1
|
Mao J, Li M, Wang X, Wang B, Luo P, Wang G, Guo X. Exploring the mechanism of Pueraria lobata (Willd.) Ohwi in the regulation of obesity. JOURNAL OF ETHNOPHARMACOLOGY 2024; 335:118703. [PMID: 39154668 DOI: 10.1016/j.jep.2024.118703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 08/12/2024] [Accepted: 08/15/2024] [Indexed: 08/20/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Pueraria lobata (Willd.) Ohwi is a traditional medicinal and edible homologous plant rich in flavonoids, triterpenes, saponins, polysaccharides and other chemical components. At present, studies have shown that Pueraria lobata radix (PR) has the effect of lowering blood sugar, improving insulin sensitivity and inhibiting obesity. However, the specific mechanism of PR inhibits obesity is still unclear, and there are few researches on the anti-obesity effect of PR through the combination of network pharmacology and experiment. AIM OF THE STUDY Pharmacology, molecular docking technology and experimental verification through the network, revealing the PR the material basis of obesity and the potential mechanism. METHODS AND RESULTS The present study used network pharmacology techniques to investigate the therapeutic effect and mechanism of action of PR. Through relevant databases, a total of 6 main chemical components and 257 potential targets were screened. Protein interaction analysis shows that AKT1, AKR1B1, PPARG, MMP9, TNF, TP53, BAD, and BCL2 are core targets. Enrichment analysis shows that the pathway of PR in preventing obesity involves the cancer signaling pathway and the PI3K-Akt signaling pathway, which may be the main pathways of action. Further molecular docking verification indicates that its core target exhibits good binding activity with 4 compounds: formononectin, purerin, 7,8,4 '- trihydroxide and daidzein. Using the ultra-high performance liquid chromatography-mass spectrometry (UPLC-MS) technology to detected and confirmed these main compounds. Cell experiment results revealed that puerarin inhibits cell proliferation and differentiation in a concentration dependent manner, significantly promoting cell apoptosis and affecting cell migration. Animal experiments have shown that puerarin reduces food intake and weight gain in mice. It was found that puerarin can upregulate HDL and downregulate TC, TG, and LDL blood biochemical indicators. Western blot results showed that puerarin significantly inhibited the expression of AKT1, AKR1B1, MMP9, TNF, TP53, BCL2, PPARG, and significantly increased the expression of BAD protein at both cellular and animal levels. CONCLUSION The present study established a method for measuring PR content and predicted its active ingredients and their mechanisms of action in the treatment of obesity, providing a theoretical basis for further research.
Collapse
Affiliation(s)
- Jingxin Mao
- The Affiliated Hospital of Guizhou Medical University, Guizhou Provincial Engineering Research Center of Ecological Food Innovation, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, 561113, China; Chongqing Medical and Pharmaceutical College, Chongqing, 400030, China
| | - Maolin Li
- The Affiliated Hospital of Guizhou Medical University, Guizhou Provincial Engineering Research Center of Ecological Food Innovation, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, 561113, China; College of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China
| | - Xiaodong Wang
- Chongqing Medical and Pharmaceutical College, Chongqing, 400030, China
| | - Binbin Wang
- The Affiliated Hospital of Guizhou Medical University, Guizhou Provincial Engineering Research Center of Ecological Food Innovation, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, 561113, China
| | - Peng Luo
- The Affiliated Hospital of Guizhou Medical University, Guizhou Provincial Engineering Research Center of Ecological Food Innovation, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, 561113, China
| | - Guoze Wang
- The Affiliated Hospital of Guizhou Medical University, Guizhou Provincial Engineering Research Center of Ecological Food Innovation, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, 561113, China.
| | - Xiulan Guo
- College of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China.
| |
Collapse
|
2
|
Sakuma K, Hamada K, Yamaguchi A, Aoi W. Current Nutritional and Pharmacological Approaches for Attenuating Sarcopenia. Cells 2023; 12:2422. [PMID: 37830636 PMCID: PMC10572610 DOI: 10.3390/cells12192422] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/27/2023] [Accepted: 10/05/2023] [Indexed: 10/14/2023] Open
Abstract
Sarcopenia is characterized by a gradual slowing of movement due to loss of muscle mass and quality, decreased power and strength, increased risk of injury from falls, and often weakness. This review will focus on recent research trends in nutritional and pharmacological approaches to controlling sarcopenia. Because nutritional studies in humans are fairly limited, this paper includes many results from nutritional studies in mammals. The combination of resistance training with supplements containing amino acids is the gold standard for preventing sarcopenia. Amino acid (HMB) supplementation alone has no significant effect on muscle strength or muscle mass in sarcopenia, but the combination of HMB and exercise (whole body vibration stimulation) is likely to be effective. Tea catechins, soy isoflavones, and ursolic acid are interesting candidates for reducing sarcopenia, but both more detailed basic research on this treatment and clinical studies in humans are needed. Vitamin D supplementation has been shown not to improve sarcopenia in elderly individuals who are not vitamin D-deficient. Myostatin inhibitory drugs have been tried in many neuromuscular diseases, but increases in muscle mass and strength are less likely to be expected. Validation of myostatin inhibitory antibodies in patients with sarcopenia has been positive, but excessive expectations are not warranted.
Collapse
Affiliation(s)
- Kunihiro Sakuma
- Institute for Liberal Arts, Environment and Society, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8550, Japan;
| | - Kento Hamada
- Institute for Liberal Arts, Environment and Society, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8550, Japan;
| | - Akihiko Yamaguchi
- Department of Physical Therapy, Health Sciences University of Hokkaido, Kanazawa, Ishikari-Tobetsu, Hokkaido 061-0293, Japan;
| | - Wataru Aoi
- Laboratory of Nutrition Science, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto 606-8522, Japan;
| |
Collapse
|
3
|
Yin L, Li N, Jia W, Wang N, Liang M, Yang X, Du G. Skeletal muscle atrophy: From mechanisms to treatments. Pharmacol Res 2021; 172:105807. [PMID: 34389456 DOI: 10.1016/j.phrs.2021.105807] [Citation(s) in RCA: 159] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/03/2021] [Accepted: 08/07/2021] [Indexed: 02/07/2023]
Abstract
Skeletal muscle is a crucial tissue for movement, gestural assistance, metabolic homeostasis, and thermogenesis. It makes up approximately 40% of the total body weight and 50% of total protein. However, several pathological abnormalities (e.g., chronic diseases, cancer, long-term infection, aging) can induce an imbalance in skeletal muscle protein synthesis and degradation, which triggers muscle wasting and even leads to atrophy. Skeletal muscle atrophy is characterized by weakening, shrinking, and decreasing muscle mass and fiber cross-sectional area at the histological level. It manifests as a reduction in force production, easy fatigue and decreased exercise capability, along with a lower quality of life. Mechanistically, there are several pathophysiological processes involved in skeletal muscle atrophy, including oxidative stress and inflammation, which then activate signal transduction, such as the ubiquitin proteasome system, autophagy lysosome system, and mTOR. Considering the great economic and social burden that muscle atrophy can inflict, effective prevention and treatment strategies are essential but still limited. Exercise is widely acknowledged as the most effective therapy for skeletal muscle atrophy; unfortunately, it is not applicable for all patients. Several active substances for skeletal muscle atrophy have been discovered and evaluated in clinical trials, however, they have not been marketed to date. Knowledge is being gained on the underlying mechanisms, highlighting more promising treatment strategies in the future. In this paper, the mechanisms and treatment strategies for skeletal muscle atrophy are briefly reviewed.
Collapse
Affiliation(s)
- Lin Yin
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines and Beijing Key Laboratory of Drug Target and Screening Research, Institute of Materia Medica of Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, PR China
| | - Na Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines and Beijing Key Laboratory of Drug Target and Screening Research, Institute of Materia Medica of Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, PR China
| | - Weihua Jia
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines and Beijing Key Laboratory of Drug Target and Screening Research, Institute of Materia Medica of Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, PR China
| | - Nuoqi Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines and Beijing Key Laboratory of Drug Target and Screening Research, Institute of Materia Medica of Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, PR China
| | - Meidai Liang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines and Beijing Key Laboratory of Drug Target and Screening Research, Institute of Materia Medica of Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, PR China
| | - Xiuying Yang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines and Beijing Key Laboratory of Drug Target and Screening Research, Institute of Materia Medica of Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, PR China.
| | - Guanhua Du
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines and Beijing Key Laboratory of Drug Target and Screening Research, Institute of Materia Medica of Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, PR China.
| |
Collapse
|
4
|
Current Perspectives on the Beneficial Effects of Soybean Isoflavones and Their Metabolites for Humans. Antioxidants (Basel) 2021; 10:antiox10071064. [PMID: 34209224 PMCID: PMC8301030 DOI: 10.3390/antiox10071064] [Citation(s) in RCA: 125] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 06/27/2021] [Accepted: 06/28/2021] [Indexed: 12/13/2022] Open
Abstract
Soybeans are rich in proteins and lipids and have become a staple part of the human diet. Besides their nutritional excellence, they have also been shown to contain various functional components, including isoflavones, and have consequently received increasing attention as a functional food item. Isoflavones are structurally similar to 17-β-estradiol and bind to estrogen receptors (ERα and ERβ). The estrogenic activity of isoflavones ranges from a hundredth to a thousandth of that of estrogen itself. Isoflavones play a role in regulating the effects of estrogen in the human body, depending on the situation. Thus, when estrogen is insufficient, isoflavones perform the functions of estrogen, and when estrogen is excessive, isoflavones block the estrogen receptors to which estrogen binds, thus acting as an estrogen antagonist. In particular, estrogen antagonistic activity is important in the breast, endometrium, and prostate, and such antagonistic activity suppresses cancer occurrence. Genistein, an isoflavone, has cancer-suppressing effects on estrogen receptor-positive (ER+) cancers, including breast cancer. It suppresses the function of enzymes such as tyrosine protein kinase, mitogen-activated kinase, and DNA polymerase II, thus inhibiting cell proliferation and inducing apoptosis. Genistein is the most biologically active and potent isoflavone candidate for cancer prevention. Furthermore, among the various physiological functions of isoflavones, they are best known for their antioxidant activities. S-Equol, a metabolite of genistein and daidzein, has strong antioxidative effects; however, the ability to metabolize daidzein into S-equol varies based on racial and individual differences. The antioxidant activity of isoflavones may be effective in preventing dementia by inhibiting the phosphorylation of Alzheimer's-related tau proteins. Genistein also reduces allergic responses by limiting the expression of mast cell IgE receptors, which are involved in allergic responses. In addition, they have been known to prevent and treat various diseases, including cardiovascular diseases, metabolic syndromes, osteoporosis, diabetes, brain-related diseases, high blood pressure, hyperlipidemia, obesity, and inflammation. Further, it also has positive effects on menstrual irregularity in non-menopausal women and relieving menopausal symptoms in middle-aged women. Recently, soybean consumption has shown steep increasing trend in Western countries where the intake was previously only 1/20-1/50 of that in Asian countries. In this review, I have dealt with the latest research trends that have shown substantial interest in the biological efficacy of isoflavones in humans and plants, and their related mechanisms.
Collapse
|
5
|
Fleischer AW, Schalk JC, Wetzel EA, Hanson AM, Sem DS, Donaldson WA, Frick KM. Long-term oral administration of a novel estrogen receptor beta agonist enhances memory and alleviates drug-induced vasodilation in young ovariectomized mice. Horm Behav 2021; 130:104948. [PMID: 33571507 PMCID: PMC8680219 DOI: 10.1016/j.yhbeh.2021.104948] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 12/09/2020] [Accepted: 01/19/2021] [Indexed: 01/11/2023]
Abstract
Development of estrogen therapies targeting the β (ERβ) but not α (ERα) estrogen receptor is critically needed for the treatment of negative menopausal symptoms, as ERα activation increases health risks like cancer. Here, we determined the effects of long-term oral treatment with EGX358, a novel highly selective ERβ agonist, on memory, vasodilation, and affect in young ovariectomized mice. Mice were orally gavaged daily for 9 weeks with vehicle, 17β-estradiol (E2), the ERβ agonist diarylpropionitrile (DPN), or EGX358 at doses that enhance memory when delivered acutely. Tail skin temperature was recorded as a proxy for vasodilation following injection of vehicle or senktide, a tachykinin receptor 3 agonist used to model hot flashes. Anxiety-like behavior was assessed in the open field (OF) and elevated plus maze (EPM), and depression-like behavior was measured in the tail suspension (TST) and forced swim tests (FST). Finally, memory was assessed in object recognition (OR) and object placement (OP) tasks. E2, DPN, and EGX358 reduced senktide-mediated increases in tail skin temperature compared to vehicle. All three treatments also enhanced memory in the OR and OP tasks, whereas vehicle did not. Although E2 increased time spent in the center of the OF, no other treatment effects were observed in the OF, EPM, TST, or FST. These data suggest that long-term ERβ activation can reduce hot flash-like symptoms and enhance spatial and object recognition memories in ovariectomized mice. Thus, the highly selective ERβ agonist EGX358 may be a promising avenue for reducing menopause-related hot flashes and memory dysfunction.
Collapse
Affiliation(s)
- Aaron W Fleischer
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, United States of America.
| | - Jayson C Schalk
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, United States of America.
| | - Edward A Wetzel
- Department of Chemistry, Marquette University, Milwaukee, WI 53201-1881, United States of America.
| | - Alicia M Hanson
- Department Pharmaceutical Sciences, Concordia University Wisconsin, Mequon, WI 53097, United States of America; Center for Structure-Based Drug Design and Development, Concordia University Wisconsin, Mequon, WI 53097, United States of America.
| | - Daniel S Sem
- Department Pharmaceutical Sciences, Concordia University Wisconsin, Mequon, WI 53097, United States of America; Center for Structure-Based Drug Design and Development, Concordia University Wisconsin, Mequon, WI 53097, United States of America.
| | - William A Donaldson
- Department of Chemistry, Marquette University, Milwaukee, WI 53201-1881, United States of America.
| | - Karyn M Frick
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, United States of America.
| |
Collapse
|
6
|
The association of dietary flavonoids, magnesium and their interactions with the metabolic syndrome in Chinese adults: a prospective cohort study. Br J Nutr 2020; 126:892-902. [PMID: 33256855 DOI: 10.1017/s0007114520004754] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The aim was to systematically analyse the association of the specific flavonoids, Mg and their interactions from different food sources with the metabolic syndrome (MetS) and its components in a cohort study. A total of 6417 participants aged 20 to 74 years from the Harbin Cohort Study on Diet, Nutrition and Chronic Non-communicable Diseases were included. Multivariate logistic regression analyses, forest plot and restricted cubic spline were performed in the study. After a 5·3-year follow-up, 1283 incident cases of the MetS were reported. Those with a higher total flavonoid intake had a lower risk of the MetS (fourth v. first quartile, relative risk (RR) 0·58; 95 % CI 0·37, 0·93; P = 0·024) and central obesity (RR 0·56; 95 % CI 0·33, 0·95; P = 0·032). Further analysis showed that the specific flavonoids quercetin, kaempferol, isorhamnetin, luteolin, and flavonoids from fruits, potatoes and legumes had the similar associations with risk of the MetS and central obesity (P < 0·05 for all). A higher intake of total flavonoids, quercetin and luteolin combined with a high level of Mg was more strongly associated with a lower risk of the MetS (RR 0·60; 95 % CI 0·45, 0·81 for total; RR 0·61; 95 % CI 0·45, 0·82 for quercetin; RR 0·52; 95 % CI 0·38, 0·71 for luteolin; all Pfor interaction < 0·01). Dose-response effects showed an L-shaped curve between the total intake of five flavonoids and the risk of the MetS. A higher flavonoid intake is associated with a lower risk of the MetS and central obesity; their combination with Mg helps to strengthen their negative association with the MetS.
Collapse
|
7
|
Camargo TF, Zanesco AM, Pacher KAS, Andrade TAM, Alves AA, do Amaral MEC. Physiological profile regulation during weight gain and loss by ovariectomized females: importance of SIRT1 and SIRT4. Am J Physiol Endocrinol Metab 2020; 319:E769-E778. [PMID: 32865007 DOI: 10.1152/ajpendo.00465.2019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Obesity in menopausal women occurs because of the systemic effects of loss of ovarian function, resulting in increased body weight and oxidative stress. Caloric restriction (CR) is essential for weight loss, since it provides benefits associated with metabolic normalization resulting from the action of sirtuins. The aim of this work was to evaluate the physiological effects of weight cycling in ovariectomized females. Females aged 2 mo (n = 8/group) were submitted to simulated surgery, ovariectomy (OVX group), and ovariectomy with weight fluctuation (WF group). In the WF group, weight cycling was performed two times, using 21 days of ad libitum commercial feed and 21 days of caloric restriction with 40% of the feed consumed by the OVX group. After 17 wk, the animals were evaluated experimentally. Weight fluctuations reduced triacylglycerol and the adipose tissue index of the WF animals, while increasing the expression of antioxidant proteins. In addition to causing fluctuations in the physiological parameters, the weight cycling led to increases of adipocyte number and serum fatty acids. These effects were reflected in increased expression of the sirtuin (SIRT) 1 and SIRT4 proteins, as well as protein complexes of the mitochondrial electron transport chain, especially in the liver and adipose tissues. The weight-cycling results suggested that mitochondrial and nuclear sirtuins were active in cellular signaling for the control of lipid metabolism, oxidative phosphorylation, and redox status. Weight cycling was able to restore the health characteristics of lean animals.
Collapse
Affiliation(s)
- Thaís Furtado Camargo
- Graduate Program in Biomedical Sciences, Centro Universitário Hermínio Ometto, FHO/UNIARARAS, Araras, Sãu Paulo, Brazil
| | - Ariane Maria Zanesco
- College of Biomedicine, Centro Universitário Hermínio Ometto, Araras, Sãu Paulo, Brazil
| | - Kayo Augusto Salandin Pacher
- Graduate Program in Biomedical Sciences, Centro Universitário Hermínio Ometto, FHO/UNIARARAS, Araras, Sãu Paulo, Brazil
| | | | | | | |
Collapse
|
8
|
Mallien AS, Soukup ST, Pfeiffer N, Brandwein C, Kulling SE, Chourbaji S, Gass P. Effects of Soy in Laboratory Rodent Diets on the Basal, Affective, and Cognitive Behavior of C57BL/6 Mice. JOURNAL OF THE AMERICAN ASSOCIATION FOR LABORATORY ANIMAL SCIENCE 2019; 58:532-541. [PMID: 31466555 DOI: 10.30802/aalas-jaalas-18-000129] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Soy is one of the most common sources of protein in many commercial formulas for laboratory rodent diets. Soy contains isoflavones, which are estrogenic. Therefore, soy-containing animal diets might influence estrogen-regulated systems, including basal behavioral domains, as well as affective behavior and cognition. Furthermore, the isoflavone content of soy varies, potentially unpredictably confounding behavioral results. Therefore researchers are increasingly considering completely avoiding dietary soy to circumvent this problem. Several animal studies have investigated the effects of soy free diets but produced inconsistent results. In addition, most of these previous studies were performed in outbred rat or mouse strains. In the current study, we assessed whether a soy-free diet altered locomotion, exploration, nesting, anxiety-related behaviors, learning, and memory in C57BL/6 mice, the most common inbred strain used in biomedical research. The parameters evaluated address measures of basic health, natural behavior, and affective state that also are landmarks for animal welfare. We found minor differences between feeding groups but no indications of altered welfare. We therefore suggest that a soy-free diet can be used as a standard diet to prevent undesirable side effects of isoflavones and to further optimize diet standardization, quality assurance, and ultimately increase the reproducibility of experiments.
Collapse
Affiliation(s)
- Anne S Mallien
- Department of Psychiatry and Psychotherapy Research Group Animal Models in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany;,
| | - Sebastian T Soukup
- Department of Safety and Quality of Fruit and Vegetables, Max Rubner Institut, Karlsruhe, Germany
| | - Natascha Pfeiffer
- Department of Psychiatry and Psychotherapy Research Group Animal Models in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Christiane Brandwein
- Department of Psychiatry and Psychotherapy Research Group Animal Models in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Sabine E Kulling
- Department of Safety and Quality of Fruit and Vegetables, Max Rubner Institut, Karlsruhe, Germany
| | - Sabine Chourbaji
- Interfaculty Biomedical Research Facility, Heidelberg University, Heidelberg, Germany
| | - Peter Gass
- Department of Psychiatry and Psychotherapy Research Group Animal Models in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
9
|
Luo Q, Li Y, Huang C, Cheng D, Ma W, Xia Y, Liu W, Chen Z. Soy Isoflavones Improve the Spermatogenic Defects in Diet-Induced Obesity Rats through Nrf2/HO-1 Pathway. Molecules 2019; 24:E2966. [PMID: 31443330 PMCID: PMC6719105 DOI: 10.3390/molecules24162966] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 08/09/2019] [Accepted: 08/14/2019] [Indexed: 01/12/2023] Open
Abstract
Soy isoflavones (SIF) are biologically active compounds of non-steroidal and phenolic properties that are richly present in soybeans, which can reduce the body weight and blood lipids of obese animals. Recently, SIF have been reported to affect reproductive ability in obese male rats. However, the specific mechanism has not been well defined. The aim of the current study was to study the possible mechanisms for the effect of SIF administration on obesity induced spermatogenic defects. Obese rats model induced by high-fat diets were established and gavage treated with 0, 50,150 or 450 mg of SIF/kg body weight/day for 4 weeks. Here, our research shows that obesity resulted in spermatogenic degeneration, imbalance of reproductive hormone, testicular oxidative stress and germ cell apoptosis, whereas evidently recovery effects were observed at 150 and 450 mg/kg SIF. We also have discovered that 150 and 450 mg/kg SIF can activate Nrf2/HO-1 pathway in control of Bcl-2, BAX and cleaved caspase-3 expression with implications in antioxidant protection. Our study indicates the potential mechanism of SIF regulating spermatogenic function in obese rats, and provides a scientific experimental basis for the regulation of biological function of obese male reproductive system by SIF.
Collapse
Affiliation(s)
- Qihui Luo
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Yifan Li
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Chao Huang
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Dongjing Cheng
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Wenjing Ma
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Yu Xia
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Wentao Liu
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhengli Chen
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China.
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
10
|
Hall JM, Powell HR, Rajic L, Korach KS. The Role of Dietary Phytoestrogens and the Nuclear Receptor PPARγ in Adipogenesis: An in Vitro Study. ENVIRONMENTAL HEALTH PERSPECTIVES 2019; 127:37007. [PMID: 30920877 PMCID: PMC6768326 DOI: 10.1289/ehp3444] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 02/04/2019] [Accepted: 02/08/2019] [Indexed: 05/26/2023]
Abstract
BACKGROUND Phytoestrogens, naturally occurring plant chemicals, have long been thought to confer beneficial effects on human cardiovascular and metabolic health. However, recent epidemiological studies, have yielded conflicting outcomes, in which phytoestrogen consumption was both positively and negatively correlated with adiposity. Interestingly, several dietary phytoestrogens are known to stimulate or inhibit the activity of the peroxisome proliferator-activated receptor gamma (PPARγ), a key physiological regulator of adipogenesis. OBJECTIVE The objective of this study was to test the hypothesis that the pro- or anti-adipogenic activity of phytoestrogen chemicals is related to the ability to activate PPARγ in adipocytes. METHODS The effects of resveratrol and the soy isoflavones genistein and daidzein on adipogenesis were examined in cell-based assays using the 3T3-L1 cell model. In parallel, ligand-mediated alterations in PPARγ target gene expression were measured by quantitative polymerase chain reaction. The agonist/antagonist activities of phytoestrogens on PPARγ were further assessed by quantifying their ability to affect recruitment of transcriptional cofactors to the receptor. RESULTS Resveratrol displayed significant anti-adipogenic activities as exhibited by the ability to antagonize PPARγ-dependent adipocyte differentiation, down-regulate genes involved in lipid metabolism, block cofactor recruitment to PPARγ, and antagonize the effects of the PPARγ agonist rosiglitazone. In contrast, genistein and daidzein functioned as PPARγ agonists while also displaying pro-adipogenic activities. CONCLUSIONS These data provide biological evidence that the pro- or anti-obesity effects of phytoestrogens are related to their relative agonist/antagonist activity on PPARγ. Thus, PPARγ-activation assays may enable the screening of dietary components and identification of agents with adipogenic activities. https://doi.org/10.1289/EHP3444.
Collapse
Affiliation(s)
- Julie M. Hall
- Department of Medical Sciences, Frank H. Netter MD School of Medicine NH-MED, Quinnipiac University, North Haven, Connecticut, USA
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Campbell University, Buies Creek, North Carolina, USA
| | - Heather R. Powell
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Campbell University, Buies Creek, North Carolina, USA
| | - Lara Rajic
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Campbell University, Buies Creek, North Carolina, USA
| | - Kenneth S. Korach
- Receptor Biology Section, Laboratory of Reproductive and Developmental Toxicology, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
| |
Collapse
|
11
|
Grossini E, Farruggio S, Raina G, Mary D, Deiro G, Gentilli S. Effects of Genistein on Differentiation and Viability of Human Visceral Adipocytes. Nutrients 2018; 10:E978. [PMID: 30060502 PMCID: PMC6115928 DOI: 10.3390/nu10080978] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 07/17/2018] [Accepted: 07/26/2018] [Indexed: 01/05/2023] Open
Abstract
Obesity can lead to pathological growth of adipocytes by inducing inflammation and oxidative stress. Genistein could be a potential candidate for the treatment of obesity due to its antioxidant properties. Specific kits were used to examine the effects of genistein vs adiponectin on human visceral pre-adipocytes differentiation, cell viability, mitochondrial membrane potential, and oxidative stress in pre-adipocytes and in white/brown adipocytes. Western Blot was performed to examine changes in protein activation/expression. Genistein increased human visceral pre-adipocytes differentiation and browning, and caused a dose-related improvement of cell viability and mitochondrial membrane potential. Similar effects were observed in brown adipocytes and in white adipocytes, although in white cells the increase of cell viability was inversely related to the dose. Moreover, genistein potentiated AMP-activated protein kinase (AMPK)/mitofusin2 activation/expression in pre-adipocytes and white/brown adipocytes and protected them from the effects of hydrogen peroxide. The effects caused by genistein were similar to those of adiponectin. The results obtained showed that genistein increases human visceral pre-adipocytes differentiation and browning, protected against oxidative stress in pre-adipocytes and white/brown adipocytes through mechanisms related to AMPK-signalling and the keeping of mitochondrial function.
Collapse
Affiliation(s)
- Elena Grossini
- Laboratory of Physiology, Department of Translational Medicine, University of Eastern Piedmont, Via Solaroli 17, 28100 Novara, Italy.
- Experimental Surgery, Azienda Ospedaliera Universitaria Maggiore della Carità, Corso Mazzini 36, 28100 Novara, Italy.
- AGING Project, Department of Translational Medicine, University of Eastern Piedmont, via Solaroli 17, 28100 Novara, Italy.
| | - Serena Farruggio
- Laboratory of Physiology, Department of Translational Medicine, University of Eastern Piedmont, Via Solaroli 17, 28100 Novara, Italy.
- AGING Project, Department of Translational Medicine, University of Eastern Piedmont, via Solaroli 17, 28100 Novara, Italy.
| | - Giulia Raina
- Laboratory of Physiology, Department of Translational Medicine, University of Eastern Piedmont, Via Solaroli 17, 28100 Novara, Italy.
- AGING Project, Department of Translational Medicine, University of Eastern Piedmont, via Solaroli 17, 28100 Novara, Italy.
| | - David Mary
- Laboratory of Physiology, Department of Translational Medicine, University of Eastern Piedmont, Via Solaroli 17, 28100 Novara, Italy.
| | - Giacomo Deiro
- General Surgery Unit, Department of Health Sciences, University of Eastern Piedmont, Via Solaroli 17, 28100 Novara, Italy.
| | - Sergio Gentilli
- General Surgery Unit, Department of Health Sciences, University of Eastern Piedmont, Via Solaroli 17, 28100 Novara, Italy.
| |
Collapse
|
12
|
Zheng W, Rogoschin J, Niehoff A, Oden K, Kulling SE, Xie M, Diel P. Combinatory effects of phytoestrogens and exercise on body fat mass and lipid metabolism in ovariectomized female rats. J Steroid Biochem Mol Biol 2018; 178:73-81. [PMID: 29122708 DOI: 10.1016/j.jsbmb.2017.11.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 11/03/2017] [Accepted: 11/05/2017] [Indexed: 12/11/2022]
Abstract
The purpose of this study was to investigate the combinatory effects of an isoflavone (ISO)-rich diet and exercise on fat mass and lipid metabolism in ovariectomized (OVX) rats. Therefore the female Wistar rats were sedentary, performed an intense treadmill uphill running, received ISOs, or a combination of ISOs and running after ovariectomy. The exercise reduced visceral fat mass, adipocyte size and serum leptin in Sham animals and antagonized the increases of these parameters induced by OVX. ISOs reduced OVX induced increase of serum leptin. The combination of training and ISOs was most effective in reducing serum triglyceride levels. In OVX rats the training stimulated the expression of genes associated with fatty acid synthesis (SREBP-1c and FAS) in adipose tissue, soleus muscle, liver and genes associated with fatty acid oxidation (PPARδ and PGC-1α) in adipose tissue. ISOs stimulated the expression of SREBP-1c and FAS in soleus muscle and PGC-1α in adipose tissue, whereas suppressed hepatic SREBP-1c and FAS expression. Strong additive effects of ISOs combined with the training were observed for PPARδ and PGC-1α expressions in soleus muscle. In conclusion our results demonstrate that both the training and ISOs affect fat mass and fatty acid metabolism in OVX rats. The training seems to have a higher impact than ISO exposure in regulating gene expression in adipose tissue. However, the strongest effects for several of the addressed parameters could be observed in the combination group especially in the soleus muscle. Therefore a combination of training and an ISO-rich diet may have beneficial effects on fatty acid metabolism and could be a concept for the prevention of obesity in postmenopausal females.
Collapse
Affiliation(s)
- Wenya Zheng
- Institute of Cardiovascular Research and Sports Medicine, Department of Molecular and Cellular Sports Medicine, German Sport University Cologne, Germany.
| | - Jana Rogoschin
- Institute of Cardiovascular Research and Sports Medicine, Department of Molecular and Cellular Sports Medicine, German Sport University Cologne, Germany
| | - Anja Niehoff
- Institute of Biomechanics and Orthopaedics, German Sport University Cologne, Germany; Cologne Center for Musculoskeletal Biomechanics, Medical Faculty, University of Cologne, Germany
| | - Kristina Oden
- Institute of Cardiovascular Research and Sports Medicine, Department of Molecular and Cellular Sports Medicine, German Sport University Cologne, Germany
| | - Sabine E Kulling
- Department of Safety and Quality of Fruit and Vegetables, Max Rubner-Institut, Karlsruhe, Germany
| | - Mingyong Xie
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Patrick Diel
- Institute of Cardiovascular Research and Sports Medicine, Department of Molecular and Cellular Sports Medicine, German Sport University Cologne, Germany
| |
Collapse
|
13
|
Xie CL, Kang SS, Cho KM, Park KH, Lee DH. Isoflavone-enriched soybean ( Glycine max) leaves prevents ovariectomy-induced obesity by enhancing fatty acid oxidation. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.02.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
14
|
Sakuma K, Yamaguchi A. Drugs of Muscle Wasting and Their Therapeutic Targets. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1088:463-481. [PMID: 30390265 DOI: 10.1007/978-981-13-1435-3_21] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Muscle wasting and weakness such as cachexia, atrophy, and sarcopenia are characterized by marked decreases in the protein content, myonuclear number, muscle fiber size, and muscle strength. This chapter focuses on the recent advances of pharmacological approach for attenuating muscle wasting.A myostatin-inhibiting approach is very intriguing to prevent sarcopenia but not muscular dystrophy in humans. Supplementation with ghrelin is also an important candidate to combat sarcopenia as well as cachexia. Treatment with soy isoflavone, trichostatin A (TSA), and cyclooxygenase 2 (Cox2) inhibitors seems to be effective modulators attenuating muscle wasting, although further systematic research is needed on this treatment in particular concerning side effects.
Collapse
Affiliation(s)
- Kunihiro Sakuma
- Institute for Liberal Arts, Environment and Society, Tokyo Institute of Technology, Tokyo, Japan.
| | - Akihiko Yamaguchi
- Department of Physical Therapy, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido, Japan
| |
Collapse
|
15
|
Tabata S, Aizawa M, Kinoshita M, Ito Y, Kawamura Y, Takebe M, Pan W, Sakuma K. The influence of isoflavone for denervation-induced muscle atrophy. Eur J Nutr 2017; 58:291-300. [PMID: 29236164 DOI: 10.1007/s00394-017-1593-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 12/08/2017] [Indexed: 12/14/2022]
Abstract
PURPOSE Decrease in activity stress induces skeletal muscle atrophy. A previous study showed that treatment with a high level (20%) of isoflavone inhibits muscle atrophy after short-term denervation (at 4 days) in mice. The present study was designed to elucidate whether the dietary isoflavone aglycone (AglyMax) at a 0.6% prevents denervation-mediated muscle atrophy, based on the modulation of atrogin-1- or apoptosis-dependent signaling. METHODS Mice were fed either a normal diet or 0.6% AglyMax diet. One week later, the right sciatic nerve was cut. The wet weight, mean fiber area, amount of atrogin-1 and cleaved caspase-3 proteins, and the percentages of apoptotic nuclei were examined in the gastrocnemius muscle at 14 days after denervation. RESULTS The 0.6% AglyMax diet significantly attenuated denervation-induced decreases in fiber atrophy but not the muscle wet weight. In addition, dietary isoflavone suppressed the denervation-induced apoptosis in spite of there being no significant changes in the amount of cleaved caspase-3 protein. In contrast, the 0.6% AglyMax diet did not significantly modulate the protein expression of atrogin-1 in the denervated muscle of mice. CONCLUSIONS The isoflavone aglycone (AglyMax) at a 0.6% significantly would modulate muscle atrophy after denervation in mice, probably due to the decrease in apoptosis-dependent signaling.
Collapse
Affiliation(s)
- Shinpei Tabata
- Research Center for Physical Fitness, Sports and Health, Toyohashi University of Technology, 1-1 Hibarigaoka, Tenpaku-cho, Toyohashi, 441-8580, Japan
| | - Miki Aizawa
- Research Center for Physical Fitness, Sports and Health, Toyohashi University of Technology, 1-1 Hibarigaoka, Tenpaku-cho, Toyohashi, 441-8580, Japan
| | - Masakazu Kinoshita
- Research Center for Physical Fitness, Sports and Health, Toyohashi University of Technology, 1-1 Hibarigaoka, Tenpaku-cho, Toyohashi, 441-8580, Japan
| | - Yoshinori Ito
- Research Center for Physical Fitness, Sports and Health, Toyohashi University of Technology, 1-1 Hibarigaoka, Tenpaku-cho, Toyohashi, 441-8580, Japan
| | - Yusuke Kawamura
- Research Center for Physical Fitness, Sports and Health, Toyohashi University of Technology, 1-1 Hibarigaoka, Tenpaku-cho, Toyohashi, 441-8580, Japan
| | | | - Weijun Pan
- Nichimo Biotics Company, Tokyo, 140-0002, Japan
| | - Kunihiro Sakuma
- Research Center for Physical Fitness, Sports and Health, Toyohashi University of Technology, 1-1 Hibarigaoka, Tenpaku-cho, Toyohashi, 441-8580, Japan. .,Institute for Liberal Arts, Environment and Society, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8550, Japan.
| |
Collapse
|
16
|
Wang T, Zhu X, Dai F, Li C, Huang D, Fang Z, Zhang Q, Lu Y. Effects of a standard high-fat diet with or without multiple deficiencies on bone parameters in ovariectomized mature rat. PLoS One 2017; 12:e0184983. [PMID: 28950016 PMCID: PMC5614430 DOI: 10.1371/journal.pone.0184983] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 09/04/2017] [Indexed: 01/11/2023] Open
Abstract
The aim of this study was to determine the effects of a standard high fat diet (D12451) with or without vitamin D3, phosphorus, and calcium (i.e., high-fat diet [HFD] or high-fat deficient diet [HFDD]) on the bone parameters of ovariectomized female rats. Six-month-old of female Sprauge Dawley (SD) rats were randomly divided into six study groups: sham operation with standard chow diet (SSCD), sham operation with a HFD (SHFD), sham operation with a HFDD (SHFDD), ovariectomized (OVX), OVX with a HFD (OVX-HFD), and OVX with a HFDD (OVX-HFDD). A bilateral ovariectomy was administered to the OVX, OVX-HFD, and OVX-HFDD rats, while the SSCD, SHFD, and SHFDD rats were only given a laparotomy. Multiple analyses concerning the glucose and insulin tolerance, structure, bone strength, bone matrix, and mineralization of the rats were conducted in order to produce a detailed characterization of the effects of a HFD and a HFDD on postmenopausal osteoporotic rats. Seven months of HFD and HFDD feeding resulted in obesity and insulin resistance in female SD rats. A standard HFD increased the bone calcium content and bone strength of OVX rats. Conversely, the serum N-mid osteocalcin (N-MID-OT) and tartrate-resistant acid phosphatase (TRAP) levels in the OVX-HFDD group were increased, accompanied by a clear decrease in the bone mineral density (BMD), bone mineral content (BMC), bone calcium and bone strength, as well as reduced osteocalcin expression. A HFDD weakened the activity of the osteoblasts while aggravating bone loss and decreasing bone strength in ovariectomized rats, which may be due to the calcium, phosphorus and vitamin D3 deficiencies in the diet.
Collapse
Affiliation(s)
- Ting Wang
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People’s Republic of China
| | - Xiaohuan Zhu
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People’s Republic of China
| | - Fang Dai
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People’s Republic of China
| | - Chaofei Li
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Anhui Medical University, Hefei, Anhui, People’s Republic of China
| | - Dake Huang
- The Comprehensive Laboratory, College of Basic Medicine, Anhui Medical University, Hefei, Anhui, People’s Republic of China
| | - Zhaohui Fang
- Department of Endocrinology, The First Affilliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, Anhui, People’s Republic of China
| | - Qiu Zhang
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People’s Republic of China
- * E-mail: (QZ); (YL)
| | - Yunxia Lu
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Anhui Medical University, Hefei, Anhui, People’s Republic of China
- The Comprehensive Laboratory, College of Basic Medicine, Anhui Medical University, Hefei, Anhui, People’s Republic of China
- * E-mail: (QZ); (YL)
| |
Collapse
|
17
|
Cross TWL, Zidon TM, Welly RJ, Park YM, Britton SL, Koch LG, Rottinghaus GE, de Godoy MRC, Padilla J, Swanson KS, Vieira-Potter VJ. Soy Improves Cardiometabolic Health and Cecal Microbiota in Female Low-Fit Rats. Sci Rep 2017; 7:9261. [PMID: 28835674 PMCID: PMC5569109 DOI: 10.1038/s41598-017-08965-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 07/20/2017] [Indexed: 12/13/2022] Open
Abstract
Phytoestrogen-rich soy is known to ameliorate menopause-associated obesity and metabolic dysfunction for reasons that are unclear. The gut microbiota have been linked with the development of obesity and metabolic dysfunction. We aimed to determine the impact of soy on cardiometabolic health, adipose tissue inflammation, and the cecal microbiota in ovariectomized (OVX) rats bred for low-running capacity (LCR), a model that has been previously shown to mimic human menopause compared to sham-operated (SHM) intact control LCR rats. In this study, soy consumption, without affecting energy intake or physical activity, significantly improved insulin sensitivity and body composition of OVX rats bred for low-running capacity. Furthermore, soy significantly improved blood lipid profile, adipose tissue inflammation, and aortic stiffness of LCR rats. Compared to a soy-free control diet, soy significantly shifted the cecal microbial community of LCR rats, resulting in a lower Firmicutes:Bacteroidetes ratio. Correlations among metabolic parameters and cecal bacterial taxa identified in this study suggest that taxa Prevotella, Dorea, and Phascolarctobacterium may be taxa of interest. Our results suggest that dietary soy ameliorates adiposity, insulin sensitivity, adipose tissue inflammation, and arterial stiffness and exerts a beneficial shift in gut microbial communities in a rat model that mimics human menopause.
Collapse
Affiliation(s)
- Tzu-Wen L Cross
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Terese M Zidon
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, 65211, USA
| | - Rebecca J Welly
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, 65211, USA
| | - Young-Min Park
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, 65211, USA
| | - Steven L Britton
- Department of Anesthesiology, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Lauren G Koch
- Department of Anesthesiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - George E Rottinghaus
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Maria R Cattai de Godoy
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Jaume Padilla
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, 65211, USA
- Department of Child Health, University of Missouri, Columbia, MO, 65211, USA
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, 65211, USA
| | - Kelly S Swanson
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Victoria J Vieira-Potter
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, 65211, USA.
| |
Collapse
|
18
|
Liu H, Zhong H, Leng L, Jiang Z. Effects of soy isoflavone on hepatic steatosis in high fat-induced rats. J Clin Biochem Nutr 2017; 61:85-90. [PMID: 28955124 PMCID: PMC5612816 DOI: 10.3164/jcbn.16-98] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 11/28/2016] [Indexed: 12/17/2022] Open
Abstract
Soy isoflavone has benefits for metabolic syndrome but the mechanism is not completely understood. This study was designed to determine the effects of soy isoflavone on hepatic fat accumulation in non-alcoholic fatty liver disease (NAFLD) rats induced by high fat diet (HFD). Sprague-Dawley rats were administrated with a normal fat diet (control), HFD (NAFLD model), HFD with 10 or 20 mg/kg soy isoflavone daily for 12 weeks. Hepatic and serum lipid contents, liver histopathological examination, serum alanine transaminase (ALT), protein and mRNA expression of sterol regulatory element binding protein (SREBP)-1c, fatty acid synthase (FAS), peroxisome proliferator-activated receptor (PPAR) α were assayed respectively. Our study found that soy isoflavone reduced HFD-induced lipid accumulation in liver, serum ALT and improved liver lobule structure. In addition, the expression of SREBP-1c and FAS was lower, whereas protein level of PPARα was higher in two soy isoflavone groups than that of the HFD group. Collectively, these results demonstrate that soy isoflavone is capable of alleviating hepatic steatosis and delaying the progression of NAFLD via inhibiting lipogenesis and promoting fatty acid oxidation in liver.
Collapse
Affiliation(s)
- Huanhuan Liu
- Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Huijia Zhong
- Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Liang Leng
- Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Zhuoqin Jiang
- Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, China
| |
Collapse
|
19
|
Zheng W, Hengevoß J, Soukup ST, Kulling SE, Xie M, Diel P. An isoflavone enriched diet increases skeletal muscle adaptation in response to physical activity in ovariectomized rats. Mol Nutr Food Res 2017; 61. [PMID: 28497652 DOI: 10.1002/mnfr.201600843] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Revised: 04/25/2017] [Accepted: 05/02/2017] [Indexed: 11/08/2022]
Abstract
SCOPE This study was to investigate anabolic adaptation of skeletal muscle in response to an isoflavone (ISO) enriched diet, training and their combinations in ovariectomized (OVX) rats. METHODS AND RESULTS Female Wistar rats were sedentary, performed treadmill uphill running, received ISOs, or a combination of ISOs and running after ovariectomy. Body weight was increased by OVX. Both ISO and training treatment antagonized this increase. The weights of soleus and gastrocnemius muscles were increased only when training and ISOs were combined. In soleus muscle insulin-like growth factor (IGF)-1R, MyoD and Myogenin expressions were only up-regulated by training in Sham groups. However, a stimulation of IGF-1R and MyoD expression could be observed when ISOs and training were combined. In gastrocnemius muscle MyoD and Myogenin expressions were stimulated by either training or ISOs. Additive effects were detected when combining the two interventions. CONCLUSION Our results indicate that the combination of ISOs and exercise is more efficient in increasing relative skeletal muscle mass and the expression of molecular markers related to anabolic adaptation in the skeletal muscle of female rats.
Collapse
Affiliation(s)
- Wenya Zheng
- Institute of Cardiovascular Research and Sports Medicine, Department of Molecular and Cellular Sports Medicine, German Sport University Cologne, Germany
| | - Jonas Hengevoß
- Institute of Cardiovascular Research and Sports Medicine, Department of Molecular and Cellular Sports Medicine, German Sport University Cologne, Germany
| | - Sebastian T Soukup
- Department of Safety and Quality of Fruit and Vegetables, Max Rubner-Institut, Karlsruhe, Germany
| | - Sabine E Kulling
- Department of Safety and Quality of Fruit and Vegetables, Max Rubner-Institut, Karlsruhe, Germany
| | - Mingyong Xie
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Patrick Diel
- Institute of Cardiovascular Research and Sports Medicine, Department of Molecular and Cellular Sports Medicine, German Sport University Cologne, Germany
| |
Collapse
|
20
|
Liu H, Zhong H, Yin Y, Jiang Z. Genistein has beneficial effects on hepatic steatosis in high fat-high sucrose diet-treated rats. Biomed Pharmacother 2017; 91:964-969. [PMID: 28514835 DOI: 10.1016/j.biopha.2017.04.130] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 04/25/2017] [Accepted: 04/30/2017] [Indexed: 02/07/2023] Open
Abstract
Genistein, a kind of phytoestrogen abundant in soybeans, is beneficial for alleviating non-alcoholic fatty liver disease (NAFLD), but the specific mechanism was not clearly understood. This study was designed to determine the effect of genistein on NAFLD and explore the possible mechanism. 36 male Sprague-Dawley rats were divided into 4 groups: the control group, high fat-high sucrose diet (HFS) group, HFS with 4mg/kg body weight genistein, and HFS with 8mg/kg body weight genistein. 12 weeks later, serum and hepatic lipid profiles, liver histopathological examination were characterized. The protein levels of liver AMP-activated protein kinase (AMPK), phosphorylation of AMPK (p-AMPK), acetyl-CoA carboxylase (ACC), phosphorylation of ACC (p-ACC) and sterol regulatory element binding protein 1 (SREBP-1) were determined by western blot. mRNA expressions of fatty acid synthase gene (FAS) and glycerol-3-phosphate acyltransferase (GPAT), peroxisome proliferator-activated receptor α (PPARα), carnitine palmitoyl transfer enzyme-1 (CPT-1) and acyl-CoA oxidase (ACO) were measured by reverse transcription polymerase chain reaction (RT-PCR). Results showed that genistein effectively improved serum and hepatic lipid metabolism and diminished fat accumulation in liver. And the protein level of hepatic p-AMPK and p-ACC were increased, but SREBP-1 was decreased by genistein. Meanwhile, the mRNA levels of FAS and GPAT were lower, but PPARα, CPT-1, ACO were higher in rats treated with genistein compared with HFS group. Collectively, genistein can improve hepatic steatosis via activating AMPK, thus promoting fatty acid oxidation and inhibiting lipid synthesis in liver.
Collapse
Affiliation(s)
- Huanhuan Liu
- Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Huijia Zhong
- Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Yimin Yin
- Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Zhuoqin Jiang
- Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
21
|
Ramdath DD, Padhi EMT, Sarfaraz S, Renwick S, Duncan AM. Beyond the Cholesterol-Lowering Effect of Soy Protein: A Review of the Effects of Dietary Soy and Its Constituents on Risk Factors for Cardiovascular Disease. Nutrients 2017; 9:E324. [PMID: 28338639 PMCID: PMC5409663 DOI: 10.3390/nu9040324] [Citation(s) in RCA: 151] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Revised: 03/16/2017] [Accepted: 03/21/2017] [Indexed: 12/13/2022] Open
Abstract
The hypocholesterolemic effect of soy is well-documented and this has led to the regulatory approval of a health claim relating soy protein to a reduced risk of cardiovascular disease (CVD). However, soybeans contain additional components, such as isoflavones, lecithins, saponins and fiber that may improve cardiovascular health through independent mechanisms. This review summarizes the evidence on the cardiovascular benefits of non-protein soy components in relation to known CVD risk factors such as hypertension, hyperglycemia, inflammation, and obesity beyond cholesterol lowering. Overall, the available evidence suggests non-protein soy constituents improve markers of cardiovascular health; however, additional carefully designed studies are required to independently elucidate these effects. Further, work is also needed to clarify the role of isoflavone-metabolizing phenotype and gut microbiota composition on biological effect.
Collapse
Affiliation(s)
- D Dan Ramdath
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON N1G 5C9, Canada.
| | - Emily M T Padhi
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON N1G 5C9, Canada.
| | - Sidra Sarfaraz
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON N1G 5C9, Canada.
| | - Simone Renwick
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON N1G 5C9, Canada.
| | - Alison M Duncan
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON N1G 2E1, Canada.
| |
Collapse
|
22
|
Neovestitol, an isoflavonoid isolated from Brazilian red propolis, reduces acute and chronic inflammation: involvement of nitric oxide and IL-6. Sci Rep 2016; 6:36401. [PMID: 27819273 PMCID: PMC5098247 DOI: 10.1038/srep36401] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 10/10/2016] [Indexed: 12/25/2022] Open
Abstract
Isoflavonoids have been largely studied due to their distinct biological activities identified thus far. Herein, we evaluated the activity of neovestitol, an isoflavonoid isolated from Brazilian red propolis, in acute and chronic inflammation. As for acute inflammation, we found that neovestitol reduced neutrophil migration, leukocyte rolling and adhesion, as well as expression of ICAM-1 in the mesenteric microcirculation during lipopolysaccharide-induced acute peritonitis. No changes were observed in the levels of TNF-α, CXCL1/KC and CXCL2/MIP-2 upon pretreatment with neovestitol. The administration of an inducible nitric oxide synthase (iNOS) inhibitor abolished the inhibitory effects of neovestitol in neutrophil migration and ICAM-1 expression. Nitrite levels increased upon treatment with neovestitol. No effects of neovestitol were observed on the chemotaxis of neutrophils in vitro. As for chronic inflammation, neovestitol also reduced the clinical score and joint damage in a collagen-induced arthritis model. There was no change in the frequency of IL-17-producing TCD4+ cells. In addition, pretreatment with neovestitol reduced the levels of IL-6. These results demonstrate a potential anti-inflammatory activity of neovestitol, which may be useful for therapeutic purposes and/or as a nutraceutical.
Collapse
|
23
|
Engelbert AK, Soukup ST, Roth A, Hoffmann N, Graf D, Watzl B, Kulling SE, Bub A. Isoflavone supplementation in postmenopausal women does not affect leukocyte LDL receptor and scavenger receptor CD36 expression: A double-blind, randomized, placebo-controlled trial. Mol Nutr Food Res 2016; 60:2008-19. [PMID: 27004411 DOI: 10.1002/mnfr.201600019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 03/08/2016] [Accepted: 03/10/2016] [Indexed: 11/10/2022]
Abstract
SCOPE Isoflavones are discussed to improve serum lipoproteins and body composition and to reduce cardiovascular disease risk in postmenopausal women (PMW). LDL receptors (LDLR) and scavenger receptor CD36 (CD36) play a pivotal role in the regulation of plasma LDL-cholesterol concentrations (LDL-chol). We investigated the impact of isoflavones on the receptor expression of both receptors in leukocytes of PMW. METHODS AND RESULTS A randomized, double-blind, placebo-controlled trial in parallel design was conducted to assess the effects of an isoflavone-enriched soy extract (117.4 mg/day isoflavone aglycone equivalents) for 12 weeks on serum LDL-chol, LDLR, and CD36 expression on leukocytes in 170 healthy PMW. Baseline and after 12 weeks, blood lipid concentrations, anthropometric data and body composition were determined. Receptor expression on leukocytes was measured by means of flow cytometry. After the intervention, no significant differences were found for LDLR and CD36 expression on leukocytes. A significant increase of serum LDL-chol was shown for the isoflavone group (p = 0.03) after 12 weeks. Body fat content and VAT were not affected. CONCLUSION Isoflavone supplementation for 12 weeks did not change LDLR and CD36 expression on leukocytes of PMW and did not affect body fat content and visceral adipose tissue (VAT), but slightly increased serum LDL-chol.
Collapse
Affiliation(s)
- Ann Katrin Engelbert
- Department of Physiology and Biochemistry of Nutrition, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Karlsruhe, Germany
| | - Sebastian T Soukup
- Department of Safety and Quality of Fruit and Vegetables, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Karlsruhe, Germany
| | - Alexander Roth
- Department of Physiology and Biochemistry of Nutrition, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Karlsruhe, Germany
| | - Nadine Hoffmann
- Department of Physiology and Biochemistry of Nutrition, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Karlsruhe, Germany
| | - Daniela Graf
- Department of Physiology and Biochemistry of Nutrition, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Karlsruhe, Germany
| | - Bernhard Watzl
- Department of Physiology and Biochemistry of Nutrition, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Karlsruhe, Germany
| | - Sabine E Kulling
- Department of Safety and Quality of Fruit and Vegetables, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Karlsruhe, Germany
| | - Achim Bub
- Department of Physiology and Biochemistry of Nutrition, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Karlsruhe, Germany.
| |
Collapse
|