1
|
Regnacq L, Thota AK, Sanabria AO, McPherson L, Renaud S, Romain O, Bornat Y, Abbas JJ, Jung R, Kölbl F. Fascicle-selective kilohertz-frequency neural conduction block with longitudinal intrafascicular electrodes. J Neural Eng 2025; 22:026045. [PMID: 40147043 PMCID: PMC11969234 DOI: 10.1088/1741-2552/adc62a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 02/25/2025] [Accepted: 03/27/2025] [Indexed: 03/29/2025]
Abstract
Objective.Electrical stimulation of peripheral nerves is used to treat a variety of disorders and conditions. While conventional biphasic pulse stimulation typically induces neural activity in fibers, kilohertz (kHz) continuous stimulation can block neural conduction, offering a promising alternative to drug-based therapies for alleviating abnormal neural activity. This study explores strategies to enhance the selectivity and control of high-frequency neural conduction block using intrafascicular electrodes.Approach. In vivoexperiments were conducted in a rodent model to assess the effects of kHz stimulation delivered via longitudinal intrafascicular electrodes (LIFEs) on motor axons within the tibial and common peroneal fascicles of the sciatic nerve.Main results.We demonstrated that a progressive and selective block of neural conduction is achievable with LIFEs. We showed that the amount of neural conduction block can be tuned by adjusting the amplitude and frequency of kHz stimulation. Additionally, we achieved interfascicular selectivity with intrafascicular electrodes, with this selectivity being modulated by the kHz stimulation frequency. We also observed a small amount of onset response spillover, which could be minimized by increasing the blocking stimulus frequency. Muscle fatigue was quantified during kHz continuous stimulation and compared to control scenarios, revealing that the muscle was able to recover from fatigue during the block, confirming a true block of motor neurons.Significance.Our findings show that kHz stimulation using LIFEs can be precisely controlled to achieve selective conduction block. By leveraging existing knowledge from conventional stimulation techniques, this approach allows for the development of stimulation protocols that effectively block abnormal neural patterns with reduced side effects.
Collapse
Affiliation(s)
- Louis Regnacq
- ETIS Lab, UMR 8051, CY Cergy Paris University, ENSEA, Cergy, France
- IMS Lab, UMR 5218, University Bordeaux, Bordeaux INP, Talence, France
| | - Anil K Thota
- The Institute for Integrative & Innovative Research—I3R,University of Arkansas, Fayetteville, AR, United States of America
| | - Arianna Ortega Sanabria
- The Institute for Integrative & Innovative Research—I3R,University of Arkansas, Fayetteville, AR, United States of America
| | - Laura McPherson
- Department of Neurology, Washington University, St. Louis, MO, United States of America
| | - Sylvie Renaud
- IMS Lab, UMR 5218, University Bordeaux, Bordeaux INP, Talence, France
| | - Olivier Romain
- ETIS Lab, UMR 8051, CY Cergy Paris University, ENSEA, Cergy, France
| | - Yannick Bornat
- IMS Lab, UMR 5218, University Bordeaux, Bordeaux INP, Talence, France
| | - James J Abbas
- The Institute for Integrative & Innovative Research—I3R,University of Arkansas, Fayetteville, AR, United States of America
| | - Ranu Jung
- The Institute for Integrative & Innovative Research—I3R,University of Arkansas, Fayetteville, AR, United States of America
| | - Florian Kölbl
- ETIS Lab, UMR 8051, CY Cergy Paris University, ENSEA, Cergy, France
- IMS Lab, UMR 5218, University Bordeaux, Bordeaux INP, Talence, France
| |
Collapse
|
2
|
Yildiz KA, Shin AY, Kaufman KR. Interfaces with the peripheral nervous system for the control of a neuroprosthetic limb: a review. J Neuroeng Rehabil 2020; 17:43. [PMID: 32151268 PMCID: PMC7063740 DOI: 10.1186/s12984-020-00667-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 02/17/2020] [Indexed: 12/22/2022] Open
Abstract
The field of prosthetics has been evolving and advancing over the past decade, as patients with missing extremities are expecting to control their prostheses in as normal a way as possible. Scientists have attempted to satisfy this expectation by designing a connection between the nervous system of the patient and the prosthetic limb, creating the field of neuroprosthetics. In this paper, we broadly review the techniques used to bridge the patient's peripheral nervous system to a prosthetic limb. First, we describe the electrical methods including myoelectric systems, surgical innovations and the role of nerve electrodes. We then describe non-electrical methods used alone or in combination with electrical methods. Design concerns from an engineering point of view are explored, and novel improvements to obtain a more stable interface are described. Finally, a critique of the methods with respect to their long-term impacts is provided. In this review, nerve electrodes are found to be one of the most promising interfaces in the future for intuitive user control. Clinical trials with larger patient populations, and for longer periods of time for certain interfaces, will help to evaluate the clinical application of nerve electrodes.
Collapse
Affiliation(s)
- Kadir A Yildiz
- Motion Analysis Laboratory, Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Alexander Y Shin
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Kenton R Kaufman
- Motion Analysis Laboratory, Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA.
- Motion Analysis Laboratory, W. Hall Wendel, Jr., Musculoskeletal Research, 200 First Street SW, Rochester, MN, 55905, USA.
| |
Collapse
|
3
|
Yu X, Su JY, Guo JY, Zhang XH, Li RH, Chai XY, Chen Y, Zhang DG, Wang JG, Sui XH, Durand DM. Spatiotemporal characteristics of neural activity in tibial nerves with carbon nanotube yarn electrodes. J Neurosci Methods 2019; 328:108450. [PMID: 31577919 DOI: 10.1016/j.jneumeth.2019.108450] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 09/25/2019] [Accepted: 09/27/2019] [Indexed: 10/25/2022]
Abstract
BACKGROUND Reliable interfacing with peripheral nervous system is essential to extract neural signals. Current implantable peripheral nerve electrodes cannot provide long-term reliable interfaces due to their mechanical mismatch with host nerves. Carbon nanotube (CNT) yarns possess excellent mechanical flexibility and electrical conductivity. It is of great necessity to investigate the selectivity of implantable CNT yarn electrodes. NEW METHOD Neural interfaces were fabricated with CNT yarn electrodes insulated with Parylene-C. Acute recordings were carried out on tibial nerves of rats, and compound nerve action potentials (CNAPs) were electrically evoked by biphasic current stimulation of four toes. Spatiotemporal characteristics of neural activity and spatial selectivity of the electrodes, denoted by selectivity index (SI), were analyzed in detail. RESULTS Conduction velocities of sensory afferent fibers recorded by CNT yarn electrodes varied between 4.25 m/s and 37.56 m/s. The SI maxima for specific toes were between 0.55 and 0.99 across seven electrodes. SIs for different CNT yarn electrodes are significantly different among varied toes. COMPARISON WITH EXISTING METHODS Most single CNT yarn electrode with a ∼ 500 μm exposed length can be sensitive to one or two specific toes in rodent animals. While, it is only possible to discriminate two non-adjacent toes by multisite TIME electrodes. CONCLUSION Single CNT yarn electrode exposed ∼ 500 μm showed SI values for different toes comparable to a multisite TIME electrode, and had high spatial selectivity for one or two specific toes. The electrodes with cross section exposed could intend to be more sensitive to one specific toe.
Collapse
Affiliation(s)
- X Yu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - J Y Su
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - J Y Guo
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - X H Zhang
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai, China
| | - R H Li
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - X Y Chai
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Y Chen
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - D G Zhang
- School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - J G Wang
- Shanghai Institute of Hypertension, Department of Hypertension, Shanghai Jiao Tong University School of Medicine Affiliated Ruijin Hospital, Shanghai, China
| | - X H Sui
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.
| | - D M Durand
- Neural Engineering Center, Department of Biomedical Engineering, Case Western Reserve University, Cleveland, USA.
| |
Collapse
|
4
|
Hong KS, Aziz N, Ghafoor U. Motor-commands decoding using peripheral nerve signals: a review. J Neural Eng 2018; 15:031004. [PMID: 29498358 DOI: 10.1088/1741-2552/aab383] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
During the last few decades, substantial scientific and technological efforts have been focused on the development of neuroprostheses. The major emphasis has been on techniques for connecting the human nervous system with a robotic prosthesis via natural-feeling interfaces. The peripheral nerves provide access to highly processed and segregated neural command signals from the brain that can in principle be used to determine user intent and control muscles. If these signals could be used, they might allow near-natural and intuitive control of prosthetic limbs with multiple degrees of freedom. This review summarizes the history of neuroprosthetic interfaces and their ability to record from and stimulate peripheral nerves. We also discuss the types of interfaces available and their applications, the kinds of peripheral nerve signals that are used, and the algorithms used to decode them. Finally, we explore the prospects for future development in this area.
Collapse
|
5
|
Staples NA, Goding JA, Gilmour AD, Aristovich KY, Byrnes-Preston P, Holder DS, Morley JW, Lovell NH, Chew DJ, Green RA. Conductive Hydrogel Electrodes for Delivery of Long-Term High Frequency Pulses. Front Neurosci 2018; 11:748. [PMID: 29375292 PMCID: PMC5768631 DOI: 10.3389/fnins.2017.00748] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 12/22/2017] [Indexed: 11/17/2022] Open
Abstract
Nerve block waveforms require the passage of large amounts of electrical energy at the neural interface for extended periods of time. It is desirable that such waveforms be applied chronically, consistent with the treatment of protracted immune conditions, however current metal electrode technologies are limited in their capacity to safely deliver ongoing stable blocking waveforms. Conductive hydrogel (CH) electrode coatings have been shown to improve the performance of conventional bionic devices, which use considerably lower amounts of energy than conventional metal electrodes to replace or augment sensory neuron function. In this study the application of CH materials was explored, using both a commercially available platinum iridium (PtIr) cuff electrode array and a novel low-cost stainless steel (SS) electrode array. The CH was able to significantly increase the electrochemical performance of both array types. The SS electrode coated with the CH was shown to be stable under continuous delivery of 2 mA square pulse waveforms at 40,000 Hz for 42 days. CH coatings have been shown as a beneficial electrode material compatible with long-term delivery of high current, high energy waveforms.
Collapse
Affiliation(s)
- Naomi A Staples
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, Australia
| | - Josef A Goding
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, Australia.,Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Aaron D Gilmour
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, Australia
| | - Kirill Y Aristovich
- Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - Phillip Byrnes-Preston
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, Australia
| | - David S Holder
- Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - John W Morley
- School of Medical Science, University of New South Wales, Sydney, NSW, Australia.,School of Medicine, Western Sydney University, Sydney, NSW, Australia
| | - Nigel H Lovell
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, Australia
| | | | - Rylie A Green
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, Australia.,Department of Bioengineering, Imperial College London, London, United Kingdom
| |
Collapse
|
6
|
Jung R, Abbas JJ, Kuntaegowdanahalli S, Thota AK. Bionic intrafascicular interfaces for recording and stimulating peripheral nerve fibers. ACTA ACUST UNITED AC 2017; 1:55-69. [PMID: 29480906 DOI: 10.2217/bem-2017-0009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 11/13/2017] [Indexed: 12/16/2022]
Abstract
The network of peripheral nerves presents extraordinary potential for modulating and/or monitoring the functioning of internal organs or the brain. The degree to which these pathways can be used to influence or observe neural activity patterns will depend greatly on the quality and specificity of the bionic interface. The anatomical organization, which consists of multiple nerve fibers clustered into fascicles within a nerve bundle, presents opportunities and challenges that may necessitate insertion of electrodes into individual fascicles to achieve the specificity that may be required for many clinical applications. This manuscript reviews the current state-of-the-art in bionic intrafascicular interfaces, presents specific concerns for stimulation and recording, describes key implementation considerations and discusses challenges for future designs of bionic intrafascicular interfaces.
Collapse
Affiliation(s)
- Ranu Jung
- Department of Biomedical Engineering, Florida International University, EC2602, 10555 W Flagler Street, Miami, FL 33134, USA.,Department of Biomedical Engineering, Florida International University, EC2602, 10555 W Flagler Street, Miami, FL 33134, USA
| | - James J Abbas
- Center for Adaptive Neural Systems, School of Biological & Health Systems Engineering, PO Box 879709 Arizona State University, Tempe, AZ 85287-9709, USA.,Center for Adaptive Neural Systems, School of Biological & Health Systems Engineering, PO Box 879709 Arizona State University, Tempe, AZ 85287-9709, USA
| | - Sathyakumar Kuntaegowdanahalli
- Department of Biomedical Engineering, Florida International University, EC2602, 10555 W Flagler Street, Miami, FL 33134, USA.,Department of Biomedical Engineering, Florida International University, EC2602, 10555 W Flagler Street, Miami, FL 33134, USA
| | - Anil K Thota
- Department of Biomedical Engineering, Florida International University, EC2602, 10555 W Flagler Street, Miami, FL 33134, USA.,Department of Biomedical Engineering, Florida International University, EC2602, 10555 W Flagler Street, Miami, FL 33134, USA
| |
Collapse
|
7
|
Ghafoor U, Kim S, Hong KS. Selectivity and Longevity of Peripheral-Nerve and Machine Interfaces: A Review. Front Neurorobot 2017; 11:59. [PMID: 29163122 PMCID: PMC5671609 DOI: 10.3389/fnbot.2017.00059] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Accepted: 10/17/2017] [Indexed: 11/22/2022] Open
Abstract
For those individuals with upper-extremity amputation, a daily normal living activity is no longer possible or it requires additional effort and time. With the aim of restoring their sensory and motor functions, theoretical and technological investigations have been carried out in the field of neuroprosthetic systems. For transmission of sensory feedback, several interfacing modalities including indirect (non-invasive), direct-to-peripheral-nerve (invasive), and cortical stimulation have been applied. Peripheral nerve interfaces demonstrate an edge over the cortical interfaces due to the sensitivity in attaining cortical brain signals. The peripheral nerve interfaces are highly dependent on interface designs and are required to be biocompatible with the nerves to achieve prolonged stability and longevity. Another criterion is the selection of nerves that allows minimal invasiveness and damages as well as high selectivity for a large number of nerve fascicles. In this paper, we review the nerve-machine interface modalities noted above with more focus on peripheral nerve interfaces, which are responsible for provision of sensory feedback. The invasive interfaces for recording and stimulation of electro-neurographic signals include intra-fascicular, regenerative-type interfaces that provide multiple contact channels to a group of axons inside the nerve and the extra-neural-cuff-type interfaces that enable interaction with many axons around the periphery of the nerve. Section Current Prosthetic Technology summarizes the advancements made to date in the field of neuroprosthetics toward the achievement of a bidirectional nerve-machine interface with more focus on sensory feedback. In the Discussion section, the authors propose a hybrid interface technique for achieving better selectivity and long-term stability using the available nerve interfacing techniques.
Collapse
Affiliation(s)
- Usman Ghafoor
- School of Mechanical Engineering, Pusan National University, Busan, South Korea
| | - Sohee Kim
- Department of Robotics Engineering, Daegu Gyeongbuk Institute of Science and Technology, Daegu, South Korea
| | - Keum-Shik Hong
- School of Mechanical Engineering, Pusan National University, Busan, South Korea.,Department of Cogno-Mechatronics Engineering, Pusan National University, Busan, South Korea
| |
Collapse
|
8
|
Christensen M, Pearce S, Ledbetter N, Warren D, Clark G, Tresco P. The foreign body response to the Utah Slant Electrode Array in the cat sciatic nerve. Acta Biomater 2014; 10:4650-4660. [PMID: 25042798 DOI: 10.1016/j.actbio.2014.07.010] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 06/17/2014] [Accepted: 07/12/2014] [Indexed: 01/09/2023]
Abstract
As the field of neuroprosthetic research continues to grow, studies describing the foreign body reaction surrounding chronic indwelling electrodes or microelectrode arrays will be critical for assessing biocompatibility. Of particular importance is the reaction surrounding penetrating microelectrodes that are used to stimulate and record from peripheral nerves used for prosthetic control, where such studies on axially penetrating electrodes are limited. Using the Utah Slant Electrode Array and a variety of histological methods, we investigated the foreign body response to the implanted array and its surrounding silicone cuff over long indwelling periods in the cat sciatic nerve. We observed that implanted nerves were associated with increased numbers of activated macrophages at the implant site, as well as distal to the implant, at all time points examined, with the longest observation being 350 days after implantation. We found that implanted cat sciatic nerves undergo a compensatory regenerative response after the initial injury that is accompanied by shifts in nerve fiber composition toward nerve fibers of smaller diameter and evidence of axons growing around microelectrode shafts. Nerve fibers located in fascicles that were not penetrated by the array or were located more than a few hundred microns from the implant appeared normal when examined over the course of a year-long indwelling period.
Collapse
|
9
|
Ordelman SCMA, Kornet L, Cornelussen R, Buschman HPJ, Veltink PH. Selectivity for Specific Cardiovascular Effects of Vagal Nerve Stimulation With a Multi-Contact Electrode Cuff. IEEE Trans Neural Syst Rehabil Eng 2013; 21:32-6. [DOI: 10.1109/tnsre.2012.2214058] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
10
|
FitzGerald JJ, Lago N, Benmerah S, Serra J, Watling CP, Cameron RE, Tarte E, Lacour SP, McMahon SB, Fawcett JW. A regenerative microchannel neural interface for recording from and stimulating peripheral axons in vivo. J Neural Eng 2012; 9:016010. [PMID: 22258138 DOI: 10.1088/1741-2560/9/1/016010] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Neural interfaces are implanted devices that couple the nervous system to electronic circuitry. They are intended for long term use to control assistive technologies such as muscle stimulators or prosthetics that compensate for loss of function due to injury. Here we present a novel design of interface for peripheral nerves. Recording from axons is complicated by the small size of extracellular potentials and the concentration of current flow at nodes of Ranvier. Confining axons to microchannels of ~100 µm diameter produces amplified potentials that are independent of node position. After implantation of microchannel arrays into rat sciatic nerve, axons regenerated through the channels forming 'mini-fascicles', each typically containing ~100 myelinated fibres and one or more blood vessels. Regenerated motor axons reconnected to distal muscles, as demonstrated by the recovery of an electromyogram and partial prevention of muscle atrophy. Efferent motor potentials and afferent signals evoked by muscle stretch or cutaneous stimulation were easily recorded from the mini-fascicles and were in the range of 35-170 µV. Individual motor units in distal musculature were activated from channels using stimulus currents in the microampere range. Microchannel interfaces are a potential solution for applications such as prosthetic limb control or enhancing recovery after nerve injury.
Collapse
|
11
|
Dowden BR, Frankel MA, Normann RA, Clark GA. Non-invasive method for selection of electrodes and stimulus parameters for FES applications with intrafascicular arrays. J Neural Eng 2011; 9:016006. [PMID: 22173566 DOI: 10.1088/1741-2560/9/1/016006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
High-channel-count intrafascicular electrode arrays provide comprehensive and selective access to the peripheral nervous system. One practical difficulty in using several electrode arrays to evoke coordinated movements in paralyzed limbs is the identification of the appropriate stimulation channels and stimulus parameters to evoke desired movements. Here we present the use of a six degree-of-freedom load cell placed under the foot of a feline to characterize the muscle activation produced by three 100-electrode Utah Slanted Electrode Arrays (USEAs) implanted into the femoral nerves, sciatic nerves, and muscular branches of the sciatic nerves of three cats. Intramuscular stimulation was used to identify the endpoint force directions produced by 15 muscles of the hind limb, and these directions were used to classify the forces produced by each intrafascicular USEA electrode as flexion or extension. For 451 USEA electrodes, stimulus intensities for threshold and saturation muscle forces were identified, and the 3D direction and linearity of the force recruitment curves were determined. Further, motor unit excitation independence for 198 electrode pairs was measured using the refractory technique. This study demonstrates the utility of 3D endpoint force monitoring as a simple and non-invasive metric for characterizing the muscle-activation properties of hundreds of implanted peripheral nerve electrodes, allowing for electrode and parameter selection for neuroprosthetic applications.
Collapse
Affiliation(s)
- B R Dowden
- Department of Bioengineering, University of Utah, Salt Lake City, UT 84112, USA
| | | | | | | |
Collapse
|