy. METHODS This observational, retrospective study analyzed pediatric patients with epilepsy who carried pathogenic variants of unusual voltage-gated sodium and potassium channelopathy genes responsible for seizure-associated phenotypes. Targeted next-generation sequencing (NGS) panel tests were performed between November 2016 and June 2022 at Severance Children's Hospital, Seoul, South Korea. Clinical characteristics and the treatment responses to different types of antiseizure medications were further analyzed according to different types of gene mutation. RESULTS This study included 15 patients with the following unusual voltage-gated sodium and potassium channelopathy genes: SCN3A (n=1), SCN4A (n=1), KCNA1 (n=1), KCNA2 (n=4), KCNB1 (n=6), KCNC1 (n=1), and KCNMA1 (n=1). NGS-based genetic testing identified 13 missense mutations (87%), 1 splice-site variant (7%), and 1 copy-number variant (7%). Developmental and epileptic encephalopathy was diagnosed in nine (60%) patients. Seizure freedom was eventually achieved in eight (53%) patients, whereas seizures persisted in seven (47%) patients. CONCLUSIONS Our findings broaden the genotypic and phenotypic spectra of less-common voltage-gated sodium and potassium channelopathies associated with epilepsy.
Collapse
Affiliation(s)
- Hui Jin Shin
- Division of Pediatric Neurology, Department of Pediatrics, Severance Children's Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Ara Ko
- Division of Pediatric Neurology, Department of Pediatrics, Severance Children's Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Se Hee Kim
- Division of Pediatric Neurology, Department of Pediatrics, Severance Children's Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Joon Soo Lee
- Division of Pediatric Neurology, Department of Pediatrics, Severance Children's Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Hoon-Chul Kang
- Division of Pediatric Neurology, Department of Pediatrics, Severance Children's Hospital, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
5
|
Ren Y, Luo X, Tong H, Wang S, Yan J, Lin L, Chen Y. Preliminary Study on Clinical Characteristics and Pathogenesis of IQSEC2 Mutations Patients. Pharmgenomics Pers Med 2024; 17:289-318. [PMID: 38827181 PMCID: PMC11144418 DOI: 10.2147/pgpm.s455840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 05/18/2024] [Indexed: 06/04/2024] Open
Abstract
Background The IQ motif and Sec7 domain ArfGEF 2 (IQSEC2), an X-linked gene that encodes the BRAG1 protein, is a guanine nucleotide exchange factor for the ADP ribosylation factor (ARF) protein family in the small guanosine triphosphate (GTP) binding protein. Mutations in this gene result in disorders such as intellectual disability (ID) and epilepsy. In this study, we analyze the clinical features of two patients with IQSEC2-mutation-related disease and discuss their possible pathogenesis. Methods The two patients were diagnosed with ID and epilepsy. Genetic testing was performed using whole-exome sequencing, and the three-dimensional protein structure was analyzed. UCSC Genome Browser was used to analyze the conservation of IQSEC2 in different species. We compared IQSEC2 expression in the proband families with that in a control group, as well as the expression of the postsynaptic identity protein 95 (PSD-95), synapse-associated protein 97 (SAP97), ADP ribosylation factor 6 (ARF-6), and insulin receptor substrate 53kDa (IRSP53) genes interacting with IQSEC2. Results We identified two semi-zygote mutations located in conserved positions in different species: an unreported de novo mutation, C.3576C>A (p. Tyr1192*), and a known mutation, c.2983C>T (p. Arg995Trp). IQSEC2 mutations resulted in significant changes in the predicted three-dimensional protein structure, while its expression in the two probands was significantly lower than that in the age-matched control group, and IQSEC2 expression in proband 1 was lower than that in his family members. The expression levels of PSD-95, ARF-6, and SAP97, IRSP 53, which interact with IQSEC2, were also significantly different from those in the family members and age-matched healthy children. Conclusion The clinical phenotype resulting from IQSEC2 mutations can be explained by the significant decrease in its expression, loss of function of the mutant protein, and change in the expression of related genes. Our results provide novel insights into the molecular phenotype conferred by the IQSEC2 variants.
Collapse
Affiliation(s)
- Yun Ren
- Department of Neurology, Shanghai Children’s Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, People’s Republic of China
| | - Xiaona Luo
- Department of Neurology, Shanghai Children’s Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, People’s Republic of China
| | - Haiyan Tong
- Department of Neurology, Shanghai Children’s Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, People’s Republic of China
| | - Simei Wang
- Department of Neurology, Shanghai Children’s Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, People’s Republic of China
| | - Jinbin Yan
- Department of Neurology, Shanghai Children’s Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, People’s Republic of China
| | - Longlong Lin
- Department of Neurology, Shanghai Children’s Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, People’s Republic of China
| | - Yucai Chen
- Department of Neurology, Shanghai Children’s Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, People’s Republic of China
| |
Collapse
|
6
|
Zhang X, Xiang F, Li D, Yang F, Yu S, Wang X. Adult-onset combined oxidative phosphorylation deficiency type 14 manifests as epileptic status: a new phenotype and literature review. BMC Neurol 2024; 24:15. [PMID: 38166857 PMCID: PMC10759640 DOI: 10.1186/s12883-023-03480-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 11/27/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Combined oxidative phosphorylation deficiency (COXPD) is a severe disorder with early onset and autosomal recessive inheritance, and has been divided into 51 types (COXPD1-COXPD51). COXPD14 is caused by a mutation in the FARS2 gene, which encodes mitochondrial phenylalanyl-tRNA synthetase (mt-PheRS), an enzyme that transfers phenylalanine to its cognate tRNA in mitochondria. Since the first case was reported in 2012, an increasing number of FARS2 variations have been subsequently identified, which present three main phenotypic manifestations: early onset epileptic encephalopathy, hereditary spastic paraplegia, and juvenile-onset epilepsy. To our knowledge, no adult cases have been reported in the literature. METHODS We report in detail a case of genetically confirmed COXPD14 and review the relevant literature. RESULTS Approximately 58 subjects with disease-causing variants of FARS2 have been reported, including 31 cases of early onset epileptic encephalopathy, 16 cases of hereditary spastic paraplegia, 3 cases of juvenile-onset epilepsy, and 8 cases of unknown phenotype. We report a case of autosomal recessive COXPD14 in an adult with status epilepticus as the only manifestation with a good prognosis, which is different from that in neonatal or infant patients reported in the literature. c.467C > T (p.T156M) has been previously reported, while c.119_120del (p.E40Vfs*87) is novel, and, both mutations are pathogenic. CONCLUSIONS This case of autosomal recessive COXPD14 in an adult only presented as status epilepticus, which is different from the patients reported previously. Our study expands the mutation spectrum of FARS2, and we tended to define the phenotypes based on the clinical manifestation rather than the age of onset.
Collapse
Affiliation(s)
- Xu Zhang
- Department of Neurology, The First Medical Center of Chinese PLA General Hospital, 28# Fuxing Road, Beijing, People's Republic of China
| | - Feng Xiang
- Department of Neurology, The First Medical Center of Chinese PLA General Hospital, 28# Fuxing Road, Beijing, People's Republic of China
| | - Desheng Li
- Department of Neurology, The First Medical Center of Chinese PLA General Hospital, 28# Fuxing Road, Beijing, People's Republic of China
| | - Fei Yang
- Department of Neurology, The First Medical Center of Chinese PLA General Hospital, 28# Fuxing Road, Beijing, People's Republic of China
| | - Shengyuan Yu
- Department of Neurology, The First Medical Center of Chinese PLA General Hospital, 28# Fuxing Road, Beijing, People's Republic of China
| | - Xiangqing Wang
- Department of Neurology, The First Medical Center of Chinese PLA General Hospital, 28# Fuxing Road, Beijing, People's Republic of China.
| |
Collapse
|
7
|
Khan R, Chaturvedi P, Sahu P, Ludhiadch A, Singh P, Singh G, Munshi A. Role of Potassium Ion Channels in Epilepsy: Focus on Current Therapeutic Strategies. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:67-87. [PMID: 36578258 DOI: 10.2174/1871527322666221227112621] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 11/10/2022] [Accepted: 11/12/2022] [Indexed: 12/30/2022]
Abstract
BACKGROUND Epilepsy is one of the prevalent neurological disorders characterized by disrupted synchronization between inhibitory and excitatory neurons. Disturbed membrane potential due to abnormal regulation of neurotransmitters and ion transport across the neural cell membrane significantly contributes to the pathophysiology of epilepsy. Potassium ion channels (KCN) regulate the resting membrane potential and are involved in neuronal excitability. Genetic alterations in the potassium ion channels (KCN) have been reported to result in the enhancement of the release of neurotransmitters, the excitability of neurons, and abnormal rapid firing rate, which lead to epileptic phenotypes, making these ion channels a potential therapeutic target for epilepsy. The aim of this study is to explore the variations reported in different classes of potassium ion channels (KCN) in epilepsy patients, their functional evaluation, and therapeutic strategies to treat epilepsy targeting KCN. METHODOLOGY A review of all the relevant literature was carried out to compile this article. RESULTS A large number of variations have been reported in different genes encoding various classes of KCN. These genetic alterations in KCN have been shown to be responsible for disrupted firing properties of neurons. Antiepileptic drugs (AEDs) are the main therapeutic strategy to treat epilepsy. Some patients do not respond favorably to the AEDs treatment, resulting in pharmacoresistant epilepsy. CONCLUSION Further to address the challenges faced in treating epilepsy, recent approaches like optogenetics, chemogenetics, and genome editing, such as clustered regularly interspaced short palindromic repeats (CRISPR), are emerging as target-specific therapeutic strategies.
Collapse
Affiliation(s)
- Rahul Khan
- Department of Human Genetics and Molecular Medicine Central University of Punjab, Bathinda 151401, India
| | - Pragya Chaturvedi
- Department of Human Genetics and Molecular Medicine Central University of Punjab, Bathinda 151401, India
| | - Prachi Sahu
- Department of Human Genetics and Molecular Medicine Central University of Punjab, Bathinda 151401, India
| | - Abhilash Ludhiadch
- Department of Human Genetics and Molecular Medicine Central University of Punjab, Bathinda 151401, India
| | - Paramdeep Singh
- Department of Radiology, All India Institute of Medical Sciences, Bathinda, Punjab, 151001 India
| | - Gagandeep Singh
- Department of Neurology, Dayanand Medical College and Hospital, Ludhiana, Punjab, India
| | - Anjana Munshi
- Department of Human Genetics and Molecular Medicine Central University of Punjab, Bathinda 151401, India
| |
Collapse
|
8
|
Koop K, Yuan W, Tessadori F, Rodriguez-Polanco WR, Grubbs J, Zhang B, Osmond M, Graham G, Sawyer S, Conboy E, Vetrini F, Treat K, Płoski R, Pienkowski VM, Kłosowska A, Fieg E, Krier J, Mallebranche C, Alban Z, Aldinger KA, Ritter D, Macnamara E, Sullivan B, Herriges J, Alaimo JT, Helbig C, Ellis CA, van Eyk C, Gecz J, Farrugia D, Osei-Owusu I, Adès L, van den Boogaard MJ, Fuchs S, Bakker J, Duran K, Dawson ZD, Lindsey A, Huang H, Baldridge D, Silverman GA, Grant BD, Raizen D, van Haaften G, Pak SC, Rehmann H, Schedl T, van Hasselt P. Macrocephaly and developmental delay caused by missense variants in RAB5C. Hum Mol Genet 2023; 32:3063-3077. [PMID: 37552066 PMCID: PMC10586195 DOI: 10.1093/hmg/ddad130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/06/2023] [Accepted: 07/29/2023] [Indexed: 08/09/2023] Open
Abstract
Rab GTPases are important regulators of intracellular vesicular trafficking. RAB5C is a member of the Rab GTPase family that plays an important role in the endocytic pathway, membrane protein recycling and signaling. Here we report on 12 individuals with nine different heterozygous de novo variants in RAB5C. All but one patient with missense variants (n = 9) exhibited macrocephaly, combined with mild-to-moderate developmental delay. Patients with loss of function variants (n = 2) had an apparently more severe clinical phenotype with refractory epilepsy and intellectual disability but a normal head circumference. Four missense variants were investigated experimentally. In vitro biochemical studies revealed that all four variants were damaging, resulting in increased nucleotide exchange rate, attenuated responsivity to guanine exchange factors and heterogeneous effects on interactions with effector proteins. Studies in C. elegans confirmed that all four variants were damaging in vivo and showed defects in endocytic pathway function. The variant heterozygotes displayed phenotypes that were not observed in null heterozygotes, with two shown to be through a dominant negative mechanism. Expression of the human RAB5C variants in zebrafish embryos resulted in defective development, further underscoring the damaging effects of the RAB5C variants. Our combined bioinformatic, in vitro and in vivo experimental studies and clinical data support the association of RAB5C missense variants with a neurodevelopmental disorder characterized by macrocephaly and mild-to-moderate developmental delay through disruption of the endocytic pathway.
Collapse
Affiliation(s)
- Klaas Koop
- Department of Pediatrics, University Medical Center Utrecht, Utrecht, 3584 EA, The Netherlands
| | - Weimin Yuan
- Departments of Pediatrics and Genetics, C. elegans Model Organism Screening Center, Washington University in St Louis School of Medicine, St Louis, MO 63110, USA
| | - Federico Tessadori
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, 3584 CT, The Netherlands
| | - Wilmer R Rodriguez-Polanco
- Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Jeremy Grubbs
- Department of Neurology and the Chronobiology and Sleep Institute, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Bo Zhang
- Departments of Pediatrics and Genetics, C. elegans Model Organism Screening Center, Washington University in St Louis School of Medicine, St Louis, MO 63110, USA
| | - Matt Osmond
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Ontario, K1H 8L1, Canada
| | - Gail Graham
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Ontario, K1H 8L1, Canada
| | - Sarah Sawyer
- Department of Pediatrics, Children's Hospital of Eastern Ontario, University of Ottawa, Ottawa, Ontario, K1H 8L1, Canada
| | - Erin Conboy
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Francesco Vetrini
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Kayla Treat
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Rafal Płoski
- Department of Medical Genetics, Medical University of Warsaw, Warsaw, 02-106, Poland
| | - Victor Murcia Pienkowski
- Department of Medical Genetics, Medical University of Warsaw, Warsaw, 02-106, Poland
- Marseille Medical Genetics U1251, Aix Marseille University, Marseille, 13005, France
| | - Anna Kłosowska
- Department of Pediatrics, Hematology and Oncology, Medical University of Gdańsk, Gdańsk, 80-210, Poland
| | - Elizabeth Fieg
- Brigham and Women's Hospital, Boston, MA, 02115, USA
- Harvard Medical School, Boston, MA, 02115, USA
| | - Joel Krier
- Brigham and Women's Hospital, Boston, MA, 02115, USA
- Harvard Medical School, Boston, MA, 02115, USA
| | - Coralie Mallebranche
- Unité d'Onco-Hémato-Immunologie pédiatrique, CHU d’Angers, Angers, 49933, France
| | - Ziegler Alban
- Service de génétique, CHU d’Angers, Angers, 49933, France
| | - Kimberly A Aldinger
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, 98195, USA
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, WA, 98195, USA
| | - Deborah Ritter
- Department of Pediatrics, Oncology Section, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Ellen Macnamara
- Undiagnosed Diseases Program Translational Laboratory, NHGRI, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Bonnie Sullivan
- Division of Clinical Genetics, Department of Pediatrics, Children's Mercy-Kansas City, Kansas City, MO, 64108, USA
| | - John Herriges
- Department of Pathology and Laboratory Medicine, Children's Mercy-Kansas City, Kansas City, MO, 64108, USA
| | - Joseph T Alaimo
- Department of Pathology and Laboratory Medicine, Children's Mercy-Kansas City, Kansas City, MO, 64108, USA
| | - Catherine Helbig
- The Epilepsy Neurogenetics Initiative, Division of Neurology, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Colin A Ellis
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia PA, 19104, USA
| | - Clare van Eyk
- Robinson Research Institute, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, 5006, Australia
| | - Jozef Gecz
- Robinson Research Institute, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, 5006, Australia
| | | | - Ikeoluwa Osei-Owusu
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Lesley Adès
- Department of Clinical Genetics, The Children’s Hospital at Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, 2145, Australia
| | - Marie-Jose van den Boogaard
- Department of Genetics, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, 3584EA, The Netherlands
| | - Sabine Fuchs
- Department of Pediatrics, University Medical Center Utrecht, Utrecht, 3584 EA, The Netherlands
| | - Jeroen Bakker
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, 3584 CT, The Netherlands
| | - Karen Duran
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, 3584 CT, The Netherlands
| | - Zachary D Dawson
- Departments of Pediatrics and Genetics, C. elegans Model Organism Screening Center, Washington University in St Louis School of Medicine, St Louis, MO 63110, USA
| | - Anika Lindsey
- Departments of Pediatrics and Genetics, C. elegans Model Organism Screening Center, Washington University in St Louis School of Medicine, St Louis, MO 63110, USA
| | - Huiyan Huang
- Departments of Pediatrics and Genetics, C. elegans Model Organism Screening Center, Washington University in St Louis School of Medicine, St Louis, MO 63110, USA
| | - Dustin Baldridge
- Departments of Pediatrics and Genetics, C. elegans Model Organism Screening Center, Washington University in St Louis School of Medicine, St Louis, MO 63110, USA
| | - Gary A Silverman
- Departments of Pediatrics and Genetics, C. elegans Model Organism Screening Center, Washington University in St Louis School of Medicine, St Louis, MO 63110, USA
| | - Barth D Grant
- Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - David Raizen
- Department of Neurology and the Chronobiology and Sleep Institute, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Gijs van Haaften
- Department of Genetics, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, 3584EA, The Netherlands
| | - Stephen C Pak
- Departments of Pediatrics and Genetics, C. elegans Model Organism Screening Center, Washington University in St Louis School of Medicine, St Louis, MO 63110, USA
| | - Holger Rehmann
- Department of Energy and Biotechnology, Flensburg University of Applied Sciences, 24943, Flensburg, Germany
| | - Tim Schedl
- Departments of Pediatrics and Genetics, C. elegans Model Organism Screening Center, Washington University in St Louis School of Medicine, St Louis, MO 63110, USA
| | - Peter van Hasselt
- Department of Pediatrics, University Medical Center Utrecht, Utrecht, 3584 EA, The Netherlands
| |
Collapse
|
9
|
Lee S, Ochoa E, Badura-Stronka M, Donnelly D, Lederer D, Lynch SA, Gardham A, Morton J, Stewart H, Docquier F, Rodger F, Martin E, Toribio A, Maher ER, Balasubramanian M. Germline pathogenic variants in HNRNPU are associated with alterations in blood methylome. Eur J Hum Genet 2023; 31:1040-1047. [PMID: 37407733 PMCID: PMC10474128 DOI: 10.1038/s41431-023-01422-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/24/2023] [Accepted: 06/22/2023] [Indexed: 07/07/2023] Open
Abstract
HNRNPU encodes a multifunctional RNA-binding protein that plays critical roles in regulating pre-mRNA splicing, mRNA stability, and translation. Aberrant expression and dysregulation of HNRNPU have been implicated in various human diseases, including cancers and neurological disorders. We applied a next generation sequencing based assay (EPIC-NGS) to investigate genome-wide methylation profiling for >2 M CpGs for 7 individuals with a neurodevelopmental disorder associated with HNRNPU germline pathogenic loss-of-function variants. Compared to healthy individuals, 227 HNRNPU-associated differentially methylated positions were detected. Both hyper- and hypomethylation alterations were identified but the former predominated. The identification of a methylation episignature for HNRNPU-associated neurodevelopmental disorder (NDD) implicates HNPRNPU-related chromatin alterations in the aetiopathogenesis of this disorder and suggests that episignature profiling should have clinical utility as a predictor for the pathogenicity of HNRNPU variants of uncertain significance. The detection of a methylation episignaure for HNRNPU-associated NDD is consistent with a recent report of a methylation episignature for HNRNPK-associated NDD.
Collapse
Affiliation(s)
- Sunwoo Lee
- Department of Medical Genetics, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Eguzkine Ochoa
- Department of Medical Genetics, University of Cambridge, Cambridge, CB2 0QQ, UK
| | | | - Deirdre Donnelly
- Northern Ireland Regional Genetics Centre, Belfast Health and Social Care Trust/City Hospital, Belfast, Northern Ireland, UK
| | | | - Sally A Lynch
- Department of Clinical Genetics, Our Lady's Children's Hospital, Crumlin, Dublin, Republic of Ireland
| | - Alice Gardham
- London North West University Healthcare NHS Trust Genetics Service, Middlesex, UK
| | - Jenny Morton
- West Midlands Regional Clinical Genetics Service and Birmingham Health Partners, Birmingham Women's and Children's Hospitals NHS Foundation Trust, Birmingham, UK
| | - Helen Stewart
- Oxford Centre for Genomic Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - France Docquier
- Department of Medical Genetics, University of Cambridge, Cambridge, CB2 0QQ, UK
- Stratified Medicine Core Laboratory NGS Hub, Cambridge Biomedical Campus, Cambridge, UK
| | - Fay Rodger
- Department of Medical Genetics, University of Cambridge, Cambridge, CB2 0QQ, UK
- Stratified Medicine Core Laboratory NGS Hub, Cambridge Biomedical Campus, Cambridge, UK
| | - Ezequiel Martin
- Department of Medical Genetics, University of Cambridge, Cambridge, CB2 0QQ, UK
- Stratified Medicine Core Laboratory NGS Hub, Cambridge Biomedical Campus, Cambridge, UK
| | - Ana Toribio
- Department of Medical Genetics, University of Cambridge, Cambridge, CB2 0QQ, UK
- Stratified Medicine Core Laboratory NGS Hub, Cambridge Biomedical Campus, Cambridge, UK
| | - Eamonn R Maher
- Department of Medical Genetics, University of Cambridge, Cambridge, CB2 0QQ, UK.
| | - Meena Balasubramanian
- Department of Oncology & Metabolism, University of Sheffield, Sheffield, UK.
- Sheffield Clinical Genetics Service, Sheffield Children's NHS Foundation Trust, Sheffield, UK.
| |
Collapse
|
10
|
Bortolami A, Yu W, Forzisi E, Ercan K, Kadakia R, Murugan M, Fedele D, Estevez I, Boison D, Rasin MR, Sesti F. Integrin-KCNB1 potassium channel complexes regulate neocortical neuronal development and are implicated in epilepsy. Cell Death Differ 2023; 30:687-701. [PMID: 36207442 PMCID: PMC9984485 DOI: 10.1038/s41418-022-01072-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 09/21/2022] [Accepted: 09/23/2022] [Indexed: 02/24/2023] Open
Abstract
Potassium (K+) channels are robustly expressed during prenatal brain development, including in progenitor cells and migrating neurons, but their function is poorly understood. Here, we investigate the role of voltage-gated K+ channel KCNB1 (Kv2.1) in neocortical development. Neuronal migration of glutamatergic neurons was impaired in the neocortices of KCNB1 null mice. Migratory defects persisted into the adult brains, along with disrupted morphology and synaptic connectivity. Mice developed seizure phenotype, anxiety, and compulsive behavior. To determine whether defective KCNB1 can give rise to developmental channelopathy, we constructed Knock In (KI) mice, harboring the gene variant Kcnb1R312H (R312H mice) found in children with developmental and epileptic encephalopathies (DEEs). The R312H mice exhibited a similar phenotype to the null mice. Wild type (WT) and R312H KCNB1 channels made complexes with integrins α5β5 (Integrin_K+ channel_Complexes, IKCs), whose biochemical signaling was impaired in R312H brains. Treatment with Angiotensin II in vitro, an agonist of Focal Adhesion kinase, a key component of IKC signaling machinery, corrected the neuronal abnormalities. Thus, a genetic mutation in a K+ channel induces severe neuromorphological abnormalities through non-conducting mechanisms, that can be rescued by pharmacological intervention. This underscores a previously unknown role of IKCs as key players in neuronal development, and implicate developmental channelopathies in the etiology of DEEs.
Collapse
Affiliation(s)
- Alessandro Bortolami
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, USA
| | - Wei Yu
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, USA
| | - Elena Forzisi
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, USA
| | - Koray Ercan
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, USA
| | - Ritik Kadakia
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, USA
| | - Madhuvika Murugan
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, USA
| | - Denise Fedele
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, USA
| | - Irving Estevez
- Department of Cell Biology and Neuroscience, School of Arts and Sciences, Rutgers University, Piscataway, NJ, USA
| | - Detlev Boison
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, USA
| | - Mladen-Roko Rasin
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, USA
| | - Federico Sesti
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, USA.
| |
Collapse
|
11
|
Zhang R, Jia P, Yao Y, Zhu F. Case Report: Identification of a novel CASK missense variant in a Chinese family with MICPCH. Front Genet 2022; 13:933785. [PMID: 36092876 PMCID: PMC9452731 DOI: 10.3389/fgene.2022.933785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
Mental retardation and microcephaly with pontine and cerebellar hypoplasia (MICPCH) is a rare genetic disorder that results in varying levels of pontocerebellar hypoplasia, microcephaly, and severe intellectual disabilities. Prior genetic analyses have identified the CASK gene as a driver of MICPCH. Herein, we analyzed a Chinese family with MICPCH. The index patient was an 8-year-old male. He and his 3-year-old brother suffered from microcephaly, pontocerebellar hypoplasia, serious mental retardation, ataxia, gait disorder, and inability to speak. Through a combination of whole-exome sequencing and subsequent Sanger sequencing, a novel X-linked missense mutation, c.1882G>C (p.D628H) in the CASK gene, was identified in two siblings, as well as their mother and grandmother, who exhibited mild mental retardation. Other family members with negative genetic testing were normal. In silico analyses indicated that this missense mutation was predicted to reduce CASK protein stability, disrupt the SRC homology 3 (SH3) domain, and abolish its function. In summary, we identified a novel missense variate in CASK associated with MICPCH. Our work facilitates the diagnosis of the disease in this family and broadens the gene variant spectrum of the CASK in MICPCH patients.
Collapse
Affiliation(s)
- Runfeng Zhang
- College of Life Sciences, Hubei Normal University, Huangshi, China
| | - Peng Jia
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanyi Yao
- Medical Genetic Center, Maternal and Child Health Hospital of Hubei Province, Wuhan, China
- *Correspondence: Feng Zhu, ; Yanyi Yao,
| | - Feng Zhu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Feng Zhu, ; Yanyi Yao,
| |
Collapse
|
12
|
Xiong J, Liu Z, Chen S, Kessi M, Chen B, Duan H, Deng X, Yang L, Peng J, Yin F. Correlation Analyses of Clinical Manifestations and Variant Effects in KCNB1-Related Neurodevelopmental Disorder. Front Pediatr 2022; 9:755344. [PMID: 35071126 PMCID: PMC8767024 DOI: 10.3389/fped.2021.755344] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 12/14/2021] [Indexed: 12/24/2022] Open
Abstract
Objective: Vitro functional analyses of KCNB1 variants have been done to disclose possible pathogenic mechanisms in KCNB1-related neurodevelopmental disorder. "Complete or partial loss of function (LoF)," "dominant-negative (DN) effect" are applied to describe KCNB1 variant's molecular phenotypes. The study here aimed to investigate clinical presentations and variant effects associations in the disorder. Methods: We reported 10 Chinese pediatric patients with KCNB1-related neurodevelopmental disorder here. Functional experiments on newly reported variants, including electrophysiology and protein expression, were performed in vitro. Phenotypic, functional, and genetic data in the cohort and published literature were collected. According to their variants' molecular phenotypes, patients were grouped into complete or partial LoF, and DN effect or non-dominant-negative (non-DN) effect to compare their clinical features. Results: Nine causative KCNB1 variants in 10 patients were identified in the cohort, including eight novel and one reported. Epilepsy (9/10), global developmental delay (10/10), and behavior issues (7/10) were common clinical features in our patients. Functional analyses of 8 novel variants indicated three partial and five complete LoF variants, five DN and three non-DN effect variants. Patient 1 in our series with truncated variants, whose functional results supported haploinsufficiency, had the best prognosis. Cases in complete LoF group had earlier seizure onset age (64.3 vs. 16.7%, p = 0.01) and worse seizure outcomes (18.8 vs. 66.7%, p = 0.03), and patients in DN effect subgroup had multiple seizure types compared to those in non-DN effect subgroup (65.5 vs. 30.8%, p = 0.039). Conclusion: Patients with KCNB1 variants in the Asian cohort have similar clinical manifestations to those of other races. Truncated KCNB1 variants exhibiting with haploinsufficiency molecular phenotype are linked to milder phenotypes. Individuals with complete LoF and DN effect KCNB1 variants have more severe seizure attacks than the other two subgroups.
Collapse
Affiliation(s)
- Juan Xiong
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Zhonghua Liu
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Shimeng Chen
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Miriam Kessi
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Baiyu Chen
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Haolin Duan
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Xiaolu Deng
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Lifen Yang
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Jing Peng
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Fei Yin
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| |
Collapse
|
13
|
Macha A, Liebsch F, Fricke S, Hetsch F, Neuser F, Johannes L, Kress V, Djémié T, Santamaria-Araujo JA, Vilain C, Aeby A, Van Bogaert P, Dejanovic B, Weckhuysen S, Meier JC, Schwarz G. Bi-allelic gephyrin variants impair GABAergic inhibition in a patient with epileptic encephalopathy. Hum Mol Genet 2021; 31:901-913. [PMID: 34617111 DOI: 10.1093/hmg/ddab298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 09/10/2021] [Accepted: 09/22/2021] [Indexed: 11/12/2022] Open
Abstract
Synaptic inhibition is essential for shaping the dynamics of neuronal networks, and aberrant inhibition is linked to epilepsy. Gephyrin (Geph) is the principal scaffolding protein at inhibitory synapses and is essential for postsynaptic clustering of glycine (GlyRs) and GABA type A receptors (GABAARs). Consequently, gephyrin is crucial for maintaining the relationship between excitation and inhibition in normal brain function and mutations in the gephyrin gene (GPHN) are associated with neurodevelopmental disorders and epilepsy. We identified bi-allelic variants in the GPHN gene, namely the missense mutation c.1264G > A and splice acceptor variant c.1315-2A > G, in a patient with developmental and epileptic encephalopathy (DEE). We demonstrate that the splice acceptor variant leads to nonsense-mediated mRNA decay (NMD). Furthermore, the missense variant (D422N) alters gephyrin structure, as examined by analytical size exclusion chromatography and CD-spectroscopy, thus leading to reduced receptor clustering and sensitivity towards calpain-mediated cleavage. Additionally, both alterations contribute to an observed reduction of inhibitory signal transmission in neurons, which likely contributes to the pathological encephalopathy.
Collapse
Affiliation(s)
- Arthur Macha
- Institute of Biochemistry, Department of Chemistry, University of Cologne, 50674 Cologne, Germany
| | - Filip Liebsch
- Institute of Biochemistry, Department of Chemistry, University of Cologne, 50674 Cologne, Germany
| | - Steffen Fricke
- Division Cell Physiology, Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany.,Institute for Pathophysiology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Florian Hetsch
- Division Cell Physiology, Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany
| | - Franziska Neuser
- Institute of Biochemistry, Department of Chemistry, University of Cologne, 50674 Cologne, Germany
| | - Lena Johannes
- Institute of Biochemistry, Department of Chemistry, University of Cologne, 50674 Cologne, Germany
| | - Vanessa Kress
- Institute of Biochemistry, Department of Chemistry, University of Cologne, 50674 Cologne, Germany
| | - Tania Djémié
- Applied & Translational Neurogenomics Group, VIB-Center for Molecular Genetics, VIB, Antwerp, Belgium
| | - Jose A Santamaria-Araujo
- Institute of Biochemistry, Department of Chemistry, University of Cologne, 50674 Cologne, Germany
| | - Catheline Vilain
- Department of Genetics, Hôpital Universitaire des Enfants Reine Fabiola, ULB Center of Human Genetics, Université Libre de Bruxelles, Brussels, Belgium.,Department of Genetics, Hôpital Erasme, ULB Center of Human Genetics, Université Libre de Bruxelles, Brussels, Belgium.,Interuniversity Institute of Bioinformatics in Brussels, Université Libre de Bruxelles, Brussels, Belgium
| | - Alec Aeby
- Pediatric Neurology, Queen Fabiola Children Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Patrick Van Bogaert
- Departement of Pediatric Neurology, CHU d'Angers, and Laboratoire Angevin de Recherche en Ingénierie des Systèmes (LARIS), Université d'Angers, France
| | - Borislav Dejanovic
- Institute of Biochemistry, Department of Chemistry, University of Cologne, 50674 Cologne, Germany
| | - Sarah Weckhuysen
- Applied & Translational Neurogenomics Group, VIB-Center for Molecular Genetics, VIB, Antwerp, Belgium.,Translational Neurosciences, Faculty of Medicine and Health Science, University of Antwerp, Antwerp, Belgium.,Neurology Department, University Hospital Antwerp, Antwerp, Belgium
| | - Jochen C Meier
- Division Cell Physiology, Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany
| | - Guenter Schwarz
- Institute of Biochemistry, Department of Chemistry, University of Cologne, 50674 Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| |
Collapse
|
14
|
Forman TE, Dennison BJC, Fantauzzo KA. The Role of RNA-Binding Proteins in Vertebrate Neural Crest and Craniofacial Development. J Dev Biol 2021; 9:34. [PMID: 34564083 PMCID: PMC8482138 DOI: 10.3390/jdb9030034] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 12/11/2022] Open
Abstract
Cranial neural crest (NC) cells delaminate from the neural folds in the forebrain to the hindbrain during mammalian embryogenesis and migrate into the frontonasal prominence and pharyngeal arches. These cells generate the bone and cartilage of the frontonasal skeleton, among other diverse derivatives. RNA-binding proteins (RBPs) have emerged as critical regulators of NC and craniofacial development in mammals. Conventional RBPs bind to specific sequence and/or structural motifs in a target RNA via one or more RNA-binding domains to regulate multiple aspects of RNA metabolism and ultimately affect gene expression. In this review, we discuss the roles of RBPs other than core spliceosome components during human and mouse NC and craniofacial development. Where applicable, we review data on these same RBPs from additional vertebrate species, including chicken, Xenopus and zebrafish models. Knockdown or ablation of several RBPs discussed here results in altered expression of transcripts encoding components of developmental signaling pathways, as well as reduced cell proliferation and/or increased cell death, indicating that these are common mechanisms contributing to the observed phenotypes. The study of these proteins offers a relatively untapped opportunity to provide significant insight into the mechanisms underlying gene expression regulation during craniofacial morphogenesis.
Collapse
Affiliation(s)
| | | | - Katherine A. Fantauzzo
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (T.E.F.); (B.J.C.D.)
| |
Collapse
|
15
|
Davies FCJ, Hope JE, McLachlan F, Marshall GF, Kaminioti-Dumont L, Qarkaxhija V, Nunez F, Dando O, Smith C, Wood E, MacDonald J, Hardt O, Abbott CM. Recapitulation of the EEF1A2 D252H neurodevelopmental disorder-causing missense mutation in mice reveals a toxic gain of function. Hum Mol Genet 2021; 29:1592-1606. [PMID: 32160274 DOI: 10.1093/hmg/ddaa042] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/04/2020] [Accepted: 03/05/2020] [Indexed: 12/24/2022] Open
Abstract
Heterozygous de novo mutations in EEF1A2, encoding the tissue-specific translation elongation factor eEF1A2, have been shown to cause neurodevelopmental disorders including often severe epilepsy and intellectual disability. The mutational profile is unusual; ~50 different missense mutations have been identified but no obvious loss of function mutations, though large heterozygous deletions are known to be compatible with life. A key question is whether the heterozygous missense mutations operate through haploinsufficiency or a gain of function mechanism, an important prerequisite for design of therapeutic strategies. In order both to address this question and to provide a novel model for neurodevelopmental disorders resulting from mutations in EEF1A2, we created a new mouse model of the D252H mutation. This mutation causes the eEF1A2 protein to be expressed at lower levels in brain but higher in muscle in the mice. We compared both heterozygous and homozygous D252H and null mutant mice using behavioural and motor phenotyping alongside molecular modelling and analysis of binding partners. Although the proteomic analysis pointed to a loss of function for the D252H mutant protein, the D252H homozygous mice were more severely affected than null homozygotes on the same genetic background. Mice that are heterozygous for the missense mutation show no behavioural abnormalities but do have sex-specific deficits in body mass and motor function. The phenotyping of our novel mouse lines, together with analysis of molecular modelling and interacting proteins, suggest that the D252H mutation results in a gain of function.
Collapse
Affiliation(s)
- Faith C J Davies
- Centre for Genomic & Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom.,Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh EH8 9XD, United Kingdom
| | - Jilly E Hope
- Centre for Genomic & Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| | - Fiona McLachlan
- Centre for Genomic & Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| | - Grant F Marshall
- Centre for Genomic & Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| | - Laura Kaminioti-Dumont
- Centre for Genomic & Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| | - Vesa Qarkaxhija
- Centre for Genomic & Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| | - Francis Nunez
- Centre for Genomic & Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| | - Owen Dando
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh EH8 9XD, United Kingdom.,Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH8 9XD, United Kingdom
| | - Colin Smith
- Academic Department of Neuropathology, Centre for Clinical Brain Sciences, Edinburgh, EH16 4SB, United Kingdom
| | - Emma Wood
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh EH8 9XD, United Kingdom.,Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH8 9XD, United Kingdom
| | - Josephine MacDonald
- Centre for Genomic & Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| | - Oliver Hardt
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh EH8 9XD, United Kingdom.,Department of Psychology, McGill University, Montreal, QC H3A 1B1, Canada
| | - Catherine M Abbott
- Centre for Genomic & Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom.,Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh EH8 9XD, United Kingdom
| |
Collapse
|
16
|
Semino F, Schröter J, Willemsen MH, Bast T, Biskup S, Beck-Woedl S, Brennenstuhl H, Schaaf CP, Kölker S, Hoffmann GF, Haack TB, Syrbe S. Further evidence for de novo variants in SYNCRIP as the cause of a neurodevelopmental disorder. Hum Mutat 2021; 42:1094-1100. [PMID: 34157790 DOI: 10.1002/humu.24245] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 06/10/2021] [Accepted: 06/19/2021] [Indexed: 11/06/2022]
Abstract
SYNCRIP encodes for the Synaptotagmin-binding cytoplasmic RNA-interacting protein, involved in RNA-binding and regulation of multiple cellular pathways. It has been proposed as a candidate gene for neurodevelopmental disorders (NDDs) with autism spectrum disorder (ASD), intellectual disability (ID), and epilepsy. We ascertained genetic, clinical, and neuroradiological data of three additional individuals with novel de novo SYNCRIP variants. All individuals had ID. Autistic features were observed in two. One individual showed myoclonic-atonic epilepsy. Neuroradiological features comprised periventricular nodular heterotopia and widening of subarachnoid spaces. Two frameshift variants in the more severely affected individuals, likely result in haploinsufficiency. The third missense variant lies in the conserved RNA recognition motif (RRM) 2 domain likely affecting RNA-binding. Our findings support the importance of RRM domains for SYNCRIP functionality and suggest genotype-phenotype correlations. Our study provides further evidence for a SYNCRIP-associated NDD characterized by ID and ASD sporadically accompanied by malformations of cortical development and myoclonic-atonic epilepsy.
Collapse
Affiliation(s)
- Francesca Semino
- Division of Pediatric Epileptology, Center for Pediatrics and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany.,Institute for Physiology and Pathophysiology, University of Heidelberg, Heidelberg, Germany
| | - Julian Schröter
- Division of Pediatric Epileptology, Center for Pediatrics and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Marjolein H Willemsen
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Thomas Bast
- Epilepsy Center Kork, Kehl, Germany.,Medical Faculty of the University of Freiburg, Kehl, Germany
| | - Saskia Biskup
- Praxis für Humangenetik Tübingen, Tuebingen, Germany.,CEGAT GmbH, Tuebingen, Germany
| | - Stefanie Beck-Woedl
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Heiko Brennenstuhl
- Division of Neuropediatrics and Inherited Metabolic Diseases, Center for Pediatrics and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | | | - Stefan Kölker
- Division of Neuropediatrics and Inherited Metabolic Diseases, Center for Pediatrics and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Georg F Hoffmann
- Division of Neuropediatrics and Inherited Metabolic Diseases, Center for Pediatrics and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Tobias B Haack
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany.,Center for Rare Diseases, University of Tübingen, Tübingen, Germany
| | - Steffen Syrbe
- Division of Pediatric Epileptology, Center for Pediatrics and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
17
|
Tung Y, Lu H, Lin W, Huang T, Kim S, Hu G, Zhang G, Zheng G. Case Report: Identification of a de novo Microdeletion 1q44 in a Patient With Seizures and Developmental Delay. Front Genet 2021; 12:648351. [PMID: 34093647 PMCID: PMC8173053 DOI: 10.3389/fgene.2021.648351] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 04/06/2021] [Indexed: 02/04/2023] Open
Abstract
Objective: 1q44 microdeletion syndrome is difficult to diagnose due to the wide phenotypic spectrum and strong genetic heterogeneity. We explore the correlation between the chromosome microdeletions and phenotype in a child with 1q44 microdeletion syndrome, we collected the clinical features of the patient and combined them with adjacent copy number variation (CNV) regions previously reported. Methods: We collected the full medical history of the patient and summarized her clinical symptoms. Whole-exome sequencing (WES) and CapCNV analysis were performed with DNA extracted from both the patient's and her parents' peripheral blood samples. Fluorescent quantitative PCR (q-PCR) was performed for the use of verification to the CNV regions. Results: A 28.7 KB microdeletion was detected in the 1q44 region by whole-exome sequencing and low-depth whole-genome sequencing. The deleted region included the genes COX20 and HNRNPU. As verification, karyotype analysis showed no abnormality, and the results of qPCR were consistent with that of whole-exome sequencing and CapCNV analysis. Conclusion: The patient was diagnosed with 1q44 microdeletion syndrome with clinical and genetic analysis. Analyzing both whole-exome sequencing and CapCNV analysis can not only improve the diagnostic rate of clinically suspected syndromes that present with intellectual disability (ID) and multiple malformations but also support further study of the correlation between CNVs and clinical phenotypes. This study lays the foundation for the further study of the pathogenesis of complex diseases.
Collapse
Affiliation(s)
- Yiehen Tung
- Department of Neurology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Haiying Lu
- Department of Neurology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Wenxin Lin
- Department of Neurology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Tingting Huang
- Department of Neurology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Samuel Kim
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, United States
| | - Guo Hu
- Department of Neurology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Gang Zhang
- Department of Neurology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Guo Zheng
- Department of Neurology, Children's Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
18
|
Song Z, Zhang Y, Yang C, Yi Z, Li F, Xue J, Yang X, Li B. De novo frameshift variants of HNRNPU in patients with early infantile epileptic encephalopathy: Two case reports and literature review. Int J Dev Neurosci 2021; 81:663-668. [PMID: 33914968 DOI: 10.1002/jdn.10115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 04/19/2021] [Accepted: 04/21/2021] [Indexed: 11/06/2022] Open
Abstract
Variants in HNRNPU have been reported in patients with epileptic encephalopathy, early infantile 54 (OMIM 602,869). We hereby describe two children from different families with autosomal dominance early-onset epileptic encephalopathy and summarize the genotype and phenotype of reported individuals. Whole-exome sequencing analysis was applied to the patients. De novo frameshift variants in the HNRNPU, c.143_149del7 (p.G48Afs*11) and c.1282delC(p.G429Afs*53) were identified. This is the first time to report Chinese patients with early infantile epileptic encephalopathy caused by HNRNPU variants, and so far, these variants have not been reported in population gene database. This study expands our knowledge of HNRNPU variants and emphasizes the importance of early gene diagnosis.
Collapse
Affiliation(s)
- Zhenfeng Song
- Department of Pediatrics, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Pediatric Neurology and Endocrinology, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Ying Zhang
- Department of Pediatric Neurology and Endocrinology, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Chengqing Yang
- Department of Pediatric Neurology and Endocrinology, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Zhi Yi
- Department of Pediatric Neurology and Endocrinology, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Fei Li
- Department of Pediatric Neurology and Endocrinology, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jiao Xue
- Department of Pediatric Neurology and Endocrinology, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiaofan Yang
- Department of Pediatrics, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Baomin Li
- Department of Pediatrics, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
19
|
Prenatal diagnosis and molecular cytogenetic characterization of a chromosome 1q42.3-q44 deletion in a fetus associated with ventriculomegaly on prenatal ultrasound. Taiwan J Obstet Gynecol 2021; 59:598-603. [PMID: 32653137 DOI: 10.1016/j.tjog.2020.05.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/20/2020] [Indexed: 11/21/2022] Open
Abstract
OBJECTIVE We present prenatal diagnosis and molecular cytogenetic characterization of a chromosome 1q42.3-q44 deletion in a fetus associated with ventriculomegaly on prenatal ultrasound, and we discuss the genotype-phenotype correlation. CASE REPORT A 36-year-old woman underwent amniocentesis at 17 weeks of gestation because of advanced maternal age. Amniocentesis revealed a karyotype of 46,XX,del(1) (q42.3q44). Simultaneous array comparative genomic hybridization analysis on uncultured amniocytes revealed arr 1q42.3q44 (234,747,397-246,081,267) × 1 [GRCh37 (hg19)] with an 11.33-Mb 1q42.3-q44 deletion encompassing RGS7, FH, CEP170, AKT3, ZBTB18 and HNRNPU. The parental karyotypes were normal. Prenatal ultrasound at 20 weeks of gestation revealed bilateral ventriculomegaly and dilation of the third ventricle. The pregnancy was subsequently terminated, and a malformed female fetus was delivered with characteristic facial dysmorphism. Postnatal conventional and molecular cytogenetic analyses confirmed the prenatal diagnosis. Polymorphic DNA marker analysis showed a paternal origin of the distal 1q deletion in the fetus. CONCLUSION Fetuses with a chromosome 1q42.3-q44 deletion may present ventriculomegaly on prenatal ultrasound. Prenatal diagnosis of ventriculomegaly should include a differential diagnosis of chromosome 1q distal deletions, and aCGH is useful under such a circumstance.
Collapse
|
20
|
Gillentine MA, Wang T, Hoekzema K, Rosenfeld J, Liu P, Guo H, Kim CN, De Vries BBA, Vissers LELM, Nordenskjold M, Kvarnung M, Lindstrand A, Nordgren A, Gecz J, Iascone M, Cereda A, Scatigno A, Maitz S, Zanni G, Bertini E, Zweier C, Schuhmann S, Wiesener A, Pepper M, Panjwani H, Torti E, Abid F, Anselm I, Srivastava S, Atwal P, Bacino CA, Bhat G, Cobian K, Bird LM, Friedman J, Wright MS, Callewaert B, Petit F, Mathieu S, Afenjar A, Christensen CK, White KM, Elpeleg O, Berger I, Espineli EJ, Fagerberg C, Brasch-Andersen C, Hansen LK, Feyma T, Hughes S, Thiffault I, Sullivan B, Yan S, Keller K, Keren B, Mignot C, Kooy F, Meuwissen M, Basinger A, Kukolich M, Philips M, Ortega L, Drummond-Borg M, Lauridsen M, Sorensen K, Lehman A, Lopez-Rangel E, Levy P, Lessel D, Lotze T, Madan-Khetarpal S, Sebastian J, Vento J, Vats D, Benman LM, Mckee S, Mirzaa GM, Muss C, Pappas J, Peeters H, Romano C, Elia M, Galesi O, Simon MEH, van Gassen KLI, Simpson K, Stratton R, Syed S, Thevenon J, Palafoll IV, Vitobello A, Bournez M, Faivre L, Xia K, Earl RK, Nowakowski T, Bernier RA, Eichler EE. Rare deleterious mutations of HNRNP genes result in shared neurodevelopmental disorders. Genome Med 2021; 13:63. [PMID: 33874999 PMCID: PMC8056596 DOI: 10.1186/s13073-021-00870-6] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 03/16/2021] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND With the increasing number of genomic sequencing studies, hundreds of genes have been implicated in neurodevelopmental disorders (NDDs). The rate of gene discovery far outpaces our understanding of genotype-phenotype correlations, with clinical characterization remaining a bottleneck for understanding NDDs. Most disease-associated Mendelian genes are members of gene families, and we hypothesize that those with related molecular function share clinical presentations. METHODS We tested our hypothesis by considering gene families that have multiple members with an enrichment of de novo variants among NDDs, as determined by previous meta-analyses. One of these gene families is the heterogeneous nuclear ribonucleoproteins (hnRNPs), which has 33 members, five of which have been recently identified as NDD genes (HNRNPK, HNRNPU, HNRNPH1, HNRNPH2, and HNRNPR) and two of which have significant enrichment in our previous meta-analysis of probands with NDDs (HNRNPU and SYNCRIP). Utilizing protein homology, mutation analyses, gene expression analyses, and phenotypic characterization, we provide evidence for variation in 12 HNRNP genes as candidates for NDDs. Seven are potentially novel while the remaining genes in the family likely do not significantly contribute to NDD risk. RESULTS We report 119 new NDD cases (64 de novo variants) through sequencing and international collaborations and combined with published clinical case reports. We consider 235 cases with gene-disruptive single-nucleotide variants or indels and 15 cases with small copy number variants. Three hnRNP-encoding genes reach nominal or exome-wide significance for de novo variant enrichment, while nine are candidates for pathogenic mutations. Comparison of HNRNP gene expression shows a pattern consistent with a role in cerebral cortical development with enriched expression among radial glial progenitors. Clinical assessment of probands (n = 188-221) expands the phenotypes associated with HNRNP rare variants, and phenotypes associated with variation in the HNRNP genes distinguishes them as a subgroup of NDDs. CONCLUSIONS Overall, our novel approach of exploiting gene families in NDDs identifies new HNRNP-related disorders, expands the phenotypes of known HNRNP-related disorders, strongly implicates disruption of the hnRNPs as a whole in NDDs, and supports that NDD subtypes likely have shared molecular pathogenesis. To date, this is the first study to identify novel genetic disorders based on the presence of disorders in related genes. We also perform the first phenotypic analyses focusing on related genes. Finally, we show that radial glial expression of these genes is likely critical during neurodevelopment. This is important for diagnostics, as well as developing strategies to best study these genes for the development of therapeutics.
Collapse
Affiliation(s)
- Madelyn A Gillentine
- Department of Genome Sciences, University of Washington School of Medicine, 3720 15th Ave NE S413A, Box 355065, Seattle, WA, 981095-5065, USA
| | - Tianyun Wang
- Department of Genome Sciences, University of Washington School of Medicine, 3720 15th Ave NE S413A, Box 355065, Seattle, WA, 981095-5065, USA
| | - Kendra Hoekzema
- Department of Genome Sciences, University of Washington School of Medicine, 3720 15th Ave NE S413A, Box 355065, Seattle, WA, 981095-5065, USA
| | - Jill Rosenfeld
- Baylor Genetics Laboratories, Houston, TX, USA.,Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Pengfei Liu
- Baylor Genetics Laboratories, Houston, TX, USA
| | - Hui Guo
- Department of Genome Sciences, University of Washington School of Medicine, 3720 15th Ave NE S413A, Box 355065, Seattle, WA, 981095-5065, USA.,Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Chang N Kim
- Department of Anatomy, University of California, San Francisco, CA, USA.,Department of Psychiatry, University of California, San Francisco, CA, USA.,Weill Institute for Neurosciences, University of California at San Francisco, San Francisco, CA, USA.,The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA, USA
| | - Bert B A De Vries
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Lisenka E L M Vissers
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Magnus Nordenskjold
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Malin Kvarnung
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Anna Lindstrand
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Ann Nordgren
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Jozef Gecz
- School of Medicine and the Robinson Research Institute, the University of Adelaide at the Women's and Children's Hospital, Adelaide, South Australia, Australia.,Genetics and Molecular Pathology, SA Pathology, Adelaide, South Australia, Australia.,South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Maria Iascone
- Laboratorio di Genetica Medica - ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Anna Cereda
- Department of Pediatrics, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Agnese Scatigno
- Department of Pediatrics, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Silvia Maitz
- Genetic Unit, Department of Pediatrics, Fondazione MBBM S. Gerardo Hospital, Monza, Italy
| | - Ginevra Zanni
- Unit of Neuromuscular and Neurodegenerative Disorders, Department Neurosciences, Bambino Gesù Children's Hospital, IRCCS, 00146, Rome, Italy
| | - Enrico Bertini
- Unit of Neuromuscular and Neurodegenerative Disorders, Department Neurosciences, Bambino Gesù Children's Hospital, IRCCS, 00146, Rome, Italy
| | - Christiane Zweier
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Sarah Schuhmann
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Antje Wiesener
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Micah Pepper
- Center on Human Development and Disability, University of Washington, Seattle, WA, USA.,Seattle Children's Autism Center, Seattle, WA, USA
| | - Heena Panjwani
- Center on Human Development and Disability, University of Washington, Seattle, WA, USA.,Seattle Children's Autism Center, Seattle, WA, USA
| | | | - Farida Abid
- Department of Pediatrics-Neurology, Baylor College of Medicine, Houston, TX, USA.,Texas Children's Hospital, Houston, TX, USA
| | - Irina Anselm
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Siddharth Srivastava
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Paldeep Atwal
- The Atwal Clinic: Genomic & Personalized Medicine, Jacksonville, FL, USA
| | - Carlos A Bacino
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Gifty Bhat
- Department of Pediatrics, Section of Genetics, University of Illinois at Chicago, Chicago, IL, USA
| | - Katherine Cobian
- Department of Pediatrics, Section of Genetics, University of Illinois at Chicago, Chicago, IL, USA
| | - Lynne M Bird
- Department of Pediatrics, University of California San Diego, San Diego, CA, USA.,Genetics/Dysmorphology, Rady Children's Hospital San Diego, San Diego, CA, USA
| | - Jennifer Friedman
- Department of Pediatrics, University of California San Diego, San Diego, CA, USA.,Rady Children's Institute for Genomic Medicine, San Diego, CA, USA.,Department of Neurosciences, University of California San Diego, San Diego, CA, USA
| | - Meredith S Wright
- Department of Pediatrics, University of California San Diego, San Diego, CA, USA.,Rady Children's Institute for Genomic Medicine, San Diego, CA, USA
| | - Bert Callewaert
- Department of Biomolecular Medicine, Ghent University Hospital, Ghent, Belgium
| | - Florence Petit
- Clinique de Génétique, Hôpital Jeanne de Flandre, Bâtiment Modulaire, CHU, 59037, Lille Cedex, France
| | - Sophie Mathieu
- Sorbonne Universités, Centre de Référence déficiences intellectuelles de causes rares, département de génétique et embryologie médicale, Hôpital Trousseau, AP-HP, Paris, France
| | - Alexandra Afenjar
- Sorbonne Universités, Centre de Référence déficiences intellectuelles de causes rares, département de génétique et embryologie médicale, Hôpital Trousseau, AP-HP, Paris, France
| | - Celenie K Christensen
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Kerry M White
- Department of Medical and Molecular Genetics, IU Health, Indianapolis, IN, USA
| | - Orly Elpeleg
- Department of Genetics, Hadassah, Hebrew University Medical Center, Jerusalem, Israel
| | - Itai Berger
- Pediatric Neurology, Assuta-Ashdod University Hospital, Ashdod, Israel.,Health Sciences, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Edward J Espineli
- Department of Pediatrics-Neurology, Baylor College of Medicine, Houston, TX, USA.,Texas Children's Hospital, Houston, TX, USA
| | - Christina Fagerberg
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
| | | | | | - Timothy Feyma
- Gillette Children's Specialty Healthcare, Saint Paul, MN, USA
| | - Susan Hughes
- Division of Clinical Genetics, Children's Mercy Kansas City, Kansas City, MO, USA.,The University of Missouri-Kansas City, School of Medicine, Kansas City, MO, USA
| | - Isabelle Thiffault
- The University of Missouri-Kansas City, School of Medicine, Kansas City, MO, USA.,Children's Mercy Kansas City, Center for Pediatric Genomic Medicine, Kansas City, MO, USA
| | - Bonnie Sullivan
- Division of Clinical Genetics, Children's Mercy Kansas City, Kansas City, MO, USA
| | - Shuang Yan
- Division of Clinical Genetics, Children's Mercy Kansas City, Kansas City, MO, USA
| | - Kory Keller
- Oregon Health & Science University, Corvallis, OR, USA
| | - Boris Keren
- Department of Genetics, Hópital Pitié-Salpêtrière, Paris, France
| | - Cyril Mignot
- Department of Genetics, Hópital Pitié-Salpêtrière, Paris, France
| | - Frank Kooy
- Department of Medical Genetics, University of Antwerp, Antwerp, Belgium
| | - Marije Meuwissen
- Department of Medical Genetics, University of Antwerp, Antwerp, Belgium
| | - Alice Basinger
- Genetics Department, Cook Children's Hospital, Fort Worth, TX, USA
| | - Mary Kukolich
- Genetics Department, Cook Children's Hospital, Fort Worth, TX, USA
| | - Meredith Philips
- Genetics Department, Cook Children's Hospital, Fort Worth, TX, USA
| | - Lucia Ortega
- Genetics Department, Cook Children's Hospital, Fort Worth, TX, USA
| | | | - Mathilde Lauridsen
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
| | - Kristina Sorensen
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
| | - Anna Lehman
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada.,BC Children's Hospital and BC Women's Hospital, Vancouver, BC, Canada
| | | | - Elena Lopez-Rangel
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada.,Division of Developmental Pediatrics, Department of Pediatrics, BC Children's Hospital, University of British Columbia, Vancouver, BC, Canada.,Sunny Hill Health Centre for Children, Vancouver, BC, Canada
| | - Paul Levy
- Department of Pediatrics, The Children's Hospital at Montefiore, Bronx, NY, USA
| | - Davor Lessel
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Timothy Lotze
- Department of Pediatrics-Neurology, Baylor College of Medicine, Houston, TX, USA
| | - Suneeta Madan-Khetarpal
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, USA.,UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Jessica Sebastian
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jodie Vento
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Divya Vats
- Kaiser Permanente Southern California, Los Angeles, CA, USA
| | | | - Shane Mckee
- Northern Ireland Regional Genetics Service, Belfast City Hospital, Belfast, UK
| | - Ghayda M Mirzaa
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA.,Department of Pediatrics, University of Washington, Seattle, WA, USA.,Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
| | - Candace Muss
- Al Dupont Hospital for Children, Wilmington, DE, USA
| | - John Pappas
- NYU Grossman School of Medicine, Department of Pediatrics, Clinical Genetic Services, New York, NY, USA
| | - Hilde Peeters
- Center for Human Genetics, KU Leuven and Leuven Autism Research (LAuRes), Leuven, Belgium
| | | | | | | | - Marleen E H Simon
- Department of Genetics, University Medical Center, Utrecht University, Utrecht, The Netherlands
| | - Koen L I van Gassen
- Department of Genetics, University Medical Center, Utrecht University, Utrecht, The Netherlands
| | - Kara Simpson
- Rare Disease Institute, Children's National Health System, Washington, DC, USA
| | - Robert Stratton
- Department of Genetics, Driscoll Children's Hospital, Corpus Christi, TX, USA
| | - Sabeen Syed
- Department of Pediatric Gastroenterology, Driscoll Children's Hospital, Corpus Christi, TX, USA
| | - Julien Thevenon
- Àrea de Genètica Clínica i Molecular, Hospital Vall d'Hebrón, Barcelona, Spain
| | | | - Antonio Vitobello
- UF Innovation en Diagnostic Génomique des Maladies Rares, FHU-TRANSLAD, CHU Dijon Bourgogne and INSERM UMR1231 GAD, Université de Bourgogne Franche-Comté, F-21000, Dijon, France.,INSERM UMR 1231 Génétique des Anomalies du Développement, Université Bourgogne Franche-Comté, Dijon, France
| | - Marie Bournez
- Centre de Référence Maladies Rares « déficience intellectuelle », Centre de Génétique, FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, France.,Centre de Référence Maladies Rares « Anomalies du Développement et Syndromes malformatifs » Université Bourgogne Franche-Comté, Dijon, France
| | - Laurence Faivre
- INSERM UMR 1231 Génétique des Anomalies du Développement, Université Bourgogne Franche-Comté, Dijon, France.,Centre de Référence Maladies Rares « Anomalies du Développement et Syndromes malformatifs » Université Bourgogne Franche-Comté, Dijon, France
| | - Kun Xia
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | | | - Rachel K Earl
- Center on Human Development and Disability, University of Washington, Seattle, WA, USA.,Seattle Children's Autism Center, Seattle, WA, USA.,Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA
| | - Tomasz Nowakowski
- Department of Anatomy, University of California, San Francisco, CA, USA.,Department of Psychiatry, University of California, San Francisco, CA, USA.,Weill Institute for Neurosciences, University of California at San Francisco, San Francisco, CA, USA.,The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA, USA
| | - Raphael A Bernier
- Center on Human Development and Disability, University of Washington, Seattle, WA, USA.,Seattle Children's Autism Center, Seattle, WA, USA.,Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA
| | - Evan E Eichler
- Department of Genome Sciences, University of Washington School of Medicine, 3720 15th Ave NE S413A, Box 355065, Seattle, WA, 981095-5065, USA. .,Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA.
| |
Collapse
|
21
|
Sriwattanapong K, Rojnueangnit K, Theerapanon T, Srichomthong C, Porntaveetus T, Shotelersuk V. Compound Heterozygosity for a Novel Frameshift Variant Causing Fatal Infantile Liver Failure and Genotype-Phenotype Correlation of POLG c.3286C>T Variant. Int J Neonatal Screen 2021; 7:ijns7010009. [PMID: 33562887 PMCID: PMC7930966 DOI: 10.3390/ijns7010009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/24/2021] [Accepted: 02/02/2021] [Indexed: 11/16/2022] Open
Abstract
A variant in the POLG gene is the leading cause of a heterogeneous group of mitochondrial disorders. No definitive treatment is currently available. Prenatal and newborn screening have the potential to improve clinical outcome of patients affected with POLG-related disorders. We reported a 4-month-old infant who presented with developmental delay, fever, and diarrhea. Within two weeks after hospital admission, the patient developed hepatic failure and died. Liver necropsy demonstrated an extensive loss of hepatocytes and bile duct proliferations. Trio-whole exome sequencing identified that the patient was compound heterozygous for a novel frameshift variant c.3102delG (p.Lys1035Serfs*59) and a common variant c.3286C>T (p.Arg1096Cys) in POLG (NM_002693.3) inherited from the mother and father, respectively. The c.3102delG (p.Lys1035Serfs*59) was a null variant and classified as pathogenic according to the American College of Medical Genetics and Genomics Standards and Guidelines. Prenatal genetic screenings using rapid whole exome sequencing successfully detected the heterozygous c.3286C>T variant in the following pregnancy and the normal alleles in the other one. Both children had been healthy. We reviewed all 34 cases identified with the POLG c.3286C>T variant and found that all 15 compound heterozygous cases had two missense variants except our patient who had the truncating variant and showed the earliest disease onset, rapid deterioration, and the youngest death. All homozygous cases had disease onset before age 2 and developed seizure. Here, we report a novel POLG variant expanding the genotypic spectrum, demonstrate the successful use of exome sequencing for prenatal and neonatal screenings of POLG-related disorders, and show the genotype-phenotype correlation of the common c.3286C>T variant.
Collapse
Affiliation(s)
- Kanokwan Sriwattanapong
- Genomics and Precision Dentistry Research Unit, Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand; (K.S.); (T.T.)
| | - Kitiwan Rojnueangnit
- Department of Pediatrics, Faculty of Medicine, Thammasat University, Pathumthani 12120, Thailand;
| | - Thanakorn Theerapanon
- Genomics and Precision Dentistry Research Unit, Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand; (K.S.); (T.T.)
| | - Chalurmpon Srichomthong
- Center of Excellence for Medical Genomics, Medical Genomics Cluster, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (C.S.); (V.S.)
- Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok 10330, Thailand
| | - Thantrira Porntaveetus
- Genomics and Precision Dentistry Research Unit, Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand; (K.S.); (T.T.)
- Correspondence: ; Tel.: +66-02218-8695
| | - Vorasuk Shotelersuk
- Center of Excellence for Medical Genomics, Medical Genomics Cluster, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (C.S.); (V.S.)
- Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok 10330, Thailand
| |
Collapse
|
22
|
Lee J, Lee C, Ki CS, Lee J. Determining the best candidates for next-generation sequencing-based gene panel for evaluation of early-onset epilepsy. Mol Genet Genomic Med 2020; 8:e1376. [PMID: 32613771 PMCID: PMC7507365 DOI: 10.1002/mgg3.1376] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 05/01/2020] [Accepted: 06/01/2020] [Indexed: 12/21/2022] Open
Abstract
Background Genetic testing is an emerging diagnostic approach in early‐onset epilepsy. Identification of the heterogeneous genetic causes of epilepsy may mitigate unnecessary evaluations and allow more accurate diagnosis and therapy. We aimed to uncover genetic causes of early‐onset epilepsy using next‐generation sequencing (NGS) to elucidate the diagnostic candidates and evaluate the diagnostic yield of targeted gene panel testing. Methods We evaluated 116 patients with early‐onset epilepsy developed before 2 years old and normal brain imaging using a NGS‐based targeted gene panel. Variants were classified according to their pathogenicity, and the diagnostic yield of the targeted genes and associated clinical factors were determined. Results We detected 40 disease‐causing variants with diagnostic yield of 34.5% (19 pathogenic, 21 likely pathogenic). Twelve variants were novel. The most commonly detected genes were SCN1A, associated with Dravet syndrome, and PRRT2, associated with benign familial infantile epilepsy. Other variants were identified in ARX, SCN2A, KCNQ2, PCDH19, STXBP1, DEPDC5, and SCN8A. The age of seizure onset and family history were associated with disease‐causing variants. Conclusion Next‐generation sequencing‐based targeted testing is an effective diagnostic test, with 30%–40% comparable diagnostic yield. Patients with earlier seizure onset and family history of epilepsy were the best candidates for testing. For pediatric patients with early‐onset epilepsy, genetic diagnosis is important for accurate prognosis and treatment.
Collapse
Affiliation(s)
- Jiwon Lee
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Chung Lee
- Samsung Genome Institute, Samsung Medical Center, Seoul, Korea
| | | | - Jeehun Lee
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
23
|
Zietzer A, Hosen MR, Wang H, Goody PR, Sylvester M, Latz E, Nickenig G, Werner N, Jansen F. The RNA-binding protein hnRNPU regulates the sorting of microRNA-30c-5p into large extracellular vesicles. J Extracell Vesicles 2020; 9:1786967. [PMID: 32944175 PMCID: PMC7480565 DOI: 10.1080/20013078.2020.1786967] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The transfer of microRNAs (miRs) via extracellular vesicles (EVs) is a functionally relevant mechanism of intercellular communication that regulates both organ homoeostasis and disease development. Little is known about the packaging of miRs into EVs. Previous studies have shown that certain miRs are exported by RNA-binding proteins into small EVs, while for other miRs and for large EVs, in general, the export mechanisms remain unclear. Therefore, a proteomic analysis of endothelial cell-derived large EVs was performed, which revealed that heterogeneous nuclear ribonucleoprotein U (hnRNPU) is abundantly present in EVs. EVs were characterized by electron microscopy, immunoblotting and nanoparticle tracking analysis. Taqman microRNA array and single qPCR experiments identified specific miR patterns to be exported into EVs in an hnRNPU-dependent way. The specific role of hnRNPU for vesicular miR-sorting was confirmed independently by gain- and loss-of-function experiments. In our study, miR-30c-5p was the miR whose export was most significantly regulated by hnRNPU. Mechanistically, in silico binding analysis showed that the export of miRs into EVs depends on the binding efficiency of the respective miRs to hnRNPU. Among the exported miRs, a significant enrichment of the sequence motif AAMRUGCU was detected as a potential sorting signal. Experimentally, binding of miR-30c-5p to hnRNPU was confirmed independently by RNA-immunoprecipitation, electrophoretic mobility shift assay and reciprocally by miR-pulldown. Nuclear binding of miR-30c-5p to hnRNPU and subsequent stabilization was associated with a lower cytoplasmatic abundance and consequently reduced availability for vesicular export. hnRNPU-dependent miR-30c-5p export reduced cellular migration as well as pro-angiogenic gene expression in EV-recipient cells. In summary, hnRNPU retains miR-30c-5p and other miRs and thereby prevents their export into large EVs. The data presented provide a novel and functionally relevant mechanism of vesicular miR export.
Collapse
Affiliation(s)
- Andreas Zietzer
- Heart Center Bonn, Medical Department II, University Hospital Bonn, Venusberg-Campus 1, Bonn, Germany
| | - Mohammed Rabiul Hosen
- Heart Center Bonn, Medical Department II, University Hospital Bonn, Venusberg-Campus 1, Bonn, Germany
| | - Han Wang
- Heart Center Bonn, Medical Department II, University Hospital Bonn, Venusberg-Campus 1, Bonn, Germany
| | - Philip Roger Goody
- Heart Center Bonn, Medical Department II, University Hospital Bonn, Venusberg-Campus 1, Bonn, Germany
| | - Marc Sylvester
- Core Facility Mass Spectrometry, Institute of Biochemistry and Molecular Biology,Medical Faculty, University of Bonn, Bonn, Germany
| | - Eicke Latz
- Institute of Innate Immunity, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Georg Nickenig
- Heart Center Bonn, Medical Department II, University Hospital Bonn, Venusberg-Campus 1, Bonn, Germany
| | - Nikos Werner
- Heart Center Bonn, Medical Department II, University Hospital Bonn, Venusberg-Campus 1, Bonn, Germany.,Internal Medicine III, Krankenhaus Der Barmherzigen Brüder Trier, Trier, Germany
| | - Felix Jansen
- Heart Center Bonn, Medical Department II, University Hospital Bonn, Venusberg-Campus 1, Bonn, Germany
| |
Collapse
|
24
|
Long K, Wang H, Song Z, Yin X, Wang Y. EEF1A2 mutations in epileptic encephalopathy/intellectual disability: Understanding the potential mechanism of phenotypic variation. Epilepsy Behav 2020; 105:106955. [PMID: 32062104 DOI: 10.1016/j.yebeh.2020.106955] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 01/27/2020] [Accepted: 01/27/2020] [Indexed: 10/25/2022]
Abstract
EEF1A2 encodes protein elongation factor 1-alpha 2, which is involved in Guanosine triphosphate (GTP)-dependent binding of aminoacyl-transfer RNA (tRNA) to the A-site of ribosomes during protein biosynthesis and is highly expressed in the central nervous system. De novo mutations in EEF1A2 have been identified in patients with extensive neurological deficits, including intractable epilepsy, globe developmental delay, and severe intellectual disability. However, the mechanism underlying phenotype variation is unknown. Using next-generation sequencing, we identified a novel and a recurrent de novo mutation, c.294C>A; p.(Phe98Leu) and c.208G>A; p.(Gly70Ser), in patients with Lennox-Gastaut syndrome. The further systematic analysis revealed that all EEF1A2 mutations were associated with epilepsy and intellectual disability, suggesting its critical role in neurodevelopment. Missense mutations with severe molecular alteration in the t-RNA binding sites or GTP hydrolysis domain were associated with early-onset severe epilepsy, indicating that the clinical expression was potentially determined by the location of mutations and alteration of molecular effects. This study highlights the potential genotype-phenotype relationship in EEF1A2 and facilitates the evaluation of the pathogenicity of EEF1A2 mutations in clinical practice.
Collapse
Affiliation(s)
- Kexin Long
- Institute of Medical Sciences, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Hua Wang
- Maternal and Child Health Hospital of Hunan Province, Changsha, Hunan 410008, China; Key Laboratory of Birth Defects Research and Prevention, Changsha, Hunan 410008, China
| | - Zhanyi Song
- Med Department of Pediatric Neurology, Chenzhou No.1 People's Hospital (Children's Hospital), Chenzhou, Hunan 423000, China
| | - Xiaomeng Yin
- Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.
| | - Yaqin Wang
- Department of Health Management Centre, the Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China.
| |
Collapse
|
25
|
Haploinsufficiency of AKT3 gene causing microcephaly and psychomotor delay in a patient with 1q43q44 microdeletion. Clin Dysmorphol 2020; 29:97-100. [PMID: 31929334 DOI: 10.1097/mcd.0000000000000313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Deletion of the 1q43q44 chromosomal region has been related to a clinical syndrome characterized by neurodevelopmental delay, intellectual disability, microcephaly, congenital abnormality of the corpus callosum, and epilepsy and dysmorphic features. A wide variability of the clinical features have been linked to the contiguous deleted genes and incomplete penetrance has been observed too. Here, we report a 4-years-old boy with microcephaly, neurodevelopmental delay, and cardiac atrial septal defect, who had a de-novo 117 Kb 1q43-q44 microdeletion. The deleted chromosomal region encompassed the two genes SDCCAG8 and AKT3. The characteristics of the deletion and the clinical condition of the patient suggest a pathogenic role of the 1q43-q44 deletion, supporting a pivotal role of AKT3 gene in the expression of the clinical phenotype.
Collapse
|
26
|
Symonds JD, McTague A. Epilepsy and developmental disorders: Next generation sequencing in the clinic. Eur J Paediatr Neurol 2020; 24:15-23. [PMID: 31882278 DOI: 10.1016/j.ejpn.2019.12.008] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 12/06/2019] [Indexed: 01/07/2023]
Abstract
BACKGROUND The advent of Next Generation Sequencing (NGS) has led to a redefining of the genetic landscape of the epilepsies. Hundreds of single gene epilepsies have been described. Genes associated with epilepsy involve diverse processes. Now a substantial proportion of individuals with epilepsy can receive a high definition molecular genetic diagnosis. METHODS In this review we update the current genetic landscape of the epilepsies and categorise the major functional groupings of epilepsy-associated genes. We describe currently available genetic testing approaches. We perform a literature review of NGS studies and review the factors which determine yield in cohorts undergoing testing. We identify factors associated with positive genetic diagnosis and consider the utility of genetic testing in terms of treatment selection as well as more qualitative aspects of care. FINDINGS Epilepsy-associated genes can be grouped into five broad functional categories: ion transport; cell growth and differentiation; regulation of synaptic processes; transport and metabolism of small molecules within and between cells; and regulation of gene transcription and translation. Early onset of seizures, drug-resistance, and developmental comorbidity are associated with higher diagnostic yield. The most commonly implicated genes in NGS studies to date, in order, are SCN1A, KCNQ2, CDKL5, SCN2A, and STXBP1. In unselected infantile cohorts PRRT2, a gene associated with self-limited epilepsy, is frequently implicated. Genetic diagnosis provides utility in terms of treatment choice closing the diagnostic odyssey, avoiding unnecessary further testing, and informing future reproductive decisions. CONCLUSIONS Genetic testing has become a first line test in epilepsy. As techniques improve and understanding advances, its utility is set to increase. Genetic diagnosis, particularly in early onset developmental and epileptic encephalopathies, influences treatment choice in a significant proportion of patients. The realistic prospect of gene therapy is a cause for optimism.
Collapse
Affiliation(s)
- Joseph D Symonds
- Paediatric Neuroscience Research Group, Royal Hospital for Children, Glasgow, G51 4TF, UK; Medical Veterinary and Life Sciences, University of Glasgow, G12 8QQ, UK.
| | - Amy McTague
- Institute of Child Health, University Collge London, 30 Guilford St, Holborn, London WC1N 1EH, UK
| |
Collapse
|
27
|
Bar C, Barcia G, Jennesson M, Le Guyader G, Schneider A, Mignot C, Lesca G, Breuillard D, Montomoli M, Keren B, Doummar D, Billette de Villemeur T, Afenjar A, Marey I, Gerard M, Isnard H, Poisson A, Dupont S, Berquin P, Meyer P, Genevieve D, De Saint Martin A, El Chehadeh S, Chelly J, Guët A, Scalais E, Dorison N, Myers CT, Mefford HC, Howell KB, Marini C, Freeman JL, Nica A, Terrone G, Sekhara T, Lebre AS, Odent S, Sadleir LG, Munnich A, Guerrini R, Scheffer IE, Kabashi E, Nabbout R. Expanding the genetic and phenotypic relevance of KCNB1 variants in developmental and epileptic encephalopathies: 27 new patients and overview of the literature. Hum Mutat 2020; 41:69-80. [PMID: 31513310 DOI: 10.1002/humu.23915] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 08/28/2019] [Accepted: 09/09/2019] [Indexed: 12/28/2022]
Abstract
Developmental and epileptic encephalopathies (DEE) refer to a heterogeneous group of devastating neurodevelopmental disorders. Variants in KCNB1 have been recently reported in patients with early-onset DEE. KCNB1 encodes the α subunit of the delayed rectifier voltage-dependent potassium channel Kv 2.1. We review the 37 previously reported patients carrying 29 distinct KCNB1 variants and significantly expand the mutational spectrum describing 18 novel variants from 27 unreported patients. Most variants occur de novo and mainly consist of missense variants located on the voltage sensor and the pore domain of Kv 2.1. We also report the first inherited variant (p.Arg583*). KCNB1-related encephalopathies encompass a wide spectrum of neurodevelopmental disorders with predominant language difficulties and behavioral impairment. Eighty-five percent of patients developed epilepsies with variable syndromes and prognosis. Truncating variants in the C-terminal domain are associated with a less-severe epileptic phenotype. Overall, this report provides an up-to-date review of the mutational and clinical spectrum of KCNB1, strengthening its place as a causal gene in DEEs and emphasizing the need for further functional studies to unravel the underlying mechanisms.
Collapse
Affiliation(s)
- Claire Bar
- Department of Pediatric Neurology, Reference Centre for Rare Epilepsies, Hôpital Necker-Enfants Malades, Paris, France
- Imagine institute, laboratory of Translational Research for Neurological Disorders, INSERM UMR 1163, Imagine Institute, Paris, France
- Université Paris Descartes-Sorbonne Paris Cité, Paris, France
| | - Giulia Barcia
- Imagine institute, laboratory of Translational Research for Neurological Disorders, INSERM UMR 1163, Imagine Institute, Paris, France
- Université Paris Descartes-Sorbonne Paris Cité, Paris, France
- Department of genetics, Necker Enfants Malades hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | | | - Gwenaël Le Guyader
- Department of genetics, University hospital Poitiers, Poitiers Cedex, France
- EA3808-NEUVACOD Unité Neurovasculaire et Troubles Cognitifs, Pôle Biologie Santé, Université de Poitiers, Poitiers, France
| | - Amy Schneider
- Department of Medicine, Epilepsy Research Centre, Austin Health, The University of Melbourne, Heidelberg, Victoria, Australia
| | - Cyril Mignot
- Institut du Cerveau et de la Moelle épinière, INSERM, U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Paris, France
- Département de Génétique et de Cytogénétique, Centre de Reference Déficience Intellectuelle de Causes Rares, APHP, Hôpital Pitié-Salpêtrière, GRC UPMC (Déficience Intellectuelle et Autisme), Paris, France
| | - Gaetan Lesca
- Department of genetics, Hospices Civils de Lyon, Lyon, France
- Neurosciences centre of Lyon, INSERM U1028, UMR CNRS 5292, Université Claude Bernard Lyon 1, Bron Cedex, France
| | - Delphine Breuillard
- Department of Pediatric Neurology, Reference Centre for Rare Epilepsies, Hôpital Necker-Enfants Malades, Paris, France
| | - Martino Montomoli
- Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories, Department of Neuroscience, A Meyer Children's Hospital, University of Florence, Florence, Italy
| | - Boris Keren
- Département de Génétique et de Cytogénétique, Centre de Reference Déficience Intellectuelle de Causes Rares, APHP, Hôpital Pitié-Salpêtrière, GRC UPMC (Déficience Intellectuelle et Autisme), Paris, France
| | - Diane Doummar
- Department of Pediatric Neurology, Hôpital Armand Trousseau, AP-HP, Paris, France
| | | | - Alexandra Afenjar
- Département de Génétique et Embryologie Médicale, Pathologies Congénitales du Cervelet-LeucoDystrophies, Centre de Référence déficiences intellectuelles de causes rares, AP-HP, Hôpital Armand Trousseau, GRC n°19, Sorbonne Université, Paris, France
| | - Isabelle Marey
- Département de Génétique et de Cytogénétique, Centre de Reference Déficience Intellectuelle de Causes Rares, APHP, Hôpital Pitié-Salpêtrière, GRC UPMC (Déficience Intellectuelle et Autisme), Paris, France
| | - Marion Gerard
- Department of genetics, CHU Côte de Nacre, Caen, France
| | | | - Alice Poisson
- Reference Center for Diagnosis and Management of Genetic Psychiatric Disorders, Centre Hospitalier le Vinatier and EDR-Psy Team, Centre National de la Recherche Scientifique & Lyon 1 Claude Bernard University, Villeurbanne, France
| | - Sophie Dupont
- Institut du Cerveau et de la Moelle épinière, INSERM, U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Paris, France
- Epileptology and Rehabilitation department, GH Pitie-Salpêtrière-Charles Foix, AP-HP, Paris, France
| | - Patrick Berquin
- Department of pediatric neurology Amiens-Picardie university hospital, Université de Picardie Jules Verne, Amiens, France
| | - Pierre Meyer
- Department of pediatric neurology, Montpellier university hospital, Montpellier, France
- PhyMedExp, U1046 INSERM, UMR9214 CNRS, Montpellier, France
| | - David Genevieve
- Service de génétique clinique et du Département de Génétique Médicale, Maladies Rares et Médecine Personnalisée, Centre de référence maladies rares anomalies du développement, CHU Montpellier, Montpellier, France
| | - Anne De Saint Martin
- Department of Pediatric Neurology, Strasbourg University Hospital, Strasbourg, France
| | - Salima El Chehadeh
- Department of genetics, Hôpital de Hautepierre, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Jamel Chelly
- Department of genetics, Hôpital de Hautepierre, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Agnès Guët
- Department of Pediatric, Louis-Mourier Hospital, Colombes, France
| | - Emmanuel Scalais
- Department of Pediatric Neurology, Centre Hospitalier de Luxembourg, Luxembourg City, Luxembourg City, Luxembourg
| | - Nathalie Dorison
- Department of pediatric Neurosurgery, Rothschild Foundation Hospital, Paris, France
| | - Candace T Myers
- Department of Pediatrics, University of Washington, Seattle, Washington
| | - Heather C Mefford
- Department of Pediatrics, Division of Genetic Medicine, University of Washington, Seattle, Washington
| | - Katherine B Howell
- Departments of Neurology and Paediatrics, Royal Children's Hospital, University of Melbourne, Melbourne, Victoria, Australia
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Carla Marini
- Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories, Department of Neuroscience, A Meyer Children's Hospital, University of Florence, Florence, Italy
| | - Jeremy L Freeman
- Departments of Neurology and Paediatrics, Royal Children's Hospital, University of Melbourne, Melbourne, Victoria, Australia
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Anca Nica
- Department of Neurology, Center for Clinical Research (CIC 1414), Rennes University Hospital, Rennes, France
| | - Gaetano Terrone
- Department of Translational Medical Sciences, Section of Pediatrics-Child Neurology Unit, Federico II University, Naples, Italy
| | - Tayeb Sekhara
- Department of Pediatric Neurology, C.H.I.R.E.C, Brussels, Belgium
| | - Anne-Sophie Lebre
- Department of genetics, Maison Blanche hospital, University hospital, Reims, Reims, France
| | - Sylvie Odent
- Reference Centre for Rare Developmental Abnormalities, CLAD-Ouest, CHU Rennes, Rennes, France
- Institute of genetics and development, CNRS UMR 6290, Rennes university, Rennes, France
| | - Lynette G Sadleir
- Department of Paediatrics and Child Health, University of Otago, Wellington, New Zealand
| | - Arnold Munnich
- Université Paris Descartes-Sorbonne Paris Cité, Paris, France
- Department of genetics, Necker Enfants Malades hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Renzo Guerrini
- Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories, Department of Neuroscience, A Meyer Children's Hospital, University of Florence, Florence, Italy
| | - Ingrid E Scheffer
- Department of Medicine, Epilepsy Research Centre, Austin Health, The University of Melbourne, Heidelberg, Victoria, Australia
- Departments of Neurology and Paediatrics, Royal Children's Hospital, University of Melbourne, Melbourne, Victoria, Australia
- The Florey Institute of Neurosciences and Mental Health, Heidelberg, Victoria, Australia
| | - Edor Kabashi
- Imagine institute, laboratory of Translational Research for Neurological Disorders, INSERM UMR 1163, Imagine Institute, Paris, France
- Université Paris Descartes-Sorbonne Paris Cité, Paris, France
| | - Rima Nabbout
- Department of Pediatric Neurology, Reference Centre for Rare Epilepsies, Hôpital Necker-Enfants Malades, Paris, France
- Imagine institute, laboratory of Translational Research for Neurological Disorders, INSERM UMR 1163, Imagine Institute, Paris, France
- Université Paris Descartes-Sorbonne Paris Cité, Paris, France
| |
Collapse
|
28
|
Customized multigene panels in epilepsy: the best things come in small packages. Neurogenetics 2019; 21:1-18. [PMID: 31834528 DOI: 10.1007/s10048-019-00598-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 11/12/2019] [Indexed: 12/13/2022]
Abstract
Over the past 10 years, the increasingly important role played by next-generation sequencing panels in the genetic diagnosis of epilepsy has led to a growing list of gene variants and a plethora of new scientific data. To date, however, there is still no consensus on what constitutes the "ideal panel design," or on the most rational criteria for selecting the best candidates for gene-panel analysis, even though both might optimize the cost-benefit ratio and the diagnostic efficiency of customized gene panels. Even though more and more laboratories are adopting whole-exome sequencing as a first-tier diagnostic approach, interpreting, "in silico," a set of epilepsy-related genes remains difficult. In the light of these considerations, we performed a systematic review of the targeted gene panels for epilepsy already reported in the available scientific literature, with a view to identifying the best criteria for selecting patients for gene-panel analysis, and the best way to design an "ideal," gold-standard panel that includes all genes with an established role in epilepsy pathogenesis, as well as those that might help to guide decisions regarding specific medical interventions and treatments. Our analyses suggest that the usefulness and diagnostic power of customized gene panels for epilepsy may be greatest when these panels are confined to rationally selected, relatively small, pools of genes, and applied in more carefully selected epilepsy patients (those with complex forms of epilepsy). A panel containing 64 genes, which includes the 45 genes harboring a significant number of pathogenic variants identified in previous literature, the 32 clinically actionable genes, and the 21 ILAE (International League Against Epilepsy) recommended genes, may represent an "ideal" core set likely able to provide the highest diagnostic efficiency and cost-effectiveness and facilitate gene prioritization when testing patients with whole-exome/whole-genome sequencing.
Collapse
|
29
|
Kaur S, Van Bergen NJ, Gold WA, Eggers S, Lunke S, White SM, Ellaway C, Christodoulou J. Whole exome sequencing reveals a de novo missense variant in EEF1A2 in a Rett syndrome-like patient. Clin Case Rep 2019; 7:2476-2482. [PMID: 31893083 PMCID: PMC6935606 DOI: 10.1002/ccr3.2511] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 09/19/2019] [Accepted: 09/30/2019] [Indexed: 01/09/2023] Open
Abstract
Using whole exome sequencing, we found a pathogenic variant in the EEF1A2 gene in a patient with a Rett syndrome-like (RTT-like) phenotype, further confirming the association between EEF1A2 and Rett syndrome RTT and RTT-like phenotypes.
Collapse
Affiliation(s)
- Simranpreet Kaur
- Brain and Mitochondrial Research GroupMurdoch Children's Research InstituteParkvilleVic.Australia
- Department of PaediatricsUniversity of MelbourneParkvilleVic.Australia
| | - Nicole J. Van Bergen
- Brain and Mitochondrial Research GroupMurdoch Children's Research InstituteParkvilleVic.Australia
- Department of PaediatricsUniversity of MelbourneParkvilleVic.Australia
| | - Wendy Anne Gold
- Molecular Neurobiology Lab, Kids ResearchWestmead Children's HospitalWestmeadNSWAustralia
- Disciplines of Genetic Medicine and Child and Adolescent HealthSydney Medical SchoolUniversity of SydneyNSWAustralia
| | - Stefanie Eggers
- Translational Genomics UnitMurdoch Children's Research InstituteParkvilleVic.Australia
- Victorian Clinical Genetics ServicesMurdoch Children's Research InstituteParkvilleVic.Australia
| | - Sebastian Lunke
- Translational Genomics UnitMurdoch Children's Research InstituteParkvilleVic.Australia
- Victorian Clinical Genetics ServicesMurdoch Children's Research InstituteParkvilleVic.Australia
| | - Susan M. White
- Department of PaediatricsUniversity of MelbourneParkvilleVic.Australia
- Victorian Clinical Genetics ServicesMurdoch Children's Research InstituteParkvilleVic.Australia
| | - Carolyn Ellaway
- Disciplines of Genetic Medicine and Child and Adolescent HealthSydney Medical SchoolUniversity of SydneyNSWAustralia
- Genetic Metabolic Disorders ServiceSydney Children's Hospital NetworkSydneyNSWAustralia
| | - John Christodoulou
- Brain and Mitochondrial Research GroupMurdoch Children's Research InstituteParkvilleVic.Australia
- Department of PaediatricsUniversity of MelbourneParkvilleVic.Australia
- Disciplines of Genetic Medicine and Child and Adolescent HealthSydney Medical SchoolUniversity of SydneyNSWAustralia
- Victorian Clinical Genetics ServicesMurdoch Children's Research InstituteParkvilleVic.Australia
| |
Collapse
|
30
|
Yu W, Shin MR, Sesti F. Complexes formed with integrin-α5 and KCNB1 potassium channel wild type or epilepsy-susceptibility variants modulate cellular plasticity via Ras and Akt signaling. FASEB J 2019; 33:14680-14689. [PMID: 31682765 DOI: 10.1096/fj.201901792r] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Voltage-gated potassium (K+) channel subfamily B member 1 (KCNB1, Kv2.1) and integrin-α5 form macromolecular complexes-named integrin-α5-KCNB1 complexes (IKCs)-in the human brain, but their function was poorly understood. Here we report that membrane depolarization triggered IKC intracellular signals mediated by small GTPases of the Ras subfamily and protein kinase B (Akt) to advance the development of filopodia and lamellipodia in Chinese hamster ovary cells, stimulate their motility, and enhance neurite outgrowth in mouse neuroblastoma Neuro2a cells. Five KCNB1 mutants (L211P, R312H G379R, G381R, and F416L) linked to severe infancy or early-onset epileptic encephalopathy exhibited markedly defective conduction. However, although L211P, G379R, and G381R normally engaged Ras/Akt and stimulated cell migration, R312H and F416L failed to activate Ras/Akt signaling and did not enhance cell migration. Taken together, these data suggest that IKCs modulate cellular plasticity via Ras and Akt signaling. As such, defective IKCs may cause epilepsy through mechanisms other than dysregulated excitability such as, for example, abnormal neuronal development and resulting synaptic connectivity.-Yu, W., Shin, M. R., Sesti, F. Complexes formed with integrin-α5 and KCNB1 potassium channel wild type or epilepsy-susceptibility variants modulate cellular plasticity via Ras and Akt signaling.
Collapse
Affiliation(s)
- Wei Yu
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey, USA
| | - Mi Ryung Shin
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey, USA
| | - Federico Sesti
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey, USA
| |
Collapse
|
31
|
Jędrychowska J, Korzh V. Kv2.1 voltage-gated potassium channels in developmental perspective. Dev Dyn 2019; 248:1180-1194. [PMID: 31512327 DOI: 10.1002/dvdy.114] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 09/01/2019] [Accepted: 09/03/2019] [Indexed: 11/11/2022] Open
Abstract
Kv2.1 voltage-gated potassium channels consist of two types of α-subunits: (a) electrically-active Kcnb1 α-subunits and (b) silent or modulatory α-subunits plus β-subunits that, similar to silent α-subunits, also regulate electrically-active subunits. Voltage-gated potassium channels were traditionally viewed, mainly by electrophysiologists, as regulators of the electrical activity of the plasma membrane in excitable cells, a role that is performed by transmembrane protein domains of α-subunits that form the electric pore. Genetic studies revealed a role for this region of α-subunits of voltage-gated potassium channels in human neurodevelopmental disorders, such as epileptic encephalopathy. The N- and C-terminal domains of α-subunits interact to form the cytoplasmic subunit of heterotetrameric potassium channels that regulate electric pores. Subsequent animal studies revealed the developmental functions of Kcnb1-containing voltage-gated potassium channels and illustrated their role during brain development and reproduction. These functions of potassium channels are discussed in this review in the context of regulatory interactions between electrically-active and regulatory subunits.
Collapse
Affiliation(s)
- Justyna Jędrychowska
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland.,Postgraduate School of Molecular Medicine, Warsaw Medical University, Warsaw, Poland
| | - Vladimir Korzh
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| |
Collapse
|
32
|
Jang SS, Kim SY, Kim H, Hwang H, Chae JH, Kim KJ, Kim JI, Lim BC. Diagnostic Yield of Epilepsy Panel Testing in Patients With Seizure Onset Within the First Year of Life. Front Neurol 2019; 10:988. [PMID: 31572294 PMCID: PMC6753218 DOI: 10.3389/fneur.2019.00988] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 08/29/2019] [Indexed: 11/13/2022] Open
Abstract
Purpose: We aimed to evaluate the diagnostic yield of epilepsy gene panel testing in epilepsy patients whose seizures began within the first year after birth. We included 112 patients with seizure onset before 12 months and no known etiology. Methods: Deep targeted sequencing with a custom-designed capture probe was performed to ensure the detection of germline or mosaic sequence variants and copy number variations (CNVs). Results: We identified pathogenic or likely pathogenic variants in 53 patients (47.3%, 53/112), including five with pathogenic CNVs. Two putative pathogenic mosaic variants in SCN8A and KCNQ2 were also detected and validated. Those with neonatal onset (61.5%, 16/26) or early infantile onset (50.0%, 29/58) showed higher diagnostic rates than those with late infantile onset (28.5%, 8/28). The diagnostic rate was similar between patients with a specific syndrome (51.9%, 27/52) and those with no recognizable syndrome (43.3%, 26/60). Conclusion: Epilepsy gene panel testing identified a genetic cause in nearly half of the infantile onset epilepsy patients. Since the phenotypic spectrum is expanding and characterizing it at seizure onset is difficult, this group should be prioritized for epilepsy gene panel testing.
Collapse
Affiliation(s)
- Se Song Jang
- Department of Pediatrics, Seoul National University College of Medicine, Seoul National University Children's Hospital, Seoul, South Korea
| | - Soo Yeon Kim
- Department of Pediatrics, Seoul National University College of Medicine, Seoul National University Children's Hospital, Seoul, South Korea
| | - Hunmin Kim
- Department of Pediatrics, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Bundang-gu, South Korea
| | - Hee Hwang
- Department of Pediatrics, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Bundang-gu, South Korea
| | - Jong Hee Chae
- Department of Pediatrics, Seoul National University College of Medicine, Seoul National University Children's Hospital, Seoul, South Korea
| | - Ki Joong Kim
- Department of Pediatrics, Seoul National University College of Medicine, Seoul National University Children's Hospital, Seoul, South Korea
| | - Jong-Il Kim
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, South Korea.,Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, South Korea.,Medical Research Center, Genomic Medicine Institute, Seoul National University, Seoul, South Korea
| | - Byung Chan Lim
- Department of Pediatrics, Seoul National University College of Medicine, Seoul National University Children's Hospital, Seoul, South Korea
| |
Collapse
|
33
|
Kuchenbuch M, Barcia G, Chemaly N, Carme E, Roubertie A, Gibaud M, Van Bogaert P, de Saint Martin A, Hirsch E, Dubois F, Sarret C, Nguyen The Tich S, Laroche C, des Portes V, Billette de Villemeur T, Barthez MA, Auvin S, Bahi-Buisson N, Desguerre I, Kaminska A, Benquet P, Nabbout R. KCNT1 epilepsy with migrating focal seizures shows a temporal sequence with poor outcome, high mortality and SUDEP. Brain 2019; 142:2996-3008. [DOI: 10.1093/brain/awz240] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 06/11/2019] [Accepted: 06/14/2019] [Indexed: 11/14/2022] Open
Abstract
Data on KCNT1 epilepsy of infancy with migrating focal seizures are heterogeneous and incomplete. Kuchenbuch et al. refine the syndrome phenotype, showing a three-step temporal sequence, poor prognosis with acquired microcephaly, high prevalence of extra-neurological manifestations and early mortality, particularly due to SUDEP. Refining the electro-clinical spectrum should facilitate early diagnosis.
Collapse
Affiliation(s)
- Mathieu Kuchenbuch
- University Rennes, CHU Rennes (Department of Clinical neurophysiology), Inserm, LTSI (Laboratoire de Traitement du Signal et de l’Image), UMR-1099, F-35000 Rennes, France
- Reference Centre for Rare Epilepsies, Department of Pediatric Neurology, Necker Enfants Malades Hospital, Paris Descartes University, Paris, France
- Institut Imagine, INSERM UMR 1163, Translational research for neurological disorder, France
| | - Giulia Barcia
- Reference Centre for Rare Epilepsies, Department of Pediatric Neurology, Necker Enfants Malades Hospital, Paris Descartes University, Paris, France
- Institut Imagine, INSERM UMR 1163, Translational research for neurological disorder, France
- Department of Genetics, Necker Enfants Malades Hospital, Imagine Institute, France
| | - Nicole Chemaly
- Reference Centre for Rare Epilepsies, Department of Pediatric Neurology, Necker Enfants Malades Hospital, Paris Descartes University, Paris, France
- Institut Imagine, INSERM UMR 1163, Translational research for neurological disorder, France
| | - Emilie Carme
- Department of Pediatric Neurology, University of Montpellier, France
| | - Agathe Roubertie
- Department of Pediatric Neurology, University of Montpellier, France
| | - Marc Gibaud
- Department of Pediatric Neurology, Angers University Hospital, France
| | | | | | - Edouard Hirsch
- Department of Pediatric Neurology, Strasbourg University Hospital, France
| | - Fanny Dubois
- Department of Pediatric Neurology, CHU Grenoble Alpes, F-38000 Grenoble, France
| | | | | | - Cecile Laroche
- Department of Pediatric Neurology, Limoges University Hospital, France
| | - Vincent des Portes
- Department of Pediatric Neurology, CNRS UMR 5304, F- 69675 Bron, France
- Lyon-1 University, F-69008 Lyon, France
| | | | | | - Stéphane Auvin
- Université Paris Diderot, Sorbonne Paris Cité, INSERM UMR1141, Paris, France
- AP-HP, Hôpital Robert Debré, Service de Neurologie Pédiatrique, Paris, France
| | - Nadia Bahi-Buisson
- Reference Centre for Rare Epilepsies, Department of Pediatric Neurology, Necker Enfants Malades Hospital, Paris Descartes University, Paris, France
| | - Isabelle Desguerre
- Reference Centre for Rare Epilepsies, Department of Pediatric Neurology, Necker Enfants Malades Hospital, Paris Descartes University, Paris, France
| | - Anna Kaminska
- Reference Centre for Rare Epilepsies, Department of Pediatric Neurology, Necker Enfants Malades Hospital, Paris Descartes University, Paris, France
- AP-HP, Necker-Enfants Malades Hospital, Department of Clinical Neurophysiology, Paris, France
| | - Pascal Benquet
- University Rennes, CHU Rennes (Department of Clinical neurophysiology), Inserm, LTSI (Laboratoire de Traitement du Signal et de l’Image), UMR-1099, F-35000 Rennes, France
| | - Rima Nabbout
- Reference Centre for Rare Epilepsies, Department of Pediatric Neurology, Necker Enfants Malades Hospital, Paris Descartes University, Paris, France
- Institut Imagine, INSERM UMR 1163, Translational research for neurological disorder, France
| |
Collapse
|
34
|
Chen Z, Zhang Y. A patient with juvenile-onset refractory status epilepticus caused by two novel compound heterozygous mutations in FARS2 gene. Int J Neurosci 2019; 129:1094-1097. [PMID: 31329004 DOI: 10.1080/00207454.2019.1634071] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
FARS2 encodes mitochondrial phenylalanyl transfer ribonucleic acid (RNA) synthetase and is implicated in autosomal recessive combined oxidative phosphorylation deficiency 14. The clinical manifestation can be divided into early onset epileptic phenotype and spastic paraplegia phenotype. The purpose of this study was to report a case of juvenile manifesting refractory epilepsy caused by two novel compound heterozygous mutations in the FARS2 gene. Microscopic and histochemical examination as well as next-generation sequencing and reconstruction of the three-dimensional structure of FARS2 protein were performed. A 17-year-old man with no developmental delays suffered from generalized tonic-clonic convulsion since 12 years of age and developed refractory status epilepticus 5 years later. No specific etiology was found following brain imaging, muscle biopsy and metabolic studies. DNA sequencing identified two novel compound heterozygous mutations in FARS2, (p.V197M and p.F402S), derived from each parents, respectively. These mutations affected the structure or thermodynamic stability of the protein. This is a case report of juvenile-onset refractory epilepsy caused by two novel compound heterozygous mutations in the FARS2 gene. This case confirms and expands the clinicalphenotype and the genotypic spectrum of the FARS2 gene.
Collapse
Affiliation(s)
- Zhongyun Chen
- Department of Neurology, Xuanwu Hospital, Capital Medical University , Beijing , China
| | - Yan Zhang
- Department of Neurology, Xuanwu Hospital, Capital Medical University , Beijing , China
| |
Collapse
|
35
|
Demos M, Guella I, DeGuzman C, McKenzie MB, Buerki SE, Evans DM, Toyota EB, Boelman C, Huh LL, Datta A, Michoulas A, Selby K, Bjornson BH, Horvath G, Lopez-Rangel E, van Karnebeek CDM, Salvarinova R, Slade E, Eydoux P, Adam S, Van Allen MI, Nelson TN, Bolbocean C, Connolly MB, Farrer MJ. Diagnostic Yield and Treatment Impact of Targeted Exome Sequencing in Early-Onset Epilepsy. Front Neurol 2019; 10:434. [PMID: 31164858 PMCID: PMC6536592 DOI: 10.3389/fneur.2019.00434] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Accepted: 04/09/2019] [Indexed: 12/12/2022] Open
Abstract
Targeted whole-exome sequencing (WES) is a powerful diagnostic tool for a broad spectrum of heterogeneous neurological disorders. Here, we aim to examine the impact on diagnosis, treatment and cost with early use of targeted WES in early-onset epilepsy. WES was performed on 180 patients with early-onset epilepsy (≤5 years) of unknown cause. Patients were classified as Retrospective (epilepsy diagnosis >6 months) or Prospective (epilepsy diagnosis <6 months). WES was performed on an Ion Proton™ and variant reporting was restricted to the sequences of 620 known epilepsy genes. Diagnostic yield and time to diagnosis were calculated. An analysis of cost and impact on treatment was also performed. A molecular diagnoses (pathogenic/likely pathogenic variants) was achieved in 59/180 patients (33%). Clinical management changed following WES findings in 23 of 59 diagnosed patients (39%) or 13% of all patients. A possible diagnosis was identified in 21 additional patients (12%) for whom supporting evidence is pending. Time from epilepsy onset to a genetic diagnosis was faster when WES was performed early in the diagnostic process (mean: 145 days Prospective vs. 2,882 days Retrospective). Costs of prior negative tests averaged $8,344 per patient in the Retrospective group, suggesting savings of $5,110 per patient using WES. These results highlight the diagnostic yield, clinical utility and potential cost-effectiveness of using targeted WES early in the diagnostic workup of patients with unexplained early-onset epilepsy. The costs and clinical benefits are likely to continue to improve. Advances in precision medicine and further studies regarding impact on long-term clinical outcome will be important.
Collapse
Affiliation(s)
- Michelle Demos
- Division of Neurology, Department of Pediatrics, University of British Columbia and BC Children's Hospital, Vancouver, BC, Canada
| | - Ilaria Guella
- Department of Medical Genetics, Centre for Applied Neurogenetics (CAN), University of British Columbia, Vancouver, BC, Canada
| | - Conrado DeGuzman
- Division of Neurology, Department of Pediatrics, University of British Columbia and BC Children's Hospital, Vancouver, BC, Canada
| | - Marna B McKenzie
- Department of Medical Genetics, Centre for Applied Neurogenetics (CAN), University of British Columbia, Vancouver, BC, Canada
| | - Sarah E Buerki
- Division of Neurology, Department of Pediatrics, University of British Columbia and BC Children's Hospital, Vancouver, BC, Canada.,Division of Neuropediatrics, University Children's Hospital Zurich, Zurich, Switzerland
| | - Daniel M Evans
- Department of Medical Genetics, Centre for Applied Neurogenetics (CAN), University of British Columbia, Vancouver, BC, Canada
| | - Eric B Toyota
- Division of Neurology, Department of Pediatrics, University of British Columbia and BC Children's Hospital, Vancouver, BC, Canada
| | - Cyrus Boelman
- Division of Neurology, Department of Pediatrics, University of British Columbia and BC Children's Hospital, Vancouver, BC, Canada
| | - Linda L Huh
- Division of Neurology, Department of Pediatrics, University of British Columbia and BC Children's Hospital, Vancouver, BC, Canada
| | - Anita Datta
- Division of Neurology, Department of Pediatrics, University of British Columbia and BC Children's Hospital, Vancouver, BC, Canada
| | - Aspasia Michoulas
- Division of Neurology, Department of Pediatrics, University of British Columbia and BC Children's Hospital, Vancouver, BC, Canada
| | - Kathryn Selby
- Division of Neurology, Department of Pediatrics, University of British Columbia and BC Children's Hospital, Vancouver, BC, Canada
| | - Bruce H Bjornson
- Division of Neurology, Department of Pediatrics, University of British Columbia and BC Children's Hospital, Vancouver, BC, Canada
| | - Gabriella Horvath
- Division of Biochemical Diseases, Department of Pediatrics, BC Children's Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Elena Lopez-Rangel
- Division of Developmental Pediatrics, Department of Pediatrics, BC Children's Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Clara D M van Karnebeek
- Department of Pediatrics, Centre for Molecular Medicine and Therapeutics, BCCHRI, University of British Columbia, Vancouver, BC, Canada.,Department of Pediatrics, Academic Medical Centre, Amsterdam, Netherlands
| | - Ramona Salvarinova
- Division of Biochemical Diseases, Department of Pediatrics, BC Children's Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Erin Slade
- Division of Neurology, Department of Pediatrics, University of British Columbia and BC Children's Hospital, Vancouver, BC, Canada
| | - Patrice Eydoux
- Division of Genome Diagnostics, Department of Pathology and Laboratory Medicine, BC Children's Hospital, Vancouver, BC, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Shelin Adam
- Department of Medical Genetics, BC Children's and BC's Women's Hospitals, University of British Columbia, Vancouver, BC, Canada
| | - Margot I Van Allen
- Department of Medical Genetics, BC Children's and BC's Women's Hospitals, University of British Columbia, Vancouver, BC, Canada
| | - Tanya N Nelson
- Division of Genome Diagnostics, Department of Pathology and Laboratory Medicine, BC Children's Hospital, Vancouver, BC, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Corneliu Bolbocean
- University of Tennessee Health Science Center, Memphis, TN, United States.,Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Mary B Connolly
- Division of Neurology, Department of Pediatrics, University of British Columbia and BC Children's Hospital, Vancouver, BC, Canada
| | - Matthew J Farrer
- Department of Medical Genetics, Centre for Applied Neurogenetics (CAN), University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
36
|
Møller RS, Hammer TB, Rubboli G, Lemke JR, Johannesen KM. From next-generation sequencing to targeted treatment of non-acquired epilepsies. Expert Rev Mol Diagn 2019; 19:217-228. [DOI: 10.1080/14737159.2019.1573144] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Rikke S. Møller
- Department of Epilepsy Genetics and Precision Medicine, The Danish Epilepsy Centre, Dianalund, Denmark
- Institute for Regional Health Services, University of Southern Denmark, Odense, Denmark
| | - Trine B. Hammer
- Department of Epilepsy Genetics and Precision Medicine, The Danish Epilepsy Centre, Dianalund, Denmark
| | - Guido Rubboli
- Department of Epilepsy Genetics and Precision Medicine, The Danish Epilepsy Centre, Dianalund, Denmark
- Institute of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Johannes R. Lemke
- Institute of Human Genetics, University of Leipzig Hospitals and Clinics, Leipzig, Germany
| | - Katrine M. Johannesen
- Department of Epilepsy Genetics and Precision Medicine, The Danish Epilepsy Centre, Dianalund, Denmark
- Institute for Regional Health Services, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
37
|
Andrews NP, Boeckman JX, Manning CF, Nguyen JT, Bechtold H, Dumitras C, Gong B, Nguyen K, van der List D, Murray KD, Engebrecht J, Trimmer JS. A toolbox of IgG subclass-switched recombinant monoclonal antibodies for enhanced multiplex immunolabeling of brain. eLife 2019; 8:43322. [PMID: 30667360 PMCID: PMC6377228 DOI: 10.7554/elife.43322] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 01/21/2019] [Indexed: 11/17/2022] Open
Abstract
Generating recombinant monoclonal antibodies (R-mAbs) from mAb-producing hybridomas offers numerous advantages that increase the effectiveness, reproducibility, and transparent reporting of research. We report here the generation of a novel resource in the form of a library of recombinant R-mAbs validated for neuroscience research. We cloned immunoglobulin G (IgG) variable domains from cryopreserved hybridoma cells and input them into an integrated pipeline for expression and validation of functional R-mAbs. To improve efficiency over standard protocols, we eliminated aberrant Sp2/0-Ag14 hybridoma-derived variable light transcripts using restriction enzyme treatment. Further, we engineered a plasmid backbone that allows for switching of the IgG subclasses without altering target binding specificity to generate R-mAbs useful in simultaneous multiplex labeling experiments not previously possible. The method was also employed to rescue IgG variable sequences and generate functional R-mAbs from a non-viable cryopreserved hybridoma. All R-mAb sequences and plasmids will be archived and disseminated from open source suppliers. The immune system fights off disease-causing microbes using antibodies: Y-shaped proteins that each bind to a specific foreign molecule. Indeed, these proteins bind so tightly and so specifically that they can pick out a single target in a complex mixture of different molecules. This property also makes them useful in research. For example, neurobiologists can use antibodies to mark target proteins in thin sections of brain tissue. This reveals their position inside brain cells, helping to link the structure of the brain to the roles the different parts of this structure perform. To use antibodies in this way, scientists need to be able to produce them in large quantities without losing their target specificity. The most common way to do this is with cells called hybridomas. A hybridoma is a hybrid of an antibody-producing immune cell and a cancer cell, and it has properties of both. From the immune cell, it inherits the genes to make a specific type of antibody. From the cancer cell, it inherits the ability to go on dividing forever. In theory, hybridomas should be immortal antibody factories, but they have some limitations. They are expensive to keep alive, hard to transport between labs, and their genes can be unstable. Problems can creep into their genetic code, halting their growth or changing the targets their antibodies recognize. When this happens, scientists can lose vital research tools. Instead of keeping the immune cells alive, an alternative approach is to make recombinant antibodies. Rather than store the whole cell, this approach just stores the parts of the genes that encode antibody target-specificity. Andrews et al. set out to convert a valuable toolbox of neuroscience antibodies into recombinant form. This involved copying the antibody genes from a large library of preserved hybridoma cells. However, many hybridomas also carry genes that produce non-functional antibodies. A step in the process removed these DNA sequences, ensuring that only working antibodies made it into the final library. Using frozen cells made it possible to recover antibody genes from hybridoma cells that could no longer grow. The recombinant DNA sequences provide a permanent record of useful antibodies. Not only does this prevent the loss of research tools, it is also much more shareable than living cells. Modifications to the DNA sequences in the library allow for the use of many antibodies at once. This could help when studying the interactions between different molecules in the brain. Toolkits like these could also make it easier to collaborate, and to reproduce data gathered by different researchers around the world.
Collapse
Affiliation(s)
- Nicolas P Andrews
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, United States
| | - Justin X Boeckman
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, United States
| | - Colleen F Manning
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, United States
| | - Joe T Nguyen
- Department of Molecular and Cellular Biology, University of California, Davis, United States
| | - Hannah Bechtold
- Department of Molecular and Cellular Biology, University of California, Davis, United States
| | - Camelia Dumitras
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, United States
| | - Belvin Gong
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, United States
| | - Kimberly Nguyen
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, United States
| | - Deborah van der List
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, United States
| | - Karl D Murray
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, United States
| | - JoAnne Engebrecht
- Department of Molecular and Cellular Biology, University of California, Davis, United States
| | - James S Trimmer
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, United States.,Department of Physiology and Membrane Biology, University of California, Davis, United States
| |
Collapse
|
38
|
Alsahli S, Al-Twaijri W, Al Mutairi F. Confirming the pathogenicity of NECAP1 in early onset epileptic encephalopathy. Epilepsia Open 2018; 3:524-527. [PMID: 30525121 PMCID: PMC6276780 DOI: 10.1002/epi4.12263] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/18/2018] [Indexed: 12/17/2022] Open
Abstract
Early onset epileptic encephalopathy (EOEE) has been used to encompass Ohtahara syndrome (early infantile epileptic encephalopathy [EIEE]), early myoclonic epilepsy, and many others. Multiple genes have been established to cause epileptic encephalopathy in the immature brain, and next‐generation sequencing has accelerated the process of novel gene discovery. Many of the previously published candidate genes are still pending confirmatory reports or functional studies. Although most of the genes involved are ion channels (channelopathies), multiple other pathways have been implicated as well. NECAP1 is a key element in clathrin‐mediated endocytosis and has been reported previously to cause EOEE in a Saudi family. We report another family with the same variant confirming the pathogenicity of this variant as a Saudi founder mutation, further delineate its phenotype, and propose that it causes EOEE instead of EIEE.
Collapse
Affiliation(s)
- Saud Alsahli
- Division of Pediatric Neurology Department of Pediatrics King Abdulaziz Medical City Ministry of National Guard-Health Affairs (MNGHA) Riyadh Saudi Arabia.,King Abdullah International Medical Research Center (KAIMRC) Riyadh Saudi Arabia.,College of Medicine King Saud bin Abdulaziz University for Health Sciences Riyadh Saudi Arabia
| | - Waleed Al-Twaijri
- Division of Pediatric Neurology Department of Pediatrics King Abdulaziz Medical City Ministry of National Guard-Health Affairs (MNGHA) Riyadh Saudi Arabia.,King Abdullah International Medical Research Center (KAIMRC) Riyadh Saudi Arabia.,College of Medicine King Saud bin Abdulaziz University for Health Sciences Riyadh Saudi Arabia
| | - Fuad Al Mutairi
- King Abdullah International Medical Research Center (KAIMRC) Riyadh Saudi Arabia.,College of Medicine King Saud bin Abdulaziz University for Health Sciences Riyadh Saudi Arabia.,Division of Genetics Department of Pediatrics King Abdulaziz Medical City Ministry of National Guard-Health Affairs (MNGHA) Riyadh Saudi Arabia
| |
Collapse
|
39
|
Papuc SM, Abela L, Steindl K, Begemann A, Simmons TL, Schmitt B, Zweier M, Oneda B, Socher E, Crowther LM, Wohlrab G, Gogoll L, Poms M, Seiler M, Papik M, Baldinger R, Baumer A, Asadollahi R, Kroell-Seger J, Schmid R, Iff T, Schmitt-Mechelke T, Otten K, Hackenberg A, Addor MC, Klein A, Azzarello-Burri S, Sticht H, Joset P, Plecko B, Rauch A. The role of recessive inheritance in early-onset epileptic encephalopathies: a combined whole-exome sequencing and copy number study. Eur J Hum Genet 2018; 27:408-421. [PMID: 30552426 PMCID: PMC6460568 DOI: 10.1038/s41431-018-0299-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 10/05/2018] [Accepted: 10/25/2018] [Indexed: 11/16/2022] Open
Abstract
Early-onset epileptic encephalopathy (EE) and combined developmental and epileptic encephalopathies (DEE) are clinically and genetically heterogeneous severely devastating conditions. Recent studies emphasized de novo variants as major underlying cause suggesting a generally low-recurrence risk. In order to better understand the full genetic landscape of EE and DEE, we performed high-resolution chromosomal microarray analysis in combination with whole-exome sequencing in 63 deeply phenotyped independent patients. After bioinformatic filtering for rare variants, diagnostic yield was improved for recessive disorders by manual data curation as well as molecular modeling of missense variants and untargeted plasma-metabolomics in selected patients. In total, we yielded a diagnosis in ∼42% of cases with causative copy number variants in 6 patients (∼10%) and causative sequence variants in 16 established disease genes in 20 patients (∼32%), including compound heterozygosity for causative sequence and copy number variants in one patient. In total, 38% of diagnosed cases were caused by recessive genes, of which two cases escaped automatic calling due to one allele occurring de novo. Notably, we found the recessive gene SPATA5 causative in as much as 3% of our cohort, indicating that it may have been underdiagnosed in previous studies. We further support candidacy for neurodevelopmental disorders of four previously described genes (PIK3AP1, GTF3C3, UFC1, and WRAP53), three of which also followed a recessive inheritance pattern. Our results therefore confirm the importance of de novo causative gene variants in EE/DEE, but additionally illustrate the major role of mostly compound heterozygous or hemizygous recessive inheritance and consequently high-recurrence risk.
Collapse
Affiliation(s)
- Sorina M Papuc
- Institute of Medical Genetics, University of Zurich, Schlieren-Zurich, 8952, Switzerland.,Victor Babes National Institute of Pathology, Bucharest, 050096, Romania
| | - Lucia Abela
- Division of Child Neurology, University Children's Hospital Zurich, Zurich, 8032, Switzerland.,CRC Clinical Research Center University, Children's Hospital Zurich, Zurich, 8032, Switzerland.,radiz-Rare Disease Initiative Zürich, Clinical Research Priority Program for Rare Diseases University of Zurich, Zurich, 8032, Switzerland
| | - Katharina Steindl
- Institute of Medical Genetics, University of Zurich, Schlieren-Zurich, 8952, Switzerland
| | - Anaïs Begemann
- Institute of Medical Genetics, University of Zurich, Schlieren-Zurich, 8952, Switzerland
| | - Thomas L Simmons
- Division of Child Neurology, University Children's Hospital Zurich, Zurich, 8032, Switzerland
| | - Bernhard Schmitt
- Division of Child Neurology, University Children's Hospital Zurich, Zurich, 8032, Switzerland.,CRC Clinical Research Center University, Children's Hospital Zurich, Zurich, 8032, Switzerland
| | - Markus Zweier
- Institute of Medical Genetics, University of Zurich, Schlieren-Zurich, 8952, Switzerland
| | - Beatrice Oneda
- Institute of Medical Genetics, University of Zurich, Schlieren-Zurich, 8952, Switzerland
| | - Eileen Socher
- Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, 91054, Germany
| | - Lisa M Crowther
- Division of Child Neurology, University Children's Hospital Zurich, Zurich, 8032, Switzerland
| | - Gabriele Wohlrab
- Division of Child Neurology, University Children's Hospital Zurich, Zurich, 8032, Switzerland
| | - Laura Gogoll
- Institute of Medical Genetics, University of Zurich, Schlieren-Zurich, 8952, Switzerland
| | - Martin Poms
- Division of Child Neurology, University Children's Hospital Zurich, Zurich, 8032, Switzerland
| | - Michelle Seiler
- Pediatric Emergency Department, University Children's Hospital Zurich, Zurich, 8032, Switzerland
| | - Michael Papik
- Institute of Medical Genetics, University of Zurich, Schlieren-Zurich, 8952, Switzerland
| | - Rosa Baldinger
- Institute of Medical Genetics, University of Zurich, Schlieren-Zurich, 8952, Switzerland
| | - Alessandra Baumer
- Institute of Medical Genetics, University of Zurich, Schlieren-Zurich, 8952, Switzerland
| | - Reza Asadollahi
- Institute of Medical Genetics, University of Zurich, Schlieren-Zurich, 8952, Switzerland
| | - Judith Kroell-Seger
- Children's department, Swiss Epilepsy Centre, Clinic Lengg, Zurich, 8000, Switzerland
| | - Regula Schmid
- Division of Child Neurology, Kantonsspital Winterthur, Winterthur, 8401, Switzerland
| | - Tobias Iff
- Municipal Hospital of Zurich Triemli, Zurich, 8063, Switzerland
| | | | - Karoline Otten
- Children's department, Swiss Epilepsy Centre, Clinic Lengg, Zurich, 8000, Switzerland
| | - Annette Hackenberg
- Division of Child Neurology, University Children's Hospital Zurich, Zurich, 8032, Switzerland
| | - Marie-Claude Addor
- Department of Woman-Mother-Child, University Medical Center CHUV, Lausanne, 1015, Switzerland
| | - Andrea Klein
- Division of Paediatric Neurology, University Childerns Hospital Basel, UKBB, 4031, Basel, Switzerland.,Division of Paediatric Neurology, Development and Rehabilitation, University Children's Hospital, 3010, Bern, Switzerland
| | - Silvia Azzarello-Burri
- Institute of Medical Genetics, University of Zurich, Schlieren-Zurich, 8952, Switzerland
| | - Heinrich Sticht
- Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, 91054, Germany
| | - Pascal Joset
- Institute of Medical Genetics, University of Zurich, Schlieren-Zurich, 8952, Switzerland
| | - Barbara Plecko
- Division of Child Neurology, University Children's Hospital Zurich, Zurich, 8032, Switzerland.,CRC Clinical Research Center University, Children's Hospital Zurich, Zurich, 8032, Switzerland.,radiz-Rare Disease Initiative Zürich, Clinical Research Priority Program for Rare Diseases University of Zurich, Zurich, 8032, Switzerland.,Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, 8057, Switzerland.,Division of General Pediatrics, Department of Pediatrics, Medical University of Graz, 8036, Graz, Austria
| | - Anita Rauch
- Institute of Medical Genetics, University of Zurich, Schlieren-Zurich, 8952, Switzerland. .,radiz-Rare Disease Initiative Zürich, Clinical Research Priority Program for Rare Diseases University of Zurich, Zurich, 8032, Switzerland. .,Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, 8057, Switzerland. .,Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, 8057, Switzerland.
| |
Collapse
|
40
|
McLachlan F, Sires AM, Abbott CM. The role of translation elongation factor eEF1 subunits in neurodevelopmental disorders. Hum Mutat 2018; 40:131-141. [PMID: 30370994 DOI: 10.1002/humu.23677] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 10/16/2018] [Accepted: 10/23/2018] [Indexed: 11/06/2022]
Abstract
The multi-subunit eEF1 complex plays a crucial role in de novo protein synthesis. The central functional component of the complex is eEF1A, which occurs as two independently encoded variants with reciprocal expression patterns: whilst eEF1A1 is widely expressed, eEF1A2 is found only in neurons and muscle. Heterozygous mutations in the gene encoding eEF1A2, EEF1A2, have recently been shown to cause epilepsy, autism, and intellectual disability. The remaining subunits of the eEF1 complex, eEF1Bα, eEF1Bδ, eEF1Bγ, and valyl-tRNA synthetase (VARS), together form the GTP exchange factor for eEF1A and are ubiquitously expressed, in keeping with their housekeeping role. However, mutations in the genes encoding these subunits EEF1B2 (eEF1Bα), EEF1D (eEF1Bδ), and VARS (valyl-tRNA synthetase) have also now been identified as causes of neurodevelopmental disorders. In this review, we describe the mutations identified so far in comparison with the degree of normal variation in each gene, and the predicted consequences of the mutations on the functions of the proteins and their isoforms. We discuss the likely effects of the mutations in the context of the role of protein synthesis in neuronal development.
Collapse
Affiliation(s)
- Fiona McLachlan
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, The University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, UK
| | - Anna Martinez Sires
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, The University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, UK
| | - Catherine M Abbott
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, The University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, UK
| |
Collapse
|
41
|
Shoubridge C, Harvey RJ, Dudding-Byth T. IQSEC2mutation update and review of the female-specific phenotype spectrum including intellectual disability and epilepsy. Hum Mutat 2018; 40:5-24. [DOI: 10.1002/humu.23670] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 10/11/2018] [Accepted: 10/15/2018] [Indexed: 12/20/2022]
Affiliation(s)
- Cheryl Shoubridge
- Department of Paediatrics; University of Adelaide; Adelaide South Australia 5005 Australia
- Robinson Research Institute; University of Adelaide; Adelaide South Australia 5005 Australia
| | - Robert J. Harvey
- School of Health and Sport Sciences; University of the Sunshine Coast; Maroochydore DC Queensland 4558 Australia
- Sunshine Coast Health Institute; Birtinya Queensland 4575 Australia
| | - Tracy Dudding-Byth
- NSW Genetics of Learning Disability Service; Hunter New England Health Service; New South Wales 2298 Australia
- Grow-Up-Well Priority Research Centre; University of Newcastle; Newcastle New South Wales 2308 Australia
| |
Collapse
|
42
|
Almannai M, Wang J, Dai H, El-Hattab AW, Faqeih EA, Saleh MA, Al Asmari A, Alwadei AH, Aljadhai YI, AlHashem A, Tabarki B, Lines MA, Grange DK, Benini R, Alsaman AS, Mahmoud A, Katsonis P, Lichtarge O, Wong LJC. FARS2 deficiency; new cases, review of clinical, biochemical, and molecular spectra, and variants interpretation based on structural, functional, and evolutionary significance. Mol Genet Metab 2018; 125:281-291. [PMID: 30177229 DOI: 10.1016/j.ymgme.2018.07.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 07/25/2018] [Accepted: 07/25/2018] [Indexed: 02/07/2023]
Abstract
An increasing number of mitochondrial diseases are found to be caused by pathogenic variants in nuclear encoded mitochondrial aminoacyl-tRNA synthetases. FARS2 encodes mitochondrial phenylalanyl-tRNA synthetase (mtPheRS) which transfers phenylalanine to its cognate tRNA in mitochondria. Since the first case was reported in 2012, a total of 21 subjects with FARS2 deficiency have been reported to date with a spectrum of disease severity that falls between two phenotypes; early onset epileptic encephalopathy and a less severe phenotype characterized by spastic paraplegia. In this report, we present an additional 15 individuals from 12 families who are mostly Arabs homozygous for the pathogenic variant Y144C, which is associated with the more severe early onset phenotype. The total number of unique pathogenic FARS2 variants known to date is 21 including three different partial gene deletions reported in four individuals. Except for the large deletions, all variants but two (one in-frame deletion of one amino acid and one splice-site variant) are missense. All large deletions and the single splice-site variant are in trans with a missense variant. This suggests that complete loss of function may be incompatible with life. In this report, we also review structural, functional, and evolutionary significance of select FARS2 pathogenic variants reported here.
Collapse
Affiliation(s)
- Mohammed Almannai
- Section of Medical Genetics, Children's Hospital, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Julia Wang
- Medical Scientist Training Program and Program in Developmental Biology, Baylor College of Medicine, Houston, TX, USA
| | - Hongzheng Dai
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Ayman W El-Hattab
- Division of Clinical Genetics and Metabolic Disorders, Pediatric Department, Tawam Hospital, Al-Ain, United Arab Emirates
| | - Eissa A Faqeih
- Section of Medical Genetics, Children's Hospital, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Mohammed A Saleh
- Section of Medical Genetics, Children's Hospital, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Ali Al Asmari
- Section of Medical Genetics, Children's Hospital, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Ali H Alwadei
- Department of Pediatric Neurology, National Neuroscience Institute, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Yaser I Aljadhai
- Department of Neuroimaging and Intervention, Medical Imaging Administration, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Amal AlHashem
- Department of Pediatric, Prince Sultan Medical Military City, Riyadh, Saudi Arabia; Department of Anatomy and Cell Biology, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Brahim Tabarki
- Divisions of Pediatric Neurology, Department of Pediatrics, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Matthew A Lines
- Division of Metabolics and Newborn Screening, Children's Hospital of Eastern Ontario, Department of Pediatrics, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Dorothy K Grange
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Ruba Benini
- Department of Pediatric Neurology, National Neuroscience Institute, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Abdulaziz S Alsaman
- Department of Pediatric Neurology, National Neuroscience Institute, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Adel Mahmoud
- Department of Pediatric Neurology, National Neuroscience Institute, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Panagiotis Katsonis
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Olivier Lichtarge
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Lee-Jun C Wong
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
43
|
Lance EI, Kronenbuerger M, Cohen JS, Furmanski O, Singer HS, Fatemi A. Successful treatment of choreo-athetotic movements in a patient with an EEF1A2 gene variant. SAGE Open Med Case Rep 2018; 6:2050313X18807622. [PMID: 30377530 PMCID: PMC6202747 DOI: 10.1177/2050313x18807622] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 09/25/2018] [Indexed: 01/26/2023] Open
Abstract
Pathogenic variants in EEF1A2, a gene encoding a eukaryotic translation elongation factor, have been previously reported in pediatric cases of epileptic encephalopathy and intellectual disability. We report a case of a 17-year-old male with a prior history of epilepsy, autism, intellectual disability, and the abrupt onset of choreo-athetotic movements. The patient was diagnosed with an EEF1A2 variant by whole exome sequencing. His movement disorder responded dramatically to treatment with tetrabenazine. To the best of our knowledge, this is the first report of successful treatment of a hyperkinetic movement disorder in the setting of EEF1A2 mutation. A trial with tetrabenazine should be considered in cases with significant choreoathetosis.
Collapse
Affiliation(s)
- Eboni I Lance
- Department of Neurology, Kennedy Krieger Institute, Baltimore, MD, USA.,Department of Neurology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Martin Kronenbuerger
- Department of Neurology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.,Department of Neurology, University Medicine Greifswald, Greifswald, Germany
| | - Julie S Cohen
- Hugo W. Moser Research Institute at Kennedy Krieger, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Orion Furmanski
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University, Bethesda, MD, USA.,Department of Anatomy, Physiology and Genetics, School of Medicine, Uniformed Services University, Bethesda, MD, USA
| | - Harvey S Singer
- Department of Neurology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Ali Fatemi
- Department of Neurology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.,Hugo W. Moser Research Institute at Kennedy Krieger, Kennedy Krieger Institute, Baltimore, MD, USA
| |
Collapse
|
44
|
Miao P, Feng J, Guo Y, Wang J, Xu X, Wang Y, Li Y, Gao L, Zheng C, Cheng H. Genotype and phenotype analysis using an epilepsy‐associated gene panel in Chinese pediatric epilepsy patients. Clin Genet 2018; 94:512-520. [PMID: 30182498 DOI: 10.1111/cge.13441] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 08/23/2018] [Accepted: 08/29/2018] [Indexed: 02/02/2023]
Affiliation(s)
- Pu Miao
- Department of PediatricsSecond Affiliated Hospital, Zhejiang University School of Medicine Hangzhou China
| | - Jianhua Feng
- Department of PediatricsSecond Affiliated Hospital, Zhejiang University School of Medicine Hangzhou China
| | - Yufan Guo
- Department of PediatricsSecond Affiliated Hospital, Zhejiang University School of Medicine Hangzhou China
| | - Jianda Wang
- Department of PediatricsSecond Affiliated Hospital, Zhejiang University School of Medicine Hangzhou China
| | - Xiaoxiao Xu
- Department of PediatricsSecond Affiliated Hospital, Zhejiang University School of Medicine Hangzhou China
| | - Ye Wang
- Department of PediatricsSecond Affiliated Hospital, Zhejiang University School of Medicine Hangzhou China
| | - Yanfang Li
- Department of PediatricsSecond Affiliated Hospital, Zhejiang University School of Medicine Hangzhou China
| | - Liuyan Gao
- Department of PediatricsSecond Affiliated Hospital, Zhejiang University School of Medicine Hangzhou China
| | - Chaoguang Zheng
- Department of PediatricsSecond Affiliated Hospital, Zhejiang University School of Medicine Hangzhou China
| | - Haiying Cheng
- Department of PediatricsSecond Affiliated Hospital, Zhejiang University School of Medicine Hangzhou China
| |
Collapse
|
45
|
Mignot C, McMahon AC, Bar C, Campeau PM, Davidson C, Buratti J, Nava C, Jacquemont ML, Tallot M, Milh M, Edery P, Marzin P, Barcia G, Barnerias C, Besmond C, Bienvenu T, Bruel AL, Brunga L, Ceulemans B, Coubes C, Cristancho AG, Cunningham F, Dehouck MB, Donner EJ, Duban-Bedu B, Dubourg C, Gardella E, Gauthier J, Geneviève D, Gobin-Limballe S, Goldberg EM, Hagebeuk E, Hamdan FF, Hančárová M, Hubert L, Ioos C, Ichikawa S, Janssens S, Journel H, Kaminska A, Keren B, Koopmans M, Lacoste C, Laššuthová P, Lederer D, Lehalle D, Marjanovic D, Métreau J, Michaud JL, Miller K, Minassian BA, Morales J, Moutard ML, Munnich A, Ortiz-Gonzalez XR, Pinard JM, Prchalová D, Putoux A, Quelin C, Rosen AR, Roume J, Rossignol E, Simon MEH, Smol T, Shur N, Shelihan I, Štěrbová K, Vyhnálková E, Vilain C, Soblet J, Smits G, Yang SP, van der Smagt JJ, van Hasselt PM, van Kempen M, Weckhuysen S, Helbig I, Villard L, Héron D, Koeleman B, Møller RS, Lesca G, Helbig KL, Nabbout R, Verbeek NE, Depienne C. IQSEC2-related encephalopathy in males and females: a comparative study including 37 novel patients. Genet Med 2018; 21:837-849. [PMID: 30206421 PMCID: PMC6752297 DOI: 10.1038/s41436-018-0268-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 07/31/2018] [Indexed: 12/19/2022] Open
Abstract
Purpose Variants in IQSEC2, escaping X inactivation, cause X-linked intellectual disability with frequent epilepsy in males and females. We aimed to investigate sex-specific differences. Methods We collected the data of 37 unpublished patients (18 males and 19 females) with IQSEC2 pathogenic variants and 5 individuals with variants of unknown significance and reviewed published variants. We compared variant types and phenotypes in males and females and performed an analysis of IQSEC2 isoforms. Results IQSEC2 pathogenic variants mainly led to premature truncation and were scattered throughout the longest brain-specific isoform, encoding the synaptic IQSEC2/BRAG1 protein. Variants occurred de novo in females but were either de novo (2/3) or inherited (1/3) in males, with missense variants being predominantly inherited. Developmental delay and intellectual disability were overall more severe in males than in females. Likewise, seizures were more frequently observed and intractable, and started earlier in males than in females. No correlation was observed between the age at seizure onset and severity of intellectual disability or resistance to antiepileptic treatments. Conclusion This study provides a comprehensive overview of IQSEC2-related encephalopathy in males and females, and suggests that an accurate dosage of IQSEC2 at the synapse is crucial during normal brain development.
Collapse
Affiliation(s)
- Cyril Mignot
- INSERM, U 1127, CNRS UMR 7225, Sorbonne Universites, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle epiniere, ICM, Paris, France. .,APHP, Hôpital Pitie-Salpetriere, Departement de Genetique et de Cytogenetique; Centre de Reference Deficience Intellectuelle de Causes Rares; GRC UPMC «Deficience Intellectuelle et Autisme», Paris, France.
| | - Aoife C McMahon
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Claire Bar
- APHP, Reference Centre for Rare Epilepsies, Necker-Enfants Malades Hospital, Imagine Institute, Paris Descartes University, Paris, France.,INSERM U1163, Imagine Institute, Paris, France.,Paris Descartes University, Paris, France
| | - Philippe M Campeau
- Division of Medical Genetics, Department of Pediatrics, CHU Sainte-Justine and University of Montreal, Montreal, QC, Canada
| | - Claire Davidson
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Julien Buratti
- APHP, Hôpital Pitie-Salpetriere, Departement de Genetique et de Cytogenetique; Centre de Reference Deficience Intellectuelle de Causes Rares; GRC UPMC «Deficience Intellectuelle et Autisme», Paris, France
| | - Caroline Nava
- INSERM, U 1127, CNRS UMR 7225, Sorbonne Universites, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle epiniere, ICM, Paris, France.,APHP, Hôpital Pitie-Salpetriere, Departement de Genetique et de Cytogenetique; Centre de Reference Deficience Intellectuelle de Causes Rares; GRC UPMC «Deficience Intellectuelle et Autisme», Paris, France
| | | | - Marilyn Tallot
- CHU La Reunion-Groupe Hospitalier Sud Reunion, La Reunion, France
| | - Mathieu Milh
- APHM, Hôpital d'Enfants de La Timone, Service de Neurologie Pediatrique, centre de reference deficiences intellectuelles de cause rare, Marseille, France.,Aix Marseille University, INSERM, MMG, UMR-S 1251, Faculte de medecine, Marseille, France
| | - Patrick Edery
- Service de Genetique, Centre de Reference Anomalies du Developpement, Hospices Civils de Lyon, Bron, France.,INSERM U1028, CNRS UMR5292, Centre de Recherche en Neurosciences de Lyon, GENDEV Team, Universite Claude Bernard Lyon 1, Bron, France.,Claude Bernard Lyon I University, Lyon, France
| | - Pauline Marzin
- APHP, Hôpital Pitie-Salpetriere, Departement de Genetique et de Cytogenetique; Centre de Reference Deficience Intellectuelle de Causes Rares; GRC UPMC «Deficience Intellectuelle et Autisme», Paris, France
| | - Giulia Barcia
- INSERM U1163, Imagine Institute, Paris, France.,Paris Descartes University, Paris, France.,APHP, Service de genetique medicale, Necker-Enfants Malades Hospital, Imagine Institute, Paris Descartes University, Paris, France
| | - Christine Barnerias
- APHP, Unite fonctionnelle de Neurologie, Necker-Enfants Malades Hospital, Imagine Institute, Paris Descartes University, Paris, France
| | - Claude Besmond
- INSERM U1163, Imagine Institute, Paris, France.,Paris Descartes University, Paris, France
| | - Thierry Bienvenu
- APHP, Laboratoire de Genetique et Biologie Moleculaires, Hôpital Cochin, HUPC, Paris, France.,Universite Paris Descartes Paris, Institut de Psychiatrie et de Neurosciences de Paris, Inserm U894, Paris, France
| | - Ange-Line Bruel
- FHU-TRANSLAD, Universite de Bourgogne/CHU Dijon, Dijon, France.,INSERM UMR 1231 GAD team, Genetics of Developmental disorders, Universite de Bourgogne-Franche Comte, Dijon, France
| | - Ledia Brunga
- Division of Neurology, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Berten Ceulemans
- Department of Pediatric Neurology, University Hospital and University of Antwerp, Antwerp, Belgium
| | - Christine Coubes
- Departement de Genetique Medicale, Maladies rares et Medecine Personnalisee, CHU de Montpellier, Montpellier, France
| | - Ana G Cristancho
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Fiona Cunningham
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | | | - Elizabeth J Donner
- Division of Neurology, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Bénédicte Duban-Bedu
- Centre de Genetique Chromosomique, Hôpital St-Vincent-de-Paul, GHICL, Lille, France
| | - Christèle Dubourg
- CHU Rennes, Service de Genetique Moleculaire et Genomique, Rennes, France
| | - Elena Gardella
- Danish Epilepsy Centre Filadelfia, Dianalund, Denmark.,Institute for Regional Health Services, University of Southern Denmark, Odense, Denmark
| | - Julie Gauthier
- Division of Medical Genetics, Department of Pediatrics, CHU Sainte-Justine and University of Montreal, Montreal, QC, Canada
| | - David Geneviève
- Departement de Genetique Medicale, Maladies rares et Medecine Personnalisee, CHU de Montpellier, Montpellier, France.,INSERM U1183, Montpellier, France
| | - Stéphanie Gobin-Limballe
- APHP, Service de genetique medicale, Necker-Enfants Malades Hospital, Imagine Institute, Paris Descartes University, Paris, France
| | - Ethan M Goldberg
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Eveline Hagebeuk
- Stichting Epilepsie Instellingen Nederland, SEIN, Zwolle, The Netherlands
| | - Fadi F Hamdan
- Division of Medical Genetics, Department of Pediatrics, CHU Sainte-Justine and University of Montreal, Montreal, QC, Canada
| | - Miroslava Hančárová
- Department of Biology and Medical Genetics, Charles University 2nd Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
| | - Laurence Hubert
- INSERM U1163, Imagine Institute, Paris, France.,Paris Descartes University, Paris, France
| | - Christine Ioos
- APHP, University Hospital of Paris ïle-de-France ouest, Raymond Poincare Hospital, Garches, France
| | - Shoji Ichikawa
- Department of Clinical Diagnostics, Ambry Genetics, Aliso Viejo, CA, USA
| | - Sandra Janssens
- Centre for Medical Genetics Ghent, Ghent University Hospital, C. Heymanslaan 10, Ghent, Belgium
| | - Hubert Journel
- Service de Genetique Medicale, Hôpital Chubert, Vannes, France
| | - Anna Kaminska
- APHP, Department of Clinical Neurophysiology, Necker-Enfants Malades Hospital, Paris, France
| | - Boris Keren
- APHP, Hôpital Pitie-Salpetriere, Departement de Genetique et de Cytogenetique; Centre de Reference Deficience Intellectuelle de Causes Rares; GRC UPMC «Deficience Intellectuelle et Autisme», Paris, France
| | - Marije Koopmans
- Department of Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Caroline Lacoste
- Departement de Genetique Medicale, APHM, Hopital d'Enfants de La Timone, Marseille, France
| | - Petra Laššuthová
- Child Neurology Department, 2nd Faculty of Medicine, Charles University and Motol Hospital, Prague, Czech Republic
| | - Damien Lederer
- Centre de Genetique Humaine, Institut de Pathologie et de Genetique, Gosselies, Belgium
| | - Daphné Lehalle
- FHU-TRANSLAD, Universite de Bourgogne/CHU Dijon, Dijon, France.,Unite fonctionnelle de genetique clinique, Centre Hospitalier Intercommunal de Creteil, Creteil, France
| | | | - Julia Métreau
- APHP, Service de neurologie pediatrique, Hôpital Universitaire Bicetre, Le Kremlin-Bicetre, France
| | - Jacques L Michaud
- Division of Medical Genetics, Department of Pediatrics, CHU Sainte-Justine and University of Montreal, Montreal, QC, Canada
| | - Kathryn Miller
- Department of Pediatrics, Albany Medical Center, Albany, NY, USA
| | - Berge A Minassian
- Division of Neurology, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Joannella Morales
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Marie-Laure Moutard
- APHP, Hôpital Trousseau, service de neuropediatrie, Paris, France.,Sorbonne Universite, GRC n°19, pathologies Congenitales du Cervelet-LeucoDystrophies, APHP, Hôpital Armand Trousseau, Paris, France
| | - Arnold Munnich
- INSERM U1163, Imagine Institute, Paris, France.,Paris Descartes University, Paris, France.,APHP, Service de genetique medicale, Necker-Enfants Malades Hospital, Imagine Institute, Paris Descartes University, Paris, France
| | | | - Jean-Marc Pinard
- Division of Neuropediatrics, CHU Raymond Poincare (APHP), Garches, France
| | - Darina Prchalová
- Department of Biology and Medical Genetics, Charles University 2nd Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
| | - Audrey Putoux
- Service de Genetique, Centre de Reference Anomalies du Developpement, Hospices Civils de Lyon, Bron, France.,INSERM U1028, CNRS UMR5292, Centre de Recherche en Neurosciences de Lyon, GENDEV Team, Universite Claude Bernard Lyon 1, Bron, France.,Claude Bernard Lyon I University, Lyon, France
| | - Chloé Quelin
- Service de Genetique Medicale, CLAD Ouest CHU Hôpital Sud, Rennes, France
| | - Alyssa R Rosen
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Joelle Roume
- Unite de Genetique Medicale, Centre de Reference des Maladies rares du Developpement (AnD DI Rares), CHI Poissy-St Germain en Laye, Poissy, France
| | - Elsa Rossignol
- Departments of Pediatrics and Neurosciences, CHU Sainte-Justine and University of Montreal, Montreal, Canada
| | - Marleen E H Simon
- Department of Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Thomas Smol
- Institut de Genetique Medicale, CHRU Lille, Universite de Lille, Lille, France
| | - Natasha Shur
- Department of Pediatrics, Albany Medical Center, Albany, NY, USA
| | - Ivan Shelihan
- Division of Medical Genetics, Department of Pediatrics, CHU Sainte-Justine and University of Montreal, Montreal, QC, Canada
| | - Katalin Štěrbová
- Child Neurology Department, 2nd Faculty of Medicine, Charles University and Motol Hospital, Prague, Czech Republic
| | - Emílie Vyhnálková
- Department of Biology and Medical Genetics, Charles University 2nd Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
| | - Catheline Vilain
- Department of Genetics, Hôpital Universitaire des Enfants Reine Fabiola, ULB Center of Human Genetics, Universite Libre de Bruxelles, Brussels, Belgium.,Department of Genetics, Hôpital Erasme, ULB Center of Human Genetics, Universite Libre de Bruxelles, Brussels, Belgium.,Interuniversity Institute of Bioinformatics in Brussels, Universite Libre de Bruxelles, Brussels, Belgium
| | - Julie Soblet
- Department of Genetics, Hôpital Universitaire des Enfants Reine Fabiola, ULB Center of Human Genetics, Universite Libre de Bruxelles, Brussels, Belgium.,Department of Genetics, Hôpital Erasme, ULB Center of Human Genetics, Universite Libre de Bruxelles, Brussels, Belgium.,Interuniversity Institute of Bioinformatics in Brussels, Universite Libre de Bruxelles, Brussels, Belgium
| | - Guillaume Smits
- Department of Genetics, Hôpital Universitaire des Enfants Reine Fabiola, ULB Center of Human Genetics, Universite Libre de Bruxelles, Brussels, Belgium.,Department of Genetics, Hôpital Erasme, ULB Center of Human Genetics, Universite Libre de Bruxelles, Brussels, Belgium.,Interuniversity Institute of Bioinformatics in Brussels, Universite Libre de Bruxelles, Brussels, Belgium
| | - Samuel P Yang
- Clinical Genomics & Predictive Medicine, Providence Medical Group, Dayton, WA, USA
| | | | - Peter M van Hasselt
- Department of Metabolic Diseases, Wilhelmina Children's Hospital, University Medical Center, Utrecht, The Netherlands
| | - Marjan van Kempen
- Department of Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Sarah Weckhuysen
- Neurogenetics Group, Center of Molecular Neurology, VIB, Antwerp, Belgium.,Neurology Department, University Hospital Antwerp, Antwerp, Belgium
| | - Ingo Helbig
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Laurent Villard
- Aix Marseille University, INSERM, MMG, UMR-S 1251, Faculte de medecine, Marseille, France.,Departement de Genetique Medicale, APHM, Hopital d'Enfants de La Timone, Marseille, France
| | - Delphine Héron
- APHP, Hôpital Pitie-Salpetriere, Departement de Genetique et de Cytogenetique; Centre de Reference Deficience Intellectuelle de Causes Rares; GRC UPMC «Deficience Intellectuelle et Autisme», Paris, France
| | - Bobby Koeleman
- Department of Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Rikke S Møller
- CHU Rennes, Service de Genetique Moleculaire et Genomique, Rennes, France.,Danish Epilepsy Centre Filadelfia, Dianalund, Denmark
| | - Gaetan Lesca
- Service de Genetique, Centre de Reference Anomalies du Developpement, Hospices Civils de Lyon, Bron, France.,INSERM U1028, CNRS UMR5292, Centre de Recherche en Neurosciences de Lyon, GENDEV Team, Universite Claude Bernard Lyon 1, Bron, France.,Claude Bernard Lyon I University, Lyon, France
| | - Katherine L Helbig
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Rima Nabbout
- APHP, Reference Centre for Rare Epilepsies, Necker-Enfants Malades Hospital, Imagine Institute, Paris Descartes University, Paris, France.,INSERM U1163, Imagine Institute, Paris, France.,Paris Descartes University, Paris, France
| | - Nienke E Verbeek
- Department of Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Christel Depienne
- INSERM, U 1127, CNRS UMR 7225, Sorbonne Universites, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle epiniere, ICM, Paris, France. .,IGBMC, CNRS UMR 7104/INSERM U964/Universite de Strasbourg, Illkirch, France. .,Institute of Human Genetics, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.
| |
Collapse
|
46
|
Kirmiz M, Palacio S, Thapa P, King AN, Sack JT, Trimmer JS. Remodeling neuronal ER-PM junctions is a conserved nonconducting function of Kv2 plasma membrane ion channels. Mol Biol Cell 2018; 29:2410-2432. [PMID: 30091655 PMCID: PMC6233057 DOI: 10.1091/mbc.e18-05-0337] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The endoplasmic reticulum (ER) and plasma membrane (PM) form junctions crucial to ion and lipid signaling and homeostasis. The Kv2.1 ion channel is localized at ER–PM junctions in brain neurons and is unique among PM proteins in its ability to remodel these specialized membrane contact sites. Here, we show that this function is conserved between Kv2.1 and Kv2.2, which differ in their biophysical properties, modulation, and cellular expression. Kv2.2 ER–PM junctions are present at sites deficient in the actin cytoskeleton, and disruption of the actin cytoskeleton affects their spatial organization. Kv2.2-containing ER–PM junctions overlap with those formed by canonical ER–PM tethers. The ability of Kv2 channels to remodel ER–PM junctions is unchanged by point mutations that eliminate their ion conduction but eliminated by point mutations within the Kv2-specific proximal restriction and clustering (PRC) domain that do not impact their ion channel function. The highly conserved PRC domain is sufficient to transfer the ER–PM junction–remodeling function to another PM protein. Last, brain neurons in Kv2 double-knockout mice have altered ER–PM junctions. Together, these findings demonstrate a conserved in vivo function for Kv2 family members in remodeling neuronal ER–PM junctions that is distinct from their canonical role as ion-conducting channels shaping neuronal excitability.
Collapse
Affiliation(s)
- Michael Kirmiz
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, Davis, CA 95616
| | - Stephanie Palacio
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, Davis, CA 95616
| | - Parashar Thapa
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA 95616
| | - Anna N King
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, Davis, CA 95616
| | - Jon T Sack
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA 95616.,Department of Anesthesiology and Pain Medicine, University of California, Davis, Davis, CA 95616
| | - James S Trimmer
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, Davis, CA 95616.,Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA 95616
| |
Collapse
|
47
|
Identification of VAPA and VAPB as Kv2 Channel-Interacting Proteins Defining Endoplasmic Reticulum-Plasma Membrane Junctions in Mammalian Brain Neurons. J Neurosci 2018; 38:7562-7584. [PMID: 30012696 DOI: 10.1523/jneurosci.0893-18.2018] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 06/01/2018] [Accepted: 07/07/2018] [Indexed: 11/21/2022] Open
Abstract
Membrane contacts between endoplasmic reticulum (ER) and plasma membrane (PM), or ER-PM junctions, are ubiquitous in eukaryotic cells and are platforms for lipid and calcium signaling and homeostasis. Recent studies have revealed proteins crucial to the formation and function of ER-PM junctions in non-neuronal cells, but little is known of the ER-PM junctions prominent in aspiny regions of mammalian brain neurons. The Kv2.1 voltage-gated potassium channel is abundantly clustered at ER-PM junctions in brain neurons and is the first PM protein that functions to organize ER-PM junctions. However, the molecular mechanism whereby Kv2.1 localizes to and remodels these junctions is unknown. We used affinity immunopurification and mass spectrometry-based proteomics on brain samples from male and female WT and Kv2.1 KO mice and identified the resident ER vesicle-associated membrane protein-associated proteins isoforms A and B (VAPA and VAPB) as prominent Kv2.1-associated proteins. Coexpression with Kv2.1 or its paralog Kv2.2 was sufficient to recruit VAPs to ER-PM junctions. Multiplex immunolabeling revealed colocalization of Kv2.1 and Kv2.2 with endogenous VAPs at ER-PM junctions in brain neurons from male and female mice in situ and in cultured rat hippocampal neurons, and KO of VAPA in mammalian cells reduces Kv2.1 clustering. The association of VAPA with Kv2.1 relies on a "two phenylalanines in an acidic tract" (FFAT) binding domain on VAPA and a noncanonical phosphorylation-dependent FFAT motif comprising the Kv2-specific clustering or PRC motif. These results suggest that Kv2.1 localizes to and organizes neuronal ER-PM junctions through an interaction with VAPs.SIGNIFICANCE STATEMENT Our study identified the endoplasmic reticulum (ER) proteins vesicle-associated membrane protein-associated proteins isoforms A and B (VAPA and VAPB) as proteins copurifying with the plasma membrane (PM) Kv2.1 ion channel. We found that expression of Kv2.1 recruits VAPs to ER-PM junctions, specialized membrane contact sites crucial to distinct aspects of cell function. We found endogenous VAPs at Kv2.1-mediated ER-PM junctions in brain neurons and other mammalian cells and that knocking out VAPA expression disrupts Kv2.1 clustering. We identified domains of VAPs and Kv2.1 necessary and sufficient for their association at ER-PM junctions. Our study suggests that Kv2.1 expression in the PM can affect ER-PM junctions via its phosphorylation-dependent association to ER-localized VAPA and VAPB.
Collapse
|
48
|
Ko A, Jung DE, Kim SH, Kang HC, Lee JS, Lee ST, Choi JR, Kim HD. The Efficacy of Ketogenic Diet for Specific Genetic Mutation in Developmental and Epileptic Encephalopathy. Front Neurol 2018; 9:530. [PMID: 30061856 PMCID: PMC6054992 DOI: 10.3389/fneur.2018.00530] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 06/14/2018] [Indexed: 12/22/2022] Open
Abstract
Objectives: Pathogenic mutations in developmental and epileptic encephalopathy (DEE) are increasingly being discovered. However, little has been known about effective targeted treatments for this rare disorder. Here, we assessed the efficacy of ketogenic diet (KD) according to the genes responsible for DEE. Methods: We retrospectively evaluated the data from 333 patients who underwent a targeted next-generation sequencing panel for DEE, 155 of whom had tried KD. Patients showing ≥90% seizure reduction from baseline were considered responders. The KD efficacy was examined at 3, 6, and 12 months after initiation. Patients were divided into those with an identified pathogenic mutation (n = 73) and those without (n = 82). The KD efficacy in patients with each identified pathogenic mutation was compared with that in patients without identified genetic mutations. Results: The responder rate to KD in the patients with identified pathogenic mutations (n = 73) was 52.1, 49.3, and 43.8% at 3, 6, and 12 months after initiation, respectively. Patients with mutations in SCN1A (n = 18, responder rate = 77.8%, p = 0.001), KCNQ2 (n = 6, responder rate = 83.3%, p = 0.022), STXBP1 (n = 4, responder rate = 100.0%, p = 0.015), and SCN2A (n = 3, responder rate = 100.0%, p = 0.041) showed significantly better responses to KD than patients without identified genetic mutations. Patients with CDKL5 encephalopathy (n = 10, responder rate = 0.0%, p = 0.031) showed significantly less-favorable responses to KD. Conclusions: The responder rate to KD remained consistent after KD in DEE patients with specific pathogenic mutations. KD is effective in patients with DEE with genetic etiology, especially in patients with SCN1A, KCNQ2, STXBP1, and SCN2A mutations, but is less effective in patients with CDKL5 mutations. Therefore, identifying the causative gene can help predict the efficacy of KD in patients with DEE.
Collapse
Affiliation(s)
- Ara Ko
- Division of Pediatric Neurology, Department of Pediatrics, Epilepsy Research Institute, Severance Children's Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Da E Jung
- Department of Pediatrics, Ajou University School of Medicine, Suwon, South Korea
| | - Se H Kim
- Division of Pediatric Neurology, Department of Pediatrics, Epilepsy Research Institute, Severance Children's Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Hoon-Chul Kang
- Division of Pediatric Neurology, Department of Pediatrics, Epilepsy Research Institute, Severance Children's Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Joon S Lee
- Division of Pediatric Neurology, Department of Pediatrics, Epilepsy Research Institute, Severance Children's Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Seung T Lee
- Department of Laboratory Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Jong R Choi
- Department of Laboratory Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Heung D Kim
- Division of Pediatric Neurology, Department of Pediatrics, Epilepsy Research Institute, Severance Children's Hospital, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
49
|
Tsai MH, Chan CK, Chang YC, Lin CH, Liou CW, Chang WN, Ng CC, Lim KS, Hwang DY. Molecular Genetic Characterization of Patients With Focal Epilepsy Using a Customized Targeted Resequencing Gene Panel. Front Neurol 2018; 9:515. [PMID: 30034362 PMCID: PMC6043663 DOI: 10.3389/fneur.2018.00515] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 06/11/2018] [Indexed: 12/30/2022] Open
Abstract
Objective: Focal epilepsy is the most common subtype of epilepsies in which the influence of underlying genetic factors is emerging but remains largely uncharacterized. The purpose of this study is to determine the contribution of currently known disease-causing genes in a large cohort (n = 593) of common focal non-lesional epilepsy patients. Methods: The customized focal epilepsy gene panel (21 genes) was based on multiplex polymerase chain reaction (PCR) and sequenced by Illumina MiSeq platform. Results: Eleven variants (1.85%) were considered as pathogenic or likely pathogenic, including seven novel mutations. There were three SCN1A (p.Leu890Pro, p.Arg1636Ter, and p.Met1714Val), three PRRT2 (two p.Arg217Profs*8 and p.Leu298Pro), two CHRNA4 (p.Ser284Leu, p.Ile321Asn), one DEPDC5 (p.Val516Ter), one PCDH19 (p.Asp233Asn), and one SLC2A1 (p.Ser414Ter) variants. Additionally, 16 other rare variants were classified as unknown significance due to inconsistent phenotype or lack of segregation data. Conclusion: Currently known focal epilepsy genes only explained a very small subset of focal epilepsy patients. This indicates that the underlying genetic architecture of focal epilepsies is very heterogeneous and more novel genes are likely to be discovered. Our study highlights the usefulness, challenges and limitations of using the multi-gene panel as a diagnostic test in routine clinical practice in patients with focal epilepsy.
Collapse
Affiliation(s)
- Meng-Han Tsai
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung, Taiwan
| | - Chung-Kin Chan
- Genetics and Molecular Biology, Faculty of Science, Institute of Biological Sciences, University of Malaya, Kuala Lumpur, Malaysia
| | - Ying-Chao Chang
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Chih-Hsiang Lin
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung, Taiwan
| | - Chia-Wei Liou
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung, Taiwan
| | - Wen-Neng Chang
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung, Taiwan
| | - Ching-Ching Ng
- Genetics and Molecular Biology, Faculty of Science, Institute of Biological Sciences, University of Malaya, Kuala Lumpur, Malaysia
| | - Kheng-Seang Lim
- Division of Neurology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Daw-Yang Hwang
- Division of Nephrology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
50
|
Clinical and genetic spectrum of a large cohort of children with epilepsy in China. Genet Med 2018; 21:564-571. [PMID: 29930392 DOI: 10.1038/s41436-018-0091-8] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 06/04/2018] [Indexed: 12/22/2022] Open
Abstract
PURPOSE Genetic diagnosis for children suffering from epilepsy has important implications for treatment, prognosis, and development of precision medicine strategies. METHODS We performed exome sequencing (ES) or targeted sequencing on 733 children with epilepsy onset within the first year of life. We subgrouped our patients based on the onset age of seizure into neonatal and before 1 year (1-12 months), to compare the clinical and genetic features. RESULTS The subgroups with different onset age of seizure showed different pathogenic variant spectrum, and the 1-year age group was more likely to have developmental delays than the neonate group (p = 0.000614). The diagnostic rate was 26.7% for targeted sequencing using a 2742-gene panel, and 42% for ES. We identified 12 genes, which covered 48.7% of diagnostic cases. Our data revealed that 41.9% of patients in the neonate group and 49.7% patients in the 1-year group had treatment options based on molecular diagnosis. CONCLUSION The 12 most commonly implicated genes in this cohort and the genes with treatment options should be considered as part of the essential panel for early diagnosis of epilepsy onset, if large medical exome analyses or ES are not feasible as first-tier analysis. Genetic results are beginning to improve therapy by antiepileptic medication selections and precision medicine approaches.
Collapse
|