1
|
Pelletier F, Durand E, Chaiyut J, Bronstein C, Pessemesse L, Vaysse L, Liengprayoon S, Gaillet S, Brioche T, Bertrand-Gaday C, Coudray C, Sultan A, Feillet-Coudray C, Casas F. Furan fatty acid extracted from Hevea brasiliensis latex increases muscle mass in mice. Biomed Pharmacother 2023; 166:115330. [PMID: 37595430 DOI: 10.1016/j.biopha.2023.115330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/09/2023] [Accepted: 08/12/2023] [Indexed: 08/20/2023] Open
Abstract
Skeletal muscle is essential for locomotion and plays a crucial role in energy homeostasis. It is regulated by nutrition, genetic factors, physical activity and hormones. Furan fatty acids (FuFAs) are minor fatty acids present in small quantities in food from plants and animals origin. Recently, we showed that a preventive nutritional supplementation with furan fatty acid in a DIO mouse model reduces metabolic disorders. The present study was designed to determine the influence of FuFA-F2 extracted from Hevea brasiliensis latex on skeletal muscle phenotype. In C2C12 myotubes we found that FuFA-F2 whatever the concentration used increased protein content. We revealed that in C2C12 myotubes FuFA-F2 (10 µM) increases protein synthesis as shown by the stimulation of mTOR phosphorylation. Next, to confirm in vivo our results C57Bl6 mice were supplemented by oral gavage with vehicle or FuFA-F2 (20 mg/kg) for 3 and a half weeks. We found that mice supplemented with FuFA-F2 had a greater lean mass than the control mice. In line with this observation, we revealed that FuFA-F2 increased muscle mass and promoted more oxidative muscle metabolism in mice as attested by cytochrome c oxidase activity. In conclusion, we demonstrated that FuFA-F2 stimulates muscle anabolism in mice in vitro and in vivo, mimicking in part physical activity. This study highlights that in vivo FuFA-F2 may have health benefits by increasing muscle mass and oxidative metabolism.
Collapse
Affiliation(s)
| | - Erwann Durand
- CIRAD, UMR Qualisud, 34398 Montpellier, France; Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, Montpellier, France
| | - Jatuporn Chaiyut
- Kasetsart Agricultural and Agro-industrial Product Improvement Institute, Kasetsart University, Bangkok, Thaïland
| | | | | | - Laurent Vaysse
- CIRAD, UPR BioWooEB, 34398 Montpellier, France; BioWooEB, Univ Montpellier, CIRAD, Montpellier, France
| | - Siriluck Liengprayoon
- Kasetsart Agricultural and Agro-industrial Product Improvement Institute, Kasetsart University, Bangkok, Thaïland
| | | | | | | | | | - Ariane Sultan
- Département d'Endocrinologie, Diabète, Nutrition Inserm 1411, CHU de Montpellier, Univ Montpellier, Montpellier, France
| | | | | |
Collapse
|
2
|
Perrotta I. Seeing beyond apoptosis: ultrastructural aspects of necrosis in human atherosclerosis. Cardiovasc Pathol 2023; 66:107560. [PMID: 37453592 DOI: 10.1016/j.carpath.2023.107560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/11/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023] Open
Abstract
In recent years, there has been an explosive growth of research to decipher the pathobiologic relevance of cell death in the development and progression of various cardiovascular disorders such as arterial remodeling and atherosclerosis. High rates of cell death have been reported in animal models, particularly following balloon catheter injury. Also, in humans there is considerable evidence indicating a close connection between cell death and atherosclerosis. In this regard, diverse biochemical and molecular analysis have suggested that intraplaque cells preferentially die by apoptosis, a mode of cell death considered to be active, highly regulated and programmed. In contrast to apoptosis, necrosis has been classically defined as an uncontrolled form of cell death that can occur in response to chemical or physical insults such as trauma, infection, toxins, or lack of blood supply. Necrosis has long been known to be present within atherosclerotic plaques but to date it is still less well understood and characterized than apoptosis. In addition, although electron microscopy (EM) remains essential in cell death research, only a very small proportion of studies deal with the ultrastructural aspects of cell death and/or include EM images to support their findings. As a consequence, many features of cell death modes in human atherosclerosis have not yet been thoroughly investigated and defined. The present study was undertaken to provide an ultrastructural description of the route/s by which intraplaque cells can die also suggesting novel insights for future research.
Collapse
Affiliation(s)
- Ida Perrotta
- Department of Biology, Ecology and Earth Sciences, Centre for Microscopy and Microanalysis, University of Calabria, Arcavacata di Rende, Cosenza 87036, Italy.
| |
Collapse
|
3
|
Natural Ghee Enhances the Biochemical and Immunohistochemical Reproductive Performance of Female Rabbits. Life (Basel) 2022; 13:life13010080. [PMID: 36676029 PMCID: PMC9861198 DOI: 10.3390/life13010080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/10/2022] [Accepted: 12/19/2022] [Indexed: 12/29/2022] Open
Abstract
The reproductive effects of several dietary fats (margarine, ghee, and olive oil) on female rabbits were studied. For that purpose, 40 mature female rabbits were designed into four groups of ten rabbits each. Group I was given a control diet, Group II received 10% margarine, Group III received 10% ghee, and Group IV received 10% olive oil; after two months, all rabbits were sacrificed. Lipid profile and reproductive hormones levels were assayed in serum besides ovarian antioxidant enzyme and lipid peroxidation. Furthermore, ovarian tissue was examined using hematoxylin−eosin staining and immunohistochemistry of estrogen, follicle-stimulating hormone (FSH), luteinizing hormone (LH) receptor, and caspase 3. Our data revealed that the margarine significantly (p < 0.05) increased lipid profile and malondialdehyde (MDA) level, which decreased in olive oil and ghee compared to the control. In addition, serum FSH and estrogen (estradiol (E2)) were significantly (p < 0.05) decreased in the group treated with margarine. Furthermore, there was a significant decrease in ovarian superoxide dismutase (SOD) and catalase activity in the margarine-treated group. In contrast, SOD and MDA showed a significant (p > 0.05) increase in the olive oil and ghee- treated group compared to the control group. At the same time, there was a significant increase in serum FSH and (estradiol (E2)) in the ghee and olive oil groups, respectively, compared to the control. The margarine feed group showed moderate immunoreaction of estrogen, FSH, LH receptor, and strong caspase 3, while ghee and olive oil showed strong immunoreaction of estrogen, FSH, LH receptor, and mild immunoreaction of caspase 3 in ovarian tissue. Photomicrograph of rabbit ovarian tissue showed vacuolation in small and growing follicles in the margarine group but appeared normal in ghee and the olive oil-treated group. In conclusion, based on these results, olive oil and ghee have a strong capability of enhancing lipid profile, antioxidant status, and female hormonal functions.
Collapse
|
4
|
Dicarbonyl-Dependent Modification of LDL as a Key Factor of Endothelial Dysfunction and Atherosclerotic Vascular Wall Damage. Antioxidants (Basel) 2022; 11:antiox11081565. [PMID: 36009284 PMCID: PMC9405452 DOI: 10.3390/antiox11081565] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 08/02/2022] [Accepted: 08/10/2022] [Indexed: 12/05/2022] Open
Abstract
The review presents evidence that the main damage to the vascular wall occurs not from the action of “oxidized” LDL, which contain hydroperoxy acyls in the phospholipids located in their outer layer, but from the action of LDL particles whose apoprotein B-100 is chemically modified with low molecular weight dicarbonyls, such as malondialdehyde, glyoxal, and methylglyoxal. It has been argued that dicarbonyl-modified LDL, which have the highest cholesterol content, are particularly “atherogenic”. High levels of dicarbonyl-modified LDL have been found to be characteristic of some mutations of apoprotein B-100. Based on the reviewed data, we hypothesized a common molecular mechanism underlying vascular wall damage in atherosclerosis and diabetes mellitus. The important role of oxidatively modified LDL in endothelial dysfunction is discussed in detail. In particular, the role of the interaction of the endothelial receptor LOX-1 with oxidatively modified LDL, which leads to the expression of NADPH oxidase, which in turn generates superoxide anion radical, is discussed. Such hyperproduction of ROS can cause destruction of the glycocalyx, a protective layer of endotheliocytes, and stimulation of apoptosis in these cells. On the whole, the accumulated evidence suggests that carbonyl modification of apoprotein B-100 of LDL is a key factor responsible for vascular wall damage leading to atherogenesis and endothelial dysfunction. Possible ways of pharmacological correction of free radical processes in atherogenesis and diabetogenesis are also discussed.
Collapse
|
5
|
Assessment of Polyunsaturated Fatty Acids on COVID-19-Associated Risk Reduction. REVISTA BRASILEIRA DE FARMACOGNOSIA : ORGAO OFICIAL DA SOCIEDADE BRASILEIRA DE FARMACOGNOSIA 2021; 32:50-64. [PMID: 34876760 PMCID: PMC8638948 DOI: 10.1007/s43450-021-00213-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 10/29/2021] [Indexed: 02/06/2023]
Abstract
Pooled evidence conveys the association between polyunsaturated fatty acids and infectious disease. SARS-CoV-2, an enveloped mRNA virus, was also reported to interact with polyunsaturated fatty acids. The present review explores the possible mode of action, immunology, and consequences of these polyunsaturated fatty acids during the viral infection. Polyunsaturated fatty acids control protein complex formation in lipid rafts associated with the function of two SARS-CoV-2 entry gateways: angiotensin-converting enzyme-2 and cellular protease transmembrane protease serine-2. Therefore, the viral entry can be mitigated by modulating polyunsaturated fatty acids contents in the body. α-Linolenic acid is the precursor of two clinically important eicosanoids eicosapentaenoic acid and docosahexaenoic acid, the members of ω-3 fats. Resolvins, protectins, and maresins derived from docosahexaenoic acid suppress inflammation and augment phagocytosis that lessens microbial loads. Prostaglandins of 3 series, leukotrienes of 5 series, and thromboxane A3 from eicosapentaenoic acid exhibit anti-inflammatory, vasodilatory, and platelet anti-aggregatory effects that may also contribute to the control of pre-existing pulmonary and cardiac diseases. In contrast, ω-6 linoleic acid-derived arachidonic acid increases the prostaglandin G2, lipoxins A4 and B4, and thromboxane A2. These cytokines are pro-inflammatory and enhance the immune response but aggravate the COVID-19 severity. Therefore, the rational intake of ω-3-enriched foods or supplements might lessen the complications in COVID-19 and might be a preventive measure. Graphic Abstract
Collapse
|
6
|
Ferroptosis Meets Cell-Cell Contacts. Cells 2021; 10:cells10092462. [PMID: 34572111 PMCID: PMC8471828 DOI: 10.3390/cells10092462] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 09/07/2021] [Accepted: 09/13/2021] [Indexed: 12/15/2022] Open
Abstract
Ferroptosis is a regulated form of cell death characterized by iron dependency and increased lipid peroxidation. Initially assumed to be selectively induced in tumour cells, there is increasing evidence that ferroptosis plays an important role in pathophysiology and numerous cell types and tissues. Deregulated ferroptosis has been linked to human diseases, such as neurodegenerative diseases, cardiovascular disorders, and cancer. Along these lines, ferroptosis is a promising pathway to overcoming therapy resistance of cancer cells. It is therefore of utmost importance to understand the cellular signalling pathways and the molecular mechanisms underlying ferroptosis regulation, including context-specific effects mediated by the neighbouring cells through cell–cell contacts. Here, we give an overview on the molecular events and machinery linked to ferroptosis induction and commitment. We further summarize and discuss current knowledge about the role of cell–cell contacts, which differ in ferroptosis regulation between normal somatic cells and cancer cells. We present emerging concepts on the underlying mechanisms, address open questions, and discuss the possible impact of cell–cell contacts on exploiting ferroptosis in cancer therapy.
Collapse
|
7
|
Alvarado K, Durand E, Vaysse L, Liengprayoon S, Gaillet S, Coudray C, Casas F, Feillet-Coudray C. Effets bénéfiques potentiels des acides gras furaniques, des lipides alimentaires bioactifs. CAHIERS DE NUTRITION ET DE DIÉTÉTIQUE 2021. [DOI: 10.1016/j.cnd.2021.01.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
8
|
Ciucanu CI, Olariu S, Vlad DC, Dumitraşcu V. Influence of rosuvastatin dose on total fatty acids and free fatty acids in plasma: Correlations with lipids involved in cholesterol homeostasis. Medicine (Baltimore) 2020; 99:e23356. [PMID: 33235104 PMCID: PMC7710209 DOI: 10.1097/md.0000000000023356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
This study investigates for the first time the influence of four doses of rosuvastatin on total fatty acids (TFA) and free fatty acids (FFA) in human plasma and correlates their changes in concentration with changes in the concentration of other lipids involved in cholesterol homeostasis.This study was a placebo-controlled, randomized, double-blind, crossover experiment. The study used a single group of 16 men and consisted of 5 treatment periods lasting 4 weeks each with placebo and 4 doses of rosuvastatin (5, 10, 20, and 40 mg). Each subject changed 5 medical treatments and received in each new treatment different tablets of rosuvastatin or placebo compared to those taken in previous treatments, in a random order. Between treatment periods there was a wash-out period of 2 weeks, without treatment.Changes in TFA and FFA were significant compared to placebo and between different doses of rosuvastatin. We found a continuous logarithmic decrease in levels of TFA, FFA, low-density lipoprotein (LDL)-cholesterol, total cholesterol, triglycerides, phospholipids, and apolipoprotein B-100, and a continuous increase in levels of high-density lipoprotein (HDL)-cholesterol and apolipoprotein A-1 by increases the dose of rosuvastatin. Analysis of the correlation of TFA and FFA with the main lipids and lipoproteins in cholesterol homeostasis indicated a linear regression with high correlation coefficients and all P-values were less than .05 level.The concentrations of TFA and FFA are significantly influenced by the dose of rosuvastatin. They are strongly correlated with those of other lipids and lipoproteins involved in cholesterol homeostasis. The mechanisms of cholesterol homeostasis regulation are involved in changing the concentrations of TFA and FFA.
Collapse
|
9
|
Shukla H, Lee HY, Koucheki A, Bibi HA, Gaje G, Sun X, Zhu H, Li YR, Jia Z. Targeting glutathione with the triterpenoid CDDO-Im protects against benzo-a-pyrene-1,6-quinone-induced cytotoxicity in endothelial cells. Mol Cell Biochem 2020; 474:27-39. [PMID: 32715408 DOI: 10.1007/s11010-020-03831-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 07/11/2020] [Indexed: 12/13/2022]
Abstract
Epidemiological studies have exhibited a strong correlation between exposure to air pollution and deaths due to vascular diseases such as atherosclerosis. Benzo-a-pyrene-1,6-quinone (BP-1,6-Q) is one of the components of air pollution. This study was to examine the role of GSH in BP-1,6-Q mediated cytotoxicity in human EA.hy96 endothelial cells and demonstrated that induction of cellular glutathione by a potent triterpenoid, CDDO-Im (1-[2-cyano-3-,12-dioxooleana-1,9(11)-dien-28-oyl]imidazole), protects cells against BP-1,6-Q induced protein and lipid damage. Incubation of EA.hy926 endothelial cells with BP-1,6-Q caused a significant increase in dose-dependent cytotoxicity as measured by LDH release assay and both apoptotic and necrotic cell deaths as measured by flow cytometric analysis. Incubation of EA.hy926 endothelial cells with BP-1,6-Q also caused a significant decrease in cellular GSH levels. The diminishment of cellular GSH by buthionine sulfoximine (BSO) potentiated BP-1,6-Q-induced toxicity significantly suggesting a critical involvement of GSH in BP-1,6-Q induced cellular toxicity. GSH-induction by CDDO-Im significantly protects cells against BP-1,6-Q induced protein and lipid damage as measured by protein carbonyl (PC) assay and thiobarbituric acid reactive substances (TBARS) assay, respectively. However, the co-treatment of cells with CDDO-Im and BSO reversed the cytoprotective effect of CDDO-Im on BP-1,6-Q-mediated lipid peroxidation and protein oxidation. These results suggest that induction of GSH by CDDO-Im might be the important cellular defense against BP-1,6-Q induced protein and lipid damage. These findings would contribute to better understand the action of BP-1,6-Q and may help to develop novel therapies to protect against BP-1,6-Q-induced atherogenesis.
Collapse
Affiliation(s)
- Halley Shukla
- Department of Biology, The University of North Carolina At Greensboro, 312 Eberhart Building, 321 McIver Street, Greensboro, NC, 27402-6170, USA
| | - Ho Young Lee
- Department of Biology, The University of North Carolina At Greensboro, 312 Eberhart Building, 321 McIver Street, Greensboro, NC, 27402-6170, USA
| | - Ashkon Koucheki
- Department of Biology, The University of North Carolina At Greensboro, 312 Eberhart Building, 321 McIver Street, Greensboro, NC, 27402-6170, USA
| | - Humaira A Bibi
- Department of Biology, The University of North Carolina At Greensboro, 312 Eberhart Building, 321 McIver Street, Greensboro, NC, 27402-6170, USA
| | - Gabriella Gaje
- Department of Biology, The University of North Carolina At Greensboro, 312 Eberhart Building, 321 McIver Street, Greensboro, NC, 27402-6170, USA
| | - Xiaolun Sun
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Hong Zhu
- Campbell University School of Osteopathic Medicine, Buies Creek, NC, USA
| | - Y Robert Li
- Campbell University School of Osteopathic Medicine, Buies Creek, NC, USA
| | - Zhenquan Jia
- Department of Biology, The University of North Carolina At Greensboro, 312 Eberhart Building, 321 McIver Street, Greensboro, NC, 27402-6170, USA.
| |
Collapse
|
10
|
Wu CM, Zheng L, Wang Q, Hu YW. The emerging role of cell senescence in atherosclerosis. Clin Chem Lab Med 2020; 59:27-38. [PMID: 32692694 DOI: 10.1515/cclm-2020-0601] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 06/15/2020] [Indexed: 12/15/2022]
Abstract
Cell senescence is a fundamental mechanism of aging and appears to play vital roles in the onset and prognosis of cardiovascular disease, fibrotic pulmonary disease, liver disease and tumor. Moreover, an increasing body of evidence shows that cell senescence plays an indispensable role in the formation and development of atherosclerosis. Multiple senescent cell types are associated with atherosclerosis, senescent human vascular endothelial cells participated in atherosclerosis via regulating the level of endothelin-1 (ET-1), nitric oxide (NO), angiotensin II and monocyte chemoattractant protein-1 (MCP-1), senescent human vascular smooth muscle cells-mediated plaque instability and vascular calcification via regulating the expression level of BMP-2, OPN, Runx-2 and inflammatory molecules, and senescent macrophages impaired cholesterol efflux and promoted the development of senescent-related cardiovascular diseases. This review summarizes the characteristics of cell senescence and updates the molecular mechanisms underlying cell senescence. Moreover, we also discuss the recent advances on the molecular mechanisms that can potentially regulate the development and progression of atherosclerosis.
Collapse
Affiliation(s)
- Chang-Meng Wu
- Department of Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, P. R. China
| | - Lei Zheng
- Department of Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, P. R. China
| | - Qian Wang
- Department of Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, P. R. China
| | - Yan-Wei Hu
- Department of Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, P. R. China.,Department of Clinical Laboratory, Guangzhou Women & Children Medical Center, Guangzhou Medical University, Guangzhou, P. R. China
| |
Collapse
|
11
|
Lemke RAS, Olson SM, Morse K, Karlen SD, Higbee A, Beebe ET, Ralph J, Coon JJ, Fox BG, Donohue TJ. A bacterial biosynthetic pathway for methylated furan fatty acids. J Biol Chem 2020; 295:9786-9801. [PMID: 32434926 PMCID: PMC7380195 DOI: 10.1074/jbc.ra120.013697] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/14/2020] [Indexed: 12/26/2022] Open
Abstract
Fatty acids play many important roles in cells and also in industrial processes. Furan fatty acids (FuFAs) are present in the lipids of some plant, fish, and microbial species and appear to function as second messengers in pathways that protect cells from membrane-damaging agents. We report here the results of chemical, genetic, and synthetic biology experiments to decipher the biosynthesis of the monomethylated FuFA, methyl 9-(3-methyl-5-pentylfuran-2-yl) nonanoate (9M5-FuFA), and its dimethyl counterpart, methyl 9-(3,4-dimethyl-5-pentylfuran-2-yl) nonanoate (9D5-FuFA), in two α-proteobacteria. Each of the steps in FuFA biosynthesis occurs on pre-existing phospholipid fatty acid chains, and we identified pathway intermediates and the gene products that catalyze 9M5-FuFA and 9D5-FuFA synthesis in Rhodobacter sphaeroides 2.4.1 and Rhodopseudomonas palustris CGA009. One previously unknown pathway intermediate was a methylated diunsaturated fatty acid, (10E,12E)-11-methyloctadeca-10,12-dienoic acid (11Me-10t,12t-18:2), produced from (11E)-methyloctadeca-11-enoic acid (11Me-12t-18:1) by a newly identified fatty acid desaturase, UfaD. We also show that molecular oxygen (O2) is the source of the oxygen atom in the furan ring of 9M5-FuFA, and our findings predict that an O2-derived oxygen atom is incorporated into 9M5-FuFA via a protein, UfaO, that uses the 11Me-10t,12t-18:2 fatty acid phospholipid chain as a substrate. We discovered that R. palustris also contains a SAM-dependent methylase, FufM, that produces 9D5-FuFA from 9M5-FuFA. These results uncover the biochemical sequence of intermediates in a bacterial pathway for 9M5-FuFA and 9D5-FuFA biosynthesis and suggest the existence of homologs of the enzymes identified here that could function in FuFA biosynthesis in other organisms.
Collapse
Affiliation(s)
- Rachelle A S Lemke
- Department of Bacteriology, University of Wisconsin, Madison, Wisconsin, USA.,Wisconsin Energy Institute, University of Wisconsin, Madison, Wisconsin, USA.,Great Lakes Bioenergy Research Center, University of Wisconsin, Madison, Wisconsin, USA
| | - Stephanie M Olson
- Department of Bacteriology, University of Wisconsin, Madison, Wisconsin, USA.,Wisconsin Energy Institute, University of Wisconsin, Madison, Wisconsin, USA.,Great Lakes Bioenergy Research Center, University of Wisconsin, Madison, Wisconsin, USA
| | - Kaitlin Morse
- Wisconsin Energy Institute, University of Wisconsin, Madison, Wisconsin, USA.,Great Lakes Bioenergy Research Center, University of Wisconsin, Madison, Wisconsin, USA
| | - Steven D Karlen
- Wisconsin Energy Institute, University of Wisconsin, Madison, Wisconsin, USA.,Great Lakes Bioenergy Research Center, University of Wisconsin, Madison, Wisconsin, USA.,Department of Biochemistry, University of Wisconsin, Madison, Wisconsin, USA
| | - Alan Higbee
- Wisconsin Energy Institute, University of Wisconsin, Madison, Wisconsin, USA.,Great Lakes Bioenergy Research Center, University of Wisconsin, Madison, Wisconsin, USA.,Genome Center of Wisconsin, University of Wisconsin, Madison, Wisconsin, USA
| | - Emily T Beebe
- Great Lakes Bioenergy Research Center, University of Wisconsin, Madison, Wisconsin, USA
| | - John Ralph
- Wisconsin Energy Institute, University of Wisconsin, Madison, Wisconsin, USA.,Great Lakes Bioenergy Research Center, University of Wisconsin, Madison, Wisconsin, USA.,Department of Biochemistry, University of Wisconsin, Madison, Wisconsin, USA
| | - Joshua J Coon
- Great Lakes Bioenergy Research Center, University of Wisconsin, Madison, Wisconsin, USA.,Genome Center of Wisconsin, University of Wisconsin, Madison, Wisconsin, USA.,Department of Biomolecular Chemistry, University of Wisconsin, Madison, Wisconsin, USA
| | - Brian G Fox
- Wisconsin Energy Institute, University of Wisconsin, Madison, Wisconsin, USA.,Great Lakes Bioenergy Research Center, University of Wisconsin, Madison, Wisconsin, USA.,Department of Biochemistry, University of Wisconsin, Madison, Wisconsin, USA
| | - Timothy J Donohue
- Department of Bacteriology, University of Wisconsin, Madison, Wisconsin, USA .,Wisconsin Energy Institute, University of Wisconsin, Madison, Wisconsin, USA.,Great Lakes Bioenergy Research Center, University of Wisconsin, Madison, Wisconsin, USA
| |
Collapse
|
12
|
Yang H, Zhou M, Li H, Wei T, Tang C, Zhou Y, Long X. Effects of Low-level Lipid Peroxidation on the Permeability of Nitroaromatic Molecules across a Membrane: A Computational Study. ACS OMEGA 2020; 5:4798-4806. [PMID: 32201765 PMCID: PMC7081259 DOI: 10.1021/acsomega.9b03462] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 12/18/2019] [Indexed: 05/31/2023]
Abstract
Lipid peroxidation (LPO) in cellular membranes can cause severe membrane damage and potential cell death. Although oxidized phospholipids have been proved to lead to great changes in the structures and properties of membranes, effects of low-level LPO on membrane permeability have not yet been fully understood. Here, we explored the molecular mechanism of low-level LPO changing the permeability of nitroaromatic molecules across a lipid bilayer by all-atom molecular dynamics simulations. The results reveal that the enhanced passive transport of nitroaromatic molecules lies in the size of defects (i.e., water "finger" and "cone"), which is further dependent on the extent of LPO and the structural feature of solutes. In detail, if the solute can form more hydrogen bonds with water, which stabilizes the water into a large-size cone, there is a greater permeability coefficient (P). Otherwise, a small-size finger only results in a small increase of P. For example, the presence of 15% oxidized lipids could result in an increase of 2,4,6-trinitrotoluene (TNT's) P by more than 2 orders of magnitude (from 1.7 × 10-2 to 2.39 cm·s-1). The result suggests that the membrane permeability can be greatly promoted in the physiologically relevant environment with low-level LPO, and more importantly, clarifies the contributions of both the hydrophobicity of the membrane interior and the structural feature of solutes to such enhanced permeability. This work may provide significant insight into the toxic effects of nitroaromatic molecules and the pharmaceutical characteristics of tissues with oxidative damage.
Collapse
Affiliation(s)
- Hong Yang
- School
of Materials Science and Engineering, Tsinghua
University, Beijing 100084, China
- Institute
of Chemical Materials, China Academy of
Engineering and Physics, Mianyang 621900, China
| | - Mi Zhou
- Institute
of Chemical Materials, China Academy of
Engineering and Physics, Mianyang 621900, China
| | - Huarong Li
- Institute
of Chemical Materials, China Academy of
Engineering and Physics, Mianyang 621900, China
| | - Tong Wei
- Institute
of Chemical Materials, China Academy of
Engineering and Physics, Mianyang 621900, China
| | - Can Tang
- Institute
of Chemical Materials, China Academy of
Engineering and Physics, Mianyang 621900, China
| | - Yang Zhou
- Institute
of Chemical Materials, China Academy of
Engineering and Physics, Mianyang 621900, China
| | - Xinping Long
- Institute
of Chemical Materials, China Academy of
Engineering and Physics, Mianyang 621900, China
| |
Collapse
|
13
|
Hydroperoxide and carboxyl groups preferential location in oxidized biomembranes experimentally determined by small angle X-ray scattering: Implications in membrane structure. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:2299-2307. [DOI: 10.1016/j.bbamem.2018.05.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 04/26/2018] [Accepted: 05/24/2018] [Indexed: 01/28/2023]
|
14
|
Ribeiro JS, Santos MJMC, Silva LKR, Pereira LCL, Santos IA, da Silva Lannes SC, da Silva MV. Natural antioxidants used in meat products: A brief review. Meat Sci 2018; 148:181-188. [PMID: 30389412 DOI: 10.1016/j.meatsci.2018.10.016] [Citation(s) in RCA: 155] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 10/22/2018] [Accepted: 10/23/2018] [Indexed: 01/16/2023]
Abstract
The lipoperoxidation and the oxidation of pigments and proteins reduces the quality and nutritional value of meat products. The use of antioxidants slows down this reaction, preserving the characteristics of the product during its storage and prolonging its useful life. The use of synthetic antioxidants in food products has been the subject of several toxicological studies. Currently, the call for antioxidants from natural sources stands out. Investigations in this sense should be conducted considering the complex mechanism of reactive oxygen species (ROS) and interactions with cellular constituents to elucidate the mechanism of action of synthetic antioxidants and natural sources. Although natural additives appear as an alternative to meet the various market niches and associate natural antioxidants to active packaging as they are progressively released into the product. In this review, we present research with natural antioxidants that could be used satisfactorily in meat products, in addition to recent studies that use them in active packaging.
Collapse
Affiliation(s)
- Jéssica Souza Ribeiro
- Center for Science and Technology in Energy and Sustainability (CETENS), Federal University of the Recôncavo of Bahia (UFRB), Centenário Avenue, 697, SIM District, 44042-280 Feira de Santana, BA, Brazil.
| | | | | | | | | | - Suzana Caetano da Silva Lannes
- Pharmaceutical-Biochemical Technology Department, Pharmaceutical Sciences School, University of Sao Paulo (USP), São Paulo, SP, Brazil.
| | - Marcondes Viana da Silva
- Center of Studies in Food Science (NECAL), State University of the Southwest of Bahia (UESB), Itapetinga, BA, Brazil.
| |
Collapse
|
15
|
Baser H, Can U, Baser S, Hidayetoglu BT, Aslan U, Buyuktorun I, Yerlikaya FH. Serum total oxidant/anti-oxidant status, ischemia-modified albumin and oxidized-low density lipoprotein levels in patients with vitamin D deficiency. ARCHIVES OF ENDOCRINOLOGY AND METABOLISM 2017; 59:318-24. [PMID: 26331319 DOI: 10.1590/2359-3997000000055] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Accepted: 04/22/2015] [Indexed: 11/21/2022]
Abstract
OBJECTIVE Oxidative damage may be responsible for the pathogenesis and complications of many diseases. Vitamin D deficiency has been suggested as a potential mediator of various extra-skeletal pathologies. However, there are limited data on anti-oxidant properties of vitamin D. MATERIALS AND METHODS Forty-one subjects with vitamin D deficiency and 30 healthy controls were enrolled into the study. The levels of total anti-oxidant status (TAS), total oxidant status (TOS), ischemia-modified albumin (IMA), oxidized-low density lipoprotein (ox-LDL), high-sensitivity C-reactive protein (hs-CRP) and fibrinogen were measured in both groups. The measurements were repeated in 17 patients after the replacement of vitamin D. RESULTS Serum IMA and TOS levels were significantly higher (p < 0.001 and p = 0.035, respectively), while TAS levels were significantly lower in patients, compared to controls (p < 0.001). Additionally, fibrinogen was significantly higher in patients than controls (p = 0.003), while ox-LDL and hs-CRP levels were similar between two groups. After the replacement of vitamin D, TAS level significantly increased (p = 0.037), and TOS and fibrinogen levels significantly decreased (p = 0.043 and p = 0.010, respectively). Vitamin D levels were negatively correlated with IMA and fibrinogen levels (r = -0.500, p < 0.001 and r = -0.391, p = 0.002, respectively), although positively correlated with TAS levels (r = 0.430, p < 0.001). No correlation was found between vitamin D levels, and the TOS, ox-LDL and hs-CRP levels. CONCLUSIONS In this study, while serum IMA, TOS and fibrinogen levels were increased, TAS levels were seen to be decreased in patients with vitamin D deficiency. These results suggest that oxidative/anti-oxidative balance shifts in favours of oxidative status in vitamin D deficiency.
Collapse
Affiliation(s)
- Husniye Baser
- Department of Endocrinology and Metabolism, Konya Education and Research Hospital, Konya, TR
| | - Ummugulsum Can
- Department of Biochemistry, Konya Education and Research Hospital, Konya, TR
| | - Salih Baser
- Department of Internal Medicine, Konya Education and Research Hospital, Konya, TR
| | | | - Uysaler Aslan
- Department of Internal Medicine, Konya Education and Research Hospital, Konya, TR
| | - Ilker Buyuktorun
- Department of Internal Medicine, Konya Education and Research Hospital, Konya, TR
| | | |
Collapse
|
16
|
Hentschel A, Zahedi RP, Ahrends R. Protein lipid modifications--More than just a greasy ballast. Proteomics 2016; 16:759-82. [PMID: 26683279 DOI: 10.1002/pmic.201500353] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Revised: 10/24/2015] [Accepted: 12/14/2015] [Indexed: 12/21/2022]
Abstract
Covalent lipid modifications of proteins are crucial for regulation of cellular plasticity, since they affect the chemical and physical properties and therefore protein activity, localization, and stability. Most recently, lipid modifications on proteins are increasingly attracting important regulatory entities in diverse signaling events and diseases. In all cases, the lipid moiety of modified proteins is essential to allow water-soluble proteins to strongly interact with membranes or to induce structural changes in proteins that are critical for elemental processes such as respiration, transport, signal transduction, and motility. Until now, roughly about ten lipid modifications on different amino acid residues are described at the UniProtKB database and even well-known modifications are underrepresented. Thus, it is of fundamental importance to develop a better understanding of this emerging and so far under-investigated type of protein modification. Therefore, this review aims to give a comprehensive and detailed overview about enzymatic and nonenzymatic lipidation events, will report their role in cellular biology, discuss their relevancy for diseases, and describe so far available bioanalytical strategies to analyze this highly challenging type of modification.
Collapse
Affiliation(s)
- Andreas Hentschel
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V, Dortmund, Germany
| | - René P Zahedi
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V, Dortmund, Germany
| | - Robert Ahrends
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V, Dortmund, Germany
| |
Collapse
|
17
|
Tovar J, de Mello VD, Nilsson A, Johansson M, Paananen J, Lehtonen M, Hanhineva K, Björck I. Reduction in cardiometabolic risk factors by a multifunctional diet is mediated via several branches of metabolism as evidenced by nontargeted metabolite profiling approach. Mol Nutr Food Res 2016; 61. [DOI: 10.1002/mnfr.201600552] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 09/05/2016] [Accepted: 09/11/2016] [Indexed: 01/02/2023]
Affiliation(s)
- Juscelino Tovar
- Food for Health Science Centre; Lund University; Lund Sweden
| | - Vanessa D. de Mello
- Department of Clinical Nutrition; Institute of Public Health and Clinical Nutrition; University of Eastern Finland; Kuopio Campus Kuopio Finland
| | - Anne Nilsson
- Food for Health Science Centre; Lund University; Lund Sweden
| | - Maria Johansson
- Food for Health Science Centre; Lund University; Lund Sweden
| | - Jussi Paananen
- Department of Clinical Nutrition; Institute of Public Health and Clinical Nutrition; University of Eastern Finland; Kuopio Campus Kuopio Finland
| | - Marko Lehtonen
- School of Pharmacy; University of Eastern Finland; Kuopio Finland
| | - Kati Hanhineva
- Department of Clinical Nutrition; Institute of Public Health and Clinical Nutrition; University of Eastern Finland; Kuopio Campus Kuopio Finland
| | - Inger Björck
- Food for Health Science Centre; Lund University; Lund Sweden
| |
Collapse
|
18
|
Siani P, de Souza RM, Dias LG, Itri R, Khandelia H. An overview of molecular dynamics simulations of oxidized lipid systems, with a comparison of ELBA and MARTINI force fields for coarse grained lipid simulations. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:2498-2511. [PMID: 27058982 DOI: 10.1016/j.bbamem.2016.03.031] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 03/23/2016] [Accepted: 03/24/2016] [Indexed: 11/29/2022]
Abstract
Biological membranes and model lipid systems containing high amounts of unsaturated lipids and sterols are subject to chemical and/or photo-induced lipid oxidation, which leads to the creation of exotic oxidized lipid products (OxPLs). OxPLs are known to have significant physiological impact in cellular systems and also affect physical properties of both biological and model lipid bilayers. In this paper we (i) provide a perspective on the existing literature on simulations of lipid bilayer systems containing oxidized lipid species as well as the main related experimental results, (ii) describe our new data of all-atom and coarse-grained simulations of hydroperoxidized lipid monolayer and bilayer systems and (iii) provide a comparison of the MARTINI and ELBA coarse grained force fields for lipid bilayer systems. We show that the better electrostatic treatment of interactions in ELBA is able to resolve previous conflicts between experiments and simulations. This article is part of a Special Issue entitled: Biosimulations edited by Ilpo Vattulainen and Tomasz Róg.
Collapse
Affiliation(s)
- P Siani
- MEMPHYS-Center for Biomembrane Physics, Department of Physics and Chemistry, University of Southern, Denmark; Departamento de Química, FFCLRP, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - R M de Souza
- Departamento de Química, FFCLRP, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - L G Dias
- Departamento de Química, FFCLRP, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - R Itri
- Departamento de Física Aplicada, Instituto de Física, Universidade de São Paulo, São Paulo, SP, Brazil
| | - H Khandelia
- MEMPHYS-Center for Biomembrane Physics, Department of Physics and Chemistry, University of Southern, Denmark.
| |
Collapse
|
19
|
Sequential change in physicochemical properties of LDL during oxidative modification. Chem Phys Lipids 2015; 193:52-62. [DOI: 10.1016/j.chemphyslip.2015.10.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Revised: 10/26/2015] [Accepted: 10/27/2015] [Indexed: 11/19/2022]
|
20
|
Skoczyńska A. Postprandial decrease in LDL-cholesterol in men with metabolic syndrome. Open Med (Wars) 2015; 10:138-151. [PMID: 28352689 PMCID: PMC5153088 DOI: 10.1515/med-2015-0025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2013] [Accepted: 03/31/2014] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND In some epidemiological studies, blood lipids are determined at non-fasting state, which may impact cardiovascular risk estimation. The aim of this study was to evaluate postprandial LDL-C changes in men with newly diagnosed metabolic syndrome (MetSy). METHODS 36 male patients were examined: 12 men with and 24 men without MetSy. The fat tolerance test was performed before and after a three-month hypolipidemic treatment. Serum lipids were measured using routine methods, lipid peroxides (LPO) colorimetrically, apolipoproteins A-I, B, and hsCRP immunoturbidimetrically. RESULTS The postprandial increase in triglycerides was associated with a decrease in LDL-C and a small decrease in apo B. In men with MetSy, the mean change in LDL-C (-19.5 ± 2.3 mg/dl) was greater than in healthy men (-5.7 ± 3.8 mg/dl). All lipid changes (ΔTG, ΔLDL-C and ΔLPO) were linearly dependent on the postprandial non-LDL-cholesterol. After three months of hypolipidemic treatment, in all men with MetSy, the apoB/apoA-I ratio remained the same as before the therapy. CONCLUSION In men diagnosed with MetSy, postprandial decreases in LDL-cholesterol may cause underestimation of cardiovascular risk. After three months of hypolipidemic treatment, there was only a partial reduction in this risk, as the apoB/apoA-I ratio remained the same.
Collapse
|
21
|
Spiteller G, Afzal M. The action of peroxyl radicals, powerful deleterious reagents, explains why neither cholesterol nor saturated fatty acids cause atherogenesis and age-related diseases. Chemistry 2014; 20:14928-45. [PMID: 25318456 DOI: 10.1002/chem.201404383] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cells respond to alterations in their membrane structure by activating hydrolytic enzymes. Thus, polyunsaturated fatty acids (PUFAs) are liberated. Free PUFAs react with molecular oxygen to give lipid hydroperoxide molecules (LOOHs). In case of severe cell injury, this physiological reaction switches to the generation of lipid peroxide radicals (LOO(·)). These radicals can attack nearly all biomolecules such as lipids, carbohydrates, proteins, nucleic acids and enzymes, impairing their biological functions. Identical cell responses are triggered by manipulation of food, for example, heating/grilling and particularly homogenization, representing cell injury. Cholesterol as well as diets rich in saturated fat have been postulated to accelerate the risk of atherosclerosis while food rich in unsaturated fatty acids has been claimed to lower this risk. However, the fact is that LOO(·) radicals generated from PUFAs can oxidize cholesterol to toxic cholesterol oxides, simulating a reduction in cholesterol level. In this review it is shown how active LOO(·) radicals interact with biomolecules at a speed transcending usual molecule-molecule reactions by several orders of magnitude. Here, it is explained how functional groups are fundamentally transformed by an attack of LOO(·) with an obliteration of essential biomolecules leading to pathological conditions. A serious reconsideration of the health and diet guidelines is required.
Collapse
Affiliation(s)
- Gerhard Spiteller
- University of Bayreuth, Universitätsstr. 30, 95445 Bayreuth (Germany).
| | | |
Collapse
|
22
|
Kelley NS, Yoshida Y, Erickson KL. Do n-3 Polyunsaturated Fatty Acids Increase or Decrease Lipid Peroxidation in Humans? Metab Syndr Relat Disord 2014; 12:403-15. [DOI: 10.1089/met.2014.0045] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Nirvair S. Kelley
- Arizona College of Osteopathic Medicine, Midwestern University, Glendale, Arizona
| | - Yasukazu Yoshida
- Health Technology Research Center, National Institute of Advanced Industrial Science and Technology, Osaka, Japan
| | - Kent L. Erickson
- Department of Cell Biology and Human Anatomy, University of California, School of Medicine, Davis, California
| |
Collapse
|
23
|
Shichiri M, Adkins Y, Ishida N, Umeno A, Shigeri Y, Yoshida Y, Fedor DM, Mackey BE, Kelley DS. DHA concentration of red blood cells is inversely associated with markers of lipid peroxidation in men taking DHA supplement. J Clin Biochem Nutr 2014; 55:196-202. [PMID: 25411526 PMCID: PMC4227822 DOI: 10.3164/jcbn.14-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 06/22/2014] [Indexed: 02/05/2023] Open
Abstract
An increase in the proportion of fatty acids with higher numbers of double bonds is believed to increase lipid peroxidation, which augments the risk for many chronic diseases. (n-3) Polyunsaturated fatty acids provide various health benefits, but there is a concern that they might increase lipid peroxidation. We examined the effects of docosahexaenoic acid [22:6 (n-3)] supplementation on lipid peroxidation markers in plasma and red blood cells (RBC) and their associations with red blood cell and plasma fatty acids. Hypertriglyceridemic men (n = 17 per group) aged 39–66 years participated in a double-blind, randomized, placebo-controlled, parallel study. They received no supplements for the first 8 days and then received 7.5 g/day docosahexaenoic acid oil (3 g/day docosahexaenoic acid) or olive oil (placebo) for 90 days. Fasting blood samples were collected 0, 45, and 91 days after supplementation. Docosahexaenoic acid supplementation did not change plasma or RBC concentrations of lipid peroxidation markers (total hydroxyoctadecadienoic acid, total hydroxyeicosatetraenoic acid, total 8-isoprostaglandin F2α, 7α-hydroxycholesterol, 7β-hydroxycholesterol) when pre- and post-supplement values were compared. However, the post-supplement docosahexaenoic acid (DHA) concentration was inversely associated with RBC concentrations of ZE-HODE, EE-HODE, t-HODE, and total 8-isoprostaglandin F2α, (p<0.05). RBC concentration of hydroxycholesterol was also inversely associated with DHA but it did not attain significance (p = 0.07). Our results suggest that increased concentration of DHA in RBC lipids reduced lipid peroxidation. This may be another health benefit of DHA in addition to its many other health promoting effects.
Collapse
Affiliation(s)
- Mototada Shichiri
- Health Research Institute (HRI), National Institute of Advanced Industrial Science and Technology (AIST), 2217-14 Hayashi-cho, Takamatsu, Kagawa 761-0395, Japan
| | - Yuriko Adkins
- Western Human Nutrition Research Center, ARS, USDA and Department of Nutrition, University of California Davis, CA 95616, USA
| | - Noriko Ishida
- Health Research Institute (HRI), National Institute of Advanced Industrial Science and Technology (AIST), 2217-14 Hayashi-cho, Takamatsu, Kagawa 761-0395, Japan
| | - Aya Umeno
- Health Research Institute (HRI), National Institute of Advanced Industrial Science and Technology (AIST), 2217-14 Hayashi-cho, Takamatsu, Kagawa 761-0395, Japan
| | - Yasushi Shigeri
- Health Research Institute (HRI), National Institute of Advanced Industrial Science and Technology (AIST), 2217-14 Hayashi-cho, Takamatsu, Kagawa 761-0395, Japan
| | - Yasukazu Yoshida
- Health Research Institute (HRI), National Institute of Advanced Industrial Science and Technology (AIST), 2217-14 Hayashi-cho, Takamatsu, Kagawa 761-0395, Japan
| | - Dawn M Fedor
- Western Human Nutrition Research Center, ARS, USDA and Department of Nutrition, University of California Davis, CA 95616, USA
| | - Bruce E Mackey
- Western Regional Research Center, ARS, USDA, Albany, CA 94710, USA
| | - Darshan S Kelley
- Western Human Nutrition Research Center, ARS, USDA and Department of Nutrition, University of California Davis, CA 95616, USA
| |
Collapse
|
24
|
Jiménez-Rojo N, Viguera AR, Collado MI, Sims KH, Constance C, Hill K, Shaw WA, Goñi FM, Alonso A. Sphingosine induces the aggregation of imine-containing peroxidized vesicles. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:2071-7. [DOI: 10.1016/j.bbamem.2014.04.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 04/25/2014] [Accepted: 04/28/2014] [Indexed: 01/09/2023]
|
25
|
Opperman M, Benade S. Analysis of the omega-3 fatty acid content of South African fish oil supplements: a follow-up study. Cardiovasc J Afr 2014; 24:297-302. [PMID: 24240381 PMCID: PMC3821093 DOI: 10.5830/cvja-2013-074] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Accepted: 04/16/2013] [Indexed: 12/22/2022] Open
Abstract
INTRODUCTION Globally the omega-3 (n-3) fatty acid supplement industry is expanding rapidly while consumers are becoming more aware of the health benefits of n-3 fatty acids. Our group conducted a survey in 2009 on 45 commercially available fish oil supplements on the South African market. The aim of the study was to determine the fatty acid composition and content of supplements for comparison with the claimed contents on the product label. The survey was repeated in 2012 on 63 supplements. METHODS Sixty-three commercially available n-3 fatty acid supplements were analysed using gas-liquid chromatography to determine their fatty acid composition and content. RESULTS This analysis has shown an improvement in the accuracy of EPA content (44% in 2009) declared on supplement labels compared to the 2012 (52%) survey. It was also evident that a higher percentage of supplements (13% in 2009 vs 35% in 2012) contained DHA levels higher than declared. In 2009, 64% of supplements cost R2.01 to R5.00 or more to achieve a daily intake of 500 mg EPA + DHA, compared to 81% in 2012. Forty-four per cent of supplements were found to be in the early stages of rancidity [conjugated diene (CD) levels] compared to 73% in 2009. More than 80% of supplements had peroxide levels higher than the recommended content as specified by the Global Organisation for EPA and DHA Omega-3 (GOED). The majority (81%; n = 51) of the supplements under study in 2012 had a 1.1-1.5:1 EPA-to-DHA ratio or less, compared to 56% in 2009. Almost a third (32%) of the supplements in the 2012 survey contained ethyl esters (EE) or a combination of ethyl esters and triglycerides. CONCLUSION Although the results of the 2012 versus the 2009 analysis were encouraging in terms of the accuracy of EPA declared on the supplement labels, the high peroxide levels found in the supplement oils are of concern. High peroxide levels are associated with potential health implications. EE were present in some of the supplements, even though the safety of EE has not been confirmed in vulnerable groups such as pregnant women and children.
Collapse
Affiliation(s)
- Maretha Opperman
- Functional Foods Research Unit, Department of Agriculture and Food Science, Cape Peninsula University of Technology, Cape Town, South Africa
| | | |
Collapse
|
26
|
The initiation of free radical peroxidation of low-density lipoproteins by glucose and its metabolite methylglyoxal: a common molecular mechanism of vascular wall injure in atherosclerosis and diabetes. Mol Cell Biochem 2014; 395:241-52. [PMID: 24997046 DOI: 10.1007/s11010-014-2131-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 06/17/2014] [Indexed: 12/19/2022]
Abstract
It was found that glucose in the range of concentrations 12.5-100 mM stimulated Cu(2+)-mediated free radical peroxidation of low-density lipoproteins (LDL) from human blood plasma. Considering the kinetic parameters of LDL peroxidation we proposed that intensification of this process may be caused by formation of free radical intermediates of glucose auto-oxidation. Addition of SOD to the medium inhibited LDL oxidation, indicating the formation of superoxide anion-radicals under autoxidation of glucose. Similarly, SOD inhibited free radical peroxidation of liposomes from egg lecithin in the presence of glucose that confirms the generation of superoxide radicals under co-oxidation of unsaturated lipids and glucose. Normalization of glucose level in the blood of patients with type 2 diabetes mellitus during therapy was accompanied by a significant decrease in LDL oxidation in vivo (the decrease in primary and secondary lipoperoxidation products). The formation of superoxide anion-radicals was observed during interaction of aminoacid L-lysine with a product of glucose oxidative metabolism-methylglyoxal, but not with a product of lipoperoxidation malonyldialdehyde. In accordance with the foregoing the administration of sugar-lowering drug metformin, which binds and utilizes methylglyoxal, caused a stronger inhibition of LDL peroxidation in the blood of patients with diabetes mellitus, probably due to decrease in methylglyoxal-dependent generation of superoxide anion-radicals. Based on the results we set out the hypothesis about autocatalytic mechanism of free radical reactions involving natural dicarbonyls and suppose the common molecular mechanism of vascular wall injury in atherosclerosis and diabetes.
Collapse
|
27
|
Vasil’ev YV, Tzeng SC, Huang L, Maier CS. Protein modifications by electrophilic lipoxidation products: adduct formation, chemical strategies and tandem mass spectrometry for their detection and identification. MASS SPECTROMETRY REVIEWS 2014; 33:157-82. [PMID: 24818247 PMCID: PMC4138024 DOI: 10.1002/mas.21389] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The post-translational modification of proteins by electrophilic oxylipids is emerging as an important mechanism that contributes to the complexity of proteomes. Enzymatic and non-enzymatic oxidation of biological lipids results in the formation of chemically diverse electrophilic carbonyl compounds, such as 2-alkenals and 4-hydroxy alkenals, epoxides, and eicosanoids with reactive cyclopentenone structures. These lipoxidation products are capable of modifying proteins. Originally considered solely as markers of oxidative insult, more recently the modifications of proteins by lipid peroxidation products are being recognized as a new mechanism of cell signaling with relevance to redox homeostasis, adaptive response and inflammatory resolution. The growing interest in protein modifications by reactive oxylipid species necessitates the availability of methods that are capable of detecting, identifying and characterizing these protein adducts in biological samples with high complexity. However, the efficient analysis of these chemically diverse protein adducts presents a considerable analytical challenge. We first provide an introduction into the chemistry and biological relevance of protein adductions by electrophilic lipoxidation products. We then provide an overview of tandem mass spectrometry approaches that have been developed in recent years for the interrogation of protein modifications by electrophilic oxylipid species.
Collapse
Affiliation(s)
| | | | | | - Claudia S. Maier
- Corresponding author: Department of Chemistry, Oregon State University, 153 Gilbert Hall Phone: 541-737-9533 Fax: 541-737-2062
| |
Collapse
|
28
|
Teixeira A, Cox RC, Egmond MR. Furan fatty acids efficiently rescue brain cells from cell death induced by oxidative stress. Food Funct 2014; 4:1209-15. [PMID: 23719714 DOI: 10.1039/c3fo60094g] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Treatment of rat brain C6 astroglioma cells with furan fatty acid F6 prior to exposure to hydrogen peroxide shows a strong protective effect of F6 against cell death resulting from oxidative stress. This protective effect is obtained only for F6 administered as a free fatty acid and with an intact furan ring. It is proposed that brain cells are rescued by F6 scavenging radicals elicited by lipid peroxidation within the cell membrane. Oxidative processes outside the cell membrane, such as protein carbonylation, are not affected by F6. Furan fatty acids such as those present in fish oils and marine organisms are likely beneficial for consumption in reducing the risk of diseases that have been implicated to arise from oxidative stress, such as Alzheimer's disease.
Collapse
Affiliation(s)
- Antoinette Teixeira
- Department of Membrane Biochemistry and Biophysics, Bijvoet Center, University of Utrecht, Padualaan 8, 3584CH Utrecht, The Netherlands
| | | | | |
Collapse
|
29
|
Why fish oil fails: a comprehensive 21st century lipids-based physiologic analysis. J Lipids 2014; 2014:495761. [PMID: 24551453 PMCID: PMC3914521 DOI: 10.1155/2014/495761] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 11/10/2013] [Accepted: 11/11/2013] [Indexed: 11/18/2022] Open
Abstract
The medical community suffered three significant fish oil failures/setbacks in 2013. Claims that fish oil's EPA/DHA would stop the progression of heart disease were crushed when The Risk and Prevention Study Collaborative Group (Italy) released a conclusive negative finding regarding fish oil for those patients with high risk factors but no previous myocardial infarction. Fish oil failed in all measures of CVD prevention-both primary and secondary. Another major 2013 setback occurred when fish oil's DHA was shown to significantly increase prostate cancer in men, in particular, high-grade prostate cancer, in the Selenium and Vitamin E Cancer Prevention Trial (SELECT) analysis by Brasky et al. Another monumental failure occurred in 2013 whereby fish oil's EPA/DHA failed to improve macular degeneration. In 2010, fish oil's EPA/DHA failed to help Alzheimer's victims, even those with low DHA levels. These are by no means isolated failures. The promise of fish oil and its so-called active ingredients EPA / DHA fails time and time again in clinical trials. This lipids-based physiologic review will explain precisely why there should have never been expectation for success. This review will focus on underpublicized lipid science with a focus on physiology.
Collapse
|
30
|
Effects of Aging and Hypercholesterolemia on Oxidative Stress and DNA Damage in Bone Marrow Mononuclear Cells in Apolipoprotein E-deficient Mice. Int J Mol Sci 2013; 14:3325-42. [PMID: 23385237 PMCID: PMC3588046 DOI: 10.3390/ijms14023325] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Revised: 01/10/2013] [Accepted: 01/29/2013] [Indexed: 01/01/2023] Open
Abstract
Recent evidence from apolipoprotein E-deficient (apoE−/−) mice shows that aging and atherosclerosis are closely associated with increased oxidative stress and DNA damage in some cells and tissues. However, bone marrow cells, which are physiologically involved in tissue repair have not yet been investigated. In the present study, we evaluated the influence of aging and hypercholesterolemia on oxidative stress, DNA damage and apoptosis in bone marrow cells from young and aged apoE−/− mice compared with age-matched wild-type C57BL/6 (C57) mice, using the comet assay and flow cytometry. The production of both superoxide and hydrogen peroxide in bone marrow cells was higher in young apoE−/− mice than in age-matched C57 mice, and reactive oxygen species were increased in aged C57 and apoE−/− mice. Similar results were observed when we analyzed the DNA damage and apoptosis. Our data showed that both aging and hypercholesterolemia induce the increased production of oxidative stress and consequently DNA damage and apoptosis in bone marrow cells. This study is the first to demonstrate a functionality decrease of the bone marrow, which is a fundamental extra-arterial source of the cells involved in vascular injury repair.
Collapse
|
31
|
Sharma H, Zhang X, Dwivedi C. The effect of ghee (clarified butter) on serum lipid levels and microsomal lipid peroxidation. Ayu 2012; 31:134-40. [PMID: 22131700 PMCID: PMC3215354 DOI: 10.4103/0974-8520.72361] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Ghee, also known as clarified butter, has been utilized for thousands of years in Ayurveda as a therapeutic agent. In ancient India, ghee was the preferred cooking oil. In the last several decades, ghee has been implicated in the increased prevalence of coronary artery disease (CAD) in Asian Indians due to its content of saturated fatty acids and cholesterol and, in heated ghee, cholesterol oxidation products. Our previous research on Sprague-Dawley outbred rats, which serve as a model for the general population, showed no effect of 5 and 10% ghee-supplemented diets on serum cholesterol and triglycerides. However, in Fischer inbred rats, which serve as a model for genetic predisposition to diseases, results of our previous research showed an increase in serum total cholesterol and triglyceride levels when fed a 10% ghee-supplemented diet. In the present study, we investigated the effect of 10% dietary ghee on microsomal lipid peroxidation, as well as serum lipid levels in Fischer inbred rats to assess the effect of ghee on free radical mediated processes that are implicated in many chronic diseases including cardiovascular disease. Results showed that 10% dietary ghee fed for 4 weeks did not have any significant effect on levels of serum total cholesterol, but did increase triglyceride levels in Fischer inbred rats. Ghee at a level of 10% in the diet did not increase liver microsomal lipid peroxidation or liver microsomal lipid peroxide levels. Animal studies have demonstrated many beneficial effects of ghee, including dose-dependent decreases in serum total cholesterol, low density lipoprotein (LDL), very low density lipoprotein (VLDL), and triglycerides; decreased liver total cholesterol, triglycerides, and cholesterol esters; and a lower level of nonenzymatic-induced lipid peroxidation in liver homogenate. Similar results were seen with heated (oxidized) ghee which contains cholesterol oxidation products. A preliminary clinical study showed that high doses of medicated ghee decreased serum cholesterol, triglycerides, phospholipids, and cholesterol esters in psoriasis patients. A study on a rural population in India revealed a significantly lower prevalence of coronary heart disease in men who consumed higher amounts of ghee. Research on Maharishi Amrit Kalash-4 (MAK-4), an Ayurvedic herbal mixture containing ghee, showed no effect on levels of serum cholesterol, high density lipoprotein (HDL), LDL, or triglycerides in hyperlipidemic patients who ingested MAK-4 for 18 weeks. MAK-4 inhibited the oxidation of LDL in these patients. The data available in the literature do not support a conclusion of harmful effects of the moderate consumption of ghee in the general population. Factors that may be involved in the rise of CAD in Asian Indians include the increased use of vanaspati (vegetable ghee) which contains 40% trans fatty acids, psychosocial stress, insulin resistance, and altered dietary patterns. Research findings in the literature support the beneficial effects of ghee outlined in the ancient Ayurvedic texts and the therapeutic use of ghee for thousands of years in the Ayurvedic system of medicine.
Collapse
Affiliation(s)
- Hari Sharma
- Center for Integrative Medicine and Department of Pathology, The Ohio State University, Columbus, OH 43210, USA
| | | | | |
Collapse
|
32
|
Lipid peroxidation and water penetration in lipid bilayers: a W-band EPR study. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1828:510-7. [PMID: 23036933 DOI: 10.1016/j.bbamem.2012.09.026] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Revised: 09/24/2012] [Accepted: 09/25/2012] [Indexed: 11/20/2022]
Abstract
Lipid peroxidation plays a key role in the alteration of cell membrane's properties. Here we used as model systems multilamellar vesicles (MLVs) made of the first two products in the oxidative cascade of linoleoyl lecithin, namely 1-palmitoyl-2-(13-hydroperoxy-9,11-octadecanedienoyl)-lecithin (HpPLPC) and 1-palmitoyl-2-(13-hydroxy-9,11-octadecanedienoyl)-lecithin (OHPLPC), exhibiting a hydroperoxide or a hydroxy group at position 13, respectively. The two oxidized lipids were used either pure or in a 1:1 molar ratio mixture with untreated 1-palmitoyl-2-linoleoyl-lecithin (PLPC). The model membranes were doped with spin-labeled lipids to study bilayer alterations by electron paramagnetic resonance (EPR) spectroscopy. Two different spin-labeled lipids were used, bearing the doxyl ring at position (n) 5 or 16: γ-palmitoyl-β-(n-doxylstearoyl)-lecithin (n-DSPPC) and n-doxylstearic acid (n-DSA). Small changes in the acyl chain order in the sub-polar region and at the methyl-terminal induced by lipid peroxidation were detected by X-band EPR. Concomitantly, the polarity and proticity of the membrane bilayer in those regions were investigated at W band in frozen samples. Analysis of the g(xx) and A(zz) parameters revealed that OHPLPC, but mostly HpPLPC, induced a measurable increase in polarity and H-bonding propensity in the central region of the bilayer. Molecular dynamics simulation performed on 16-DSA in the PLPC-HpPLPC bilayer revealed that water molecules are statistically favored with respect to the hydroperoxide groups to interact with the nitroxide at the methyl-terminal, confirming that the H-bonds experimentally observed are due to increased water penetration in the bilayer. The EPR and MD data on model membranes demonstrate that cell membrane damage by oxidative stress cause alteration of water penetration in the bilayer.
Collapse
|
33
|
Oxidative stress parameters in serum and low density lipoproteins of Hashimoto's thyroiditis patients with subclinical and overt hypothyroidism. Int Immunopharmacol 2012; 14:349-52. [PMID: 22951187 DOI: 10.1016/j.intimp.2012.08.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Revised: 07/30/2012] [Accepted: 08/13/2012] [Indexed: 02/06/2023]
Abstract
BACKGROUND Although prooxidant and antioxidant status were reported to be changed in clinical and experimental hypothyroidism, obtained results are conflicting. In addition, in subclinical hypothyroidism, scarced and controversial data are available about oxidative stress. Therefore, we aimed to investigate prooxidant-antioxidant status only in Hashimoto's thyroiditis (HT) patients with subclinical (sHT) and overt hypothyroidism (oHT). SUBJECTS AND METHODS Thirty sHT and 18 oHT patients and 30 healthy control subjects were included in the study. Endogenous and prooxidant 2,2'-azobis-(2-amidinopropane) hydrochloride (AAPH)-induced malondialdehyde (MDA), diene conjugate (DC), protein carbonyl (PC) and nitrotyrosine (NT) levels as well as ferric reducing antioxidant power (FRAP) were determined in serum. In addition, endogenous DC and copper-induced MDA levels were measured in low density lipoprotein (LDL) fraction. RESULTS Although there were no significant difference in serum endogenous MDA and DC levels, AAPH-induced MDA levels were significantly increased in sHT patients. All these parameters increased in oHT patients. Serum PC levels were detected to be increased in both sHT and oHT patients. Serum FRAP values did not alter in sHT patients, but they lowered in oHT patients. Endogenous DC and copper-induced MDA levels in LDL fraction did not change in sHT patients. However, these parameters were detected to be increased significantly in oHT patients as compared to controls and sHT patients. CONCLUSION In conclusion, there were significant increases in oxidative stress parameters in serum and LDL-fraction in oHT patients. However, oxidative stress was detected to stimulate partly in serum, but not LDL fraction in sHT patients.
Collapse
|
34
|
Similarities and differences between the effects of EPA and DHA on markers of atherosclerosis in human subjects. Proc Nutr Soc 2012; 71:322-31. [PMID: 22369859 DOI: 10.1017/s0029665112000080] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We have reviewed effects of long chain (LC) n-3 PUFA on markers of atherosclerosis in human subjects with a focus on individual effects of EPA and DHA. Initial results from epidemiological studies suggested that LC n-3 PUFA from fish oils (FO) reduced incidence of CVD; those results have been confirmed in interventional studies. Dietary intervention with n-3 PUFA decreased fasting and postprandial TAG, number of remnant-like chylomicron particles, large VLDL, and total and small dense LDL particles. It increased mean size of LDL particles by increasing number of large and decreasing those of small dense particles. With some exceptions, n-3 PUFA decreased blood pressure (BP) and heart rate (HR), flow-mediated dilation (FMD) and plasma concentrations of inflammatory markers. n-3 PUFA also decreased circulating adhesion molecules and intima-media thickness (IMT) in some but not other studies. For IMT, results varied with the sex and artery being examined. EPA effects on FMD are endothelial cell dependent, while those of DHA seem to be endothelial cell independent. Individually, both EPA and DHA decreased TAG and inflammatory markers, but only DHA decreased HR, BP and number of small dense LDL particles. Results varied because of dose and duration of n-3 PUFA, EPA:DHA, health status of subjects and other reasons. Future studies are needed to determine optimal doses of EPA and DHA individually, their synergistic, additive or antagonistic effects, and to understand underlying mechanisms. In conclusion, n-3 PUFA decreased several risk factors for atherosclerosis without any serious adverse effects.
Collapse
|
35
|
Byun HJ, Cho KH, Eun HC, Lee MJ, Lee Y, Lee S, Chung JH. Lipid ingredients in moisturizers can modulate skin responses to UV in barrier-disrupted human skin in vivo. J Dermatol Sci 2012; 65:110-7. [PMID: 22209282 DOI: 10.1016/j.jdermsci.2011.12.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Revised: 11/07/2011] [Accepted: 12/03/2011] [Indexed: 01/07/2023]
Abstract
BACKGROUND Chemicals with a molecular weight <500 and adequate lipid solubility can penetrate the intact human skin. As many lipid ingredients in moisturizers have molecular weights <500, the lipid ingredients may penetrate into the skin and affect skin responses to UV; however, little is known about this phenomenon. OBJECTIVE To evaluate the effects of major lipid ingredients in moisturizers on skin responses to UV in tape-stripped human skin in vivo. METHODS We evaluated the effects of three major lipid ingredients in moisturizers (cholesterol, linoleic acid, and a synthetic ceramide, N-oleoyl-phytosphingosine) on skin responses to UV in the tape-stripped skin of healthy volunteers. After 2 days of lipid-application, the areas were irradiated with UV, and skin samples were obtained 24h after irradiation. Histologic features and the expression of the markers of collagen metabolism and inflammatory mediators were evaluated. RESULTS Compared to vehicle, topical cholesterol significantly decreased the degree of dermal inflammatory infiltrates and exocytosis, and also decreased the expression of MMP-1, IL-6, and IL-1ß mRNA. In contrast, topical linoleic acid increased the induction of apoptotic cells, and the expression of MMP-1 and IL-6 mRNA. N-oleoyl-phytosphingosine increased the expression of MMP-1 and IL-6 mRNA, while decreasing the expression of COX-2 mRNA. CONCLUSIONS Topical cholesterol can protect the barrier-disrupted skin against UV-induced damage, while linoleic acid or N-oleoyl-phytosphingosine alone has the potential to aggravate the damage.
Collapse
Affiliation(s)
- Hee Jin Byun
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
36
|
Olmez I, Ozyurt H. Reactive oxygen species and ischemic cerebrovascular disease. Neurochem Int 2011; 60:208-12. [PMID: 22122807 DOI: 10.1016/j.neuint.2011.11.009] [Citation(s) in RCA: 213] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Revised: 09/25/2011] [Accepted: 11/12/2011] [Indexed: 02/07/2023]
Abstract
Stroke is an emerging major health problem often resulting in death or disability. Hyperlipidemia, high blood pressure and diabetes are well established risk factors. Endothelial dysfunction associated with these risk factors underlies pathological processes leading to atherogenesis and cerebral ischemic injury. While mechanisms of disease are complex, endothelial dysfunction involves decreased nitric oxide (NO) and elevated levels of reactive oxygen species (ROS). At physiological levels, ROS participate in regulation of cellular metabolism. However, when ROS increase to toxic levels through imbalance of production and neutralization by antioxidant enzymes, they cause cellular injury in the form of lipid peroxidation, protein oxidation and DNA damage. Central nervous system cells are more vulnerable to ROS toxicity due to their inherent higher oxidative metabolism and less antioxidant enzymes, as well as higher content of membranous fatty acids. During ischemic stroke, ROS concentration rises from normal low levels to a peak point during reperfusion possibly underlying apoptosis or cellular necrosis. Clinical trials and animal studies have shown that natural compounds can reduce oxidative stress due to excessive ROS through their antioxidant properties. With further study, we may be able to incorporate these compounds into clinical use with potential efficacy for both the treatment and prevention of stroke.
Collapse
Affiliation(s)
- Inan Olmez
- Vanderbilt University, Department of Neurology, Nashville, TN 37232, USA.
| | | |
Collapse
|
37
|
Red wine polyphenols protect n−3 more than n−6 polyunsaturated fatty acid from lipid peroxidation. Food Res Int 2011. [DOI: 10.1016/j.foodres.2011.07.029] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
38
|
Furan fatty acid as an anti-inflammatory component from the green-lipped mussel Perna canaliculus. Proc Natl Acad Sci U S A 2011; 108:17533-7. [PMID: 21972415 DOI: 10.1073/pnas.1110577108] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A lipid extract of Perna canaliculus (New Zealand green-lipped mussel) has reportedly displayed anti-inflammatory effects in animal models and in human controlled studies. However, the anti-inflammatory lipid components have not been investigated in detail due to the instability of the lipid extract, which has made the identification of the distinct active components a formidable task. Considering the instability of the active component, we carefully fractionated a lipid extract of Perna canaliculus (Lyprinol) and detected furan fatty acids (F-acids). These naturally but rarely detected fatty acids show potent radical-scavenging ability and are essential constituents of plants and algae. Based on these data, it has been proposed that F-acids could be potential antioxidants, which may contribute to the protective properties of fish and fish oil diets against chronic inflammatory diseases. However, to date, in vivo data to support the hypothesis have not been obtained, presumably due to the limited availability of F-acids. To confirm the in vivo anti-inflammatory effect of F-acids in comparison with that of eicosapentaenoic acid (EPA), we developed a semisynthetic preparation and examined its anti-inflammatory activity in a rat model of adjuvant-induced arthritis. Indeed, the F-acid ethyl ester exhibited more potent anti-inflammatory activity than that of the EPA ethyl ester. We report on the in vivo activity of F-acids, confirming that the lipid extract of the green-lipped mussel includes an unstable fatty acid that is more effective than EPA.
Collapse
|
39
|
Salomon RG, Gu X. Critical insights into cardiovascular disease from basic research on the oxidation of phospholipids: the γ-hydroxyalkenal phospholipid hypothesis. Chem Res Toxicol 2011; 24:1791-802. [PMID: 21870852 DOI: 10.1021/tx200207z] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Basic research, exploring the hypothesis that γ-hydroxyalkenal phospholipids are generated in vivo through oxidative cleavage of polyunsaturated phospholipids, is delivering a bonanza of molecular mechanistic insights into cardiovascular disease. Rather than targeting a specific pathology, these studies were predicated on the presumption that a fundamental understanding of lipid oxidation is likely to provide critical insights into disease processes. This investigational approach, from the chemistry of biomolecules to disease phenotype, that complements the more common opposite paradigm, is proving remarkably productive.
Collapse
Affiliation(s)
- Robert G Salomon
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106-7078, USA.
| | | |
Collapse
|
40
|
Megli FM, Conte E, Russo L. Comparative 5-doxylstearoyllecithin and 3-doxylcholestane EPR spin labeling study of phospholipid bilayer perturbation by different oxidized lecithin species. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1798:1886-98. [DOI: 10.1016/j.bbamem.2010.06.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2010] [Revised: 06/17/2010] [Accepted: 06/17/2010] [Indexed: 01/25/2023]
|
41
|
Hall CJ, Bouhafs L, Dizcfalusy U, Sandstedt K. Cryptococcus neoformans causes lipid peroxidation; therefore it is a potential inducer of atherogenesis. Mycologia 2010; 102:546-51. [PMID: 20524587 DOI: 10.3852/08-110] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Certain viral and bacterial species play a role in the development of atherosclerosis. Our hypothesis was that yeasts, such as Cryptococcus neoformans, also may be a cause of lipid peroxidation (LPO), which can lead to atherosclerosis. Rabbits were inoculated with heat-killed C neoformans several times during the first 6 wk in 10 wk observation. These tests were done at regular intervals: (i) blood cell count, (ii) the nitroblue tetrazolium (NBT) test on isolated neutrophils to determine their super oxide anion production and (iii) LPO of plasma. The histopathology of the lungs also was evaluated. In the inoculated rabbits we found an increase in the number of neutrophils in blood with an elevated NBT reduction, an increase in lipid peroxidation of plasma and bronchopneumonia with various types of inflammatory cells. Our findings suggest that the ability of C. neoformans to induce LPO in human asymptomatic carriers should be studied. Moreover the cryptococcal rabbit model we use rapidly induces LPO and may be of value in the assessment of therapy for atherosclerosis.
Collapse
Affiliation(s)
- Connie Jarstrand Hall
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, SE-14186 Stockholm, Sweden.
| | | | | | | |
Collapse
|
42
|
Characterization and quantification of health beneficial anthocyanins in leaf chicory (Cichorium intybus) varieties. Eur Food Res Technol 2009. [DOI: 10.1007/s00217-009-1144-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
43
|
Le Clair C, Abbi T, Sandhu H, Tappia PS. Impact of maternal undernutrition on diabetes and cardiovascular disease risk in adult offspring. Can J Physiol Pharmacol 2009; 87:161-79. [PMID: 19295658 DOI: 10.1139/y09-006] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Epidemiological, clinical, and experimental observations have led to the hypothesis that the risk of developing chronic diseases in adulthood is influenced not only by genetic and adult lifestyle factors, but also by environmental factors during early life. Low birth weight, a marker of intrauterine stress, has been linked to predisposition to cardiovascular disease (CVD) and diabetes. The compelling animal evidence and significant human data to support this conclusion are reviewed. Specifically, the review discusses the role of maternal nutrition before and during pregnancy, placental insufficiencies and epigenetic changes in the increased predisposition to diabetes and CVD in adult life. The impact of low birth weight and catch-up growth as they pertain to risk of disease in adult life is also discussed. In addition, adult disease risk in the overnourished fetus is also mentioned. Reference is made to some of the mechanisms of the induction of diabetes and CVD phenotype. It is proposed that fetal nutrition, growth and development through efficient maternal nutrition before and during pregnancy could constitute the basis for nutritional strategies for the primary prevention of diabetes and CVD.
Collapse
Affiliation(s)
- Caroline Le Clair
- I.H. Asper Clinical Research Institute, St. Boniface Hospital Research Centre, and Department of Human Nutritional Sciences, Faculty of Human Ecology, University of Manitoba, Winnipeg, MB R2H2A6, Canada
| | | | | | | |
Collapse
|
44
|
Andreadou I, Iliodromitis EK, Farmakis D, Kremastinos DT. To prevent, protect and save the ischemic heart: antioxidants revisited. Expert Opin Ther Targets 2009; 13:945-56. [DOI: 10.1517/14728220903039698] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
45
|
Kassab A, Ajmi T, Issaoui M, Chaeib L, Miled A, Hammami M. Homocysteine enhances LDL fatty acid peroxidation, promoting microalbuminuria in type 2 diabetes. Ann Clin Biochem 2008; 45:476-80. [DOI: 10.1258/acb.2007.007125] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Background We aimed to establish the relationship between glycated haemoglobin (HbA1c), hypertension and microalbuminuria onset in type 2 diabetes. We also intended to ascertain the metabolic action of homocysteine on LDL fatty acids and on renal function. Methods The study was carried out on 200 patients with type 2 diabetes and 200 healthy subjects. HbA1c, apolipoprotein B (apo B) and microalbuminuria were measured using immunoturbidimetric methods. Cholesterol, peroxide, urea and uric acid were assayed using colorimetric methods. Creatinine clearance was calculated using the Cockroft-Gault equation. Homocysteine was measured by immunological fluorescence polarization. LDL fatty acids were quantified by gas chromatography. Results Creatinine and microalbuminuria significantly increased in type 2 diabetes when compared with controls. Microalbuminuria was significantly correlated with HbA1c and with the presence of high blood pressure. Homocysteinaemia significantly correlated with creatinine clearance in diabetes. Linoleic acid (C18:2ω6) did not differ between groups. C18:2ω6/C18:3ω3 ratio was three times higher in diabetics than in controls. Total saturated fatty acids, homocysteine, H2O2 and LDL-thiobarbituric reactive substances significantly increased in microalbuminuric when compared with normoalbuminuric diabetes. Total polyunsaturated fatty acids, arachidonic acid (C20:4ω6), LDL-cholesterol, apo B and creatinine clearance significantly decreased in microalbuminuric when compared with normoalbuminuric diabetes. Conclusion Microalbuminuria onset is associated with renal protein oxidation that is preceded by LDL fatty acid oxidation. The latter is initiated by H2O2 produced from an auto-oxidation of homocysteine and increased metabolism of arachidonic acid towards its pro-inflammatory eicosanoids. An oxidative stress state is the common ground of diffused vasculopathy.
Collapse
Affiliation(s)
- Asma Kassab
- Biochemistry Laboratory, CHU F Hached Sousse
| | | | | | - Larbi Chaeib
- Endocrinology Unit, CHU F Hached Sousse, Tunisia
| | | | | |
Collapse
|
46
|
Sesame as a hypocholesteraemic and antioxidant dietary component. Food Chem Toxicol 2008; 46:1889-95. [DOI: 10.1016/j.fct.2008.01.012] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2006] [Revised: 08/18/2007] [Accepted: 01/08/2008] [Indexed: 11/21/2022]
|
47
|
Biasi F, Mascia C, Poli G. The contribution of animal fat oxidation products to colon carcinogenesis, through modulation of TGF-beta1 signaling. Carcinogenesis 2008; 29:890-4. [PMID: 18453540 DOI: 10.1093/carcin/bgn106] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
It is now unanimously accepted that neoplastic cells tend to become less susceptible to the growth regulatory effects of transforming growth factor-beta1 (TGF-beta1), mainly because of reduced expression and/or activity of TGF-beta1-specific receptors, as reported for many human cancers including colon cancer. Consequently, a sustained increase of TGF-beta1 in the intestinal mucosa, like that caused by inflammatory processes and/or high dietary intake of animal fat, might become crucial for the progression of a neoplastic clone. In fact, this proapoptotic and prodifferentiating cytokine could eliminate neoplastic cells still susceptible to TGF-beta1's antiproliferative action (TGF-beta1 receptor-positive cells), indirectly favoring the expansion of TGF-beta1 resistant ones (TGF-beta1 receptors deficient or negative cells). The actual concentration of TGF-beta1 in the colonic mucosa undergoing neoplastic transformation is still debated, and the phase of the relevant carcinogenetic process in which a reduced susceptibility to this antiproliferative molecule first occurs has not been precisely established yet. However, no doubt that TGF-beta1 level and activity may be upregulated in cells of the macrophage lineage by animal fat oxidation products, such as oxysterols and aldehydes, as reviewed here. But phagocytes as well as fibroblasts constitutively express TGF-beta1 and are accumulating in tumor-associated stroma. Thus, upregulation of this cytokine system within colonic tumor-associated stroma by excess dietary intake of cholesterol and n-6 polyunsaturated fatty acids appears as a primary mechanism of cancer progression at least in neoplastic lesions of the digestive tract.
Collapse
Affiliation(s)
- Fiorella Biasi
- Department of Clinical and Biological Sciences, University of Turin, San Luigi Gonzaga Hospital, Regione Gonzole 10, 10043 Orbassano, Torino, Italy
| | | | | |
Collapse
|
48
|
Spiteller G. The important role of lipid peroxidation processes in aging and age dependent diseases. Mol Biotechnol 2007; 37:5-12. [PMID: 17914157 DOI: 10.1007/s12033-007-0057-6] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 11/30/2022]
Abstract
Any change in the cell membrane structure activates lipoxygenases (LOX). LOX transform polyunsaturated fatty acids (PUFAs) to lipidhydroperoxide molecules (LOOHs). When cells are severely wounded, this physiological process switches to a non-enzymatic lipid peroxidation (LPO) process producing LOO* radicals. These oxidize nearly all-biological molecules such as lipids, sugars, and proteins. The LOO* induced degradations proceed by transfer of the radicals from cell to cell like an infection. The chemical reactions induced by LO* and LOO* radicals seem to be responsible for aging and induction of age dependent diseases.Alternatively, LO* and LOO* radicals are generated by frying of fats and involve cholesterol-PUFA esters and thus induce atherogenesis. Plants and algae are exposed to LOO* radicals generating radiation. In order to remove LOO* radicals, plants and algae transform PUFAs to furan fatty acids, which are incorporated after consumption of vegetables into mammalian tissues where they act as excellent scavengers of LOO* and LO* radicals.
Collapse
Affiliation(s)
- Gerhard Spiteller
- Organic Chemical Department, University of Bayreuth, Universitätsstrasse 30, Bayreuth, Germany.
| |
Collapse
|
49
|
Abstract
Lipid oxidation in foods is one of the major degradative processes responsible for losses in food quality. The oxidation of unsaturated fatty acids results in significant generation of dietary advanced lipid oxidation endproducts (ALEs) which are in part cytotoxic and genotoxic compounds. The gastrointestinal tract is constantly exposed to dietary oxidized food compounds, after digestion a part of them are absorbed into the lymph or directly into the blood stream. After ingestion of oxidized fats animals and human have been shown to excrete in urine increase amounts of malondialdehyde but also lipophilic carbonyl compounds. Oxidized cholesterol in the diet was found to be a source of oxidized lipoproteins in human serum. Some of the dietary ALEs, which are absorbed from the gut to the circulatory system, seems to act as injurious chemicals that activate an inflammatory response which affects not only circulatory system but also organs such as liver, kidney, lung, and the gut itself. We believe that repeated consumption of oxidized fat in the diet poses a chronic threat to human health. High concentration of dietary antioxidants could prevent lipid oxidation and ALEs generation not only in foods but also in stomach condition and thereby potentially decrease absorption of ALEs from the gut. This could explains the health benefit of diets containing large amounts of dietary antioxidants such those present in fruits and vegetables, or products such as red-wine or tea consuming during the meal.
Collapse
Affiliation(s)
- Joseph Kanner
- Department of Food Science, Volcani Center, ARO, Israel.
| |
Collapse
|
50
|
Krisko A, Stjepanović G, Pifat G, Ruysschaert JM, Goormaghtigh E. Detection of apolipoprotein B100 early conformational changes during oxidation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2007; 1768:2923-30. [PMID: 17920034 DOI: 10.1016/j.bbamem.2007.08.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2007] [Revised: 07/17/2007] [Accepted: 08/09/2007] [Indexed: 10/22/2022]
Abstract
Conformational changes of human plasma apolipoprotein B100 (apoB) during oxidative modification of low-density lipoproteins (LDL) have been investigated. Emphasis has been put on the early stages of LDL oxidation and the modification of apoB. We have applied two different modes of LDL oxidation initiation in order to approach the problem from different perspectives. To study conformational changes of the protein and the phospholipids surface monolayer, we have applied attenuated total reflection infrared as well as fluorescence spectroscopy. We have found for the first time that conformational changes of apoB occur even in the earliest stages of oxidation process and that those are located predominantly in the beta-sheet regions. The dynamics of changes has also been described and related to different stages of oxidation. After initial increase in particle surface accessibility and mobility, by entering into the propagation phase of oxidation process, LDL surface accessibility and mobility are decreased. Finally, in the decomposition phase of LDL oxidation, as the particle faces large chemical and physical changes, surface mobility and accessibility is increased again. These observations provide new insights into the modifications of LDL particles upon oxidation.
Collapse
Affiliation(s)
- Anita Krisko
- Mediterranean Institute for Life Science, Mestrovićevo Setaliste bb, HR-21000, Split, Croatia.
| | | | | | | | | |
Collapse
|