1
|
Luo X, Pan R, Xu L, Zheng Y, Zheng B. Clam peptides: Preparation, flavor properties, health benefits, and safety risks. Food Res Int 2025; 207:116113. [PMID: 40086968 DOI: 10.1016/j.foodres.2025.116113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 02/23/2025] [Accepted: 02/23/2025] [Indexed: 03/16/2025]
Abstract
Bioactive peptides derived from food proteins have attracted attention for their potential roles in functional foods and pharmaceuticals. Clams, renowned for their protein content and essential amino acids critical to human health, represent a promising source for bioactive peptide production. Recent studies have extensively explored the preparation methods, flavor profiles, and health benefits of clam peptides (CPs). However, there is still a lack of a comprehensive review on the current status of CPs development. This review revealed that enzymatic hydrolysis is the predominant methods for CPs production, which is a potential resource for discovering umami peptides. CPs exhibit diverse bioactivities, including antioxidative, antibacterial, ACE inhibitory, immunomodulatory, and anticancer activities. However, the potential presence of heavy metals, pathogenic bacteria, and allergens in raw materials underscores the need for stringent safety evaluations. In the future, production technology, in vivo fate, health efficacy mechanisms and safety will be interesting directions for CPs research.
Collapse
Affiliation(s)
- Xianliang Luo
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Engineering Research Center of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, Fujian 350002, China.
| | - Rongbo Pan
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Engineering Research Center of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, Fujian 350002, China
| | - Liping Xu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Engineering Research Center of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, Fujian 350002, China
| | - Yafeng Zheng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Engineering Research Center of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, Fujian 350002, China
| | - Baodong Zheng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Engineering Research Center of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, Fujian 350002, China
| |
Collapse
|
2
|
Ashraf A, Guo Y, Yang T, Ud Din AS, Ahmad K, Li W, Hou H. Microalgae-Derived Peptides: Exploring Bioactivities and Functional Food Innovations. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:1000-1013. [PMID: 39757903 DOI: 10.1021/acs.jafc.4c06800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
A variety of bioactive peptides with unique and diverse structures could be found in microalgae with various bioactivities including antioxidant, antihypertensive, and antibacterial bioactivities. Food products containing microalgae peptides hold significant health and nutrition potential. Peptide liberation through enzymatic and other processes enhanced protein extraction, and some animal studies were conducted to verify their health-promoting effects. Various studies have focused on developing practical methods for their production, purification, and identification of bioactive peptides. The emerging trends of in silico peptide therapies, computational approaches, artificial intelligence, and the prospects of microalgae peptide research are briefly highlighted. Moreover, this article focused on the potential of microalgae-derived peptides as functional food ingredients their role in promoting health, and their future applications in nutraceutical industries. It also discussed the challenges of bioavailability in functional foods.
Collapse
Affiliation(s)
- Azqa Ashraf
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, no. 1299, Sansha Road, Qingdao, Shandong Province 266404, P.R. China
| | - Yueting Guo
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, no. 1299, Sansha Road, Qingdao, Shandong Province 266404, P.R. China
| | - Tingting Yang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, no. 1299, Sansha Road, Qingdao, Shandong Province 266404, P.R. China
| | - Aiman Salah Ud Din
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, no. 1299, Sansha Road, Qingdao, Shandong Province 266404, P.R. China
| | - Khurshid Ahmad
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, no. 1299, Sansha Road, Qingdao, Shandong Province 266404, P.R. China
| | - Wenjun Li
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, no. 17, Chunhui Road, Laishan District, Yantai, Shandong Province 264003, P.R. China
| | - Hu Hou
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, no. 1299, Sansha Road, Qingdao, Shandong Province 266404, P.R. China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, no. 168, Wenhai Middle Road, Qingdao, Shandong Province 266237, P.R. China
- Sanya Oceanographic Institution, Ocean University of China, Sanya, Hainan Province 572024, P.R. China
| |
Collapse
|
3
|
Güner Atayoğlu A, Bayar Muluk N, Koca R, Çukurova İ, Çetinkaya EA, Yörük Ö, Bal C, Tatar A, Susaman N, Erdoğmuş Küçükcan ND, Güngör E, Özçelik N, Alaskarov E, Öztürk Z, Oğuz O, Taş BM, Cingi C. Investigation of the Effectiveness of Nasal Sprays in Allergic Rhinitis. EAR, NOSE & THROAT JOURNAL 2024; 103:144S-151S. [PMID: 39390797 DOI: 10.1177/01455613241287298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024] Open
Abstract
Objectives: We investigated the effectiveness of different types of nasal irrigation sprays in adult allergic rhinitis (AR) patients. Methods: A total of 1700 patients with AR (866 males and 834 females) were assigned to: Group 1: Hypertonic nasal spray group (n = 600) (Sinomarin® hypertonic nasal spray); Group 2: Algae-containing hypertonic nasal spray group (n = 600) (Sinomarin Plus Algae ENT); and Group 3: Isotonic saline nasal spray group (n = 500). All patients underwent an otolaryngological examination, continued their standard AR treatment, and received the assigned nasal spray additionally (1 spray to each nostril, 3 times a day, for 3 weeks). Allergic symptom scores, turbinate examination, total symptom scores, and quality of life (QoL) scores were evaluated during pre- and post-treatment periods. Results: In groups 1 and 2, symptom scores and turbinate color and edema, total symptom scores, and QoL scores increased after treatment (P < .05). In the saline group, there were no significant differences in symptom scores and total symptom scores after treatment; however, improvement was detected in turbinate color and edema values after treatment. QoL scores increased after treatment. When comparing the 3 groups, the total symptom scores of groups 1 and 2 were significantly lower, and the QoL scores of groups 1 and 2 were considerably higher than those of the saline group. There were no significant differences between groups 1 and 2. Conclusion: Algae-containing and hypertonic nasal spray may be added to the standard AR treatment to increase QoL and decrease total symptom scores.
Collapse
Affiliation(s)
| | - Nuray Bayar Muluk
- Department of Otorhinolaryngology, Faculty of Medicine, Kırıkkale University, Kırıkkale, Turkey
| | - Rahime Koca
- ENT Clinic, Antalya Training and Research Hospital, Antalya, Turkey
| | - İbrahim Çukurova
- Department of Otorhinolaryngology, Izmir Faculty of Medicine, Tepecik Training and Research Hospital, University of Health Sciences, Izmir, Turkey
| | | | - Özgür Yörük
- Department of Otorhinolaryngology, Faculty of Medicine, Atatürk University, Erzurum, Turkey
| | - Cengiz Bal
- Department of Biostatistics, Faculty of Medicine, Eskişehir Osmangazi University, Eskişehir, Turkey
| | - Arzu Tatar
- Department of Otorhinolaryngology, Faculty of Medicine, Atatürk University, Erzurum, Turkey
| | - Nihat Susaman
- ENT Clinic, Elazığ Fethi Sekin City Hospital, University of Health Sciences, Elazığ, Turkey
| | | | - Enes Güngör
- Department of Otorhinolaryngology, Faculty of Medicine, Eskişehir Osmangazi University, Eskişehir, Turkey
| | - Necdet Özçelik
- ENT Clinic, Esenler Health Application Center, Medipol University, İstanbul, Turkey
| | - Elvin Alaskarov
- ENT Clinic, Esenler Health Application Center, Medipol University, İstanbul, Turkey
| | - Zeynel Öztürk
- Department of Otorhinolaryngology, Faculty of Medicine, Istanbul Nişantaşı University, Istanbul, Turkey
- Otolaryngology Clinics, Baypark Hospital, Istanbul, Turkey
| | - Oğuzhan Oğuz
- Dr. Oğuzhan Oğuz Wellnose Clinic, Istanbul, Turkey
| | - Burak Mustafa Taş
- Department of Otorhinolaryngology, Faculty of Medicine, Kırıkkale University, Kırıkkale, Turkey
| | - Cemal Cingi
- Department of Otorhinolaryngology, Faculty of Medicine, Eskişehir Osmangazi University, Eskişehir, Turkey
| |
Collapse
|
4
|
Abril AG, Carrera M, Pazos M. Marine Bioactive Compounds with Functional Role in Immunity and Food Allergy. Nutrients 2024; 16:2592. [PMID: 39203729 PMCID: PMC11357426 DOI: 10.3390/nu16162592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 07/30/2024] [Accepted: 08/02/2024] [Indexed: 09/03/2024] Open
Abstract
Food allergy, referred to as the atypical physiological overreaction of the immune system after exposure to specific food components, is considered one of the major concerns in food safety. The prevalence of this emerging worldwide problem has been increasing during the last decades, especially in industrialized countries, being estimated to affect 6-8% of young children and about 2-4% of adults. Marine organisms are an important source of bioactive substances with the potential to functionally improve the immune system, reduce food allergy sensitization and development, and even have an anti-allergic action in food allergy. The present investigation aims to be a comprehensive report of marine bioactive compounds with verified actions to improve food allergy and identified mechanisms of actions rather than be an exhaustive compilation of all investigations searching beneficial effects of marine compounds in FA. Particularly, this research highlights the capacity of bioactive components extracted from marine microbial, animal, algae, and microalgae sources, such as n-3 long-chain polyunsaturated fatty acids (LC-PUFA), polysaccharide, oligosaccharide, chondroitin, vitamin D, peptides, pigments, and polyphenols, to regulate the immune system, epigenetic regulation, inflammation, and gut dysbiosis that are essential factors in the sensitization and effector phases of food allergy. In conclusion, the marine ecosystem is an excellent source to provide foods with the capacity to improve the hypersensitivity induced against specific food allergens and also bioactive compounds with a potential pharmacological aptitude to be applied as anti-allergenic in food allergy.
Collapse
Affiliation(s)
- Ana G. Abril
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Santiago de Compostela, 15898 Santiago de Compostela, Spain;
- Institute of Marine Research (IIM-CSIC), Spanish National Research Council (CSIC), 36208 Vigo, Spain;
| | - Mónica Carrera
- Institute of Marine Research (IIM-CSIC), Spanish National Research Council (CSIC), 36208 Vigo, Spain;
| | - Manuel Pazos
- Institute of Marine Research (IIM-CSIC), Spanish National Research Council (CSIC), 36208 Vigo, Spain;
| |
Collapse
|
5
|
Papadaki S, Tricha N, Panagiotopoulou M, Krokida M. Innovative Bioactive Products with Medicinal Value from Microalgae and Their Overall Process Optimization through the Implementation of Life Cycle Analysis-An Overview. Mar Drugs 2024; 22:152. [PMID: 38667769 PMCID: PMC11050870 DOI: 10.3390/md22040152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
Microalgae are being recognized as valuable sources of bioactive chemicals with important medical properties, attracting interest from multiple industries, such as food, feed, cosmetics, and medicines. This review study explores the extensive research on identifying important bioactive chemicals from microalgae, and choosing the best strains for nutraceutical manufacturing. It explores the most recent developments in recovery and formulation strategies for creating stable, high-purity, and quality end products for various industrial uses. This paper stresses the significance of using Life Cycle Analysis (LCA) as a strategic tool with which to improve the entire process. By incorporating LCA into decision-making processes, researchers and industry stakeholders can assess the environmental impact, cost-effectiveness, and sustainability of raw materials of several approaches. This comprehensive strategy will allow for the choosing of the most effective techniques, which in turn will promote sustainable practices for developing microalgae-based products. This review offers a detailed analysis of the bioactive compounds, strain selection methods, advanced processing techniques, and the incorporation of LCA. It will serve as a valuable resource for researchers and industry experts interested in utilizing microalgae for producing bioactive products with medicinal properties.
Collapse
Affiliation(s)
- Sofia Papadaki
- DIGNITY Private Company, 30-32 Leoforos Alexandrou Papagou, Zografou, 157 71 Athens, Greece
| | - Nikoletta Tricha
- Laboratory of Process Analysis and Design, School of Chemical Engineering, National Technical University of Athens, Iroon Polytechneiou 9, 157 80 Athens, Greece; (N.T.); (M.P.); (M.K.)
| | - Margarita Panagiotopoulou
- Laboratory of Process Analysis and Design, School of Chemical Engineering, National Technical University of Athens, Iroon Polytechneiou 9, 157 80 Athens, Greece; (N.T.); (M.P.); (M.K.)
| | - Magdalini Krokida
- Laboratory of Process Analysis and Design, School of Chemical Engineering, National Technical University of Athens, Iroon Polytechneiou 9, 157 80 Athens, Greece; (N.T.); (M.P.); (M.K.)
| |
Collapse
|
6
|
García-Beltrán JM, Arizcun M, Chaves-Pozo E. Antimicrobial Peptides from Photosynthetic Marine Organisms with Potential Application in Aquaculture. Mar Drugs 2023; 21:md21050290. [PMID: 37233484 DOI: 10.3390/md21050290] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/05/2023] [Accepted: 05/06/2023] [Indexed: 05/27/2023] Open
Abstract
Aquaculture production is at a record level and is estimated to increase in the coming years. However, this production can be negatively affected by infectious diseases produced by viruses, bacteria, and parasites, causing fish mortality and economic losses. Antimicrobial peptides (AMPs) are small peptides that may be promising candidates to replace antibiotics because they are the first line of defense in animals against a wide variety of pathogens and have no negative effects; they also show additional activities such as antioxidant or immunoregulatory functions, which makes them powerful alternatives for use in aquaculture. Moreover, AMPs are highly available in natural sources and have already been used in the livestock farming and food industries. Photosynthetic marine organisms can survive under all kinds of environmental conditions and under extremely competitive environments thanks to their flexible metabolism. For this reason, these organisms represent a powerful source of bioactive molecules as nutraceuticals and pharmaceuticals, including AMPs. Therefore, in this study we reviewed the present knowledge about AMPs from photosynthetic marine organism sources and analyzed whether they could be suitable for use in aquaculture.
Collapse
Affiliation(s)
- José María García-Beltrán
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100 Murcia, Spain
- Physiology and Welfare of Marine Species Group (PHYSIS), Centro Oceanográfico de Murcia, Instituto Español de Oceanografía (COMU-IEO), CSIC, Puerto de Mazarrón, 30860 Murcia, Spain
| | - Marta Arizcun
- Physiology and Welfare of Marine Species Group (PHYSIS), Centro Oceanográfico de Murcia, Instituto Español de Oceanografía (COMU-IEO), CSIC, Puerto de Mazarrón, 30860 Murcia, Spain
| | - Elena Chaves-Pozo
- Physiology and Welfare of Marine Species Group (PHYSIS), Centro Oceanográfico de Murcia, Instituto Español de Oceanografía (COMU-IEO), CSIC, Puerto de Mazarrón, 30860 Murcia, Spain
| |
Collapse
|
7
|
Structures and Anti-Allergic Activities of Natural Products from Marine Organisms. Mar Drugs 2023; 21:md21030152. [PMID: 36976202 PMCID: PMC10056057 DOI: 10.3390/md21030152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/18/2023] [Accepted: 02/23/2023] [Indexed: 03/02/2023] Open
Abstract
In recent years, allergic diseases have occurred frequently, affecting more than 20% of the global population. The current first-line treatment of anti-allergic drugs mainly includes topical corticosteroids, as well as adjuvant treatment of antihistamine drugs, which have adverse side effects and drug resistance after long-term use. Therefore, it is essential to find alternative anti-allergic agents from natural products. High pressure, low temperature, and low/lack of light lead to highly functionalized and diverse functional natural products in the marine environment. This review summarizes the information on anti-allergic secondary metabolites with a variety of chemical structures such as polyphenols, alkaloids, terpenoids, steroids, and peptides, obtained mainly from fungi, bacteria, macroalgae, sponges, mollusks, and fish. Molecular docking simulation is applied by MOE to further reveal the potential mechanism for some representative marine anti-allergic natural products to target the H1 receptor. This review may not only provide insight into information about the structures and anti-allergic activities of natural products from marine organisms but also provides a valuable reference for marine natural products with immunomodulatory activities.
Collapse
|
8
|
Proteomics Characterization of Food-Derived Bioactive Peptides with Anti-Allergic and Anti-Inflammatory Properties. Nutrients 2022; 14:nu14204400. [PMID: 36297084 PMCID: PMC9609859 DOI: 10.3390/nu14204400] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 11/30/2022] Open
Abstract
Bioactive peptides are found in foods and dietary supplements and are responsible for health benefits with applications in human and animal medicine. The health benefits include antihypertensive, antimicrobial, antithrombotic, immunomodulatory, opioid, antioxidant, anti-allergic and anti-inflammatory functions. Bioactive peptides can be obtained by microbial action, mainly by the gastrointestinal microbiota from proteins present in food, originating from either vegetable or animal matter or by the action of different gastrointestinal proteases. Proteomics can play an important role in the identification of bioactive peptides. High-resolution mass spectrometry is the principal technique used to detect and identify different types of analytes present in complex mixtures, even when available at low concentrations. Moreover, proteomics may provide the characterization of epitopes to develop new food allergy vaccines and the use of immunomodulating peptides to induce oral tolerance toward offending food allergens or even to prevent allergic sensitization. In addition, food-derived bioactive peptides have been investigated for their anti-inflammatory properties to provide safer alternatives to nonsteroidal anti-inflammatory drugs (NSAIDs). All these bioactive peptides can be a potential source of novel drugs and ingredients in food and pharmaceuticals. The following review is focused on food-derived bioactive peptides with antiallergic and anti-inflammatory properties and summarizes the new insights into the use of proteomics for their identification and quantification.
Collapse
|
9
|
Fais G, Manca A, Bolognesi F, Borselli M, Concas A, Busutti M, Broggi G, Sanna P, Castillo-Aleman YM, Rivero-Jiménez RA, Bencomo-Hernandez AA, Ventura-Carmenate Y, Altea M, Pantaleo A, Gabrielli G, Biglioli F, Cao G, Giannaccare G. Wide Range Applications of Spirulina: From Earth to Space Missions. Mar Drugs 2022; 20:md20050299. [PMID: 35621951 PMCID: PMC9143897 DOI: 10.3390/md20050299] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 02/05/2023] Open
Abstract
Spirulina is the most studied cyanobacterium species for both pharmacological applications and the food industry. The aim of the present review is to summarize the potential benefits of the use of Spirulina for improving healthcare both in space and on Earth. Regarding the first field of application, Spirulina could represent a new technology for the sustainment of long-duration manned missions to planets beyond the Lower Earth Orbit (e.g., Mars); furthermore, it could help astronauts stay healthy while exposed to a variety of stress factors that can have negative consequences even after years. As far as the second field of application, Spirulina could have an active role in various aspects of medicine, such as metabolism, oncology, ophthalmology, central and peripheral nervous systems, and nephrology. The recent findings of the capacity of Spirulina to improve stem cells mobility and to increase immune response have opened new intriguing scenarios in oncological and infectious diseases, respectively.
Collapse
Affiliation(s)
- Giacomo Fais
- Interdepartmental Centre of Environmental Science and Engineering (CINSA), University of Cagliari, Via San Giorgio 12, 09124 Cagliari, Italy; (G.F.); (A.C.); (G.C.)
| | - Alessia Manca
- Department of Biomedical Science, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy; (A.M.); (A.P.)
| | - Federico Bolognesi
- Unit of Maxillofacial Surgery, Head and Neck Department, ASST Santi Paolo e Carlo Hospital, University of Milan, Via Antonio di Rudinì 8, 20142 Milan, Italy; (F.B.); (F.B.)
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Via Zamboni 33, 40126 Bologna, Italy
| | - Massimiliano Borselli
- Department of Ophthalmology, University Magna Grecia of Catanzaro, Viale Europa, 88100 Catanzaro, Italy;
| | - Alessandro Concas
- Interdepartmental Centre of Environmental Science and Engineering (CINSA), University of Cagliari, Via San Giorgio 12, 09124 Cagliari, Italy; (G.F.); (A.C.); (G.C.)
- Department of Mechanical, Chemical and Materials Engineering, University of Cagliari, Via Marengo 2, 09123 Cagliari, Italy
| | - Marco Busutti
- Nephrology, Dialysis and Transplant Unit, IRCCS-Azienda Ospedaliero Universitaria di Bologna, University of Bologna, Via Giuseppe Massarenti 9, 40138 Bologna, Italy;
| | - Giovanni Broggi
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, University of Milan, Via Celoria 11, 20133 Milan, Italy;
- Columbus Clinic Center, Via Michelangelo Buonarroti 48, 20145 Milan, Italy
| | - Pierdanilo Sanna
- Abu Dhabi Stem Cells Center, Al Misaha Street, Rowdhat, Abu Dhabi, United Arab Emirates; (P.S.); (Y.M.C.-A.); (R.A.R.-J.); (A.A.B.-H.); (Y.V.-C.)
| | - Yandy Marx Castillo-Aleman
- Abu Dhabi Stem Cells Center, Al Misaha Street, Rowdhat, Abu Dhabi, United Arab Emirates; (P.S.); (Y.M.C.-A.); (R.A.R.-J.); (A.A.B.-H.); (Y.V.-C.)
| | - René Antonio Rivero-Jiménez
- Abu Dhabi Stem Cells Center, Al Misaha Street, Rowdhat, Abu Dhabi, United Arab Emirates; (P.S.); (Y.M.C.-A.); (R.A.R.-J.); (A.A.B.-H.); (Y.V.-C.)
| | - Antonio Alfonso Bencomo-Hernandez
- Abu Dhabi Stem Cells Center, Al Misaha Street, Rowdhat, Abu Dhabi, United Arab Emirates; (P.S.); (Y.M.C.-A.); (R.A.R.-J.); (A.A.B.-H.); (Y.V.-C.)
| | - Yendry Ventura-Carmenate
- Abu Dhabi Stem Cells Center, Al Misaha Street, Rowdhat, Abu Dhabi, United Arab Emirates; (P.S.); (Y.M.C.-A.); (R.A.R.-J.); (A.A.B.-H.); (Y.V.-C.)
| | - Michela Altea
- TOLO Green, Via San Damiano 2, 20122 Milan, Italy; (M.A.); (G.G.)
| | - Antonella Pantaleo
- Department of Biomedical Science, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy; (A.M.); (A.P.)
| | | | - Federico Biglioli
- Unit of Maxillofacial Surgery, Head and Neck Department, ASST Santi Paolo e Carlo Hospital, University of Milan, Via Antonio di Rudinì 8, 20142 Milan, Italy; (F.B.); (F.B.)
| | - Giacomo Cao
- Interdepartmental Centre of Environmental Science and Engineering (CINSA), University of Cagliari, Via San Giorgio 12, 09124 Cagliari, Italy; (G.F.); (A.C.); (G.C.)
- Department of Mechanical, Chemical and Materials Engineering, University of Cagliari, Via Marengo 2, 09123 Cagliari, Italy
- Center for Advanced Studies, Research and Development in Sardinia (CRS4), Loc. Piscina Manna, Building 1, 09050 Pula, Italy
| | - Giuseppe Giannaccare
- Department of Ophthalmology, University Magna Grecia of Catanzaro, Viale Europa, 88100 Catanzaro, Italy;
- Correspondence: ; Tel.: +39-3317186201
| |
Collapse
|
10
|
Cunha SA, Pintado ME. Bioactive peptides derived from marine sources: Biological and functional properties. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2021.08.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
11
|
Lafarga T, Sánchez-Zurano A, Villaró S, Morillas-España A, Acién G. Industrial production of spirulina as a protein source for bioactive peptide generation. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.07.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
12
|
Wang K, Siddanakoppalu PN, Ahmed I, Pavase TR, Lin H, Li Z. Purification and identification of anti-allergic peptide from Atlantic Salmon (Salmo salar) byproduct enzymatic hydrolysates. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104084] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
13
|
Kim MJ, Choi YA, Lee S, Choi JK, Kim YY, Kim EN, Jeong GS, Shin TY, Jang YH, Kim SH. Prunus serrulata var. spontanea inhibits mast cell activation and mast cell-mediated anaphylaxis. JOURNAL OF ETHNOPHARMACOLOGY 2020; 250:112484. [PMID: 31843576 DOI: 10.1016/j.jep.2019.112484] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 11/19/2019] [Accepted: 12/12/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE A promising approach to treat a variety of diseases are considered as complementary and alternative herbal medicines. Prunus serrulata var. spontanea L. (Rosaceae) is used as herbal medicine to treat allergic diseases according to the Donguibogam, a tradition medical book of the Joseon Dynasty in Korea. AIM OF THE STUDY We prepared the aqueous extract of the bark of P. serrulata (AEBPS) and aimed to investigate the effects in mouse anaphylaxis models and various types of mast cells, including RBL-2H3, primary cultured peritoneal and bone marrow-derived mast cells. MATERIALS AND METHODS We used ovalbumin (OVA)-induced active systemic anaphylaxis (ASA) and immunoglobulin (Ig) E-mediated passive cutaneous anaphylaxis (PCA) models, in vivo. The control drug dexamethasone (10 mg/kg) was used to compare the effectiveness of AEBPS (1-100 mg/kg). In vitro, IgE-stimulated mast cells were used to confirm the role of AEBPS (1-100 μg/mL). For statistical analyses, p values less than 0.05 were considered to be significant. RESULTS In ASA model, oral administration of AEBPS suppressed the hypothermia and increased level of serum histamine in a dose-dependent manner. AEBPS attenuated the serum IgE, OVA-specific IgE, and interleukin (IL)-4. Oral administration of AEBPS also blocked mast cell-dependent PCA. AEBPS suppressed degranulation of mast cells by reducing intracellular calcium level in mast cells. AEBPS inhibited tumor necrosis factor-α and IL-4 expression and secretion in a concentration-dependent manner through the reduction of nuclear factor-κB. CONCLUSIONS On the basis of these findings, AEBPS could serve as a potential therapeutic target for the management of mast cell-mediated allergic inflammation and as a regulator of mast cell activation.
Collapse
Affiliation(s)
- Min-Jong Kim
- Cell and Matrix Research Institute, Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Young-Ae Choi
- Cell and Matrix Research Institute, Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Soyoung Lee
- Immunoregulatory Materials Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup, Republic of Korea
| | - Jin Kyeong Choi
- Molecular Immunology Section, Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yeon-Yong Kim
- Cell and Matrix Research Institute, Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea; Immunoregulatory Materials Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup, Republic of Korea
| | - Eun-Nam Kim
- College of Pharmacy, Keimyung University, Daegu, Republic of Korea
| | - Gil-Saeng Jeong
- College of Pharmacy, Keimyung University, Daegu, Republic of Korea
| | - Tae-Yong Shin
- College of Pharmacy, Woosuk University, Jeonju, Republic of Korea
| | - Yong Hyun Jang
- Department of Dermatology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.
| | - Sang-Hyun Kim
- Cell and Matrix Research Institute, Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.
| |
Collapse
|
14
|
Kang HK, Lee HH, Seo CH, Park Y. Antimicrobial and Immunomodulatory Properties and Applications of Marine-Derived Proteins and Peptides. Mar Drugs 2019; 17:md17060350. [PMID: 31212723 PMCID: PMC6628016 DOI: 10.3390/md17060350] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 06/03/2019] [Accepted: 06/04/2019] [Indexed: 12/21/2022] Open
Abstract
Marine organisms provide an abundant source of potential medicines. Many of the marine-derived biomaterials have been shown to act as different mechanisms in immune responses, and in each case they can significantly control the immune system to produce effective reactions. Marine-derived proteins, peptides, and protein hydrolysates exhibit various physiologic functions, such as antimicrobial, anticancer, antioxidant, antihypertensive, and anti-inflammatory activities. Recently, the immunomodulatory properties of several antimicrobial peptides have been demonstrated. Some of these peptides directly kill bacteria and exhibit a variety of immunomodulatory activities that improve the host innate immune response and effectively eliminate infection. The properties of immunomodulatory proteins and peptides correlate with their amino acid composition, sequence, and length. Proteins and peptides with immunomodulatory properties have been tested in vitro and in vivo, and some of them have undergone different clinical and preclinical trials. This review provides a comprehensive overview of marine immunomodulatory proteins, peptides, and protein hydrolysates as well as their production, mechanisms of action, and applications in human therapy.
Collapse
Affiliation(s)
- Hee Kyoung Kang
- Department of Biomedical Science, Chosun University, Gwangju 501-759, Korea.
- Department of Convergences, Kongju National University, Kongju 314-701, Korea.
| | - Hyung Ho Lee
- Department of Convergences, Kongju National University, Kongju 314-701, Korea.
| | - Chang Ho Seo
- Department of Convergences, Kongju National University, Kongju 314-701, Korea.
| | - Yoonkyung Park
- Department of Biomedical Science, Chosun University, Gwangju 501-759, Korea.
- Research Center for Proteineous Materials, Chosun University, Gwangju 501-759, Korea.
| |
Collapse
|
15
|
Basic and recent advances in marine antihypertensive peptides: Production, structure-activity relationship and bioavailability. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.04.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
16
|
Liu P, Lee MK, Choi JW, Choi YH, Nam TJ. Crude protein from spirulina increases the viability of CCD‑986sk cells via the EGFR/MAPK signaling pathway. Int J Mol Med 2018; 43:771-778. [PMID: 30569098 PMCID: PMC6317665 DOI: 10.3892/ijmm.2018.4025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 12/07/2018] [Indexed: 12/12/2022] Open
Abstract
Spirulina, an edible blue-green alga, has great potential for various applications in human health, possibly including reduced skin aging. The mechanisms by which spirulina crude protein (SPCP) may influence human skin fibroblast viability are not yet understood; therefore, a human dermal fibroblast cell line (CCD-986sk) was used as a cell model system to study the influence of SPCP on human skin fibroblast viability. An enzyme-linked immunosorbent assay showed that collagen formation improved in SPCP-treated cells in a dose-dependent manner, while elastase activity was decreased. In addition, western blot analysis showed a dose-dependent decrease in the expression of the aging-associated gene matrix metalloproteinase-8, a collagen-degradative enzyme. It was also shown that SPCP upregulated epidermal growth factor receptor (EGFR) activity, leading to activation of the mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) signaling pathway. Together, these results demonstrated that SPCP increases human fibroblast viability by activation of the EGFR/MAPK signaling pathway. This contribution sheds light on the molecular mechanism for SPCP increasing the viability of human skin cell and provides a potential efficient cosmeceutical for protecting human skin.
Collapse
Affiliation(s)
- Ping Liu
- Department of Food Science and Nutrition, Pukyong National University, Busan 48513, Republic of Korea
| | - Min-Kyeong Lee
- Institute of Fisheries Sciences, Pukyong National University, Busan 46041, Republic of Korea
| | - Jeong-Wook Choi
- Institute of Fisheries Sciences, Pukyong National University, Busan 46041, Republic of Korea
| | - Youn-Hee Choi
- Institute of Fisheries Sciences, Pukyong National University, Busan 46041, Republic of Korea
| | - Taek-Jeong Nam
- Department of Food Science and Nutrition, Pukyong National University, Busan 48513, Republic of Korea
| |
Collapse
|
17
|
Vo TS, Kim SK, Ryu B, Ngo DH, Yoon NY, Bach LG, Hang NTN, Ngo DN. The Suppressive Activity of Fucofuroeckol-A Derived from Brown Algal Ecklonia stolonifera Okamura on UVB-Induced Mast Cell Degranulation. Mar Drugs 2018; 16:E1. [PMID: 29300311 PMCID: PMC5793049 DOI: 10.3390/md16010001] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 11/12/2017] [Accepted: 12/05/2017] [Indexed: 12/21/2022] Open
Abstract
UV light, especially UVB, is known as a trigger of allergic reaction, leading to mast cell degranulation and histamine release. In this study, phlorotannin Fucofuroeckol-A (F-A) derived from brown algal Ecklonia stolonifera Okamura was evaluated for its protective capability against UVB-induced allergic reaction in RBL-2H3 mast cells. It was revealed that F-A significantly suppress mast cell degranulation via decreasing histamine release as well as intracellular Ca2+ elevation at the concentration of 50 μM. Moreover, the inhibitory effect of F-A on IL-1β and TNF-α productions was also evidenced. Notably, the protective activity of F-A against mast cell degranulation was found due to scavenging ROS production. Accordingly, F-A from brown algal E. stolonifera was suggested to be promising candidate for its protective capability against UVB-induced allergic reaction.
Collapse
Affiliation(s)
- Thanh Sang Vo
- NTT Institute of Hi-Technology, Nguyen Tat Thanh University, Ho Chi Minh City 700000, Vietnam.
| | - Se-Kwon Kim
- Department of Marine Life Science, College of Ocean Science and Technology, Korea Maritime and Ocean University, Busan 606-791, Korea.
| | - BoMi Ryu
- School of Pharmacy, the University of Queensland, Brisbane QLD 4072, Australia.
| | - Dai Hung Ngo
- Faculty of Natural Sciences, Thu Dau Mot University, Thu Dau Mot City 820000, Binh Duong Province, Vietnam.
| | - Na-Young Yoon
- Food and Safety Research Center, National Fisheries Research & Development, Busan 46083, Korea.
| | - Long Giang Bach
- Department of Science and Technology, Nguyen Tat Thanh University, Ho Chi Minh City 700000, Vietnam.
| | - Nguyen Thi Nhat Hang
- Faculty of Natural Sciences, Thu Dau Mot University, Thu Dau Mot City 820000, Binh Duong Province, Vietnam.
- Faculty of Chemistry, University of Science-VNU-HCM City, 227 Nguyen Van Cu Street, Ho Chi Minh City 700000, Vietnam.
| | - Dai Nghiep Ngo
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Science, Vietnam National University, Ho Chi Minh City 700000, Vietnam.
| |
Collapse
|
18
|
Ovando CA, Carvalho JCD, Vinícius de Melo Pereira G, Jacques P, Soccol VT, Soccol CR. Functional properties and health benefits of bioactive peptides derived fromSpirulina: A review. FOOD REVIEWS INTERNATIONAL 2016. [DOI: 10.1080/87559129.2016.1210632] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Claudia Anahite Ovando
- Bioprocess Engineering and Biotechnology Department, Federal University of Paraná (UFPR), Curitiba, Brazil
| | - Julio Cesar de Carvalho
- Bioprocess Engineering and Biotechnology Department, Federal University of Paraná (UFPR), Curitiba, Brazil
| | | | - Philippe Jacques
- ICV—Institut Charles Viollette, University of Lille, Lille, France
- Terra Research Centre, Microbial Processes and Interactions, Gembloux Agro-Bio Tech, University of Liege, Gembloux, Belgium
| | - Vanete Thomaz Soccol
- Bioprocess Engineering and Biotechnology Department, Federal University of Paraná (UFPR), Curitiba, Brazil
| | - Carlos Ricardo Soccol
- Bioprocess Engineering and Biotechnology Department, Federal University of Paraná (UFPR), Curitiba, Brazil
| |
Collapse
|
19
|
Cheung RCF, Ng TB, Wong JH. Marine Peptides: Bioactivities and Applications. Mar Drugs 2015; 13:4006-43. [PMID: 26132844 PMCID: PMC4515606 DOI: 10.3390/md13074006] [Citation(s) in RCA: 200] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 06/15/2015] [Accepted: 06/18/2015] [Indexed: 12/11/2022] Open
Abstract
Peptides are important bioactive natural products which are present in many marine species. These marine peptides have high potential nutraceutical and medicinal values because of their broad spectra of bioactivities. Their antimicrobial, antiviral, antitumor, antioxidative, cardioprotective (antihypertensive, antiatherosclerotic and anticoagulant), immunomodulatory, analgesic, anxiolytic anti-diabetic, appetite suppressing and neuroprotective activities have attracted the attention of the pharmaceutical industry, which attempts to design them for use in the treatment or prevention of various diseases. Some marine peptides or their derivatives have high commercial values and had reached the pharmaceutical and nutraceutical markets. A large number of them are already in different phases of the clinical and preclinical pipeline. This review highlights the recent research in marine peptides and the trends and prospects for the future, with special emphasis on nutraceutical and pharmaceutical development into marketed products.
Collapse
Affiliation(s)
- Randy Chi Fai Cheung
- School of Biomedical Sciences, Faculty of Medicine, the Chinese University of Hong Kong, Hong Kong, China.
| | - Tzi Bun Ng
- School of Biomedical Sciences, Faculty of Medicine, the Chinese University of Hong Kong, Hong Kong, China.
| | - Jack Ho Wong
- School of Biomedical Sciences, Faculty of Medicine, the Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
20
|
Antioxidant Peptide Derived from Spirulina maximaSuppresses HIF1 α-Induced Invasive Migration of HT1080 Fibrosarcoma Cells. J CHEM-NY 2015. [DOI: 10.1155/2015/308602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Hypoxia causes the malignant progression of tumor cells; hence, it has been considered a central issue that must be addressed for effective cancer therapy. The initiation of tumor metastasis requires invasive cell migration. Here, we show that an antioxidant peptide derived fromSpirulina maximasuppresses hypoxia-induced invasive migration of HT1080 human fibrosarcoma cells. HT1080 cells treated with a hypoxia-inducing agent, CoCl2, exhibited an increase in invasive migration and intracellular reactive oxygen species (ROS), which is associated with an increase in the expression of hypoxia-induced factor 1α(HIF1α) accompanied by the activation of PI3K/Akt and ERK1/2. The inhibition of PI3K/Akt and ERK1/2 with specific inhibitors diminished the CoCl2-induced increase in HIF1αexpression and invasive cell migration. Moreover, CoCl2-induced HIF1αexpression was associated with an increase in the expression of molecules downstream ofβ-integrin, such as N-cadherin, vimentin, andβ-catenin. Therefore, theS. maximapeptide effectively attenuated the CoCl2-induced ROS generation and downregulated the HIF1αsignaling pathway involving PI3K/Akt, ERK1/2, andβ-integrin in cells. These results suggest that theS. maximaantioxidant peptide downregulates the HIF1αsignaling pathway necessary for hypoxia-induced invasive migration of HT1080 cells by attenuating intracellular ROS.S. maximapeptide may be an effective constituent in antitumor progression products.
Collapse
|