1
|
DiPasquale M, Marquardt D. Perceiving the functions of vitamin E through neutron and X-ray scattering. Adv Colloid Interface Sci 2024; 330:103189. [PMID: 38824717 DOI: 10.1016/j.cis.2024.103189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 05/14/2024] [Accepted: 05/17/2024] [Indexed: 06/04/2024]
Abstract
Take your vitamins, or don't? Vitamin E is one of the few lipophilic vitamins in the human diet and is considered an essential nutrient. Over the years it has proven to be a powerful antioxidant and is commercially used as such, but this association is far from linear in physiology. It is increasingly more likely that vitamin E has multiple legitimate biological roles. Here, we review past and current work using neutron and X-ray scattering to elucidate the influence of vitamin E on key features of model membranes that can translate to the biological function(s) of vitamin E. Although progress is being made, the hundred year-old mystery remains unsolved.
Collapse
Affiliation(s)
| | - Drew Marquardt
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario, Canada; Department of Physics, University of Windsor, Windsor, Ontario, Canada.
| |
Collapse
|
2
|
Varela-López A, Romero-Márquez JM, Navarro-Hortal MD, Ramirez-Tortosa CL, Battino M, Forbes-Hernández TY, Quiles JL. Dietary antioxidants and lifespan: Relevance of environmental conditions, diet, and genotype of experimental models. Exp Gerontol 2023; 178:112221. [PMID: 37230336 DOI: 10.1016/j.exger.2023.112221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/21/2023] [Accepted: 05/22/2023] [Indexed: 05/27/2023]
Abstract
The rise of life expectancy in current societies is not accompanied, to date, by a similar increase in healthspan, which represents a great socio-economic problem. It has been suggested that aging can be manipulated and then, the onset of all age-associated chronic disorders can be delayed because these pathologies share age as primary underlying risk factor. One of the most extended ideas is that aging is consequence of the accumulation of molecular damage. According to the oxidative damage theory, antioxidants should slow down aging, extending lifespan and healthspan. The present review analyzes studies evaluating the effect of dietary antioxidants on lifespan of different aging models and discusses the evidence on favor of their antioxidant activity as anti-aging mechanisms. Moreover, possible causes for differences between the reported results are evaluated.
Collapse
Affiliation(s)
- Alfonso Varela-López
- Department of Physiology, Institute of Nutrition and Food Technology "José Mataix", Biomedical Research Center, University of Granada, Avda del Conocimiento s/n, Parque Tecnologico de la Salud, Armilla, Granada 18016, Spain
| | - José M Romero-Márquez
- Department of Physiology, Institute of Nutrition and Food Technology "José Mataix", Biomedical Research Center, University of Granada, Avda del Conocimiento s/n, Parque Tecnologico de la Salud, Armilla, Granada 18016, Spain
| | - María D Navarro-Hortal
- Department of Physiology, Institute of Nutrition and Food Technology "José Mataix", Biomedical Research Center, University of Granada, Avda del Conocimiento s/n, Parque Tecnologico de la Salud, Armilla, Granada 18016, Spain
| | | | - Maurizio Battino
- Department of Clinical Sciences, Polytechnic University of Marche, 60131 Ancona, Italy; International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing, Jiangsu University, Zhenjiang 212013, China
| | - Tamara Y Forbes-Hernández
- Department of Physiology, Institute of Nutrition and Food Technology "José Mataix", Biomedical Research Center, University of Granada, Avda del Conocimiento s/n, Parque Tecnologico de la Salud, Armilla, Granada 18016, Spain
| | - José L Quiles
- Department of Physiology, Institute of Nutrition and Food Technology "José Mataix", Biomedical Research Center, University of Granada, Avda del Conocimiento s/n, Parque Tecnologico de la Salud, Armilla, Granada 18016, Spain; Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Isabel Torres, 21, 39011 Santander, Spain; Research and Development Functional Food Centre (CIDAF), Health Science Technological Park, Avenida del Conocimiento 37, 18016 Granada, Spain.
| |
Collapse
|
3
|
Iakovou E, Kourti M. A Comprehensive Overview of the Complex Role of Oxidative Stress in Aging, The Contributing Environmental Stressors and Emerging Antioxidant Therapeutic Interventions. Front Aging Neurosci 2022; 14:827900. [PMID: 35769600 PMCID: PMC9234325 DOI: 10.3389/fnagi.2022.827900] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 05/10/2022] [Indexed: 12/15/2022] Open
Abstract
Introduction Aging is a normal, inevitable, irreversible, and progressive process which is driven by internal and external factors. Oxidative stress, that is the imbalance between prooxidant and antioxidant molecules favoring the first, plays a key role in the pathophysiology of aging and comprises one of the molecular mechanisms underlying age-related diseases. However, the oxidative stress theory of aging has not been successfully proven in all animal models studying lifespan, meaning that altering oxidative stress/antioxidant defense systems did not always lead to a prolonged lifespan, as expected. On the other hand, animal models of age-related pathological phenotypes showed a well-correlated relationship with the levels of prooxidant molecules. Therefore, it seems that oxidative stress plays a more complicated role than the one once believed and this role might be affected by the environment of each organism. Environmental factors such as UV radiation, air pollution, and an unbalanced diet, have also been implicated in the pathophysiology of aging and seem to initiate this process more rapidly and even at younger ages. Aim The purpose of this review is to elucidate the role of oxidative stress in the physiology of aging and the effect of certain environmental factors in initiating and sustaining this process. Understanding the pathophysiology of aging will contribute to the development of strategies to postpone this phenomenon. In addition, recent studies investigating ways to alter the antioxidant defense mechanisms in order to prevent aging will be presented. Conclusions Careful exposure to harmful environmental factors and the use of antioxidant supplements could potentially affect the biological processes driving aging and slow down the development of age-related diseases. Maybe a prolonged lifespan could not be achieved by this strategy alone, but a longer healthspan could also be a favorable target.
Collapse
Affiliation(s)
- Evripides Iakovou
- Department of Life Sciences, European University Cyprus, Nicosia, Cyprus
| | - Malamati Kourti
- Department of Life Sciences, European University Cyprus, Nicosia, Cyprus
- Angiogenesis and Cancer Drug Discovery Group, Basic and Translational Cancer Research Center, Department of Life Sciences, European University Cyprus, Nicosia, Cyprus
- *Correspondence: Malamati Kourti
| |
Collapse
|
4
|
Azzi A. Reflections on a century of vitamin E research: Looking at the past with an eye on the future. Free Radic Biol Med 2021; 175:155-160. [PMID: 34478835 DOI: 10.1016/j.freeradbiomed.2021.07.042] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/15/2021] [Accepted: 07/25/2021] [Indexed: 12/30/2022]
Abstract
The name vitamin E, was given by Barnett and Sure who suggested that the factor proposed by Evans and Bishop as substance "X," be termed vitamin "E" as the next vitamin after the A, B, C and D vitamins had been already described. The identification of vitamin E with a-tocopherol was made in 1936 by Evans' group. One year later β-tocopherol and 11 years later δ-tocopherol were isolated. Tocotrienol (named zetatocopherol) was first described in 1957 and later isolated in 1961. The antioxidant property of tocopherols was reported by Olcott and Emerson in 1937. Inherited vitamin E deficiency, AVED, characterized by a form of neuromyopathy was first described in 1981. The disease, was localized to chromosome 8q and found to be caused by a mutation of the a-TTP gene. The subsequent paragraphs are not a comprehensive review but only critical reflections on some important aspects of vitamin E research.
Collapse
Affiliation(s)
- Angelo Azzi
- School of Graduate Biomedical Pharmacology and Drug Development Program, Tufts University, Boston, MA, 02116, USA.
| |
Collapse
|
5
|
Yiang G, Chen T, Chen C, Hung Y, Hsueh K, Wu T, Pan Y, Chien Y, Chen C, Yu Y, Wei C. Antioxidant vitamins promote anticancer effects on low-concentration methotrexate-treated glioblastoma cells via enhancing the caspase-3 death pathway. Food Sci Nutr 2021; 9:3308-3316. [PMID: 34136195 PMCID: PMC8194871 DOI: 10.1002/fsn3.2298] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 01/02/2023] Open
Abstract
Vitamin C and vitamin E are well-known antioxidant vitamins, both of which are also applied as adjunct treatments for cancer therapy. Methotrexate (MTX) is a clinical drug that is used widely for rheumatoid arthritis and cancer treatment. Human glioblastoma multiforme (GBM) is an aggressive malignant brain tumor; the mean survival time for GBM patients is <2 years with traditional therapies. Developing and investigating novel treatments are important for clinical GBM therapy. Therefore, the aim of this study was to investigate whether combined treatment with vitamin C/E and MTX can display anticancer activities on GBM. Our studies showed that MTX displays anticancer effects on GBM in a dose-dependent manner, while vitamins C and E are not cytotoxic to glioblastoma. Importantly, this study showed that vitamins C and E can promote anticancer effects on low-concentration methotrexate-treated glioblastoma. Additionally, this study suggested that MTX alone or combined with vitamins C/E inhibits GBM cell growth via the caspase-3 death pathway.
Collapse
Affiliation(s)
- Giou‐Teng Yiang
- Department of Emergency MedicineTaipei Tzu Chi HospitalBuddhist Tzu Chi Medical FoundationNew TaipeiTaiwan
- Department of Emergency MedicineSchool of MedicineTzu Chi UniversityHualienTaiwan
| | - Tsu‐Yi Chen
- Department of Emergency MedicineTaipei Tzu Chi HospitalBuddhist Tzu Chi Medical FoundationNew TaipeiTaiwan
| | - Cian Chen
- Department of Emergency MedicineTaipei Tzu Chi HospitalBuddhist Tzu Chi Medical FoundationNew TaipeiTaiwan
- Master Program of Biomedical NutritionDepartment of NutritionHung kuang UniversityTaichungTaiwan
| | - Yu‐Ting Hung
- Master Program of Biomedical NutritionDepartment of NutritionHung kuang UniversityTaichungTaiwan
- Graduate Institute of Biomedical SciencesChina Medical UniversityTaichungTaiwan
| | - Kuan‐Chun Hsueh
- Department of SurgeryTungs' Taichung MetroHarbor HospitalTaichungTaiwan
| | - Tsai‐Kun Wu
- Division of Renal MedicineTungs' Taichung MetroHarbor HospitalTaichungTaiwan
| | - Ying‐Ru Pan
- Division of Renal MedicineTungs' Taichung MetroHarbor HospitalTaichungTaiwan
| | - Yi‐Chung Chien
- Graduate Institute of Biomedical SciencesChina Medical UniversityTaichungTaiwan
- Drug Development CenterResearch Center for Cancer BiologyChina Medical UniversityTaichungTaiwan
- Center for Molecular MedicineChina Medical University HospitalTaichungTaiwan
| | - Chao‐Hsuan Chen
- Department of NeurosurgeryChina Medical University HospitalTaichungTaiwan
| | - Yung‑Lung Yu
- Graduate Institute of Biomedical SciencesChina Medical UniversityTaichungTaiwan
- Drug Development CenterResearch Center for Cancer BiologyChina Medical UniversityTaichungTaiwan
- Center for Molecular MedicineChina Medical University HospitalTaichungTaiwan
- Ph.D. Program for Translational MedicineChina Medical UniversityTaichungTaiwan
- Institute of New Drug DevelopmentChina Medical UniversityTaichungTaiwan
- Department of Medical Laboratory Science and BiotechnologyAsia UniversityTaichungTaiwan
| | - Chyou‐Wei Wei
- Master Program of Biomedical NutritionDepartment of NutritionHung kuang UniversityTaichungTaiwan
| |
Collapse
|
6
|
Ricciarelli R, Azzi A, Zingg JM. Reduction of senescence-associated beta-galactosidase activity by vitamin E in human fibroblasts depends on subjects' age and cell passage number. Biofactors 2020; 46:665-674. [PMID: 32479666 DOI: 10.1002/biof.1636] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 04/22/2020] [Indexed: 12/14/2022]
Abstract
Cell senescence is due to the permanent cell cycle arrest that occurs as a result of the inherent limited replicative capacity toward the Hayflick limit (replicative senescence), or in response to various stressors (stress-induced premature senescence, SIPS). With the acquisition of the senescence-associated secretory phenotype (SASP), cells release several molecules (cytokines, proteases, lipids), and express the senescence-associated beta-galactosidase (SA-β-Gal). Here we tested whether vitamin E affects SA-β-Gal in an in vitro model of cell ageing. Skin fibroblasts from human subjects of different age (1, 13, 29, 59, and 88 years old) were cultured until they reached replicative senescence. At different passages (Passages 2, 9, 13, and 16), these cells were treated with vitamin E for 24 hr. Vitamin E reduced SA-β-Gal in all cells at passage 16, but at earlier passage numbers it reduced SA-β-Gal only in cells isolated from the oldest subjects. Therefore, short time treatment with vitamin E decreases SA-β-Gal in cells both from young and old subjects when reaching replicative senescence; but in cells isolated from older subjects, a decrease in SA-β-Gal by vitamin E occurs also at earlier passage numbers. The possible role of downregulation of CD36 by vitamin E, a scavenger receptor essential for initiation of senescence and SASP, is discussed.
Collapse
Affiliation(s)
- Roberta Ricciarelli
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Angelo Azzi
- Sackler School of Graduate Biomedical Pharmacology and Drug Development Program, Tufts University, Boston, Massachusetts, USA
| | - Jean-Marc Zingg
- Miller School of Medicine, University of Miami, Miami, Florida, USA
| |
Collapse
|
7
|
Panchenko AV, Tyndyk ML, Fedoros EI, Maydin MA, Semenov AL, Gubareva EA, Golubev AG, Anisimov VN. Comparative Analysis of Experimental Data on the Effects of Different Polyphenols on Lifespan and Aging. ADVANCES IN GERONTOLOGY 2020. [DOI: 10.1134/s2079057019040131] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
8
|
Luo J, Mills K, le Cessie S, Noordam R, van Heemst D. Ageing, age-related diseases and oxidative stress: What to do next? Ageing Res Rev 2020; 57:100982. [PMID: 31733333 DOI: 10.1016/j.arr.2019.100982] [Citation(s) in RCA: 343] [Impact Index Per Article: 68.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 10/04/2019] [Accepted: 11/12/2019] [Indexed: 12/13/2022]
Abstract
Among other mechanisms, oxidative stress has been postulated to play an important role in the rate of ageing. Oxidative damage contributes to the hallmarks of ageing and essential components in pathological pathways which are thought to drive multiple age-related diseases. Nonetheless, results from studies testing the hypothesis of oxidative stress in ageing and diseases showed controversial results. While observational studies mainly found detrimental effects of high oxidative stress levels on disease status, randomized clinical trials examining the effect of antioxidant supplementation on disease status generally showed null effects. However, re-evaluations of these counterinitiative observations are required considering the lack of reliability and specificity of traditionally used biomarkers for measuring oxidative stress. To facilitate these re-evaluations, this review summarizes the basic knowledge of oxidative stress and the present findings regarding the role of oxidative damage in ageing and age-related diseases. Meanwhile, two approaches are highlighted, namely proper participants selection, together with the development of reliable biomarkers. We propose that oxidized vitamin E metabolites may be used to accurately monitor individual functional antioxidant level, which might serve as promising key solutions for future elucidating the impact of oxidative stress on ageing and age-related diseases.
Collapse
|
9
|
Zingg JM. Vitamin E: Regulatory Role on Signal Transduction. IUBMB Life 2018; 71:456-478. [PMID: 30556637 DOI: 10.1002/iub.1986] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 11/20/2018] [Accepted: 11/21/2018] [Indexed: 01/02/2023]
Abstract
Vitamin E modulates signal transduction pathways by several molecular mechanisms. As a hydrophobic molecule located mainly in membranes it contributes together with other lipids to the physical and structural characteristics such as membrane stability, curvature, fluidity, and the organization into microdomains (lipid rafts). By acting as the main lipid-soluble antioxidant, it protects other lipids such as mono- and poly-unsaturated fatty acids (MUFA and PUFA, respectively) against chemical reactions with reactive oxygen and nitrogen species (ROS and RNS, respectively) and prevents membrane destabilization and cellular dysfunction. In cells, vitamin E affects signaling in redox-dependent and redox-independent molecular mechanisms by influencing the activity of enzymes and receptors involved in modulating specific signal transduction and gene expression pathways. By protecting and preventing depletion of MUFA and PUFA it indirectly enables regulatory effects that are mediated by the numerous lipid mediators derived from these lipids. In recent years, some vitamin E metabolites have been observed to affect signal transduction and gene expression and their relevance for the regulatory function of vitamin E is beginning to be elucidated. In particular, the modulation of the CD36/FAT scavenger receptor/fatty acids transporter by vitamin E may influence many cellular signaling pathways relevant for lipid homeostasis, inflammation, survival/apoptosis, angiogenesis, tumorigenesis, neurodegeneration, and senescence. Thus, vitamin E has an important role in modulating signal transduction and gene expression pathways relevant for its uptake, distribution, metabolism, and molecular action that when impaired affect physiological and patho-physiological cellular functions relevant for the prevention of a number of diseases. © 2018 IUBMB Life, 71(4):456-478, 2019.
Collapse
Affiliation(s)
- Jean-Marc Zingg
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, Florida, USA
| |
Collapse
|
10
|
Vaiserman AM, Lushchak OV, Koliada AK. Anti-aging pharmacology: Promises and pitfalls. Ageing Res Rev 2016; 31:9-35. [PMID: 27524412 DOI: 10.1016/j.arr.2016.08.004] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Revised: 08/06/2016] [Accepted: 08/09/2016] [Indexed: 12/12/2022]
Abstract
Life expectancy has grown dramatically in modern times. This increase, however, is not accompanied by the same increase in healthspan. Efforts to extend healthspan through pharmacological agents targeting aging-related pathological changes are now in the spotlight of geroscience, the main idea of which is that delaying of aging is far more effective than preventing the particular chronic disorders. Currently, anti-aging pharmacology is a rapidly developing discipline. It is a preventive field of health care, as opposed to conventional medicine which focuses on treating symptoms rather than root causes of illness. A number of pharmacological agents targeting basic aging pathways (i.e., calorie restriction mimetics, autophagy inducers, senolytics etc.) are now under investigation. This review summarizes the literature related to advances, perspectives and challenges in the field of anti-aging pharmacology.
Collapse
Affiliation(s)
| | - Oleh V Lushchak
- Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
| | | |
Collapse
|
11
|
Schwartz S, Frank E, Gierhart D, Simpson P, Frumento R. Zeaxanthin-based dietary supplement and topical serum improve hydration and reduce wrinkle count in female subjects. J Cosmet Dermatol 2016; 15:e13-e20. [PMID: 27312122 DOI: 10.1111/jocd.12226] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/05/2016] [Indexed: 01/25/2023]
Abstract
BACKGROUND Dietary modification, through supplementation and elimination diets, has become an area of interest to help slow skin aging, reduce symptom severity or prevent reoccurrence of certain dermatologic conditions [Clinical Dermatology vol. 31 (2013) 677-700]. Free radical components (reactive oxygen species or ROS) or lipid peroxide (LPO) is involved in the pathogenesis and progression of accelerated skin aging when prolonged oxidative stress occurs. The use of antioxidant-related therapies such as nutraceuticals is of particular interest in restoring skin homeostasis. Antioxidant carotenoid zeaxanthin is concentrated in the eye and skin tissue and believed to decrease the formation of ROS associated with UV light exposure. With zeaxanthin, phytoceramides, and botanical extracts an oral and topical test product (with zeaxanthin, algae extracts, peptides, hyaluronate) have been developed to improve the appearance and condition of skin when used as directed. METHODS Subjects were divided into three groups: two tests (skin formula 1 - oral product alone (ZO-1), skin formula 2- oral product with topical product (ZO-2 + ZT)), and one placebo control. The study consisted of a washout visit, baseline (randomization), week two (2), week four (4), week six (6), week eight (8), and week twelve (12). Key parameters measured were as follows: fine lines, deep lines, total wrinkles, wrinkle severity, radiance/skin color (L, a*, b*), discolorations, and skin pigment homogeneity. RESULTS Thirty-one subjects completed the twelve-week study; no adverse events were recorded during the study. Statistically significant improvements from baseline mean hydration score were observed in active groups at weeks 2, 6, and 8. A statistically significant difference was observed between mean differences from baseline scores for total wrinkle count at week 4 for the combination active groups compared to placebo. A statistically significant difference from baseline scores for fine lines count was also observed at the week 4 visit compared to placebo for both active groups. Statistically significant differences from baseline scores for average wrinkles severity were seen for week 12 visit for both active groups compared to placebo. CONCLUSION We have shown that the combination of zeaxanthin-based dietary supplement plus a topical formulation produces superior hydration to that of placebo. Additionally, we have shown that the combination of oral and topical combination vs. oral alone has superior abilities to improve parameters associated with facial lines and wrinkles compared to placebo, although the dietary supplement alone proved most effective in reducing wrinkle count and severity.
Collapse
|
12
|
Vitamin E Supplementation Delays Cellular Senescence In Vitro. BIOMED RESEARCH INTERNATIONAL 2015; 2015:563247. [PMID: 26613084 PMCID: PMC4647025 DOI: 10.1155/2015/563247] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 10/08/2015] [Indexed: 01/25/2023]
Abstract
Vitamin E is an important antioxidant that protects cells from oxidative stress-induced damage, which is an important contributor to the progression of ageing. Ageing can be studied in vitro using primary cells reaching a state of irreversible growth arrest called senescence after a limited number of cellular divisions. Generally, the most utilized biomarker of senescence is represented by the expression of the senescence associated β-galactosidase (SA-β-gal). We aimed here to study the possible effects of vitamin E supplementation in two different human primary cell types (HUVECs and fibroblasts) during the progression of cellular senescence. Utilizing an unbiased automated system, based on the detection of the SA-β-gal, we quantified cellular senescence in vitro and showed that vitamin E supplementation reduced the numbers of senescent cells during progression of ageing. Acute vitamin E supplementation did not affect cellular proliferation, whereas it was decreased after chronic treatment. Mechanistically, we show that vitamin E supplementation acts through downregulation of the expression of the cycline dependent kinase inhibitor P21. The data obtained from this study support the antiageing properties of vitamin E and identify possible mechanisms of action that warrant further investigation.
Collapse
|
13
|
Grimm MOW, Stahlmann CP, Mett J, Haupenthal VJ, Zimmer VC, Lehmann J, Hundsdörfer B, Endres K, Grimm HS, Hartmann T. Vitamin E: Curse or Benefit in Alzheimer's Disease? A Systematic Investigation of the Impact of α-, γ- and δ-Tocopherol on Aß Generation and Degradation in Neuroblastoma Cells. J Nutr Health Aging 2015; 19:646-56. [PMID: 26054501 DOI: 10.1007/s12603-015-0506-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVES The E vitamins are a class of lipophilic compounds including tocopherols, which have high antioxidative properties. Because of the elevated lipid peroxidation and increased reactive oxidative species in Alzheimer's disease (AD) many attempts have been made to slow down the progression of AD by utilizing the antioxidative action of vitamin E. Beside the mixed results of these studies nothing is known about the impact of vitamin E on the mechanisms leading to amyloid-β production and degradation being responsible for the plaque formation, one of the characteristic pathological hallmarks in AD. Here we systematically investigate the influence of different tocopherols on Aβ production and degradation in neuronal cell lines. MEASUREMENTS Beside amyloid-β level the mechanisms leading to Aβ production and degradation are examined. RESULTS Surprisingly, all tocopherols have shown to increase Aβ level by enhancing the Aβ production and decreasing the Aβ degradation. Aβ production is enhanced by an elevated activity of the involved enzymes, the β- and γ-secretase. These secretases are not directly affected, but tocopherols increase their protein level and expression. We could identify significant differences between the single tocopherols; whereas α-tocopherol had only minor effects on Aβ production, δ-tocopherol showed the highest potency to increase Aβ generation. Beside Aβ production, Aβ clearance was decreased by affecting IDE, one of the major Aβ degrading enzymes. CONCLUSIONS Our results suggest that beside the beneficial antioxidative effects of vitamin E, tocopherol has in respect to AD also a potency to increase the amyloid-β level, which differ for the analysed tocopherols. We therefore recommend that further studies are needed to clarify the potential role of these various vitamin E species in respect to AD and to identify the form which comprises an antioxidative property without having an amyloidogenic potential.
Collapse
Affiliation(s)
- M O W Grimm
- Marcus Grimm, Kirrberger Str.1, Building 90.1, 66421 Homburg/Saar, Germany; Tel: +49-6841-1647919; Fax: +49-6841-1624137; E-mail:
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Balcerczyk A, Gajewska A, Macierzyńska-Piotrowska E, Pawelczyk T, Bartosz G, Szemraj J. Enhanced antioxidant capacity and anti-ageing biomarkers after diet micronutrient supplementation. Molecules 2014; 19:14794-808. [PMID: 25232703 PMCID: PMC6270881 DOI: 10.3390/molecules190914794] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 09/03/2014] [Accepted: 09/09/2014] [Indexed: 12/21/2022] Open
Abstract
A growing number of studies confirm an important effect of diet, lifestyle and physical activity on health status, the ageing process and many metabolic disorders. This study focuses on the influence of a diet supplement, NucleVital®Q10 Complex, on parameters related to redox homeostasis and ageing. An experimental group of 66 healthy volunteer women aged 35–55 supplemented their diet for 12 weeks with the complex, which contained omega-3 acids (1350 mg/day), ubiquinone (300 mg/day), astaxanthin (15 mg/day), lycopene (45 mg/day), lutein palmitate (30 mg/day), zeaxanthine palmitate (6 mg/day), L-selenomethionine (330 mg/day), cholecalciferol (30 µg/day) and α-tocopherol (45 mg/day). We found that NucleVital®Q10 Complex supplementation significantly increased total antioxidant capacity of plasma and activity of erythrocyte superoxide dismutase, with slight effects on oxidative stress biomarkers in erythrocytes; MDA and 4-hydroxyalkene levels. Apart from the observed antioxidative effects, the tested supplement also showed anti-ageing activity. Analysis of expression of SIRT1 and 2 in PBMCs showed significant changes for both genes on a mRNA level. The level of telomerase was also increased by more than 25%, although the length of lymphocyte telomeres, determined by RT-PCR, remained unchanged. Our results demonstrate beneficial effects concerning the antioxidant potential of plasma as well as biomarkers related to ageing even after short term supplementation of diet with NucleVital®Q10 Complex.
Collapse
Affiliation(s)
- Aneta Balcerczyk
- Department of Molecular Biophysics, University of Lodz, Pomorska 141/143, Lodz 90-236, Poland
| | - Agnieszka Gajewska
- Department of Molecular Biophysics, University of Lodz, Pomorska 141/143, Lodz 90-236, Poland
| | | | - Tomasz Pawelczyk
- Department of Affective and Psychotic Disorders, Medical University of Lodz, Czechoslowacka 8/10, Lodz 92-216, Poland
| | - Grzegorz Bartosz
- Department of Molecular Biophysics, University of Lodz, Pomorska 141/143, Lodz 90-236, Poland
| | - Janusz Szemraj
- Department of Medical Biochemistry, Medical University in Lodz, Mazowiecka 6/8, Lodz 92-215, Poland.
| |
Collapse
|
15
|
Effect of antioxidants supplementation on aging and longevity. BIOMED RESEARCH INTERNATIONAL 2014; 2014:404680. [PMID: 24783202 PMCID: PMC3982418 DOI: 10.1155/2014/404680] [Citation(s) in RCA: 144] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 02/11/2014] [Indexed: 01/06/2023]
Abstract
If aging is due to or contributed by free radical reactions, as postulated by the free radical theory of aging, lifespan of organisms should be extended by administration of exogenous antioxidants. This paper reviews data on model organisms concerning the effects of exogenous antioxidants (antioxidant vitamins, lipoic acid, coenzyme Q, melatonin, resveratrol, curcumin, other polyphenols, and synthetic antioxidants including antioxidant nanoparticles) on the lifespan of model organisms. Mechanisms of effects of antioxidants, often due to indirect antioxidant action or to action not related to the antioxidant properties of the compounds administered, are discussed. The legitimacy of antioxidant supplementation in human is considered.
Collapse
|
16
|
Speakman JR, Garratt M. Oxidative stress as a cost of reproduction: Beyond the simplistic trade-off model. Bioessays 2013; 36:93-106. [DOI: 10.1002/bies.201300108] [Citation(s) in RCA: 161] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- John R. Speakman
- Key State Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology; Chinese Academy of Sciences; Beijing China
- Institute of Biological and Environmental sciences; University of Aberdeen; Aberdeen Scotland UK
| | - Michael Garratt
- Evolution and Ecology Research Group and School of Biological, Earth and Environmental Sciences; The University of New South Wales; Sydney NSW Australia
| |
Collapse
|
17
|
Possible mechanisms of fullerene C₆₀ antioxidant action. BIOMED RESEARCH INTERNATIONAL 2013; 2013:821498. [PMID: 24222918 PMCID: PMC3816026 DOI: 10.1155/2013/821498] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 08/02/2013] [Accepted: 09/13/2013] [Indexed: 12/21/2022]
Abstract
Novel mechanism of antioxidant activity of buckminsterfullerene C60 based on protons absorbing and mild uncoupling of mitochondrial respiration and phosphorylation was postulated. In the present study we confirm this hypothesis using computer modeling based on Density Functional Theory. Fullerene's geroprotective activity is sufficiently higher than those of the most powerful reactive oxygen species scavengers. We propose here that C60 has an ability to acquire positive charge by absorbing inside several protons and this complex could penetrate into mitochondria. Such a process allows for mild uncoupling of respiration and phosphorylation. This, in turn, leads to the decrease in ROS production.
Collapse
|
18
|
Selman C, McLaren JS, Collins AR, Duthie GG, Speakman JR. Deleterious consequences of antioxidant supplementation on lifespan in a wild-derived mammal. Biol Lett 2013; 9:20130432. [PMID: 23825087 PMCID: PMC3730656 DOI: 10.1098/rsbl.2013.0432] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
While oxidative damage owing to reactive oxygen species (ROS) often increases with advancing age and is associated with many age-related diseases, its causative role in ageing is controversial. In particular, studies that have attempted to modulate ROS-induced damage, either upwards or downwards, using antioxidant or genetic approaches, generally do not show a predictable effect on lifespan. Here, we investigated whether dietary supplementation with either vitamin E (α-tocopherol) or vitamin C (ascorbic acid) affected oxidative damage and lifespan in short-tailed field voles, Microtus agrestis. We predicted that antioxidant supplementation would reduce ROS-induced oxidative damage and increase lifespan relative to unsupplemented controls. Antioxidant supplementation for nine months reduced hepatic lipid peroxidation, but DNA oxidative damage to hepatocytes and lymphocytes was unaffected. Surprisingly, antioxidant supplementation significantly shortened lifespan in voles maintained under both cold (7 ± 2°C) and warm (22 ± 2°C) conditions. These data further question the predictions of free-radical theory of ageing and critically, given our previous research in mice, indicate that similar levels of antioxidants can induce widely different interspecific effects on lifespan.
Collapse
Affiliation(s)
- Colin Selman
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK
| | | | | | | | | |
Collapse
|
19
|
Garratt M, Pichaud N, King EDA, Brooks RC. Physiological adaptations to reproduction. I. Experimentally increasing litter size enhances aspects of antioxidant defence but does not cause oxidative damage in mice. ACTA ACUST UNITED AC 2013; 216:2879-88. [PMID: 23619417 DOI: 10.1242/jeb.082669] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Life history theory suggests that investment in reproduction can trade off against growth, longevity and both reproduction and performance later in life. One possible reason for this trade-off is that reproduction directly causes somatic damage. Oxidative stress, an overproduction of reactive oxygen species in relation to cellular defences, can correlate with reproductive investment and has been implicated as a pathway leading to senescence. This has led to the suggestion that this aspect of physiology could be an important mechanism underlying the trade-off between reproduction and lifespan. We manipulated female reproductive investment to test whether oxidative stress increases with reproduction in mice. Each female's pups were cross-fostered to produce litters of either two or eight, representing low and high levels of reproductive investment for wild mice. No differences were observed between reproductive groups at peak lactation for several markers of oxidative stress in the heart and gastrocnemius muscle. Surprisingly, oxidative damage to proteins was lower in the livers of females with a litter size of eight than in females with two pups or non-reproductive control females. While protein oxidation decreased, activity levels of the antioxidant enzyme superoxide dismutase increased in the liver, suggesting this may be one pathway used to protect against oxidative stress. Our results highlight the need for caution when interpreting correlative relationships and suggest that oxidative stress does not increase with enhanced reproductive effort during lactation.
Collapse
Affiliation(s)
- Michael Garratt
- Evolution and Ecology Research Centre and School of Biological, Earth and Environmental Sciences, The University of New South Wales, Sydney, New South Wales 2052, Australia.
| | | | | | | |
Collapse
|
20
|
Li CS, Deng HB, Li DD, Li ZH. Advances and challenges in screening traditional Chinese anti-aging materia medica. Chin J Integr Med 2013; 19:243-52. [PMID: 23546627 DOI: 10.1007/s11655-013-1432-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2012] [Indexed: 01/13/2023]
Abstract
To provide a better service for senior health care, we summarized screening studies of traditional Chinese anti-aging materia medica (TCAM). We collected and analyzed literature of TCAM screening studies using the lifespan test and animal models of aging from 1984 to 2012. We found 26 screening methods for TCAM, and 153 single herbs or active ingredients of TCAM that have been screened out during the past 28 years. The cell lifespan test, the fruit fly lifespan test, and D-galactose aging model were the most widely used and intensively studied screening methods. However, the method for establishing the D-galactose aging model needs to be standardized, and the D-galactose aging model cannot completely be a substitute for the normal aging mouse model. Great success has been achieved in screening studies in TCAM. To further improve screening studies in TCAM, we suggest that the D-galactose aging model be incorporated into the lifespan test in the New Drugs of Traditional Chinese Medicine Research Guide.
Collapse
Affiliation(s)
- Chun-Sheng Li
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China.
| | | | | | | |
Collapse
|
21
|
Moskalev AA, Shaposhnikov MV, Plyusnina EN, Zhavoronkov A, Budovsky A, Yanai H, Fraifeld VE. The role of DNA damage and repair in aging through the prism of Koch-like criteria. Ageing Res Rev 2013; 12:661-84. [PMID: 22353384 DOI: 10.1016/j.arr.2012.02.001] [Citation(s) in RCA: 222] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Revised: 01/27/2012] [Accepted: 02/06/2012] [Indexed: 12/21/2022]
Abstract
Since the first publication on Somatic Mutation Theory of Aging (Szilárd, 1959), a great volume of knowledge in the field has been accumulated. Here we attempted to organize the evidence "for" and "against" the hypothesized causal role of DNA damage and mutation accumulation in aging in light of four Koch-like criteria. They are based on the assumption that some quantitative relationship between the levels of DNA damage/mutations and aging rate should exist, so that (i) the longer-lived individuals or species would have a lower rate of damage than the shorter-lived, and (ii) the interventions that modulate the level of DNA damage and repair capacity should also modulate the rate of aging and longevity and vice versa. The analysis of how the existing data meets the proposed criteria showed that many gaps should still be filled in order to reach a clear-cut conclusion. As a perspective, it seems that the main emphasis in future studies should be put on the role of DNA damage in stem cell aging.
Collapse
|
22
|
Gonzalez P, Mader I, Tchoghandjian A, Enzenmüller S, Cristofanon S, Basit F, Debatin KM, Fulda S. Impairment of lysosomal integrity by B10, a glycosylated derivative of betulinic acid, leads to lysosomal cell death and converts autophagy into a detrimental process. Cell Death Differ 2012; 19:1337-46. [PMID: 22343715 DOI: 10.1038/cdd.2012.10] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
In this study, we report a novel mechanism of action for a cytotoxic derivative of betulinic acid (BA). B10 is a semi-synthetic glycosylated derivative of BA selected for its enhanced cytotoxic activity. Interestingly, although B10 induces apoptosis, caspase-3 downregulation incompletely prevents B10-induced cell death, Bcl-2 overexpression fails to protect cells and DNA fragmentation rates do not reflect cell death rates in contrast to cytoplasmic membrane permeabilization. These results implicate that apoptotic and non-apoptotic cell death coexist upon B10 treatment. Unexpectedly, we found that B10 induces autophagy and also abrogates the autophagic flux. B10 destabilizes lysosomes as shown by Lysotracker Red staining and by cathepsin Z and B release from lysosomes into the cytoplasm. Consistently, the cathepsin inhibitor Ca074Me significantly decreases B10-induced cell death, further supporting the fact that the release of lysosomal enzymes contributes to B10-triggered cell death. Downregulation of ATG7, ATG5 or BECN1 by RNAi significantly decreases caspase-3 activation, lysosomal permeabilization and cell death. Thus, by concomitant induction of autophagy and inhibition of the autophagic flux, B10 turns autophagy into a cell death mechanism. These findings have important implications for the therapeutic exploitation of BA derivatives, particularly in apoptosis-resistant cancers.
Collapse
Affiliation(s)
- P Gonzalez
- University Children's Hospital, Ulm University, Germany
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Pamplona R, Costantini D. Molecular and structural antioxidant defenses against oxidative stress in animals. Am J Physiol Regul Integr Comp Physiol 2011; 301:R843-63. [PMID: 21775650 DOI: 10.1152/ajpregu.00034.2011] [Citation(s) in RCA: 213] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
In this review, it is our aim 1) to describe the high diversity in molecular and structural antioxidant defenses against oxidative stress in animals, 2) to extend the traditional concept of antioxidant to other structural and functional factors affecting the "whole" organism, 3) to incorporate, when supportable by evidence, mechanisms into models of life-history trade-offs and maternal/epigenetic inheritance, 4) to highlight the importance of studying the biochemical integration of redox systems, and 5) to discuss the link between maximum life span and antioxidant defenses. The traditional concept of antioxidant defenses emphasizes the importance of the chemical nature of molecules with antioxidant properties. Research in the past 20 years shows that animals have also evolved a high diversity in structural defenses that should be incorporated in research on antioxidant responses to reactive species. Although there is a high diversity in antioxidant defenses, many of them are evolutionary conserved across animal taxa. In particular, enzymatic defenses and heat shock response mediated by proteins show a low degree of variation. Importantly, activation of an antioxidant response may be also energetically and nutrient demanding. So knowledge of antioxidant mechanisms could allow us to identify and to quantify any underlying costs, which can help explain life-history trade-offs. Moreover, the study of inheritance mechanisms of antioxidant mechanisms has clear potential to evaluate the contribution of epigenetic mechanisms to stress response phenotype variation.
Collapse
Affiliation(s)
- Reinald Pamplona
- Department of Experimental Medicine, University of Lleida Biomedical Research Institute of Lleida, Lleida, Spain
| | | |
Collapse
|
24
|
Ferroni P, Della-Morte D, Palmirotta R, McClendon M, Testa G, Abete P, Rengo F, Rundek T, Guadagni F, Roselli M. Platinum-based compounds and risk for cardiovascular toxicity in the elderly: role of the antioxidants in chemoprevention. Rejuvenation Res 2011; 14:293-308. [PMID: 21595514 DOI: 10.1089/rej.2010.1141] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Cancer in elderly patients is an increasingly common problem. Older patients have more co-morbidity, therefore the toxic effects of chemotherapy treatment are less tolerable compared to younger patients. Platinum-based compounds (PBCs) are commonly used cytotoxic agents in the treatment of several solid tumors; however, their application is still limited in elderly patients, due to the risks in cardiovascular toxicity. The increased risk for myocardial ischemia, stroke, and vascular thrombosis linked with PBCs treatment is mainly due to reactive oxygen species (ROS) production and the subsequent induction of oxidative stress and switch to a prothrombotic condition. Recently, studies have shown a different genetic susceptibility in cardiovascular toxicity induced by therapy with PBCs. Antioxidants, such as vitamin E, selenium, lycopene, melatonin, and resveratrol, have been implicated in cancer treatment by their property to suppress the oxidant injury. Resveratrol, especially, has been shown to increase the antineoplastic activity of cisplatin. In addition, resveratrol's ability to activate the sirtuin1 (SIRT1) pathway has been heavily implicated in the mechanisms controlling longevity and quality of life in the aged population. This article reviews the current state of treatment with PBCs and their associated risk for cardiovascular disease. It discusses the most powerful antioxidant supplementation options as a possible strategy to reduce the cardiovascular toxicity effects of chemotherapy in the elderly.
Collapse
Affiliation(s)
- Patrizia Ferroni
- Department of Laboratory Medicine & Advanced Biotechnologies, IRCCS San Raffaele Pisana, Rome, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Why tocotrienols work better: insights into the in vitro anti-cancer mechanism of vitamin E. GENES AND NUTRITION 2011; 7:29-41. [PMID: 21505906 DOI: 10.1007/s12263-011-0219-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Accepted: 03/24/2011] [Indexed: 12/23/2022]
Abstract
The selective constraint of liver uptake and the sustained metabolism of tocotrienols (T3) demonstrate the need for a prompt detoxification of this class of lipophilic vitamers, and thus the potential for cytotoxic effects in hepatic and extra-hepatic tissues. Hypomethylated (γ and δ) forms of T3 show the highest in vitro and in vivo metabolism and are also the most potent natural xenobiotics of the entire vitamin E family of compounds. These stimulate a stress response with the induction of detoxification and antioxidant genes. Depending on the intensity of this response, these genes may confer cell protection or alternatively they stimulate a senescence-like phenotype with cell cycle inhibition or even mitochondrial toxicity and apoptosis. In cancer cells, the uptake rate and thus the cell content of these vitamers is again higher for the hypomethylated forms, and it is the critical factor that drives the dichotomy between protection and toxicity responses to different T3 forms and doses. These aspects suggest the potential for marked biological activity of hypomethylated "highly metabolized" T3 that may result in cytoprotection and cancer prevention or even chemotherapeutic effects. Cytotoxicity and metabolism of hypomethylated T3 have been extensively investigated in vitro using different cell model systems that will be discussed in this review paper as regard molecular mechanisms and possible relevance in cancer therapy.
Collapse
|
26
|
Speakman JR, Selman C. The free-radical damage theory: Accumulating evidence against a simple link of oxidative stress to ageing and lifespan. Bioessays 2011; 33:255-9. [DOI: 10.1002/bies.201000132] [Citation(s) in RCA: 196] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
27
|
Brigelius-Flohé R, Galli F. Vitamin E: a vitamin still awaiting the detection of its biological function. Mol Nutr Food Res 2010; 54:583-7. [PMID: 20458704 DOI: 10.1002/mnfr.201000091] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Regina Brigelius-Flohé
- Department of Biochemistry of Micronutrients, German Institute of Human Nutrition, Nuthetal, Germany.
| | | |
Collapse
|
28
|
Abstract
Among many endocrine-related cancers, prostate cancer (PCa) is the most frequent male malignancy, and it is the second most common cause of cancer-related death in men in the United States. Therefore, this review focuses on summarizing the knowledge of molecular signaling pathways in PCa because, in order to better design new preventive strategies for the fight against PCa, documentation of the knowledge on the pathogenesis of PCa at the molecular level is very important. Cancer cells are known to have alterations in multiple cellular signaling pathways; indeed, the development and the progression of PCa are known to be caused by the deregulation of several selective signaling pathways such as the androgen receptor, Akt, nuclear factor-kappaB, Wnt, Hedgehog, and Notch. Therefore, strategies targeting these important pathways and their upstream and downstream signaling could be promising for the prevention of PCa progression. In this review, we summarize the current knowledge regarding the alterations in cell signaling pathways during the development and progression of PCa, and document compelling evidence showing that these are the targets of several natural agents against PCa progression and its metastases.
Collapse
Affiliation(s)
- Fazlul H Sarkar
- Department of Pathology, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, 4100 John R Street, Detroit, MI 48201, USA.
| | | | | | | |
Collapse
|