1
|
Kirchberg MC, Pinson C, Frank GKW. Pharmacotherapeutic strategies for the treatment of anorexia nervosa - novel targets to break a vicious cycle. Expert Opin Pharmacother 2024; 25:2253-2265. [PMID: 39497232 PMCID: PMC11972612 DOI: 10.1080/14656566.2024.2424316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 10/29/2024] [Indexed: 11/07/2024]
Abstract
INTRODUCTION Anorexia nervosa (AN) has one of the highest mortality rates of all mental illnesses. No approved pharmacological treatments exist for AN, but novel neurobiological targets show promise. AREAS COVERED Studies show that in individuals with AN, there are alterations in brain neurotransmitter signaling, alongside associated mental rigidity and comorbid anxiety and depression. Available and new therapies could be used to improve alterations in neurobiology and behavior. This narrative review serves as a review of previously published literature assessing the efficacy of traditional pharmacotherapy in treating AN while also exploring novel treatments, including dissociative anesthetics, psychedelics, cannabinoids, hormones, neurosteroids, and ketogenic nutrition. EXPERT OPINION If best practice psychotherapeutic interventions have failed, we recommend a neuroscience and brain research-based medication approach that targets dopamine neurotransmitter receptors to enhance cognitive flexibility and illness insight while reducing dread and avoidance toward food. It is furthermore essential to recognize and treat comorbid conditions such as anxiety, depression, or obsessive-compulsive disorder as they interfere with recovery, and typically do not resolve even with successful AN treatment. Novel strategies have the promise to show efficacy in improving mood and reducing specific AN psychopathology with hopes to be used in clinical practice soon.
Collapse
Affiliation(s)
| | - Claire Pinson
- School of Medicine, University of California San Diego, CA, USA
| | - Guido K. W. Frank
- Department of Psychiatry, University of California San Diego, CA, USA
- Medical Behavioral Unit, Rady Children’s Hospital San Diego, CA, USA
| |
Collapse
|
2
|
Ramsay S, Allison K, Temples HS, Boccuto L, Sarasua SM. Inclusion of the severe and enduring anorexia nervosa phenotype in genetics research: a scoping review. J Eat Disord 2024; 12:53. [PMID: 38685102 PMCID: PMC11059621 DOI: 10.1186/s40337-024-01009-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 04/23/2024] [Indexed: 05/02/2024] Open
Abstract
BACKGROUND Anorexia nervosa has one of the highest mortality rates of all mental illnesses. For those who survive, less than 70% fully recover, with many going on to develop a more severe and enduring phenotype. Research now suggests that genetics plays a role in the development and persistence of anorexia nervosa. Inclusion of participants with more severe and enduring illness in genetics studies of anorexia nervosa is critical. OBJECTIVE The primary goal of this review was to assess the inclusion of participants meeting the criteria for the severe enduring anorexia nervosa phenotype in genetics research by (1) identifying the most widely used defining criteria for severe enduring anorexia nervosa and (2) performing a review of the genetics literature to assess the inclusion of participants meeting the identified criteria. METHODS Searches of the genetics literature from 2012 to 2023 were performed in the PubMed, PsycINFO, and Web of Science databases. Publications were selected per the Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping Reviews (PRISMA-ScR). The criteria used to define the severe and enduring anorexia nervosa phenotype were derived by how often they were used in the literature since 2017. The publications identified through the literature search were then assessed for inclusion of participants meeting these criteria. RESULTS most prevalent criteria used to define severe enduring anorexia nervosa in the literature were an illness duration of ≥ 7 years, lack of positive response to at least two previous evidence-based treatments, a body mass index meeting the Diagnostic and Statistical Manual of Mental Disorders-5 for extreme anorexia nervosa, and an assessment of psychological and/or behavioral severity indicating a significant impact on quality of life. There was a lack of consistent identification and inclusion of those meeting the criteria for severe enduring anorexia nervosa in the genetics literature. DISCUSSION This lack of consistent identification and inclusion of patients with severe enduring anorexia nervosa in genetics research has the potential to hamper the isolation of risk loci and the development of new, more effective treatment options for patients with anorexia nervosa.
Collapse
Affiliation(s)
- Sarah Ramsay
- Healthcare Genetics and Genomics Program, School of Nursing, Clemson University, Clemson, SC 29634, USA.
| | - Kendra Allison
- School of Nursing, Clemson University , Clemson, SC 29634, USA
| | - Heide S Temples
- School of Nursing, Clemson University , Clemson, SC 29634, USA
| | - Luigi Boccuto
- Healthcare Genetics and Genomics Program, School of Nursing, Clemson University, Clemson, SC 29634, USA
| | - Sara M Sarasua
- Healthcare Genetics and Genomics Program, School of Nursing, Clemson University, Clemson, SC 29634, USA
| |
Collapse
|
3
|
Rogers CI, Pacanowski CR. The relationship between cannabis and anorexia nervosa: a scoping review. J Eat Disord 2023; 11:186. [PMID: 37858278 PMCID: PMC10585887 DOI: 10.1186/s40337-023-00887-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 09/11/2023] [Indexed: 10/21/2023] Open
Abstract
BACKGROUND Relapse rates in Anorexia Nervosa (AN) remain high, warranting exploration of further treatments. Cannabinoid agonists are of interest as they have shown successful outcomes in the treatment of associated conditions, such as post-traumatic stress disorder. This scoping review explores the endocannabinoid system (ECS), benefits/harms/null effects of cannabinoid treatment, and harms of cannabis use in AN. METHODS PubMed, PsycINFO, Cochrane, and Web of Science were searched for studies published between 2010 and August 2023, with human participants that explored the ECS, cannabinoid treatment, or cannabis use, and included 1 or more keywords for both cannabis and AN in the title and or abstract. Reports describing secondary anorexia, reports not available in English, grey literature, reports combining data from AN with other conditions, and reports only reporting the prevalence of cannabis abuse/dependence were excluded. Data were extracted from 17 reports (n = 15 studies). For the ECS, outcomes included genetics such as allele expression related to the ECS, cannabinoid receptor availability, and circulating levels of endocannabinoids. For benefits/harms/null effects of cannabinoid treatment, outcomes included changes in weight, eating disorder (ED) symptoms, physical activity (PA), and hormones. For harms of cannabis use, outcomes included genetics related to cannabis use disorder and associations between cannabis use and ED symptoms. RESULTS Eight studies (n = 8 reports) found abnormalities in the ECS in AN including expression of related alleles, genotypes, and haplotypes, availability of cannabinoid receptors, and levels of endocannabinoids. Three studies (n = 5 reports) found benefits/harms/null effects of cannabinoid treatment. Benefits included weight gain, improved ED symptoms and reduced PA, while null effects included no changes in weight or ED symptoms, and harms included increased PA and lowered adipose hormones. Four studies (n = 4 reports) expanded upon harms of cannabis use, including genetic predispositions to cannabis use disorder, and compensatory behaviors related to cannabis use. CONCLUSION Limited evidence suggests that abnormalities in the ECS in AN may render cannabis a potential treatment for weight restoration and associated symptoms. Future research may wish to investigate individualized dosing approaches to maximize beneficial effects while minimizing harms. Level II Evidence: Scoping Review.
Collapse
Affiliation(s)
- Chloe I Rogers
- Department of Health Behavior and Nutrition Sciences, University of Delaware, Newark, Delaware, USA.
| | - Carly R Pacanowski
- Department of Health Behavior and Nutrition Sciences, University of Delaware, Newark, Delaware, USA
| |
Collapse
|
4
|
Mir HD, Giorgini G, Di Marzo V. The emerging role of the endocannabinoidome-gut microbiome axis in eating disorders. Psychoneuroendocrinology 2023; 154:106295. [PMID: 37229916 DOI: 10.1016/j.psyneuen.2023.106295] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/13/2023] [Accepted: 05/16/2023] [Indexed: 05/27/2023]
Abstract
Among the sources of chemical signals regulating food intake, energy metabolism and body weight, few have attracted recently as much attention as the expanded endocannabinoid system, or endocannabinoidome (eCBome), and the gut microbiome, the two systems on which this review article is focussed. Therefore, it is legitimate to expect that these two systems also play a major role in the etiopathology of eating disorders (EDs), in particular of anorexia nervosa, bulimia nervosa and binge-eating disorder. The major mechanisms through which, also via interactions with other endogenous signaling systems, the eCBome, with its several lipid mediators and receptors, and the gut microbiome, via its variety of microbial kingdoms, phyla and species, and armamentarium of metabolites, intervene in these disorders, are described here, based on several published studies in either experimental models or patients. Additionally, in view of the emerging multi-faceted cross-talk mechanisms between these two complex systems, we discuss the possibility that the eCBome-gut microbiome axis is also involved in EDs.
Collapse
Affiliation(s)
- Hayatte-Dounia Mir
- Centre de Recherche de l'Institut Universitaire de Pneumologie et Cardiologie (CRIUCPQ), Université Laval, Québec, Canada; Department of Medicine, Faculty of Medicine (FMED), Université Laval, Québec, Canada; Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Université Laval, Québec, Canada
| | - Giada Giorgini
- Centre de Recherche de l'Institut Universitaire de Pneumologie et Cardiologie (CRIUCPQ), Université Laval, Québec, Canada; Department of Medicine, Faculty of Medicine (FMED), Université Laval, Québec, Canada; Unité Mixte Internationale en Recherche Chimique et Biomoléculaire sur le Microbiome et son Impact sur la Santé Métabolique et la Nutrition (UMI-MicroMeNu) entre l'Université Laval, Québec, Canada, et le Consiglio Nazionale delle Ricerche, Institute of Biomolecular Chemistry (ICB-CNR), Pozzuoli, Italy; Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Université Laval, Québec, Canada
| | - Vincenzo Di Marzo
- Centre de Recherche de l'Institut Universitaire de Pneumologie et Cardiologie (CRIUCPQ), Université Laval, Québec, Canada; Department of Medicine, Faculty of Medicine (FMED), Université Laval, Québec, Canada; Unité Mixte Internationale en Recherche Chimique et Biomoléculaire sur le Microbiome et son Impact sur la Santé Métabolique et la Nutrition (UMI-MicroMeNu) entre l'Université Laval, Québec, Canada, et le Consiglio Nazionale delle Ricerche, Institute of Biomolecular Chemistry (ICB-CNR), Pozzuoli, Italy; Centre Nutrition, Santé et Société (NUTRISS), Université Laval, Québec, Canada; Institut sur la nutrition et les aliments fonctionnels (INAF), Université Laval, Québec, Canada; École de nutrition, Faculté des Sciences de l'agriculture et de l'alimentation (FSAA), Université Laval, Québec, Canada; Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Université Laval, Québec, Canada.
| |
Collapse
|
5
|
Santoso AD, De Ridder D. Fatty Acid Amide Hydrolase: An Integrative Clinical Perspective. Cannabis Cannabinoid Res 2023; 8:56-76. [PMID: 35900294 DOI: 10.1089/can.2021.0237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Introduction: Fatty acid amide hydrolase (FAAH) is one of the main terminating enzymes of the endocannabinoid system (ECS). Since being discovered in 1996, the modulation of FAAH has been viewed as a compelling alternative strategy to obtain the beneficial effect of the ECS. With a considerable amount of FAAH-related publication over time, the next step would be to comprehend the proximity of this evidence for clinical application. Objective: This review intends to highlight the rationale of FAAH modulation and provide the latest evidence from clinical studies. Methods: Publication searches were conducted to gather information focused on FAAH-related clinical evidence with an extension to the experimental research to understand the biological plausibility. The subtopics were selected to be multidisciplinary to offer more perspective on the current state of the arts. Discussion: Experimental and clinical studies have demonstrated that FAAH was highly expressed not only in the central nervous system but also in the peripheral tissues. As the key regulator of endocannabinoid signaling, it would appear that FAAH plays a role in the modulation of mood and emotional response, reward system, pain perception, energy metabolism and appetite regulation, inflammation, and other biological processes. Genetic variants may be associated with some conditions such as substance/alcohol use disorders, obesity, and eating disorder. The advancement of functional neuroimaging has enabled the evaluation of the neurochemistry of FAAH in brain tissues and this can be incorporated into clinical trials. Intriguingly, the application of FAAH inhibitors in clinical trials seems to provide less striking results in comparison with the animal models, although some potential still can be seen. Conclusion: Modulation of FAAH has an immense potential to be a new therapeutic candidate for several disorders. Further exploration, however, is still needed to ensure who is the best candidate for the treatment strategy.
Collapse
Affiliation(s)
- Anugrah D Santoso
- Laboratory of Experimental Urology, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
- Department of Urology, Faculty of Medicine Universitas Airlangga, Dr. Soetomo General Academic Hospital, Surabaya, Indonesia
| | - Dirk De Ridder
- Laboratory of Experimental Urology, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| |
Collapse
|
6
|
Huckins LM, Signer R, Johnson J, Wu YK, Mitchell KS, Bulik CM. What next for eating disorder genetics? Replacing myths with facts to sharpen our understanding. Mol Psychiatry 2022; 27:3929-3938. [PMID: 35595976 PMCID: PMC9718676 DOI: 10.1038/s41380-022-01601-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 04/20/2022] [Accepted: 04/26/2022] [Indexed: 02/07/2023]
Abstract
Substantial progress has been made in the understanding of anorexia nervosa (AN) and eating disorder (ED) genetics through the efforts of large-scale collaborative consortia, yielding the first genome-wide significant loci, AN-associated genes, and insights into metabo-psychiatric underpinnings of the disorders. However, the translatability, generalizability, and reach of these insights are hampered by an overly narrow focus in our research. In particular, stereotypes, myths, assumptions and misconceptions have resulted in incomplete or incorrect understandings of ED presentations and trajectories, and exclusion of certain patient groups from our studies. In this review, we aim to counteract these historical imbalances. Taking as our starting point the Academy for Eating Disorders (AED) Truth #5 "Eating disorders affect people of all genders, ages, races, ethnicities, body shapes and weights, sexual orientations, and socioeconomic statuses", we discuss what we do and do not know about the genetic underpinnings of EDs among people in each of these groups, and suggest strategies to design more inclusive studies. In the second half of our review, we outline broad strategic goals whereby ED researchers can expand the diversity, insights, and clinical translatability of their studies.
Collapse
Affiliation(s)
- Laura M Huckins
- Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Mental Illness Research, Education and Clinical Centers, James J. Peters Department of Veterans Affairs Medical Center, Bronx, NY, 14068, USA
| | - Rebecca Signer
- Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Jessica Johnson
- Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Ya-Ke Wu
- School of Nursing, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Karen S Mitchell
- National Center for PTSD at VA Boston Healthcare System, Boston, MA, USA
- Department of Psychiatry, Boston University School of Medicine, Boston, MA, USA
| | - Cynthia M Bulik
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden.
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
7
|
Ceccarini MR, Precone V, Manara E, Paolacci S, Maltese PE, Benfatti V, Dhuli K, Donato K, Guerri G, Marceddu G, Chiurazzi P, Dalla Ragione L, Beccari T, Bertelli M. A next generation sequencing gene panel for use in the diagnosis of anorexia nervosa. Eat Weight Disord 2022; 27:1869-1880. [PMID: 34822136 DOI: 10.1007/s40519-021-01331-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 11/07/2021] [Indexed: 12/12/2022] Open
Abstract
PURPOSE The aim of this study was to increase knowledge of genes associated with anorexia nervosa (AN) and their diagnostic offer, using a next generation sequencing (NGS) panel for the identification of genetic variants. The rationale underlying this test is that we first analyze the genes associated with syndromic forms of AN, then genes that were found to carry rare variants in AN patients who had undergone segregation analysis, and finally candidate genes intervening in the same molecular pathways or identified by GWAS or in mouse models. METHODS We developed an NGS gene panel and used it to screen 68 Italian AN patients (63 females, 5 males). The panel included 162 genes. Family segregation study was conducted on available relatives of probands who reported significant genetic variants. RESULTS In our analysis, we found potentially deleterious variants in 2 genes (PDE11A and SLC25A13) associated with syndromic forms of anorexia and predicted deleterious variants in the following 12 genes: CD36, CACNA1C, DRD4, EPHX2, ESR1, GRIN2A, GRIN3B, LRP2, NPY4R, PTGS2, PTPN22 and SGPP2. Furthermore, by Sanger sequencing of the promoter region of NNAT, we confirmed the involvement of this gene in the pathogenesis of AN. Family segregation studies further strengthened the possible causative role of CACNA1C, DRD4, GRIN2A, PTGS2, SGPP2, SLC25A13 and NNAT genes in AN etiology. CONCLUSION The major finding of our study is the confirmation of the involvement of the NNAT gene in the pathogenesis of AN; furthermore, this study suggests that NGS-based testing can play an important role in the diagnostic evaluation of AN, excluding syndromic forms and increasing knowledge of the genetic etiology of AN. LEVEL OF EVIDENCE Level I, experimental study.
Collapse
Affiliation(s)
- Maria Rachele Ceccarini
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy.
- C.I.B., Consorzio Interuniversitario per le Biotecnologie, Trieste, Italy.
| | | | | | | | | | - Valentina Benfatti
- Department of Eating Disorder, Palazzo Francisci Todi, USL 1 Umbria, Todi, PG, Italy
| | | | | | | | | | - Pietro Chiurazzi
- Dipartimento Universitario Scienze della Vita e Sanità Pubblica, Sezione di Medicina Genomica, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
- Fondazione Policlinico Universitario "A. Gemelli" IRCCS, UOC Genetica Medica, 00168, Roma, Italy
| | - Laura Dalla Ragione
- Department of Eating Disorder, Palazzo Francisci Todi, USL 1 Umbria, Todi, PG, Italy
- Food Science and Human Nutrition Unit, University Campus Biomedico of Rome, Rome, Italy
| | - Tommaso Beccari
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
- C.I.B., Consorzio Interuniversitario per le Biotecnologie, Trieste, Italy
| | | |
Collapse
|
8
|
Hamatani S, Hirano Y, Sugawara A, Isobe M, Kodama N, Yoshihara K, Moriguchi Y, Ando T, Endo Y, Takahashi J, Nohara N, Takamura T, Hori H, Noda T, Tose K, Watanabe K, Adachi H, Gondo M, Takakura S, Fukudo S, Shimizu E, Yoshiuchi K, Sato Y, Sekiguchi A. Eating Disorder Neuroimaging Initiative (EDNI): a multicentre prospective cohort study protocol for elucidating the neural effects of cognitive-behavioural therapy for eating disorders. BMJ Open 2021; 11:e042685. [PMID: 33495256 PMCID: PMC7839914 DOI: 10.1136/bmjopen-2020-042685] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
INTRODUCTION Anorexia nervosa is a refractory psychiatric disorder with a mortality rate of 5.9% and standardised mortality ratio of 5.35, which is much higher than other psychiatric disorders. The standardised mortality ratio of bulimia nervosa is 1.49; however, it is characterised by suicidality resulting in a shorter time to death. While there is no current validated drug treatment for eating disorders in Japan, cognitive-behavioural therapy (CBT) is a well-established and commonly used treatment. CBT is also recommended in the Japanese Guidelines for the Treatment of Eating Disorders (2012) and has been covered by insurance since 2018. However, the neural mechanisms responsible for the effect of CBT have not been elucidated, and the use of biomarkers such as neuroimaging data would be beneficial. METHODS AND ANALYSIS The Eating Disorder Neuroimaging Initiative is a multisite prospective cohort study. We will longitudinally collect data from 72 patients with eating disorders (anorexia nervosa and bulimia nervosa) and 70 controls. Data will be collected at baseline, after 21-41 sessions of CBT and 12 months later. We will assess longitudinal changes in neural circuit function, clinical data, gene expression and psychological measures by therapeutic intervention and analyse the relationship among them using machine learning methods. ETHICS AND DISSEMINATION The study was approved by The Ethical Committee of the National Center of Neurology and Psychiatry (A2019-072). We will obtain written informed consent from all patients who participate in the study after they had been fully informed about the study protocol. All imaging, demographic and clinical data are shared between the participating sites and will be made publicly available in 2024. TRIAL REGISTRATION NUMBER UMIN000039841.
Collapse
Affiliation(s)
- Sayo Hamatani
- Research Center for Child Mental Development, Chiba University, Chiba, Japan
- Japan Society for the Promotion of Science, Tokyo, Japan
| | - Yoshiyuki Hirano
- Research Center for Child Mental Development, Chiba University, Chiba, Japan
- United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Chiba, Japan
| | - Ayako Sugawara
- Department of Behavioral Medicine, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Masanori Isobe
- Department of Psychiatry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Naoki Kodama
- Division of Psychosomatic Medicine, Department of Neurology, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Kazufumi Yoshihara
- Department of Psychosomatic Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshiya Moriguchi
- Department of Behavioral Medicine, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Tetsuya Ando
- Department of Behavioral Medicine, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Yuka Endo
- Department of Psychosomatic Medicine, Tohoku University Hospital, Sendai, Japan
| | - Jumpei Takahashi
- Research Center for Child Mental Development, Chiba University, Chiba, Japan
| | - Nobuhiro Nohara
- Department of Stress Sciences and Psychosomatic Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tsunehiko Takamura
- Department of Behavioral Medicine, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Hiroaki Hori
- Department of Behavioral Medicine, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Tomomi Noda
- Japan Society for the Promotion of Science, Tokyo, Japan
- Department of Psychiatry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Keima Tose
- Department of Psychiatry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Keita Watanabe
- Department of Radiology, University of Occupational and Environmental Health School of Medicine, Kitakyushu, Japan
| | - Hiroaki Adachi
- Division of Psychosomatic Medicine, Department of Neurology, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Motoharu Gondo
- Department of Psychosomatic Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Department of Psychosomatic Medicine, Kitakyushu Municipal Medical Center, Fukuoka, Japan
| | - Shu Takakura
- Department of Psychosomatic Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shin Fukudo
- Department of Psychosomatic Medicine, Tohoku University Hospital, Sendai, Japan
- Department of Behavioral Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Eiji Shimizu
- Research Center for Child Mental Development, Chiba University, Chiba, Japan
- Department of Cognitive Behavioral Physiology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Kazuhiro Yoshiuchi
- Department of Stress Sciences and Psychosomatic Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yasuhiro Sato
- Department of Psychosomatic Medicine, Tohoku University Hospital, Sendai, Japan
| | - Atsushi Sekiguchi
- Department of Behavioral Medicine, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan
| |
Collapse
|
9
|
Bulik CM. Eating disorders genetics in Asia. Int J Eat Disord 2020; 54:10.1002/eat.23445. [PMID: 33349947 PMCID: PMC8209113 DOI: 10.1002/eat.23445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/06/2020] [Accepted: 12/06/2020] [Indexed: 11/07/2022]
Abstract
A complete understanding of the genetic architecture of eating disorders requires adequately large sample sizes from individuals of all ancestries. Failure to include representative samples truncates understanding and may even exacerbate health disparities. Several countries in Asia have made rich contributions in psychiatric genetics; however, the eating disorders field requires concerted global efforts to increase representation from Asian ancestry populations to ensure that our global efforts accurately reflect the true distribution of eating disorders around the world and across ancestries.
Collapse
Affiliation(s)
- Cynthia M Bulik
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
10
|
Yagin NL, Aliasgari F, Alizadeh M, Aliasgharzadeh S, Mahdavi R. Comparison of endocannabinoids levels, FAAH gene polymorphisms, and appetite regulatory substances in women with and without binge eating disorder: a cross- sectional study. Nutr Res 2020; 83:86-93. [DOI: 10.1016/j.nutres.2020.09.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 08/04/2020] [Accepted: 09/02/2020] [Indexed: 01/23/2023]
|
11
|
Prediction of early weight gain during psychotropic treatment using a combinatorial model with clinical and genetic markers. Pharmacogenet Genomics 2016; 26:547-557. [DOI: 10.1097/fpc.0000000000000249] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
12
|
Shih PAB, Woodside DB. Contemporary views on the genetics of anorexia nervosa. Eur Neuropsychopharmacol 2016; 26:663-73. [PMID: 26944296 PMCID: PMC4801707 DOI: 10.1016/j.euroneuro.2016.02.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 02/05/2016] [Accepted: 02/05/2016] [Indexed: 10/22/2022]
Abstract
Anorexia nervosa (AN) is a serious mental illness characterized by severe dietary restriction that leads to high rates of morbidity, chronicity, and mortality. Unfortunately, effective treatment is lacking and few options are available. High rates of familial aggregation and significant heritability suggested that the complex etiology of AN is affected by both genetic and environmental factors. In this paper, we review studies that reported common and rare genetic variation that influence susceptibility of AN through candidate gene studies, genome-wide association studies, and sequencing-based studies. We also discuss gene expression, methylation, imaging genetics, and pharmacogenetics to demonstrate that these studies have collectively advanced our knowledge of how genetic variation contributes to AN susceptibility and clinical course. Lastly, we highlight the importance of gene by environment interactions (G×E) and share our enthusiasm for the use of nutritional genomic approaches to elucidate the interaction among nutrients, metabolic intermediates, and genetic variation in AN. A deeper understanding of how nutrition alters genome stability, how genetic variation influences uptake and metabolism of nutrients, and how response to food components affects disordered eating, will lead to personalized dietary interventions and effective nutraceutical and pharmacological treatments for AN.
Collapse
Affiliation(s)
- Pei-an Betty Shih
- Department of Psychiatry, University of California, San Diego, 9500 Gilman Drive #0664, La Jolla, CA 92093-0664, USA.
| | - D Blake Woodside
- Inpatient Eating Disorders Service, Toronto General Hospital, Canada; Department of Psychiatry, University of Toronto, Canada.
| |
Collapse
|
13
|
Méquinion M, Chauveau C, Viltart O. The use of animal models to decipher physiological and neurobiological alterations of anorexia nervosa patients. Front Endocrinol (Lausanne) 2015; 6:68. [PMID: 26042085 PMCID: PMC4436882 DOI: 10.3389/fendo.2015.00068] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 04/15/2015] [Indexed: 12/18/2022] Open
Abstract
Extensive studies were performed to decipher the mechanisms regulating feeding due to the worldwide obesity pandemy and its complications. The data obtained might be adapted to another disorder related to alteration of food intake, the restrictive anorexia nervosa. This multifactorial disease with a complex and unknown etiology is considered as an awful eating disorder since the chronic refusal to eat leads to severe, and sometimes, irreversible complications for the whole organism, until death. There is an urgent need to better understand the different aspects of the disease to develop novel approaches complementary to the usual psychological therapies. For this purpose, the use of pertinent animal models becomes a necessity. We present here the various rodent models described in the literature that might be used to dissect central and peripheral mechanisms involved in the adaptation to deficient energy supplies and/or the maintenance of physiological alterations on the long term. Data obtained from the spontaneous or engineered genetic models permit to better apprehend the implication of one signaling system (hormone, neuropeptide, neurotransmitter) in the development of several symptoms observed in anorexia nervosa. As example, mutations in the ghrelin, serotonin, dopamine pathways lead to alterations that mimic the phenotype, but compensatory mechanisms often occur rendering necessary the use of more selective gene strategies. Until now, environmental animal models based on one or several inducing factors like diet restriction, stress, or physical activity mimicked more extensively central and peripheral alterations decribed in anorexia nervosa. They bring significant data on feeding behavior, energy expenditure, and central circuit alterations. Animal models are described and criticized on the basis of the criteria of validity for anorexia nervosa.
Collapse
Affiliation(s)
- Mathieu Méquinion
- INSERM UMR-S1172, Development and Plasticity of Postnatal Brain, Lille, France
| | - Christophe Chauveau
- Pathophysiology of Inflammatory Bone Diseases, EA 4490, University of the Littoral Opal Coast, Boulogne sur Mer, France
| | - Odile Viltart
- INSERM UMR-S1172, Early stages of Parkinson diseases, University Lille 1, Lille, France
| |
Collapse
|