1
|
Protzuk OA, Samuel MA, Seward KR, Keshishian CA, Bendale GS, Isaacs JE. Induced Pseudomembrane Enrichment in Long Nerve Allograft Reconstruction. Muscle Nerve 2025; 71:662-669. [PMID: 40052754 PMCID: PMC11887527 DOI: 10.1002/mus.28362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 01/20/2025] [Accepted: 01/21/2025] [Indexed: 03/10/2025]
Abstract
INTRODUCTION/AIMS Long nerve defects are typically reconstructed with autograft or processed acellular nerve allograft (PNA). PNA is convenient and avoids donor morbidity but lacks the neurotrophic environment of autograft. Increased levels of neurotrophic factors have been identified in pseudomembranes induced around silicone implanted between nerve ends. This study aimed to determine if pseudomembrane can be reliably induced around silicone implanted between nerve ends, and if this enhances regeneration of PNA inset within using a staged technique. METHODS Lewis rats (n = 24) underwent resection of a 15-mm sciatic nerve. The defect was filled with a silicone tube (n = 12) (MA) or the nerve ends were secured to a muscle bed (n = 12) (NMA). After 4 weeks, the silicone was replaced with PNA threaded within the pseudomembrane tunnel. In both groups, PNA was used to reconstruct the nerve defect. Weekly neuromotor assessment was performed with sciatic function index (SFI). At 16 weeks, muscle recovery was assessed, and nerve samples were obtained for histomorphometry. RESULTS The MA group's average normalized muscle weight was 46.25% versus the NMA group's 33.19% (p < 0.05). The MA group's average normalized muscle girth was 78.25% versus the NMA group's 60.73% (p < 0.05). Axon counts, g-ratio, and muscle force were not statistically different. At Week 15, the MA group had a significantly higher average SFI: -82.25 versus the NMA group -95.03 (p < 0.05). DISCUSSION PNA inset within induced pseudomembrane sheath enhanced muscle reinnervation. A staged membrane enhancement technique may be effective for improving PNA efficacy in peripheral nerve injury reconstruction.
Collapse
Affiliation(s)
- Omar A. Protzuk
- Department of Orthopaedic SurgeryHarvard Medical School, Mass General Brigham, Brigham & Women's HospitalBostonMassachusettsUSA
| | - Mariam A. Samuel
- Division of Hand Surgery, Department of Orthopaedic SurgeryVirginia Commonwealth UniversityRichmondVirginiaUSA
| | - Kriston R. Seward
- Division of Hand Surgery, Department of Orthopaedic SurgeryVirginia Commonwealth UniversityRichmondVirginiaUSA
| | - Christopher A. Keshishian
- Division of Hand Surgery, Department of Orthopaedic SurgeryVirginia Commonwealth UniversityRichmondVirginiaUSA
| | - Geetanjali S. Bendale
- Division of Hand Surgery, Department of Orthopaedic SurgeryVirginia Commonwealth UniversityRichmondVirginiaUSA
| | - Jonathan E. Isaacs
- Division of Hand Surgery, Department of Orthopaedic SurgeryVirginia Commonwealth UniversityRichmondVirginiaUSA
| |
Collapse
|
2
|
Nam YH, Kim JS, Yum Y, Yoon J, Song H, Kim HJ, Lim J, Park S, Jung SC. Application of Mesenchymal Stem Cell-Derived Schwann Cell-like Cells Spared Neuromuscular Junctions and Enhanced Functional Recovery After Peripheral Nerve Injury. Cells 2024; 13:2137. [PMID: 39768225 PMCID: PMC11674609 DOI: 10.3390/cells13242137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025] Open
Abstract
In general, the nerve cells of the peripheral nervous system regenerate normally within a certain period after the physical damage of their axon. However, when peripheral nerves are transected by trauma or tissue extraction for cancer treatment, spontaneous nerve regeneration cannot occur. Therefore, it is necessary to perform microsurgery to connect the transected nerve directly or insert a nerve conduit to connect it. In this study, we applied human tonsillar mesenchymal stem cell (TMSC)-derived Schwann cell-like cells (TMSC-SCs) to facilitate nerve regeneration and prevent muscle atrophy after neurorrhaphy. The TMSC-SCs were manufactured in a good manufacturing practice facility and termed neuronal regeneration-promoting cells (NRPCs). A rat model of peripheral nerve injury (PNI) was generated and a mixture of NRPCs and fibrin glue was transplanted into the injured nerve after neurorrhaphy. The application of NRPCs and fibrin glue led to the efficient induction of sciatic nerve regeneration, with the sparing of gastrocnemius muscles and neuromuscular junctions. This sparing effect of NRPCs toward neuromuscular junctions might prevent muscle atrophy after neurorrhaphy. These results suggest that a mixture of NRPCs and fibrin glue may be a therapeutic candidate to enable peripheral nerve and muscle regeneration in the context of neurorrhaphy in patients with PNI.
Collapse
Affiliation(s)
- Yu Hwa Nam
- Department of Biochemistry, College of Medicine, Ewha Womans University, Seoul 07804, Republic of Korea; (Y.H.N.); (Y.Y.); (J.Y.); (H.S.)
| | - Ji-Sup Kim
- Department of Orthopaedic Surgery, College of Medicine, Seoul Hospital, Ewha Womans University, Seoul 07804, Republic of Korea;
| | - Yoonji Yum
- Department of Biochemistry, College of Medicine, Ewha Womans University, Seoul 07804, Republic of Korea; (Y.H.N.); (Y.Y.); (J.Y.); (H.S.)
| | - Juhee Yoon
- Department of Biochemistry, College of Medicine, Ewha Womans University, Seoul 07804, Republic of Korea; (Y.H.N.); (Y.Y.); (J.Y.); (H.S.)
| | - Hyeryung Song
- Department of Biochemistry, College of Medicine, Ewha Womans University, Seoul 07804, Republic of Korea; (Y.H.N.); (Y.Y.); (J.Y.); (H.S.)
| | - Ho-Jin Kim
- Cellatoz Therapeutics Inc., Seongnam 13487, Republic of Korea; (H.-J.K.); (J.L.)
| | - Jaeseung Lim
- Cellatoz Therapeutics Inc., Seongnam 13487, Republic of Korea; (H.-J.K.); (J.L.)
| | - Saeyoung Park
- Department of Biochemistry, College of Medicine, Ewha Womans University, Seoul 07804, Republic of Korea; (Y.H.N.); (Y.Y.); (J.Y.); (H.S.)
| | - Sung-Chul Jung
- Department of Biochemistry, College of Medicine, Ewha Womans University, Seoul 07804, Republic of Korea; (Y.H.N.); (Y.Y.); (J.Y.); (H.S.)
- Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 07804, Republic of Korea
| |
Collapse
|
3
|
Wang J, Hu Y, Xue Y, Wang K, Mao D, Pan XY, Rui Y. PMMA-induced biofilm promotes Schwann cells migration and proliferation mediated by EGF/Tnc/FN1 to improve sciatic nerve defect. Heliyon 2024; 10:e37231. [PMID: 39296039 PMCID: PMC11409128 DOI: 10.1016/j.heliyon.2024.e37231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 08/14/2024] [Accepted: 08/29/2024] [Indexed: 09/21/2024] Open
Abstract
Objective The purpose of this study is to investigate the role of PMMA-induced biofilm in nerve regeneration compared with silicone-induced biofilm involved in the mechanism. Methods PMMA or silicon rods were placed next to the sciatic nerve to induce a biological membrane which was assayed by PCR, Western blot, immunohistochemistry, immunofluorescence and proteomics. A 10 mm sciatic nerve gaps were repaired with the autologous nerve wrapped in an induced biological membrane. The repair effects were observed through general observation, functional evaluation of nerve regeneration, ultrasound examination, neural electrophysiology, the wet weight ratio of bilateral pretibial muscle and histological evaluation. Cell proliferation and migration of Schwann cells co-cultured with EGF-treated fibroblasts combined with siRNA were investigated. Results The results indicated that expression of GDNF, NGF and VEGF along with neovascularization was similar in the silicone and PMMA group and as the highest at 6 weeks after operation. Nerve injury repair mediated by toluidine blue and S100β/NF200 expression, the sensory and motor function evaluation, ultrasound, target organ muscle wet-weight ratio, percentage of collagen fiber, electromyography and histochemical staining were not different between the two groups and better than blank group. EGF-treated fibroblasts promoted proliferation and migration may be Tnc expression dependently. Conclusion Our study suggested that PMMA similar to silicon induced biofilm may promote autogenous nerve transplantation to repair nerve defects through EGF/Tnc/FN1 to increase Schwann cells proliferation and migration.
Collapse
Affiliation(s)
- Jun Wang
- Suzhou Medical College of Soochow University, Suzhou, Jiangsu, 215000, China
- Department of Orthopedics, Wuxi Ninth People's Hospital Affiliated to Soochow University, Wuxi, Jiangsu, 214000, China
| | - YuXuan Hu
- Department of Orthopedics, Wuxi Ninth People's Hospital Affiliated to Soochow University, Wuxi, Jiangsu, 214000, China
| | - Yuan Xue
- Department of Orthopedics, Wuxi Ninth People's Hospital Affiliated to Soochow University, Wuxi, Jiangsu, 214000, China
| | - Kai Wang
- Suzhou Medical College of Soochow University, Suzhou, Jiangsu, 215000, China
| | - Dong Mao
- Orthopaedic Institute, Wuxi Ninth People's Hospital Affiliated to Soochow University, Wuxi, Jiangsu, 214000, China
| | - Xiao-Yun Pan
- Orthopaedic Institute, Wuxi Ninth People's Hospital Affiliated to Soochow University, Wuxi, Jiangsu, 214000, China
| | - YongJun Rui
- Department of Orthopedics, Wuxi Ninth People's Hospital Affiliated to Soochow University, Wuxi, Jiangsu, 214000, China
| |
Collapse
|
4
|
Fakhr MJ, Kavakebian F, Ababzadeh S, Rezapour A. Challenges and Advances in Peripheral Nerve Tissue Engineering Critical Factors Affecting Nerve Regeneration. J Tissue Eng Regen Med 2024; 2024:8868411. [PMID: 40225756 PMCID: PMC11918807 DOI: 10.1155/2024/8868411] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 08/20/2024] [Indexed: 04/15/2025]
Abstract
Peripheral neuropathy is painful and can cause a considerable decline in quality of life. Surgery and autograft are the current approaches and clinical standards for restoring function after nerve damage. However, they usually result in unacceptable clinical results, so we need modern peripheral nerve defect treatment approaches. Tissue engineering techniques have been developed as a promising approach, but there are some considerations for translational application. Clinical application of novel tissue engineering methods is related to combining the appropriate cell and scaffold type to introduce safe and efficient bioscaffolds. Efficient nerve regeneration occurs by mimicking the extracellular matrix and combining topographical, biochemical, mechanical, and conductive signs via different cells, biomolecules, and polymers. In brief, ideal engineered biomaterial scaffolds will have to cover all characteristics of nerve tissue, such as nerve number, myelin, and axon thickness. Nerve regeneration has a highly sensitive response to its surrounding microenvironment. For designing a suitable construct, matching the regenerative potential of the autograft as the golden standard is essential. This review article examines the newest advancements in peripheral nerve tissue engineering. Specifically, the discussion will focus on incorporating innovative cues, biological modification, biomaterials, techniques, and concepts in this area of research.
Collapse
Affiliation(s)
- Massoumeh Jabbari Fakhr
- Department of Tissue Engineering and Applied Cell SciencesSchool of MedicineQom University of Medical Sciences, Qom, Iran
| | - Fatemeh Kavakebian
- Department of Tissue Engineering and Applied Cell SciencesSchool of MedicineQom University of Medical Sciences, Qom, Iran
| | - Shima Ababzadeh
- Department of Tissue Engineering and Applied Cell SciencesSchool of MedicineQom University of Medical Sciences, Qom, Iran
- Cellular and Molecular Research CentreQom University of Medical Sciences, Qom, Iran
| | - Alireza Rezapour
- Department of Tissue Engineering and Applied Cell SciencesSchool of MedicineQom University of Medical Sciences, Qom, Iran
- Cellular and Molecular Research CentreQom University of Medical Sciences, Qom, Iran
| |
Collapse
|
5
|
Omar Khudhur Z, Ziyad Abdulqadir S, Faqiyazdin Ahmed Mzury A, Aziz Rasoul A, Wasman Smail S, Ghayour MB, Abdolmaleki A. Epothilone B loaded in acellular nerve allograft enhanced sciatic nerve regeneration in rats. Fundam Clin Pharmacol 2024; 38:307-319. [PMID: 37857403 DOI: 10.1111/fcp.12961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 08/19/2023] [Accepted: 10/06/2023] [Indexed: 10/21/2023]
Abstract
BACKGROUND Epothilone B (EpoB) is a microtubule-stabilizing agent with neuroprotective properties. OBJECTIVES This study examines the regenerative properties of ANA supplemented with EpoB on a sciatic nerve deficit in male Wistar rats. METHODS For this purpose, the 10 mm nerve gap was filled with acellular nerve allografts (ANAs) containing EpoB at 0.1, 1, and 10 nM concentrations. The sensorimotor recovery was evaluated up to 16 weeks after the operation. Real-time PCR, histomorphometry analysis, and electrophysiological evaluation were also used to evaluate the process of nerve regeneration. RESULTS ANA/EpoB (0.1 nM) significantly improved sensorimotor recovery in rats compared to ANA, ANA/EpoB (1 nM), and ANA/EpoB (10 nM) groups. This led to reduced muscle atrophy, improved sciatic functional index, and thermal paw withdrawal reflex latency, indicating nerve regeneration and target organ reinnervation. The electrophysiological and histomorphometry findings also confirmed the ANA/EpoB regenerative properties (0.1 nM). EpoB only enhanced ANA regenerative properties at 0.1 nM, with no therapeutic effects at higher concentrations. CONCLUSION Totally, we concluded that ANA loaded with 0.1 nM EpoB can effectively reconstruct the transected sciatic nerve in rats, likely by enhancing axonal sprouting and extension.
Collapse
Affiliation(s)
- Zhikal Omar Khudhur
- Department of Biology Education, Faculty of Education, Tishk International University, Erbil, Kurdistan Region, Iraq
| | | | | | | | - Shukur Wasman Smail
- Department of Biology, College of Science, Salahaddin University-Erbil, Iraq
- Department of Medical Microbiology, College of Science, Cihan University-Erbil, Kurdistan Region, Iraq
| | - Mohammad B Ghayour
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Arash Abdolmaleki
- Department of Biophysics, Faculty of Advanced Technologies, University of Mohaghegh Ardabili, Namin, Iran
| |
Collapse
|
6
|
Broeren BO, Hundepool CA, Kumas AH, Duraku LS, Walbeehm ET, Hooijmans CR, Power DM, Zuidam JM, De Jong T. The effectiveness of acellular nerve allografts compared to autografts in animal models: A systematic review and meta-analysis. PLoS One 2024; 19:e0279324. [PMID: 38295088 PMCID: PMC10829984 DOI: 10.1371/journal.pone.0279324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 05/07/2023] [Indexed: 02/02/2024] Open
Abstract
BACKGROUND Treatment of nerve injuries proves to be a worldwide clinical challenge. Acellular nerve allografts are suggested to be a promising alternative for bridging a nerve gap to the current gold standard, an autologous nerve graft. OBJECTIVE To systematically review the efficacy of the acellular nerve allograft, its difference from the gold standard (the nerve autograft) and to discuss its possible indications. MATERIAL AND METHODS PubMed, Embase and Web of Science were systematically searched until the 4th of January 2022. Original peer reviewed paper that presented 1) distinctive data; 2) a clear comparison between not immunologically processed acellular allografts and autologous nerve transfers; 3) was performed in laboratory animals of all species and sex. Meta analyses and subgroup analyses (for graft length and species) were conducted for muscle weight, sciatic function index, ankle angle, nerve conduction velocity, axon count diameter, tetanic contraction and amplitude using a Random effects model. Subgroup analyses were conducted on graft length and species. RESULTS Fifty articles were included in this review and all were included in the meta-analyses. An acellular allograft resulted in a significantly lower muscle weight, sciatic function index, ankle angle, nerve conduction velocity, axon count and smaller diameter, tetanic contraction compared to an autologous nerve graft. No difference was found in amplitude between acellular allografts and autologous nerve transfers. Post hoc subgroup analyses of graft length showed a significant reduced muscle weight in long grafts versus small and medium length grafts. All included studies showed a large variance in methodological design. CONCLUSION Our review shows that the included studies, investigating the use of acellular allografts, showed a large variance in methodological design and are as a consequence difficult to compare. Nevertheless, our results indicate that treating a nerve gap with an allograft results in an inferior nerve recovery compared to an autograft in seven out of eight outcomes assessed in experimental animals. In addition, based on our preliminary post hoc subgroup analyses we suggest that when an allograft is being used an allograft in short and medium (0-1cm, > 1-2cm) nerve gaps is preferred over an allograft in long (> 2cm) nerve gaps.
Collapse
Affiliation(s)
- Berend O. Broeren
- Department of Plastic & Reconstructive Surgery, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Caroline A. Hundepool
- Department of Plastic & Reconstructive Surgery, Erasmus MC, Rotterdam, The Netherlands
| | - Ali H. Kumas
- Department of Plastic & Reconstructive Surgery, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Liron S. Duraku
- Department of Plastic, Reconstructive & Hand Surgery, Amsterdam UMC, Amsterdam, The Netherlands
| | - Erik T. Walbeehm
- Department of Plastic, Reconstructive & Hand Surgery, Haga Hospital and Xpert Clinic, Den Haag, The Netherlands
| | - Carlijn R. Hooijmans
- Department for Health Evidence Unit SYRCLE, Radboud University Medical Centre, Nijmegen, The Netherlands
- Department of Anesthesiology, Pain and Palliative Care (Meta Research Team), Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Dominic M. Power
- Department of Hand & Peripheral Nerve Surgery, Queen Elizabeth Hospital, Birmingham, United Kingdom
| | - J. Michiel Zuidam
- Department of Plastic & Reconstructive Surgery, Erasmus MC, Rotterdam, The Netherlands
| | - Tim De Jong
- Department of Plastic & Reconstructive Surgery, Radboud University Medical Centre, Nijmegen, The Netherlands
| |
Collapse
|
7
|
Su W, Xu J, Pei D, Li X, Yang J, Geng Z, Liu Q, Yang L, Yu S. Hybrid Electrically Conductive Hydrogels with Local Nerve Growth Factor Release Facilitate Peripheral Nerve Regeneration. ACS APPLIED BIO MATERIALS 2023; 6:5854-5863. [PMID: 37948755 DOI: 10.1021/acsabm.3c00977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
It is challenging to treat peripheral nerve injury (PNI) clinically. As the gold standard for peripheral nerve repair, autologous nerve grafting remains a critical limitation, including tissue availability, donor-site morbidity, immune rejection, etc. Recently, conductive hydrogels (CHs) have shown potential applications in neural bioengineering due to their good conductivity, biocompatibility, and low immunogenicity. Herein, a hybrid electrically conductive hydrogel composed of acrylic acid derivatives, gelatin, and heparin with sustained nerve growth factor (NGF) release property was developed. The rat sciatic nerve injury (SNI) model (10 mm long segment defect) was used to investigate the efficacy of these hydrogel conduits in facilitating peripheral nerve repair. The results showed that the hydrogel conduits had excellent conductivity, mechanical properties, and biocompatibility. In addition, NGF immobilized in the hydrogel conduits had good sustained release characteristics. Finally, functional recovery and electrophysiological evaluations, together with histological analysis, indicated that the hydrogel conduits immobilizing NGF had superior effects on motor recovery, axon growth, and remyelination, thereby significantly accelerating the repairing of the sciatic nerve. This study demonstrated that hybrid electrically conductive hydrogels with local NGF release could be effectively used for PNI repair.
Collapse
Affiliation(s)
- Weijie Su
- Neurosurgery Unit, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Jiakun Xu
- Neurosurgery Unit, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Dating Pei
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510500, China
- Guangdong Key Lab of Medical Electronic Instruments and Polymer Material Products, Guangdong Institute of Medical Instruments, Guangzhou 510500, China
- National Engineering Research Center for Healthcare Devices, Guangzhou 510500, China
| | - Xixi Li
- Neurosurgery Unit, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Jia Yang
- Neurosurgery Unit, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Zhijie Geng
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510500, China
- Guangdong Key Lab of Medical Electronic Instruments and Polymer Material Products, Guangdong Institute of Medical Instruments, Guangzhou 510500, China
- National Engineering Research Center for Healthcare Devices, Guangzhou 510500, China
| | - Qunfeng Liu
- Foshan Polytechnic, Foshan City, Guangdong Province 528000, China
| | - Lixuan Yang
- Neurosurgery Unit, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Shan Yu
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510500, China
- Guangdong Key Lab of Medical Electronic Instruments and Polymer Material Products, Guangdong Institute of Medical Instruments, Guangzhou 510500, China
- National Engineering Research Center for Healthcare Devices, Guangzhou 510500, China
| |
Collapse
|
8
|
Wang Y, Shi G, Huang TCT, Li J, Long Z, Reisdorf R, Shin AY, Amadio P, Behfar A, Zhao C, Moran SL. Enhancing Functional Recovery after Segmental Nerve Defect Using Nerve Allograft Treated with Plasma-Derived Exosome. Plast Reconstr Surg 2023; 152:1247-1258. [PMID: 36912739 DOI: 10.1097/prs.0000000000010389] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
BACKGROUND Nerve injuries can result in detrimental functional outcomes. Currently, autologous nerve graft offers the best outcome for segmental peripheral nerve injury. Allografts are alternatives, but do not have comparable results. This study evaluated whether plasma-derived exosome can improve nerve regeneration and functional recovery when combined with decellularized nerve allografts. METHODS The effect of exosomes on Schwann cell proliferation and migration were evaluated. A rat model of sciatic nerve repair was used to evaluate the effect on nerve regeneration and functional recovery. A fibrin sealant was used as the scaffold for exosome. Eighty-four Lewis rats were divided into autograft, allograft, and allograft with exosome groups. Gene expression of nerve regeneration factors was analyzed on postoperative day 7. At 12 and 16 weeks, rats were subjected to maximum isometric tetanic force and compound muscle action potential. Nerve specimens were then analyzed by means of histology and immunohistochemistry. RESULTS Exosomes were readily taken up by Schwann cells that resulted in improved Schwann cell viability and migration. The treated allograft group had functional recovery (compound muscle action potential, isometric tetanic force) comparable to that of the autograft group. Similar results were observed in gene expression analysis of nerve regenerating factors. Histologic analysis showed no statistically significant differences between treated allograft and autograft groups in terms of axonal density, fascicular area, and myelin sheath thickness. CONCLUSIONS Plasma-derived exosome treatment of decellularized nerve allograft may provide comparable clinical outcomes to that of an autograft. This can be a promising strategy in the future as an alternative for segmental peripheral nerve repair. CLINICAL RELEVANCE STATEMENT Off-the-shelf exosomes may improve recovery in nerve allografts.
Collapse
Affiliation(s)
- Yicun Wang
- From the Department of Orthopedics, Jinling Hospital, School of Medicine, Nanjing University
- Division of Plastic Surgery, Department of Surgery
- Department of Orthopedic Surgery
| | - Guidong Shi
- Department of Orthopedic Surgery
- Tianjin Medical University
| | | | - Jialun Li
- Division of Plastic Surgery, Department of Surgery
- Department of Plastic Surgery, Wuhan Union Hospital, Huazhong University of Science and Technology
| | | | | | | | | | - Atta Behfar
- Center for Regenerative Medicine
- Department of Cardiovascular Medicine, Mayo Clinic
| | | | | |
Collapse
|
9
|
Siddiqui AM, Thiele F, Stewart RN, Rangnick S, Weiss GJ, Chen BK, Silvernail JL, Strickland T, Nesbitt JJ, Lim K, Schwarzbauer JE, Schwartz J, Yaszemski MJ, Windebank AJ, Madigan NN. Open-Spaced Ridged Hydrogel Scaffolds Containing TiO 2-Self-Assembled Monolayer of Phosphonates Promote Regeneration and Recovery Following Spinal Cord Injury. Int J Mol Sci 2023; 24:10250. [PMID: 37373396 DOI: 10.3390/ijms241210250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/31/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
The spinal cord has a poor ability to regenerate after an injury, which may be due to cell loss, cyst formation, inflammation, and scarring. A promising approach to treating a spinal cord injury (SCI) is the use of biomaterials. We have developed a novel hydrogel scaffold fabricated from oligo(poly(ethylene glycol) fumarate) (OPF) as a 0.08 mm thick sheet containing polymer ridges and a cell-attractive surface on the other side. When the cells are cultured on OPF via chemical patterning, the cells attach, align, and deposit ECM along the direction of the pattern. Animals implanted with the rolled scaffold sheets had greater hindlimb recovery compared to that of the multichannel scaffold control, which is likely due to the greater number of axons growing across it. The immune cell number (microglia or hemopoietic cells: 50-120 cells/mm2 in all conditions), scarring (5-10% in all conditions), and ECM deposits (Laminin or Fibronectin: approximately 10-20% in all conditions) were equal in all conditions. Overall, the results suggest that the scaffold sheets promote axon outgrowth that can be guided across the scaffold, thereby promoting hindlimb recovery. This study provides a hydrogel scaffold construct that can be used in vitro for cell characterization or in vivo for future neuroprosthetics, devices, or cell and ECM delivery.
Collapse
Affiliation(s)
- Ahad M Siddiqui
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Frederic Thiele
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
- Program in Human Medicine, Paracelsus Medical Private University, 5020 Salzburg, Austria
| | - Rachel N Stewart
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
- Regenerative Medicine Institute (REMEDI), National University of Ireland Galway, H91 TK33 Galway, Ireland
| | - Simone Rangnick
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
- Program in Human Medicine, Paracelsus Medical Private University, 5020 Salzburg, Austria
| | - Georgina J Weiss
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
- Program in Human Medicine, Paracelsus Medical Private University, 90419 Nuremberg, Germany
| | - Bingkun K Chen
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Tammy Strickland
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
- Regenerative Medicine Institute (REMEDI), National University of Ireland Galway, H91 TK33 Galway, Ireland
| | | | - Kelly Lim
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | - Jean E Schwarzbauer
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Jeffrey Schwartz
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | | | | | | |
Collapse
|
10
|
Perrelle JM, Boreland AJ, Gamboa JM, Gowda P, Murthy NS. Biomimetic Strategies for Peripheral Nerve Injury Repair: An Exploration of Microarchitecture and Cellularization. BIOMEDICAL MATERIALS & DEVICES (NEW YORK, N.Y.) 2023; 1:21-37. [PMID: 38343513 PMCID: PMC10857769 DOI: 10.1007/s44174-022-00039-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/14/2022] [Indexed: 02/15/2024]
Abstract
Injuries to the nervous system present formidable challenges to scientists, clinicians, and patients. While regeneration within the central nervous system is minimal, peripheral nerves can regenerate, albeit with limitations. The regenerative mechanisms of the peripheral nervous system thus provide fertile ground for clinical and scientific advancement, and opportunities to learn fundamental lessons regarding nerve behavior in the context of regeneration, particularly the relationship of axons to their support cells and the extracellular matrix environment. However, few current interventions adequately address peripheral nerve injuries. This article aims to elucidate areas in which progress might be made toward developing better interventions, particularly using synthetic nerve grafts. The article first provides a thorough review of peripheral nerve anatomy, physiology, and the regenerative mechanisms that occur in response to injury. This is followed by a discussion of currently available interventions for peripheral nerve injuries. Promising biomaterial fabrication techniques which aim to recapitulate nerve architecture, along with approaches to enhancing these biomaterial scaffolds with growth factors and cellular components, are then described. The final section elucidates specific considerations when developing nerve grafts, including utilizing induced pluripotent stem cells, Schwann cells, nerve growth factors, and multilayered structures that mimic the architectures of the natural nerve.
Collapse
Affiliation(s)
- Jeremy M. Perrelle
- Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Andrew J. Boreland
- Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
- Graduate Program in Molecular Biosciences, Rutgers University, Piscataway, NJ, USA
| | - Jasmine M. Gamboa
- Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Prarthana Gowda
- Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - N. Sanjeeva Murthy
- Laboratory for Biomaterials Research, Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| |
Collapse
|
11
|
Starks AO, Owen J, Isaacs J. Evaluation of the Induced Membrane for Neurotrophic Factors. J Hand Surg Am 2022; 47:130-136. [PMID: 34865951 DOI: 10.1016/j.jhsa.2021.08.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 05/09/2021] [Accepted: 08/24/2021] [Indexed: 02/02/2023]
Abstract
PURPOSE Despite gaining popularity as a bridge for small and moderate nerve gaps, an acellular nerve allograft (ANA) lacks many of the neurotrophic characteristics of a nerve autograft. Pseudomembranes induced to form around temporary skeletal spacers are rich in growth factors. Induced membranes may have beneficial neurotrophic factors which could support ANA. METHODS Twenty-two male Sprague-Dawley rats underwent resection of 2 cm of the sciatic nerve. A silicone rod was inset in the defect of 11 experimental rats, and marking sutures only were placed in the nerve stumps of the remaining 11 control rats. After allowing 4 weeks for tissue maturation, tissue samples harvested from the induced membrane (experimental group) and the tissue bed (control group) were analyzed using Luminex multiplex assay to quantify differences in detectable levels of the following neurotrophic factors: nerve growth factor, glial-derived nerve factor, vascular endothelial growth factor, and transforming growth factor ß (TGF-ß) 1, 2, and 3, interleukin-1ß, and monocyte chemoattractant protein 1. RESULTS No difference was detected between the control and experimental groups in levels of vascular endothelial growth factor. Higher levels of TGF-ß1, TGF-ß2, TGF-ß3, glial-derived nerve factor, nerve growth factor, monocyte chemoattractant protein 1, and interleukin-1ß were detected in the experimental group. CONCLUSIONS In the setting of peripheral nerve injury, an induced membrane has higher levels of several neurotrophic factors that may support nerve regeneration compared to wound bed cicatrix. CLINICAL RELEVANCE This investigation provides impetus for further study examining the utility of using a staged induced membrane technique in conjunction with delayed nerve grafting in reconstruction of some peripheral nerve defects.
Collapse
Affiliation(s)
- Alexandria O Starks
- Department of Orthopaedic Surgery, Virginia Commonwealth University, Richmond, VA.
| | - John Owen
- Department of Orthopaedic Surgery, Virginia Commonwealth University, Richmond, VA
| | - Jonathan Isaacs
- Department of Orthopaedic Surgery, Virginia Commonwealth University, Richmond, VA
| |
Collapse
|
12
|
Lien BV, Brown NJ, Ransom SC, Lehrich BM, Shahrestani S, Tafreshi AR, Ransom RC, Sahyouni R. Enhancing peripheral nerve regeneration with neurotrophic factors and bioengineered scaffolds: A basic science and clinical perspective. J Peripher Nerv Syst 2020; 25:320-334. [DOI: 10.1111/jns.12414] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 09/05/2020] [Accepted: 09/07/2020] [Indexed: 01/01/2023]
Affiliation(s)
- Brian V. Lien
- School of Medicine University of California Irvine California USA
| | - Nolan J. Brown
- School of Medicine University of California Irvine California USA
| | - Seth C. Ransom
- College of Medicine University of Arkansas for Medical Sciences Little Rock Arkansas USA
| | - Brandon M. Lehrich
- Department of Biomedical Engineering University of California Irvine California USA
| | - Shane Shahrestani
- Keck School of Medicine University of Southern California Los Angeles California USA
- Department of Medical Engineering California Institute of Technology Pasadena California USA
| | - Ali R. Tafreshi
- Department of Neurological Surgery Geisinger Health System Danville Pennsylvania USA
| | - Ryan C. Ransom
- Department of Neurological Surgery Mayo Clinic Rochester Minnesota USA
| | - Ronald Sahyouni
- Department of Neurological Surgery University of California San Diego California USA
| |
Collapse
|
13
|
Qiu S, Rao Z, He F, Wang T, Xu Y, Du Z, Yao Z, Lin T, Yan L, Quan D, Zhu Q, Liu X. Decellularized nerve matrix hydrogel and glial-derived neurotrophic factor modifications assisted nerve repair with decellularized nerve matrix scaffolds. J Tissue Eng Regen Med 2020; 14:931-943. [PMID: 32336045 DOI: 10.1002/term.3050] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 04/11/2020] [Accepted: 04/20/2020] [Indexed: 12/28/2022]
Abstract
Nerve defects are challenging to address clinically without satisfactory treatments. As a reliable alternative to autografts, decellularized nerve matrix scaffolds (DNM-S) have been widely used in clinics for surgical nerve repair. However, DNM-S remain inferior to autografts in their ability to support nerve regeneration for long nerve defects. In this study, we systematically and clearly presented the nano-architecture of nerve-specific structures, including the endoneurium, basement membrane and perineurium/epineurium in DNM-S. Furthermore, we modified the DNM-S by supplementing decellularized nerve matrix hydrogel (DNMG) and glial-derived neurotrophic factor (GDNF) and then bridged a 50-mm sciatic nerve defect in a beagle model. Fifteen beagles were randomly divided into three groups (five per group): an autograft group, DNM-S group and GDNF-DNMG-modified DNM-S (DNM-S/GDNF@DNMG) group. DNM-S/GDNF@DNMG, as optimized nerve grafts, were used to bridge nerve defects in the same manner as in the DNM-S group. The repair outcome was evaluated by behavioural observations, electrophysiological assessments, regenerated nerve tissue histology and reinnervated target muscle examinations. Compared with the DNM-S group, limb function, electrophysiological responses and histological findings were improved in the DNM-S/GDNF@DNMG group 6 months after grafting, reflecting a narrower gap between the effects of DNM-S and autografts. In conclusion, modification of DNM-S with DNMG and GDNF enhanced nerve regeneration and functional recovery, indicating that noncellular modification of DNM-S is a promising method for treating long nerve defects.
Collapse
Affiliation(s)
- Shuai Qiu
- Department of Microsurgery, Orthopedic Trauma and Hand Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zilong Rao
- PCFM Lab, GD HPPC Lab, School of Chemistry, Sun Yat-sen University, Guangzhou, China
| | - Fulin He
- Department of Microsurgery, Orthopedic Trauma and Hand Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Tao Wang
- Department of Microsurgery, Orthopedic Trauma and Hand Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yiwei Xu
- PCFM Lab, GD HPPC Lab, School of Chemistry, Sun Yat-sen University, Guangzhou, China
| | - Zhaoyi Du
- PCFM Lab, GD HPPC Lab, School of Chemistry, Sun Yat-sen University, Guangzhou, China
| | - Zhi Yao
- Department of Microsurgery, Orthopedic Trauma and Hand Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Tao Lin
- Department of Microsurgery, Orthopedic Trauma and Hand Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Liwei Yan
- Department of Microsurgery, Orthopedic Trauma and Hand Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Daping Quan
- Guangdong Province Engineering Laboratory for Soft Tissue Biofabrication, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Peripheral Nerve Tissue-Engineering and Technology Research Center, Guangzhou, China.,GD Functional Biomaterials Engineering Technology Research Center, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, China.,PCFM Lab, GD HPPC Lab, School of Chemistry, Sun Yat-sen University, Guangzhou, China
| | - Qingtang Zhu
- Department of Microsurgery, Orthopedic Trauma and Hand Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Province Engineering Laboratory for Soft Tissue Biofabrication, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Peripheral Nerve Tissue-Engineering and Technology Research Center, Guangzhou, China
| | - Xiaolin Liu
- Department of Microsurgery, Orthopedic Trauma and Hand Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Province Engineering Laboratory for Soft Tissue Biofabrication, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Peripheral Nerve Tissue-Engineering and Technology Research Center, Guangzhou, China
| |
Collapse
|
14
|
Bassilios Habre S, Bond G, Jing XL, Kostopoulos E, Wallace RD, Konofaos P. The Surgical Management of Nerve Gaps: Present and Future. Ann Plast Surg 2019; 80:252-261. [PMID: 29166306 DOI: 10.1097/sap.0000000000001252] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Peripheral nerve injuries can result in significant morbidity, including motor and/or sensory loss, which can affect significantly the life of the patient. Nowadays, the gold standard for the treatment of nerve section is end-to-end neurorrhaphy. Unfortunately, in some cases, there is segmental loss of the nerve trunk. Nerve mobilization allows primary repair of the sectioned nerve by end-to-end neurorrhaphy if the gap is less than 1 cm. When the nerve gap exceeds 1 cm, autologous nerve grafting is the gold standard of treatment. To overcome the limited availability and the donor site morbidity, other techniques have been used: vascularized nerve grafts, cellular and acellular allografts, nerve conduits, nerve transfers, and end-to-side neurorrhaphy. The purpose of this review is to present an overview of the literature on the applications of these techniques in peripheral nerve repair. Furthermore, preoperative evaluation, timing of repair, and future perspectives are also discussed.
Collapse
|
15
|
Wang ZY, Qin LH, Zhang WG, Zhang PX, Jiang BG. Qian-Zheng-San promotes regeneration after sciatic nerve crush injury in rats. Neural Regen Res 2019; 14:683-691. [PMID: 30632509 PMCID: PMC6352607 DOI: 10.4103/1673-5374.247472] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Qian-Zheng-San, a traditional Chinese prescription consisting of Typhonii Rhizoma, Bombyx Batryticatus, Scorpio, has been found to play an active therapeutic role in central nervous system diseases. However, it is unclear whether Qian-Zheng-San has therapeutic value for peripheral nerve injury. Therefore, we used Sprague-Dawley rats to investigate this. A sciatic nerve crush injury model was induced by clamping the right sciatic nerve. Subsequently, rats in the treatment group were administered 2 mL Qian-Zheng-San (1.75 g/mL) daily as systemic therapy for 1, 2, 4, or 8 weeks. Rats in the control group were not administered Qian-Zheng-San. Rats in sham group did not undergo surgery and systemic therapy. Footprint analysis was used to assess nerve motor function. Electrophysiological experiments were used to detect nerve conduction function. Immunofluorescence staining was used to assess axon counts and morphological analysis. Immunohistochemical staining was used to observe myelin regeneration of the sciatic nerve and the number of motoneurons in the anterior horn of the spinal cord. At 2 and 4 weeks postoperatively, the sciatic nerve function index, nerve conduction velocity, the number of distant regenerated axons and the axon diameter of the sciatic nerve increased in the Qian-Zheng-San treatment group compared with the control group. At 2 weeks postoperatively, nerve fiber diameter, myelin thickness, and the number of motor neurons in the lumbar spinal cord anterior horn increased in the Qian-Zheng-San treatment group compared with the control group. These results indicate that Qian-Zheng-San has a positive effect on peripheral nerve regeneration.
Collapse
Affiliation(s)
- Zhi-Yong Wang
- Department of Anatomy and Histo-embryology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Li-Hua Qin
- Department of Anatomy and Histo-embryology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Wei-Guang Zhang
- Department of Anatomy and Histo-embryology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Pei-Xun Zhang
- Department of Trauma and Orthopedics, Peking University People's Hospital, Beijing, China
| | - Bao-Guo Jiang
- Department of Trauma and Orthopedics, Peking University People's Hospital, Beijing, China
| |
Collapse
|
16
|
Boriani F, Fazio N, Bolognesi F, Pedrini FA, Marchetti C, Baldini N. Noncellular Modification of Acellular Nerve Allografts for Peripheral Nerve Reconstruction: A Systematic Critical Review of the Animal Literature. World Neurosurg 2018; 122:692-703.e2. [PMID: 30414518 DOI: 10.1016/j.wneu.2018.10.195] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 10/24/2018] [Accepted: 10/26/2018] [Indexed: 12/31/2022]
Abstract
BACKGROUND Acellular nerve allografts (ANAs) have been established as promising alternatives to autologous nerve grafts, which represent the reference standard. Our research group recently performed a systematic review of reported cell-based-enriching methods for recellularization of ANAs. Recellularization results in consistent improvement of peripheral neuroregeneration compared with plain ANAs. We systematically reviewed the effects on nerve regeneration when ANA enrichment was obtained through biological, chemical, and physical modification instead of cells. METHODS The PubMed, ScienceDirect, Medline, and Scopus databases were searched for reports of noncellular modification of ANAs, reported from January 2007 to December 2017. The inclusion criteria were English language, noncellular enrichment of ANAs in peripheral nerve regeneration, an in vivo study design, and postgrafting neuroregenerative outcomes assessment. The exclusion criteria were the central nervous system as the site of ANA application, nerve conduits, xenografts, case series, case reports, and reviews. RESULTS Only animal studies were found to be eligible. We included 16 studies, which were analyzed regarding the animal model, decellularization method, graft-enriching mode, and neuroregenerative tests performed. CONCLUSIONS Noncellular-based stimulation of ANAs demonstrated positive effects on recovery of nerve function compared with nerve grafting compared with plain ANAs. The neuroregenerative effect of autografting still appeared superior to ANAs, even with noncellular enrichment of ANAs. However, we found that in a few studies, modified ANAs closely approached or even outperformed autografts. Future research should include more preclinical investigations of this promising tool and clinical translation to increase the level of evidence available in the challenging field of peripheral nerve reconstruction.
Collapse
Affiliation(s)
- Filippo Boriani
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy.
| | - Nicola Fazio
- Orthopaedic Pathophysiology and Regenerative Medicine Unit, Istituto Ortopedico Rizzoli, IRCCS, Bologna, Italy
| | - Federico Bolognesi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy; Maxillofacial Surgery Unit, S. Orsola-Malpighi Hospital, Bologna, Italy
| | - Francesca Alice Pedrini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy; Orthopaedic Pathophysiology and Regenerative Medicine Unit, Istituto Ortopedico Rizzoli, IRCCS, Bologna, Italy
| | - Claudio Marchetti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy; Maxillofacial Surgery Unit, S. Orsola-Malpighi Hospital, Bologna, Italy
| | - Nicola Baldini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy; Orthopaedic Pathophysiology and Regenerative Medicine Unit, Istituto Ortopedico Rizzoli, IRCCS, Bologna, Italy
| |
Collapse
|
17
|
Patel NP, Lyon KA, Huang JH. An update-tissue engineered nerve grafts for the repair of peripheral nerve injuries. Neural Regen Res 2018; 13:764-774. [PMID: 29862995 PMCID: PMC5998615 DOI: 10.4103/1673-5374.232458] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/28/2018] [Indexed: 01/04/2023] Open
Abstract
Peripheral nerve injuries (PNI) are caused by a range of etiologies and result in a broad spectrum of disability. While nerve autografts are the current gold standard for the reconstruction of extensive nerve damage, the limited supply of autologous nerve and complications associated with harvesting nerve from a second surgical site has driven groups from multiple disciplines, including biomedical engineering, neurosurgery, plastic surgery, and orthopedic surgery, to develop a suitable or superior alternative to autografting. Over the last couple of decades, various types of scaffolds, such as acellular nerve grafts (ANGs), nerve guidance conduits, and non-nervous tissues, have been filled with Schwann cells, stem cells, and/or neurotrophic factors to develop tissue engineered nerve grafts (TENGs). Although these have shown promising effects on peripheral nerve regeneration in experimental models, the autograft has remained the gold standard for large nerve gaps. This review provides a discussion of recent advances in the development of TENGs and their efficacy in experimental models. Specifically, TENGs have been enhanced via incorporation of genetically engineered cells, methods to improve stem cell survival and differentiation, optimized delivery of neurotrophic factors via drug delivery systems (DDS), co-administration of platelet-rich plasma (PRP), and pretreatment with chondroitinase ABC (Ch-ABC). Other notable advancements include conduits that have been bioengineered to mimic native nerve structure via cell-derived extracellular matrix (ECM) deposition, and the development of transplantable living nervous tissue constructs from rat and human dorsal root ganglia (DRG) neurons. Grafts composed of non-nervous tissues, such as vein, artery, and muscle, will be briefly discussed.
Collapse
Affiliation(s)
| | - Kristopher A. Lyon
- Texas A&M College of Medicine, Temple, TX, USA
- Department of Neurosurgery, Baylor Scott & White Healthcare, Temple, TX, USA
| | - Jason H. Huang
- Texas A&M College of Medicine, Temple, TX, USA
- Department of Neurosurgery, Baylor Scott & White Healthcare, Temple, TX, USA
| |
Collapse
|
18
|
Moattari M, Kouchesfehani HM, Kaka G, Sadraie SH, Naghdi M. Evaluation of nerve growth factor (NGF) treated mesenchymal stem cells for recovery in neurotmesis model of peripheral nerve injury. J Craniomaxillofac Surg 2018; 46:898-904. [PMID: 29716818 DOI: 10.1016/j.jcms.2018.03.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 03/01/2018] [Accepted: 03/20/2018] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Peripheral nerve damages are a relatively common type of the nervous system injuries. Although peripheral nerves show some capacity of regeneration after injury, the extent of regeneration is not remarkable. The present study aimed to evaluate the effect of NGF treated mesenchymal stem cells on regeneration of transected sciatic nerve. MATERIALS AND METHODS In this experimental study, forty-two male Wistar.rats (180-200 g) were randomly divided into 6 groups (n = 7) including control, Membrane + Cell (Mem + Cell), NGF group, NGF + Cell group, NGF + Mem group and NGF + Mem + Cell group. Regeneration of sciatic nerve was evaluated using behavioral analysis, electrophysiological assessment and histological examination. RESULTS The rats in the NGF + Mem + Cell group showed significant decrease in sciatic functional index (SFI) and hot water paw immersion test during the 2nd to 8th weeks after surgery. (p < 0.001). At 8 weeks after surgery, electrophysiological findings showed that amplitude increased and latency decreased significantly in NGF + Mem + Cell group (p < 0.001). Measured histological parameters showed that number of nerve fibers, number of vessels and percent of vessel area also increased significantly in NGF + Mem + Cell group (p < 0.05). CONCLUSION The present study showed that NGF in accompany with mesenchymal stem cells improved electrophysiological and histological indices.
Collapse
Affiliation(s)
- Mehrnaz Moattari
- Department of Animal Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, 15719-14911, Iran
| | - Homa Mohseni Kouchesfehani
- Department of Animal Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, 15719-14911, Iran
| | - Gholamreza Kaka
- Neuroscience Research Center, Baqiyatallah University of Medical Sciences, Tehran, 19568-37173, Iran.
| | - Seyed Homayoon Sadraie
- Neuroscience Research Center, Baqiyatallah University of Medical Sciences, Tehran, 19568-37173, Iran
| | - Majid Naghdi
- Department of Anatomy, Fasa University of Medical Sciences, Fasa, Iran
| |
Collapse
|
19
|
Huang J, Patel N, Lyon K. An update–tissue engineered nerve grafts for the repair of peripheral nerve injuries. Neural Regen Res 2018. [DOI: 10.4103/1673-5374.232458
expr 973353844 + 912195704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
|
20
|
Giannaccini M, Calatayud MP, Poggetti A, Corbianco S, Novelli M, Paoli M, Battistini P, Castagna M, Dente L, Parchi P, Lisanti M, Cavallini G, Junquera C, Goya GF, Raffa V. Magnetic Nanoparticles for Efficient Delivery of Growth Factors: Stimulation of Peripheral Nerve Regeneration. Adv Healthc Mater 2017; 6. [PMID: 28156059 DOI: 10.1002/adhm.201601429] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 01/09/2017] [Indexed: 12/19/2022]
Abstract
The only clinically approved alternative to autografts for treating large peripheral nerve injuries is the use of synthetic nerve guidance conduits (NGCs), which provide physical guidance to the regenerating stump and limit scar tissue infiltration at the injury site. Several lines of evidence suggest that a potential future strategy is to combine NGCs with cellular or molecular therapies to deliver growth factors that sustain the regeneration process. However, growth factors are expensive and have a very short half-life; thus, the combination approach has not been successful. In the present paper, we proposed the immobilization of growth factors (GFs) on magnetic nanoparticles (MNPs) for the time- and space-controlled release of GFs inside the NGC. We tested the particles in a rat model of a peripheral nerve lesion. Our results revealed that the injection of a cocktail of MNPs functionalized with nerve growth factor (NGF) and with vascular endothelial growth factor (VEGF) strongly accelerate the regeneration process and the recovery of motor function compared to that obtained using the free factors. Additionally, we found that injecting MNPs in the NGC is safe and does not impair the regeneration process, and the MNPs remain in the conduit for weeks.
Collapse
Affiliation(s)
- Martina Giannaccini
- Department of Biology; Università di Pisa; S.S. 12 Abetone e Brennero 4 56127 Pisa Italy
| | - M. Pilar Calatayud
- Instituto de Nanociencia de Aragon; Universidad de Zaragoza; Mariano Esquillor 50018 Zaragoza Spain
| | - Andrea Poggetti
- Department of Translational Research and of New Surgical and Medical Technologies; Università di Pisa; Via Savi 8 56126 Pisa Italy
| | - Silvia Corbianco
- Department of Translational Research and of New Surgical and Medical Technologies; Università di Pisa; Via Savi 8 56126 Pisa Italy
| | - Michela Novelli
- Department of Translational Research and of New Surgical and Medical Technologies; Università di Pisa; Via Savi 8 56126 Pisa Italy
| | - Melania Paoli
- Institute of Life Science; Scuola Superiore Sant'Anna; Piazza Martiri della Libertà 33 56127 Pisa Italy
| | - Pietro Battistini
- Department of Translational Research and of New Surgical and Medical Technologies; Università di Pisa; Via Savi 8 56126 Pisa Italy
| | - Maura Castagna
- Department of Translational Research and of New Surgical and Medical Technologies; Università di Pisa; Via Savi 8 56126 Pisa Italy
| | - Luciana Dente
- Department of Biology; Università di Pisa; S.S. 12 Abetone e Brennero 4 56127 Pisa Italy
| | - Paolo Parchi
- Department of Translational Research and of New Surgical and Medical Technologies; Università di Pisa; Via Savi 8 56126 Pisa Italy
| | - Michele Lisanti
- Department of Translational Research and of New Surgical and Medical Technologies; Università di Pisa; Via Savi 8 56126 Pisa Italy
| | - Gabriella Cavallini
- Department of Translational Research and of New Surgical and Medical Technologies; Università di Pisa; Via Savi 8 56126 Pisa Italy
| | - Concepción Junquera
- Institute for Health Research Aragon IIS; Faculty of Medicine, C/Domingo Mirals/n; 50009 Zaragoza Spain
| | - Gerardo F. Goya
- Instituto de Nanociencia de Aragon; Universidad de Zaragoza; Mariano Esquillor 50018 Zaragoza Spain
| | - Vittoria Raffa
- Department of Biology; Università di Pisa; S.S. 12 Abetone e Brennero 4 56127 Pisa Italy
- Institute of Life Science; Scuola Superiore Sant'Anna; Piazza Martiri della Libertà 33 56127 Pisa Italy
| |
Collapse
|
21
|
|
22
|
Zheng M, Duan J, He Z, Wang Z, Mu S, Zeng Z, Qu J, Zhang J, Wang D. Overexpression of tropomyosin receptor kinase A improves the survival and Schwann-like cell differentiation of bone marrow stromal cells in nerve grafts for bridging rat sciatic nerve defects. Cytotherapy 2016; 18:1256-69. [PMID: 27497699 DOI: 10.1016/j.jcyt.2016.06.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 06/28/2016] [Indexed: 01/19/2023]
Abstract
BACKGROUND AIMS Bone marrow stromal cells (BMSCs) can differentiate into Schwann-like cells in vivo and effectively promote nerve regeneration and functional recovery as the seed cells for peripheral nerve repair. However, the survival rate and neural differentiation rate of the transplanted BMSCs are very low, which would limit their efficacy. METHODS In this work, rat BMSCs were infected by recombinant lentiviruses to construct tropomyosin receptor kinase A (TrkA)-overexpressing BMSCs and TrkA-shRNA-expressing BMSCs, which were then used in transplantation for rat sciatic nerve defects. RESULTS We showed that lentivirus-mediated overexpression of TrkA in BMSCs can promote cell survival and protect against serum-starve-induced apoptosis in vitro. At 8 weeks after transplantation, the Schwann-like differentiated ratio of the existing implanted cells had reached 74.8 ± 1.6% in TrkA-overexpressing BMSCs-laden nerve grafts, while 40.7 ± 2.3% and 42.3 ± 1.5% in vector and control BMSCs-laden nerve grafts, but only 8.2 ± 1.8% in TrkA-shRNA-expressing BMSCs-laden nerve grafts. The cell apoptosis ratio of the existing implanted cells in TrkA-overexpressing BMSCs-laden nerve grafts was 16.5 ± 1.2%, while 33.9 ± 1.9% and 42.6 ± 2.9% in vector and control BMSCs-laden nerve grafts, but 87.2 ± 2.5% in TrkA-shRNA-expressing BMSCs-laden nerve grafts. CONCLUSIONS These results demonstrate that TrkA overexpression can improve the survival and Schwann-like cell differentiation of BMSCs and prevent cell death in nerve grafts, which may have potential implication in advancing cell transplantation for peripheral nerve repair.
Collapse
Affiliation(s)
- Meige Zheng
- Department of Orthopedic and Microsurgery, The First Affiliated Hospital of Sun Yat-Sen University, No. 58 Zhongshan Road 2, Guangzhou, China; Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, China
| | - Junxiu Duan
- School of Medicine, Shenzhen University, Shenzhen, China
| | - Zhendan He
- School of Medicine, Shenzhen University, Shenzhen, China
| | - Zhiwei Wang
- Department of Neurology, Shenzhen Shekou People's Hospital, Shenzhen, China
| | - Shuhua Mu
- Psychology & Social College, Shenzhen University, Shenzhen, China
| | - Zhiwen Zeng
- School of Medicine, Shenzhen University, Shenzhen, China
| | - Junle Qu
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, China
| | - Jian Zhang
- School of Medicine, Shenzhen University, Shenzhen, China.
| | - Dong Wang
- Department of Orthopedic and Microsurgery, The First Affiliated Hospital of Sun Yat-Sen University, No. 58 Zhongshan Road 2, Guangzhou, China.
| |
Collapse
|
23
|
Jiang CQ, Hu J, Xiang JP, Zhu JK, Liu XL, Luo P. Tissue-engineered rhesus monkey nerve grafts for the repair of long ulnar nerve defects: similar outcomes to autologous nerve grafts. Neural Regen Res 2016; 11:1845-1850. [PMID: 28123431 PMCID: PMC5204243 DOI: 10.4103/1673-5374.194757] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Acellular nerve allografts can help preserve normal nerve structure and extracellular matrix composition. These allografts have low immunogenicity and are more readily available than autologous nerves for the repair of long-segment peripheral nerve defects. In this study, we repaired a 40-mm ulnar nerve defect in rhesus monkeys with tissue-engineered peripheral nerve, and compared the outcome with that of autograft. The graft was prepared using a chemical extract from adult rhesus monkeys and seeded with allogeneic Schwann cells. Pathomorphology, electromyogram and immunohistochemistry findings revealed the absence of palmar erosion or ulcers, and that the morphology and elasticity of the hypothenar eminence were normal 5 months postoperatively. There were no significant differences in the mean peak compound muscle action potential, the mean nerve conduction velocity, or the number of neurofilaments between the experimental and control groups. However, outcome was significantly better in the experimental group than in the blank group. These findings suggest that chemically extracted allogeneic nerve seeded with autologous Schwann cells can repair 40-mm ulnar nerve defects in the rhesus monkey. The outcomes are similar to those obtained with autologous nerve graft.
Collapse
Affiliation(s)
- Chang-Qing Jiang
- Department of Sports Medicine and Rehabilitation, Peking Universtiy Shenzhen Hospital, Shenzhen, Guangdong Province, China
| | - Jun Hu
- Department of Microscopy, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Jian-Ping Xiang
- Department of Microscopy, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Jia-Kai Zhu
- Department of Microscopy, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Xiao-Lin Liu
- Department of Microscopy, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Peng Luo
- The Sixth People's Hospital of Shenzhen City, Shenzhen, Guangdong Province, China
| |
Collapse
|
24
|
Abstract
Multiple treatment options are available for patients who have peripheral nerve injuries with a gap. Decellular nerve allografts are one option and provide an extracellular scaffold for neuronal cells to migrate for axonal regrowth. Immunosuppression is not needed because improved nerve processing technologies have rendered decellular nerve allografts nonimmunogenic. These allografts have also shown promising results in both animal and human studies as an alternative repair option.
Collapse
|
25
|
Mika JK, Schwarz K, Wanzenboeck HD, Scholze P, Bertagnolli E. Investigation of neurotrophic factor concentrations with a novel in vitro concept for peripheral nerve regeneration. J Neurosci Res 2015. [DOI: 10.1002/jnr.23598] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Johann K. Mika
- Institute for Solid State Electronics, Vienna University of Technology; Vienna Austria
| | - Karin Schwarz
- Department of Pathobiology of the Nervous System (Center for Brain Research); Medical University of Vienna; Vienna Austria
| | - Heinz D. Wanzenboeck
- Institute for Solid State Electronics, Vienna University of Technology; Vienna Austria
| | - Petra Scholze
- Department of Pathobiology of the Nervous System (Center for Brain Research); Medical University of Vienna; Vienna Austria
| | - Emmerich Bertagnolli
- Institute for Solid State Electronics, Vienna University of Technology; Vienna Austria
| |
Collapse
|
26
|
Yu H, Xiang L, Xu W, Zhao B, Wang Y, Peng J, Lu S. Chondroitinase ABC improves recovery of long sciatic nerve defects. Neural Regen Res 2015; 7:61-5. [PMID: 25806060 PMCID: PMC4354120 DOI: 10.3969/j.issn.1673-5374.2012.01.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Accepted: 12/24/2011] [Indexed: 01/30/2023] Open
Abstract
Sciatic nerves from allogeneic Sprague-Dawley rats were pretreated with chondroitinase ABC and were used to bridge damaged sciatic nerves in Wistar rats. Chondroitin sulfate proteoglycans were removed from the chemically extracted acellular nerves. At 3 months after grafting, the footplate pinch test result was positive in the Wistar rats. Autotomy scores decreased, and increased muscular contraction tension appeared when triceps surae muscles were stimulated. In addition, the recovery rate of wet triceps surae muscle weight increased, and the distal segment of the chondroitinase ABC-treated graft exhibited Schwann cells next to the nerve fibers. These results suggested that chondroitinase ABC pretreatment enhanced repair of long nerve defects via acellular nerve grafting.
Collapse
Affiliation(s)
- Hailong Yu
- Department of Orthopedics, General Hospital of Shenyang Military Area Command of Chinese PLA, Shenyang 110016, Liaoning Province, China
| | - Liangbi Xiang
- Department of Orthopedics, General Hospital of Shenyang Military Area Command of Chinese PLA, Shenyang 110016, Liaoning Province, China
| | - Wenjing Xu
- Institute of Orthopedics, General Hospital of Chinese PLA, Beijing 100853, China
| | - Bin Zhao
- Institute of Orthopedics, General Hospital of Chinese PLA, Beijing 100853, China
| | - Yu Wang
- Institute of Orthopedics, General Hospital of Chinese PLA, Beijing 100853, China
| | - Jiang Peng
- Institute of Orthopedics, General Hospital of Chinese PLA, Beijing 100853, China
| | - Shibi Lu
- Institute of Orthopedics, General Hospital of Chinese PLA, Beijing 100853, China
| |
Collapse
|
27
|
Zhu Z, Zhou X, He B, Dai T, Zheng C, Yang C, Zhu S, Zhu J, Zhu Q, Liu X. Ginkgo biloba extract (EGb 761) promotes peripheral nerve regeneration and neovascularization after acellular nerve allografts in a rat model. Cell Mol Neurobiol 2015; 35:273-82. [PMID: 25319407 PMCID: PMC11486258 DOI: 10.1007/s10571-014-0122-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 09/30/2014] [Indexed: 12/11/2022]
Abstract
This study aimed to investigate whether or not ginkgo biloba extract (EGb 761) enhances peripheral nerve regeneration and vascularization after repair using acellular nerve allografts (ANA). Seventy-two Sprague-Dawley rats were randomly divided into three experimental groups: a unilateral 15-mm sciatic nerve defect was created and repaired with an autologous graft (autograft group); the same defect was repaired with an 18 mm ANA with an i.p. injection of normal saline for 10 days (saline group); and in the final group, the same defect was repaired with an 18 mm ANA with an i.p. injection of EGb 761 for 10 days (EGb 761 group). Axon outgrowth and vascularization were evaluated by immunocytochemistry 14 days post-implantation. The expression of genes associated with angiogenesis was analyzed by real-time polymerase chain reaction (PCR) seven days post-implantation. Compared with the saline group, rats in the EGb 761 group significantly increased the number of myelinated fibers and the average diameter of the nerves within the graft. There is no significant difference between the EGb 761 group and the autograft group. The expression of CD34 and NF200 was significantly higher in the EGb 761 group than in the saline group. Additionally, EGb 761 treatment increased the expression of several angiogenesis-related genes, including Vegf, SOX18, Prom 1, and IL-6. In conclusion, ANA repair with EGb 761 treatment demonstrates effects on peripheral nerve regeneration and vascularization that are equal to those of autologous graft repair, and that are superior to ANA repair alone.
Collapse
Affiliation(s)
- Zhaowei Zhu
- Department of Microsurgery and Hand Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080 China
| | - Xiang Zhou
- Department of Microsurgery and Hand Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080 China
| | - Bo He
- Department of Microsurgery and Hand Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080 China
| | - Ting Dai
- Department of Biotechnology, School of Basic Science, Guangzhou Medical University, Guangzhou, 510080 China
| | - Canbin Zheng
- Department of Microsurgery and Hand Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080 China
| | - Chuang Yang
- Department of Human Anatomy and Histology, Zhongshan Medical School of Sun Yat-sen University, Guangzhou, 510080 China
| | - Shuang Zhu
- Department of Microsurgery and Hand Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080 China
| | - Jiakai Zhu
- Department of Microsurgery and Hand Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080 China
| | - Qingtang Zhu
- Department of Microsurgery and Hand Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080 China
| | - Xiaolin Liu
- Department of Microsurgery and Hand Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080 China
| |
Collapse
|
28
|
Hardy JG, Cornelison RC, Sukhavasi RC, Saballos RJ, Vu P, Kaplan DL, Schmidt CE. Electroactive Tissue Scaffolds with Aligned Pores as Instructive Platforms for Biomimetic Tissue Engineering. Bioengineering (Basel) 2015; 2:15-34. [PMID: 28955011 PMCID: PMC5597125 DOI: 10.3390/bioengineering2010015] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 01/12/2015] [Indexed: 01/13/2023] Open
Abstract
Tissues in the body are hierarchically structured composite materials with tissue-specific chemical and topographical properties. Here we report the preparation of tissue scaffolds with macroscopic pores generated via the dissolution of a sacrificial supramolecular polymer-based crystal template (urea) from a biodegradable polymer-based scaffold (polycaprolactone, PCL). Furthermore, we report a method of aligning the supramolecular polymer-based crystals within the PCL, and that the dissolution of the sacrificial urea yields scaffolds with macroscopic pores that are aligned over long, clinically-relevant distances (i.e., centimeter scale). The pores act as topographical cues to which rat Schwann cells respond by aligning with the long axis of the pores. Generation of an interpenetrating network of polypyrrole (PPy) and poly(styrene sulfonate) (PSS) in the scaffolds yields electroactive tissue scaffolds that allow the electrical stimulation of Schwann cells cultured on the scaffolds which increases the production of nerve growth factor (NGF).
Collapse
Affiliation(s)
- John G Hardy
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA.
- Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Biomedical Sciences Building JG-53, P.O. Box 116131, Gainesville, FL 32611, USA.
| | - R Chase Cornelison
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA.
- Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Biomedical Sciences Building JG-53, P.O. Box 116131, Gainesville, FL 32611, USA.
| | - Rushi C Sukhavasi
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA.
| | - Richard J Saballos
- Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Biomedical Sciences Building JG-53, P.O. Box 116131, Gainesville, FL 32611, USA.
| | - Philip Vu
- Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Biomedical Sciences Building JG-53, P.O. Box 116131, Gainesville, FL 32611, USA.
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA.
| | - Christine E Schmidt
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA.
- Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Biomedical Sciences Building JG-53, P.O. Box 116131, Gainesville, FL 32611, USA.
| |
Collapse
|
29
|
Zhang Y, Zhang H, Katiella K, Huang W. Chemically extracted acellular allogeneic nerve graft combined with ciliary neurotrophic factor promotes sciatic nerve repair. Neural Regen Res 2014; 9:1358-64. [PMID: 25221592 PMCID: PMC4160866 DOI: 10.4103/1673-5374.137588] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2014] [Indexed: 12/01/2022] Open
Abstract
A chemically extracted acellular allogeneic nerve graft can reduce postoperative immune rejection, similar to an autologous nerve graft, and can guide neural regeneration. However, it remains poorly understood whether a chemically extracted acellular allogeneic nerve graft combined with neurotrophic factors provides a good local environment for neural regeneration. This study investigated the repair of injured rat sciatic nerve using a chemically extracted acellular allogeneic nerve graft combined with ciliary neurotrophic factor. An autologous nerve anastomosis group and a chemical acellular allogeneic nerve bridging group were prepared as controls. At 8 weeks after repair, sciatic functional index, evoked potential amplitude of the soleus muscle, triceps wet weight recovery rate, total number of myelinated nerve fibers and myelin sheath thickness were measured. For these indices, values in the three groups showed the autologous nerve anastomosis group > chemically extracted acellular nerve graft + ciliary neurotrophic factor group > chemical acellular allogeneic nerve bridging group. These results suggest that chemically extracted acellular nerve grafts combined with ciliary neurotrophic factor can repair sciatic nerve defects, and that this repair is inferior to autologous nerve anastomosis, but superior to chemically extracted acellular allogeneic nerve bridging alone.
Collapse
Affiliation(s)
- Yanru Zhang
- Institute of International Education, Zhengzhou University, Zhengzhou, Henan Province, China ; Institute of Clinical Anatomy, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Hui Zhang
- Department of Orthopedics, First Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Kaka Katiella
- Institute of Clinical Medicine, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Wenhua Huang
- Institute of Clinical Anatomy, Southern Medical University, Guangzhou, Guangdong Province, China
| |
Collapse
|
30
|
Allodi I, Mecollari V, González-Pérez F, Eggers R, Hoyng S, Verhaagen J, Navarro X, Udina E. Schwann cells transduced with a lentiviral vector encoding Fgf-2 promote motor neuron regeneration following sciatic nerve injury. Glia 2014; 62:1736-46. [PMID: 24989458 DOI: 10.1002/glia.22712] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 06/12/2014] [Accepted: 06/16/2014] [Indexed: 01/07/2023]
Abstract
Fibroblast growth factor 2 (FGF-2) is a trophic factor expressed by glial cells and different neuronal populations. Addition of FGF-2 to spinal cord and dorsal root ganglia (DRG) explants demonstrated that FGF-2 specifically increases motor neuron axonal growth. To further explore the potential capability of FGF-2 to promote axon regeneration, we produced a lentiviral vector (LV) to overexpress FGF-2 (LV-FGF2) in the injured rat peripheral nerve. Cultured Schwann cells transduced with FGF-2 and added to collagen matrix embedding spinal cord or DRG explants significantly increased motor but not sensory neurite outgrowth. LV-FGF2 was as effective as direct addition of the trophic factor to promote motor axon growth in vitro. Direct injection of LV-FGF2 into the rat sciatic nerve resulted in increased expression of FGF-2, which was localized in the basal lamina of Schwann cells. To investigate the in vivo effect of FGF-2 overexpression on axonal regeneration after nerve injury, Schwann cells transduced with LV-FGF2 were grafted in a silicone tube used to repair the resected rat sciatic nerve. Electrophysiological tests conducted for up to 2 months after injury revealed accelerated and more marked reinnervation of hindlimb muscles in the animals treated with LV-FGF2, with an increase in the number of motor and sensory neurons that reached the distal tibial nerve at the end of follow-up.
Collapse
Affiliation(s)
- Ilary Allodi
- Institute of Neurosciences and Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Bellaterra, Spain
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Zhou X, He B, Zhu Z, He X, Zheng C, Xu J, Jiang L, Gu L, Zhu J, Zhu Q, Liu X. Etifoxine provides benefits in nerve repair with acellular nerve grafts. Muscle Nerve 2014; 50:235-43. [PMID: 24273088 DOI: 10.1002/mus.24131] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 11/13/2013] [Accepted: 11/19/2013] [Indexed: 01/31/2023]
Affiliation(s)
- Xiang Zhou
- Department of Microsurgery and Orthopedic Trauma; the First Affiliated Hospital of Sun Yat-sen University; Guangzhou 510080 China
| | - Bo He
- Department of Microsurgery and Orthopedic Trauma; the First Affiliated Hospital of Sun Yat-sen University; Guangzhou 510080 China
| | - Zhaowei Zhu
- Department of Microsurgery and Orthopedic Trauma; the First Affiliated Hospital of Sun Yat-sen University; Guangzhou 510080 China
| | - Xinhua He
- Department of Physiology; Medical College of Shangtou University; Shantou China
| | - Canbin Zheng
- Department of Microsurgery and Orthopedic Trauma; the First Affiliated Hospital of Sun Yat-sen University; Guangzhou 510080 China
| | - Jian Xu
- Department of Reproductive Medicine Center; First Affiliated Hospital of Sun Yat-sen University; Guangzhou China
| | - Li Jiang
- Department of Microsurgery and Orthopedic Trauma; the First Affiliated Hospital of Sun Yat-sen University; Guangzhou 510080 China
| | - Liqiang Gu
- Department of Microsurgery and Orthopedic Trauma; the First Affiliated Hospital of Sun Yat-sen University; Guangzhou 510080 China
| | - Jiakai Zhu
- Department of Microsurgery and Orthopedic Trauma; the First Affiliated Hospital of Sun Yat-sen University; Guangzhou 510080 China
| | - Qingtang Zhu
- Department of Microsurgery and Orthopedic Trauma; the First Affiliated Hospital of Sun Yat-sen University; Guangzhou 510080 China
| | - Xiaolin Liu
- Department of Microsurgery and Orthopedic Trauma; the First Affiliated Hospital of Sun Yat-sen University; Guangzhou 510080 China
| |
Collapse
|
32
|
Local delivery of controlled released nerve growth factor promotes sciatic nerve regeneration after crush injury. Neurosci Lett 2014; 566:177-81. [DOI: 10.1016/j.neulet.2014.02.065] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Revised: 02/24/2014] [Accepted: 02/26/2014] [Indexed: 11/22/2022]
|
33
|
Gao X, Wang Y, Chen J, Peng J. The role of peripheral nerve ECM components in the tissue engineering nerve construction. Rev Neurosci 2013; 24:443-53. [PMID: 23907421 DOI: 10.1515/revneuro-2013-0022] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2013] [Accepted: 07/05/2013] [Indexed: 11/15/2022]
Abstract
The extracellular matrix (ECM) is the naturally occurring substrate that provides a support structure and an attachment site for cells. It also produces a biological signal, which plays an important role in and has significant impact on cell adhesion, migration, proliferation, differentiation, and gene expression. Peripheral nerve repair is a complicated process involving Schwann cell proliferation and migration, 'bands of Büngner' formation, and newborn nerve extension. In the ECM of peripheral nerves, macromolecules are deposited among cells; these constitute the microenvironment of Schwann cell growth. Such macromolecules include collagen (I, III, IV, V), laminin, fibronectin, chondroitin sulfate proteoglycans (CSPGs), and other nerve factors. Collagen, the main component of ECM, provides structural support and guides newborn neurofilament extension. Laminin, fibronectin, CSPGs, and neurotrophic factors, are promoters or inhibitors, playing different roles in nerve repair after injury. By a chemical decellularization process, acellular nerve allografting eliminates the antigens responsible for allograft rejection and maintains most of the ECM components, which can effectively guide and enhance nerve regeneration. Thus, the composition and features of peripheral nerve ECM suggest its superiority as nerve repair material. This review focuses on the structure, function, and application in the tissue engineering nerve construction of the peripheral nerve ECM components.
Collapse
|
34
|
Sun H, Xu F, Guo D, Yu H. Preparation and evaluation of NGF-microsphere conduits for regeneration of defective nerves. Neurol Res 2013; 34:491-7. [DOI: 10.1179/1743132812y.0000000037] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Affiliation(s)
| | | | | | - Hailong Yu
- Bone Research InstitutePLA General Hospital, Beijing, China
| |
Collapse
|
35
|
Li R, Liu Z, Pan Y, Chen L, Zhang Z, Lu L. Peripheral Nerve Injuries Treatment: a Systematic Review. Cell Biochem Biophys 2013; 68:449-54. [DOI: 10.1007/s12013-013-9742-1] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
36
|
Godinho MJ, Teh L, Pollett MA, Goodman D, Hodgetts SI, Sweetman I, Walters M, Verhaagen J, Plant GW, Harvey AR. Immunohistochemical, ultrastructural and functional analysis of axonal regeneration through peripheral nerve grafts containing Schwann cells expressing BDNF, CNTF or NT3. PLoS One 2013; 8:e69987. [PMID: 23950907 PMCID: PMC3739754 DOI: 10.1371/journal.pone.0069987] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 06/14/2013] [Indexed: 01/13/2023] Open
Abstract
We used morphological, immunohistochemical and functional assessments to determine the impact of genetically-modified peripheral nerve (PN) grafts on axonal regeneration after injury. Grafts were assembled from acellular nerve sheaths repopulated ex vivo with Schwann cells (SCs) modified to express brain-derived neurotrophic factor (BDNF), a secretable form of ciliary neurotrophic factor (CNTF), or neurotrophin-3 (NT3). Grafts were used to repair unilateral 1 cm defects in rat peroneal nerves and 10 weeks later outcomes were compared to normal nerves and various controls: autografts, acellular grafts and grafts with unmodified SCs. The number of regenerated βIII-Tubulin positive axons was similar in all grafts with the exception of CNTF, which contained the fewest immunostained axons. There were significantly lower fiber counts in acellular, untransduced SC and NT3 groups using a PanNF antibody, suggesting a paucity of large caliber axons. In addition, NT3 grafts contained the greatest number of sensory fibres, identified with either IB4 or CGRP markers. Examination of semi- and ultra-thin sections revealed heterogeneous graft morphologies, particularly in BDNF and NT3 grafts in which the fascicular organization was pronounced. Unmyelinated axons were loosely organized in numerous Remak bundles in NT3 grafts, while the BDNF graft group displayed the lowest ratio of umyelinated to myelinated axons. Gait analysis revealed that stance width was increased in rats with CNTF and NT3 grafts, and step length involving the injured left hindlimb was significantly greater in NT3 grafted rats, suggesting enhanced sensory sensitivity in these animals. In summary, the selective expression of BDNF, CNTF or NT3 by genetically modified SCs had differential effects on PN graft morphology, the number and type of regenerating axons, myelination, and locomotor function.
Collapse
Affiliation(s)
- Maria João Godinho
- School of Anatomy, Physiology and Human Biology, The University of Western Australia, Crawley, Western Australia, Australia
| | - Lip Teh
- Cranio-Maxillo-Facial Unit, Princess Margaret Hospital for Children, Perth, Western Australia, Australia
| | - Margaret A. Pollett
- School of Anatomy, Physiology and Human Biology, The University of Western Australia, Crawley, Western Australia, Australia
| | - Douglas Goodman
- School of Veterinary and Biomedical Sciences, Murdoch University, Murdoch, Western Australia, Australia
| | - Stuart I. Hodgetts
- School of Anatomy, Physiology and Human Biology, The University of Western Australia, Crawley, Western Australia, Australia
| | - Iain Sweetman
- School of Anatomy, Physiology and Human Biology, The University of Western Australia, Crawley, Western Australia, Australia
| | - Mark Walters
- Cranio-Maxillo-Facial Unit, Princess Margaret Hospital for Children, Perth, Western Australia, Australia
| | - Joost Verhaagen
- Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| | - Giles W. Plant
- School of Anatomy, Physiology and Human Biology, The University of Western Australia, Crawley, Western Australia, Australia
| | - Alan R. Harvey
- School of Anatomy, Physiology and Human Biology, The University of Western Australia, Crawley, Western Australia, Australia
- * E-mail:
| |
Collapse
|
37
|
Zhu G, Lou W. Regeneration of facial nerve defects with xenogeneic acellular nerve grafts in a rat model. Head Neck 2013; 36:481-6. [PMID: 23729307 DOI: 10.1002/hed.23321] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/08/2013] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Because of ease of harvest and low immunogenicity, xenogeneic acellular nerve graft (XANG) may be an alternative to autologous nerve to repair facial nerve defects. METHODS Facial nerve defects of Wistar rats were repaired by XANG, and nerve gap regeneration was investigated by electrophysiological test, horseradish peroxidase (HRP) retrograde tracing and histomorphometric analysis, as compared to autograft. RESULTS Twenty weeks after the grafting, electrophysiology showed that whisker pad muscles responded to the electrical stimuli given at the site proximal to the transplantation in 2 groups. Some HRP-labeled facial motorneurons were located on the facial nucleus of the operated side, and an abundance of myelinated axons were found at the middle of the grafts and obvious motor endplates in the target muscles in 2 groups, although they were inferior to the contralateral side in numbers. CONCLUSION XANG represents an alternative approach for the reconstruction of peripheral facial nerve defects.
Collapse
Affiliation(s)
- Guochen Zhu
- Department of Otolaryngology, Wuxi Second People's Hospital, Affiliated with Nanjing Medical University, Wuxi, Jiangsu, China
| | | |
Collapse
|
38
|
García Medrano B, Barrio Sanz P, Simón Pérez C, León Andrino A, Garrosa García M, Martín Ferrero MA, Gayoso Rodríguez MJ. [Regeneration of critical injuries of the peripheral nerve with growth factors]. Rev Esp Cir Ortop Traumatol (Engl Ed) 2013; 57:162-9. [PMID: 23746913 DOI: 10.1016/j.recot.2013.03.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Revised: 03/23/2013] [Accepted: 03/25/2013] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION This project aims to study the regeneration of non-repairable lesions of peripheral nerve by muscle grafts enhanced with growth factors. MATERIAL AND METHODS The experiment was carried out in two phases. The first one compared direct suture of a critical defect in the sciatic nerve of ten rats, with the interposition of autologous muscle graft, denatured by heat, in another ten. The second phase compared ten rats with nerve repair using an acellular muscle graft, with injection of 2cc of IGF-1 (10mg/ml mecasermin, Injectable solution) into the acellular graft of another ten. A clinical and functional follow-up was carried out including, ambulation, footprint measurement, and "grasping test". . The animals were sacrificed at 90-100 days, and samples obtained for macro- and microscopic studies with toluidine blue, haematoxylin-eosin and Masson's trichrome staining. RESULTS The first experiment showed the characteristic findings of nerve tissue in muscle graft level sections. The second was an enhancement of the results: post-surgical clinical improvement, early ambulation, decrease in the rate of pressure ulcers in toes, recovery of the footprint, and increasing the percentage of nerve endings in distal sciatic regeneration (47-62%). CONCLUSIONS In this study the experimental and clinical possibilities of nerve defect repair by denatured muscle are demonstrated, confirming the suitability of the technique. Furthermore, it confirms our hypothesis with clinical and cellular determinations enriched by the addition of growth factors that promote nerve regeneration.
Collapse
Affiliation(s)
- B García Medrano
- Servicio de Cirugía Ortopédica y Traumatología, Hospital Clínico Universitario de Valladolid, Valladolid, Spain.
| | | | | | | | | | | | | |
Collapse
|
39
|
Lichtenfels M, Colomé L, Sebben AD, Braga-Silva J. Effect of platelet rich plasma and platelet rich fibrin on sciatic nerve regeneration in a rat model. Microsurgery 2013; 33:383-90. [DOI: 10.1002/micr.22105] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Revised: 02/04/2013] [Accepted: 02/11/2013] [Indexed: 01/22/2023]
Affiliation(s)
- Martina Lichtenfels
- Laboratory of Medical Abilities and Surgical Research; Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS); Porto Alegre Rio Grande do Sul Brazil
| | - Lucas Colomé
- Laboratory of Medical Abilities and Surgical Research; Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS); Porto Alegre Rio Grande do Sul Brazil
| | - Alessandra Deise Sebben
- Laboratory of Medical Abilities and Surgical Research; Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS); Porto Alegre Rio Grande do Sul Brazil
| | - Jefferson Braga-Silva
- Department of Surgery, and Full Professor in Surgery of the Hand; Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS); Porto Alegre Rio Grande do Sul Brazil
| |
Collapse
|
40
|
Regeneration of critical injuries of the peripheral nerve with growth factors. Rev Esp Cir Ortop Traumatol (Engl Ed) 2013. [DOI: 10.1016/j.recote.2013.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
41
|
Chu TH, Wang L, Guo A, Chan VWK, Wong CWM, Wu W. GDNF-treated acellular nerve graft promotes motoneuron axon regeneration after implantation into cervical root avulsed spinal cord. Neuropathol Appl Neurobiol 2013; 38:681-95. [PMID: 22289090 DOI: 10.1111/j.1365-2990.2012.01253.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
UNLABELLED It is well known that glial cell line-derived neurotrophic factor (GDNF) is a potent neurotrophic factor for motoneurons. We have previously shown that it greatly enhanced motoneuron survival and axon regeneration after implantation of peripheral nerve graft following spinal root avulsion. AIMS In the current study, we explore whether injection of GDNF promotes axon regeneration in decellularized nerve induced by repeated freeze-thaw cycles. METHODS We injected saline or GDNF into the decellularized nerve after root avulsion in adult Sprague-Dawley rats and assessed motoneuron axon regeneration and Schwann cell migration by retrograde labelling and immunohistochemistry. RESULTS We found that no axons were present in saline-treated acellular nerve whereas Schwann cells migrated into GDNF-treated acellular nerve grafts. We also found that Schwann cells migrated into the nerve grafts as early as 4 days after implantation, coinciding with the first appearance of regenerating axons in the grafts. Application of GDNF outside the graft did not induce Schwann cell infiltration nor axon regeneration into the graft. Application of pleiotrophin, a trophic factor which promotes axon regeneration but not Schwann cell migration, did not promote axon infiltration into acellular nerve graft. CONCLUSIONS We conclude that GDNF induced Schwann cell migration and axon regeneration into the acellular nerve graft. Our findings can be of potential clinical value to develop acellular nerve grafting for use in spinal root avulsion injuries.
Collapse
Affiliation(s)
- T-H Chu
- Department of Anatomy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR
| | | | | | | | | | | |
Collapse
|
42
|
Silva DNE, Silva ACMBAD, Aydos RD, Viterbo F, Pontes ERJC, Odashiro DN, Castro RJD, Augusto DG. Nerve growth factor with fibrin glue in end-to-side nerve repair in rats. Acta Cir Bras 2012; 27:325-32. [PMID: 22534808 DOI: 10.1590/s0102-86502012000400008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Accepted: 02/20/2012] [Indexed: 05/26/2023] Open
Abstract
PURPOSE To determine the effects of end-to-side nerve repair performed only with fibrin glue containing nerve growth in rats. METHODS Seventy two Wistar rats were divided into six equal groups: group A was not submitted to nerve section; group B was submitted to nerve fibular section only. The others groups had the nerve fibular sectioned and then repaired in the lateral surface of an intact tibial nerve, with different procedures: group C: ETS with sutures; group D: ETS with sutures and NGF; group E: ETS with FG only; group F: ETS with FG containing NGF. The motor function was accompanied and the tibial muscle mass, the number and diameter of muscular fibers and regenerated axons were measured. RESULTS All the analyzed variables did not show any differences among the four operated groups (p>0.05), which were statistically superior to group B (p<0.05), but inferior to group A (p>0.05). CONCLUSION The end-to-side nerve repair presented the same recovery pattern, independent from the repair used, showing that the addition of nerve growth factor in fibrin glue was not enough for the results potentiating.
Collapse
|
43
|
Zhao Z, Wang Y, Peng J, Ren Z, Zhang L, Guo Q, Xu W, Lu S. Improvement in nerve regeneration through a decellularized nerve graft by supplementation with bone marrow stromal cells in fibrin. Cell Transplant 2012; 23:97-110. [PMID: 23128095 DOI: 10.3727/096368912x658845] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Acellular nerve grafting is often inferior as well as an inadequate alternative to autografting for the repair of long gaps in peripheral nerves. Moreover, the injection method is not perfect. During the injection of cells, the syringe can destroy the acellular nerve structure and the limited accumulation of seed cells. To resolve this problem, we constructed a nerve graft by acellular nerve grafting. Bone marrow-mesenchymal stromal cells (BM-MSCs) were affixed with fibrin glue and injected inside or around the graft, which was then used to repair a 15-mm nerve defect in rats. The acellular nerve graft maintained its structure and composition, and its tensile strength was decreased, as determined by two-photon microscopy and a tensile testing device. In vitro, MSCs embedded in fibrin glue survived and secreted growth factors such as nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF). We repaired 15-mm Sprague-Dawley rat sciatic nerve defects using this nerve graft construction, and MSCs injected around the graft helped improve nerve regeneration and functional recovery of peripheral nerve lesions as determined by functional analysis and histology. Therefore, we conclude that supplying MSCs in fibrin glue around acellular nerves is successful in maintaining the nerve structure and can support nerve regeneration similar to the direct injection of MSCs into the acellular nerve for long nerve defects but may avoid destroying the nerve graft. The technique is simple and is another option for stem cell transplantation.
Collapse
|
44
|
Szynkaruk M, Kemp SWP, Wood MD, Gordon T, Borschel GH. Experimental and clinical evidence for use of decellularized nerve allografts in peripheral nerve gap reconstruction. TISSUE ENGINEERING PART B-REVIEWS 2012; 19:83-96. [PMID: 22924762 DOI: 10.1089/ten.teb.2012.0275] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Despite the inherent capability for axonal regeneration, recovery following severe peripheral nerve injury remains unpredictable and often very poor. Surgeons typically use autologous nerve grafts taken from the patient's own body to bridge long nerve gaps. However, the amount of suitable nerve available from a given patient is limited, and using autologous grafts leaves the patient with scars, numbness, and other forms of donor-site morbidity. Therefore, surgeons and engineers have sought off-the-shelf alternatives to the current practice of autologous nerve grafting. Decellularized nerve allografts have recently become available as an alternative to traditional nerve autografting. In this review, we provide a critical analysis comparing the advantages and limitations of the three major experimental models of decellularized nerve allografts: cold preserved, freeze-thawed, and chemical detergent based. Current tissue engineering-based techniques to optimize decellularized nerve allografts are discussed. We also evaluate studies that supplement decellularized nerve grafts with exogenous factors such as Schwann cells, stem cells, and growth factors to both support and enhance axonal regeneration through the decellularized allografts. In examining the advantages and disadvantages of the studies of decellularized allografts, we suggest that experimental methods, including the animal model, graft length, follow-up time, and outcome measures of regenerative progress and success be consolidated. Finally, all clinical studies in which decellularized nerve allografts have been used to bridge nerve gaps in patients are reviewed.
Collapse
Affiliation(s)
- Mark Szynkaruk
- Division of Plastic and Reconstructive Surgery, Department of Surgery, The Hospital for Sick Children, Toronto, Ontario, Canada
| | | | | | | | | |
Collapse
|
45
|
Ovalle F, Patel A, Pollins A, de la Torre J, Vasconez L, Hunt TR, Bucy RP, Shack RB, Thayer WP. A simple technique for augmentation of axonal ingrowth into chondroitinase-treated acellular nerve grafts using nerve growth factor. Ann Plast Surg 2012; 68:518-24. [PMID: 22531407 DOI: 10.1097/sap.0b013e3182380974] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND AND PURPOSE Improvement in axonal regeneration may lead to the development of longer nerve grafts and improved outcomes for patients with peripheral nerve injury. Although the use of acellular nerve grafts has been well documented (Groves et al, Exp Neurol. 2005;195:278-292; Krekoski et al, J Neurosci. 2001;21:6206-6213; Massey et al, Exp Neurol. 2008;209:426-445; Neubauer et al, Exp Neurol. 2007;207:163-170; Zuo et al, Exp Neurol. 2002;176:221-228), less is known about the ability of neurotrophic factors to enhance axonal regeneration. This study evaluates axonal ingrowth augmentation using acellular, chondroitinase-treated nerve grafts doped with nerve growth factor (NGF). METHODS Acellular chondroitinase-treated murine nerve grafts were placed in experimental (NGF-treated grafts) and control (carrier-only grafts) rats. Five days after implantation, axonal regeneration was assessed by immunocytochemistry along with digital image analysis. RESULTS Higher axon count was observed throughout the length of the nerve in the NGF group (P < 0.0001), peaking at 3 mm from proximal repair (P = 0.02). Although the NGF group displayed a higher axon count per slice, the mean diameter of individual NGF axons was smaller (P < 0.0001), potentially consistent with induction of sensory axons (Rich et al, J Neurocytol. 1987;16:261-268; Sofroniew et al, Annu Rev Neurosci. 2001;24:1217-1128; Yip et al, J Neurosci. 1984;4:2986-2992). CONCLUSION The simple technique of doping acellular, chondroitinase-treated nerve grafts with NGF can augment axonal ingrowth and possibly preferentially induce sensory axons.
Collapse
Affiliation(s)
- Fernando Ovalle
- Department of Plastic Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Wang Y, Zhao Z, Ren Z, Zhao B, Zhang L, Chen J, Xu W, Lu S, Zhao Q, Peng J. Recellularized nerve allografts with differentiated mesenchymal stem cells promote peripheral nerve regeneration. Neurosci Lett 2012; 514:96-101. [PMID: 22405891 DOI: 10.1016/j.neulet.2012.02.066] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Revised: 01/30/2012] [Accepted: 02/18/2012] [Indexed: 12/17/2022]
Abstract
Chemical-extracted acellular nerve allografting, containing the natural nerve structure and elementary nerve extracellular matrix (ECM), has been used for peripheral nerve-defect treatment experimentally and clinically. However, functional outcome with acellular nerve allografting decreases with increased size of gap in nerve defects. Cell-based therapy is a good strategy for repairing long nerve defects. Bone-marrow-derived mesenchymal stem cells (BMSCs) and adipose-derived mesenchymal stem cells (ADSCs) can be induced to differentiate into cells with Schwann cell-like properties (BMSC-SCs or ADSC-SCs), which have myelin-forming ability in vitro and secrete trophic nerve growth factors. Here, we aimed to determine whether BMSC-SCs or ADSC-SCs are a promising cell type for enriching acellular grafts in nerve repair. We evaluated axonal regeneration distance by immunofluorescence staining after 2-week implantation. We used functional and histomorphometric analysis to evaluate 3-month regeneration of the novel cell-supplemented tissue-engineered nerve graft used to bridge a 15-mm-long sciatic nerve gap in rats. Introducing BMSC-SCs or ADSC-SCs to the acellular nerve graft promoted sciatic nerve regeneration and functional recovery. Nerve regeneration with BMSC-SCs or ADSC-SCs was comparable to that with autografting and Schwann cells alone and better than that with acellular nerve allografting alone. Differentiated bone-marrow-or adipose-derived MSCs may be a promising cell source for tissue-engineered nerve grafts and promote functional recovery after peripheral nerve injury.
Collapse
Affiliation(s)
- Yu Wang
- Institute of Orthopedics, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing 100853, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Zhao Z, Wang Y, Peng J, Ren Z, Zhan S, Liu Y, Zhao B, Zhao Q, Zhang L, Guo Q, Xu W, Lu S. Repair of nerve defect with acellular nerve graft supplemented by bone marrow stromal cells in mice. Microsurgery 2011; 31:388-94. [PMID: 21503972 DOI: 10.1002/micr.20882] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Accepted: 12/13/2010] [Indexed: 01/04/2023]
Abstract
The acellular nerve graft that can provide internal structure and extracellular matrix components of the nerve is an alternative for repair of peripheral nerve defects. However, results of the acellular nerve grafting for nerve repair still remain inconsistent. This study aimed to investigate if supplementing bone marrow mesenchymal stromal cells (MSCs) could improve the results of nerve repair with the acellular nerve graft in a 10-mm sciatic nerve defect model in mice. Eighteen mice were divided into three groups (n = 6 for each group) for nerve repairs with the nerve autograft, the acellular nerve graft, and the acellular nerve graft by supplemented with MSCs (5 × 10(5)) fibrin glue around the graft. The mouse static sciatic index was evaluated by walking-track testing every 2 weeks. The weight preservation of the triceps surae muscles and histomorphometric assessment of triceps surae muscles and repaired nerves were examined at week 8. The results showed that the nerve repair by the nerve autografting obtained the best functional recovery of limb. The nerve repair with the acellular nerve graft supplemented with MSCs achieved better functional recovery and higher axon number than that with the acellular nerve graft alone at week 8 postoperatively. The results indicated that supplementing MSCs might help to improve nerve regeneration and functional recovery in repair of the nerve defect with the acellular nerve graft.
Collapse
Affiliation(s)
- Zhe Zhao
- Orthopedic Research Institute of Chinese PLA, General Hospital of Chinese PLA, Beijing 100853, People's Republic Of China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
de Boer R, Knight AM, Borntraeger A, Hébert-Blouin MN, Spinner RJ, Malessy MJ, Yaszemski MJ, Windebank AJ. Rat sciatic nerve repair with a poly-lactic-co-
glycolic acid scaffold and nerve growth factor releasing microspheres. Microsurgery 2011; 31:293-302. [DOI: 10.1002/micr.20869] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2010] [Accepted: 11/12/2010] [Indexed: 11/11/2022]
|
49
|
Abstract
Nerve repair after transection has variable and unpredictable outcomes. In addition to advancements in microvascular surgical techniques, nerve allografts and conduits are available options in peripheral nerve reconstruction. When tensionless nerve repair is not feasible, or in chronic injuries, autografts have been traditionally used. As substitute to autografts, decellularized allografts and conduits have become available. These conduits can reduce donor site morbidity, functional loss at the donor area in cases where autografts are used, and immune reaction from transplants or unprocessed allografts. The development of new biomaterials for use in conduits, as well as use of cytokines, growth factors, and other luminal fillers, may help in the treatment of acute and chronic nerve injuries. The indications and properties of nerve conduits and allografts are detailed in this article.
Collapse
Affiliation(s)
- Michael Rivlin
- Department of Orthopaedics, Thomas Jefferson University Hospital, 1015 Walnut Street, Curtis Building, Room 801, Philadelphia, PA 19107, USA
| | | | | | | |
Collapse
|
50
|
Abstract
Bridging nerve gaps with suitable grafts is a major clinical problem. The autologous nerve graft is considered to be the gold standard, providing the best functional results; however, donor site morbidity is still a major disadvantage. Various attempts have been made to overcome the problems of autologous nerve grafts with artificial nerve tubes, which are “ready-to-use” in almost every situation. A wide range of materials have been used in animal models but only few have been applied to date clinically, where biocompatibility is an inevitable prerequisite. This review gives an idea about artificial nerve tubes with special focus on their biocompatibility in animals and humans.
Collapse
Affiliation(s)
- Felix Stang
- Department of Plastic, Reconstructive and Hand Surgery, University of Luebeck, 23538 Luebeck, Germany
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +49-451-5002061; Fax: +49-451-5002190
| | - Gerburg Keilhoff
- Institute of Biochemistry and Cell Biology, University of Magdeburg, 39120 Magdeburg, Germany; E-Mail:
| | - Hisham Fansa
- Department of Plastic, Reconstructive and Aesthetic Surgery, Hand Surgery, Klinikum Bielefeld-Mitte, 33604 Bielefeld, Germany; E-Mail:
| |
Collapse
|