1
|
Qi H, Zhou Y, Hou HT, Wei JH, He GW, Yang Q. Contributing role and molecular basis of Vitamin D/Vitamin D receptor deficiency in hyperhomocysteinemia-induced cardiac hypertrophy. Biochem Pharmacol 2025; 234:116812. [PMID: 39978691 DOI: 10.1016/j.bcp.2025.116812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 01/11/2025] [Accepted: 02/17/2025] [Indexed: 02/22/2025]
Abstract
Hyperhomocysteinemia and vitamin D deficiency are known to promote cardiac hypertrophy, however, whether vitamin D signaling is involved in hyperhomocysteinemia-induced cardiac hypertrophy remains unexplored. This study aimed to address this question by clarifying the effect of homocysteine on vitamin D and vitamin D receptor (VDR), with further elucidation of the regulatory mechanisms. Methionine diet-induced hyperhomocysteinemic (HHcy) rats and homocysteine-incubated cardiomyocytes were used as in vivo and in vitro models of cardiac hypertrophy. Gain-and-loss-of function of VDR and miR-125b-5p were achieved by plasmid transfection and AAV9-mediated delivery. HHcy rats showed lowered serum and cardiac 1,25(OH)2D3 levels and increased 24-hydroxylase (CYP24A1) expression in kidney and myocardium. VDR expression was downregulated and miR-125b-5p was upregulated in the myocardium of HHcy rats and in homocysteine-incubated cardiomyocytes as well. Knockdown of VDR facilitated while overexpression mitigated homocysteine-induced cardiomyocyte hypertrophy, accompanied by activation and inhibition of calcineurin/nuclear factor of activated T cells 4 (NFATc4) respectively. Dual-luciferase reporter gene assay and gain-and-loss-of function of miR-125b-5p in cardiomyocytes indicated the targeting and repressing of VDR by miR-125b-5p and its pro-hypertrophic effect. The role of miR-125b-5p-mediated VDR downregulation in homocysteine-induced cardiac hypertrophy was further demonstrated in vivo. Treatment with VDR agonist inhibited hypertrophic growth both in vivo and in vitro, resulting from VDR upregulation and consequent calcineurin/NFATc4 inhibition. These findings demonstrated that homocysteine reduces 1,25(OH)2D3 level in both plasma and myocardium via upregulating CYP24A1 and represses myocardial VDR expression via the mediation of miR-125b-5p. Vitamin D/VDR deficiency contributes to hyperhomocysteinemia-induced cardiac hypertrophy via activating calcineurin/NFATc4 pathway.
Collapse
Affiliation(s)
- Hang Qi
- Institute of Cardiovascular Diseases & Department of Cardiac Surgery, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College & Tianjin University, Tianjin 300457, China; Tianjin Key Laboratory of Molecular Regulation of Cardiovascular Diseases and Translational Medicine, Tianjin 300457, China
| | - Yang Zhou
- Institute of Cardiovascular Diseases & Department of Cardiac Surgery, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College & Tianjin University, Tianjin 300457, China; Tianjin Key Laboratory of Molecular Regulation of Cardiovascular Diseases and Translational Medicine, Tianjin 300457, China
| | - Hai-Tao Hou
- Institute of Cardiovascular Diseases & Department of Cardiac Surgery, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College & Tianjin University, Tianjin 300457, China; Tianjin Key Laboratory of Molecular Regulation of Cardiovascular Diseases and Translational Medicine, Tianjin 300457, China
| | - Jia-Hui Wei
- Institute of Cardiovascular Diseases & Department of Cardiac Surgery, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College & Tianjin University, Tianjin 300457, China; Tianjin Key Laboratory of Molecular Regulation of Cardiovascular Diseases and Translational Medicine, Tianjin 300457, China
| | - Guo-Wei He
- Institute of Cardiovascular Diseases & Department of Cardiac Surgery, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College & Tianjin University, Tianjin 300457, China; Tianjin Key Laboratory of Molecular Regulation of Cardiovascular Diseases and Translational Medicine, Tianjin 300457, China
| | - Qin Yang
- Institute of Cardiovascular Diseases & Department of Cardiac Surgery, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College & Tianjin University, Tianjin 300457, China; Tianjin Key Laboratory of Molecular Regulation of Cardiovascular Diseases and Translational Medicine, Tianjin 300457, China.
| |
Collapse
|
2
|
Pang J, Yang C, Liu J, Wang Z, Tao X, Cao Z. Correlation between vitamin D metabolic pathway-related gene polymorphisms and cardiovascular disease. Food Funct 2024; 15:11342-11364. [PMID: 39494806 DOI: 10.1039/d4fo03234a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
Vitamin D plays important roles in various physiological processes such as cardiovascular health, calcium balance regulation, bone health, immune system support, neurological function regulation, muscle function maintenance, and anti-inflammatory effects. Therefore, maintaining its adequate levels is essential for overall health. Genetic polymorphisms in vitamin D metabolic pathways have become a key factor affecting the susceptibility and progression of cardiovascular disease (CVD). This article reviews the relationship between gene polymorphisms in vitamin D metabolic pathways and vitamin D levels or CVD. It is emphasized that the polymorphisms of key genes such as GC, VDR, CYP2R1, CYP24A1 and CYP27B1 are related to the pathogenesis of CVD. These polymorphisms can regulate serum levels of vitamin D, thereby affecting the susceptibility, comorbidities and clinical manifestations of CVD. Despite the progress made, there are still inconsistencies and gaps in the literature. Thus, it is necessary to conduct large-scale, multicenter studies to verify these findings and deepen our understanding of the intricate interactions between gene polymorphisms in vitamin D metabolic pathways and CVD.
Collapse
Affiliation(s)
- Jiao Pang
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang, 110122, China.
- College of Life Science, Northwest University, Xi'an City, 710069, China
| | - Chunshuo Yang
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang, 110122, China.
- Department of Pain Medicine, The First Hospital of China Medical University, Shenyang, 110001, China.
| | - Jiaqi Liu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211103, China
| | - Zhilin Wang
- Department of Pain Medicine, The First Hospital of China Medical University, Shenyang, 110001, China.
| | - Xueshu Tao
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang, 110122, China.
- Department of Pain Medicine, The First Hospital of China Medical University, Shenyang, 110001, China.
| | - Zhipeng Cao
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang, 110122, China.
| |
Collapse
|
3
|
Zhong C, Chen D, Gong D, Sheng X, Lin Y, Li R, Li Y. Transcriptomic response of overexpression ZNF32 in breast cancer cells. Sci Rep 2024; 14:28407. [PMID: 39557972 PMCID: PMC11574142 DOI: 10.1038/s41598-024-80125-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 11/15/2024] [Indexed: 11/20/2024] Open
Abstract
Breast cancer is one of the deadliest malignancies in women worldwide. Zinc finger protein 32 (ZNF32) has been reported to be involved in autophagy and stem cell like properties of breast cancer cells. However, the effects, mechanisms, target genes and pathways of ZNF32 in breast cancer development have not been fully explored. In this study, stable ZNF32 overexpression breast cancer cell line was generated, and we used RNA-seq and RT-qPCR to quantify and verify the changes in transcription levels in breast cancer cells under ZNF32 overexpression. Transcriptome analysis showed that high expression of ZNF32 is accompanied by changes in downstream focal adhesion, ECM-receptor interaction, PI3K-AKT, HIPPO and TNF signaling pathways, which are critical for the occurrence and development of cancer. Multiple differentially expressed genes (DEGs) were significantly involved in cell proliferation, adhesion and migration, including 11 DEGs such as CA9, CRLF1 and ENPP2P with fundamental change of regulation modes. All the 11 DEGs were validated by RT-qPCR, and 9 of them contained potential transcriptional binding sequences of ZNF32 in their promoter region. This study provides a holistic perspective on the role and molecular mechanism of ZNF32 in breast cancer progression.
Collapse
Affiliation(s)
- Chaosong Zhong
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Education Ministry, Southwest Minzu University, Chengdu, China
- College of Animal and Veterinary Sciences, Southwest Minzu University, No. 16, South Section 4, First Ring Road, Chengdu, 610041, Sichuan, China
| | - Dingshuang Chen
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Education Ministry, Southwest Minzu University, Chengdu, China
- College of Animal and Veterinary Sciences, Southwest Minzu University, No. 16, South Section 4, First Ring Road, Chengdu, 610041, Sichuan, China
| | - Di Gong
- School of Basic Medical Science, Chengdu University, Chengdu, China
| | - Xueqing Sheng
- College of Animal and Veterinary Sciences, Southwest Minzu University, No. 16, South Section 4, First Ring Road, Chengdu, 610041, Sichuan, China
| | - Yaqiu Lin
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Education Ministry, Southwest Minzu University, Chengdu, China
- College of Animal and Veterinary Sciences, Southwest Minzu University, No. 16, South Section 4, First Ring Road, Chengdu, 610041, Sichuan, China
| | - Ruiwen Li
- Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yanyan Li
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Education Ministry, Southwest Minzu University, Chengdu, China.
- College of Animal and Veterinary Sciences, Southwest Minzu University, No. 16, South Section 4, First Ring Road, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
4
|
Zheng Y, Xu Y, Ji L, San W, Shen D, Zhou Q, Meng G, Shi J, Chen Y. Roles of distinct nuclear receptors in diabetic cardiomyopathy. Front Pharmacol 2024; 15:1423124. [PMID: 39114353 PMCID: PMC11303215 DOI: 10.3389/fphar.2024.1423124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 06/21/2024] [Indexed: 08/10/2024] Open
Abstract
Diabetes mellitus induces a pathophysiological disorder known as diabetic cardiomyopathy and may eventually cause heart failure. Diabetic cardiomyopathy is manifested with systolic and diastolic contractile dysfunction along with alterations in unique cardiomyocyte proteins and diminished cardiomyocyte contraction. Multiple mechanisms contribute to the pathology of diabetic cardiomyopathy, mainly including abnormal insulin metabolism, hyperglycemia, glycotoxicity, cardiac lipotoxicity, endoplasmic reticulum stress, oxidative stress, mitochondrial dysfunction, calcium treatment damage, programmed myocardial cell death, improper Renin-Angiotensin-Aldosterone System activation, maladaptive immune modulation, coronary artery endothelial dysfunction, exocrine dysfunction, etc. There is an urgent need to investigate the exact pathogenesis of diabetic cardiomyopathy and improve the diagnosis and treatment of this disease. The nuclear receptor superfamily comprises a group of transcription factors, such as liver X receptor, retinoid X receptor, retinoic acid-related orphan receptor-α, retinoid receptor, vitamin D receptor, mineralocorticoid receptor, estrogen-related receptor, peroxisome proliferatoractivated receptor, nuclear receptor subfamily 4 group A 1(NR4A1), etc. Various studies have reported that nuclear receptors play a crucial role in cardiovascular diseases. A recently conducted work highlighted the function of the nuclear receptor superfamily in the realm of metabolic diseases and their associated complications. This review summarized the available information on several important nuclear receptors in the pathophysiology of diabetic cardiomyopathy and discussed future perspectives on the application of nuclear receptors as targets for diabetic cardiomyopathy treatment.
Collapse
Affiliation(s)
- Yangyang Zheng
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, China
| | - Yongji Xu
- School of Medicine, Nantong University, Nantong, China
| | - Li Ji
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, China
| | - Wenqing San
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, China
| | - Danning Shen
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, China
| | - Qianyou Zhou
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, China
| | - Guoliang Meng
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, China
| | - Jiahai Shi
- Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Yun Chen
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, China
| |
Collapse
|
5
|
Secondulfo C, Visco V, Virtuoso N, Fortunato M, Migliarino S, Rispoli A, La Mura L, Stellato A, Caliendo G, Settembre E, Galluccio F, Hamzeh S, Bilancio G. Vitamin D: A Bridge between Kidney and Heart. Life (Basel) 2024; 14:617. [PMID: 38792638 PMCID: PMC11123235 DOI: 10.3390/life14050617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/30/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
Chronic kidney disease (CKD) and cardiovascular disease (CVD) are highly prevalent conditions, each significantly contributing to the global burden of morbidity and mortality. CVD and CKD share a great number of common risk factors, such as hypertension, diabetes, obesity, and smoking, among others. Their relationship extends beyond these factors, encompassing intricate interplay between the two systems. Within this complex network of pathophysiological processes, vitamin D has emerged as a potential linchpin, exerting influence over diverse physiological pathways implicated in both CKD and CVD. In recent years, scientific exploration has unveiled a close connection between these two prevalent conditions and vitamin D, a crucial hormone traditionally recognized for its role in bone health. This article aims to provide an extensive review of vitamin D's multifaceted and expanding actions concerning its involvement in CKD and CVD.
Collapse
Affiliation(s)
- Carmine Secondulfo
- Department “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy
| | - Valeria Visco
- Department “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy
| | - Nicola Virtuoso
- Cardiology Unit, Salerno University Hospital “San Giovanni di Dio e Ruggi d’Aragona”, 84131 Salerno, Italy
| | - Martino Fortunato
- Cardiology Unit, Salerno University Hospital “San Giovanni di Dio e Ruggi d’Aragona”, 84131 Salerno, Italy
| | - Serena Migliarino
- Cardiology Unit, Salerno University Hospital “San Giovanni di Dio e Ruggi d’Aragona”, 84131 Salerno, Italy
| | - Antonella Rispoli
- Cardiology Unit, Salerno University Hospital “San Giovanni di Dio e Ruggi d’Aragona”, 84131 Salerno, Italy
| | - Lucia La Mura
- Centro Medico Ascione Srl, 80059 Torre del Greco, Italy
| | - Adolfo Stellato
- Department “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy
| | - Giuseppe Caliendo
- Department “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy
| | - Emanuela Settembre
- Department “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy
| | - Fabiana Galluccio
- Department of Medicine and Surgery, University of Naples “Federico II”, 80138 Napoli, Italy
| | - Sarah Hamzeh
- Department of Medicine and Surgery, University of Naples “Federico II”, 80138 Napoli, Italy
| | - Giancarlo Bilancio
- Department “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy
- Nephrology Unit, Salerno University Hospital “San Giovanni di Dio e Ruggi d’Aragona”, 84131 Salerno, Italy
| |
Collapse
|
6
|
Ivkovic T, Culafic T, Tepavcevic S, Romic S, Stojiljkovic M, Kostic M, Stanisic J, Koricanac G. Cholecalciferol ameliorates insulin signalling and insulin regulation of enzymes involved in glucose metabolism in the rat heart. Arch Physiol Biochem 2024; 130:196-204. [PMID: 34758675 DOI: 10.1080/13813455.2021.2001020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/12/2021] [Accepted: 10/27/2021] [Indexed: 10/19/2022]
Abstract
CONTEXT The evidence on potential cross-talk of vitamin D and insulin in the regulation of cardiac metabolism is very scanty. OBJECTIVE Cholecalciferol was administered to male Wistar rats for six weeks to study its effects on cardiac glucose metabolism regulation. MATERIALS AND METHODS An expression, phosphorylation and/or subcellular localisation of insulin signalling molecules, glucose transport and metabolism key proteins were studied. RESULTS Circulating non-esterified fatty acids (NEFA) level was lower after cholecalciferol administration. Cholecalciferol decreased cardiac insulin receptor substrate 1 Ser307 phosphorylation, while insulin-stimulated Akt Thr308 phosphorylation was increased. Cardiac 6-phosphofructo-2-kinase protein, hexokinase 2 mRNA level and insulin-stimulated glycogen synthase kinase 3β Ser9 phosphorylation were also increased. Finally, FOXO1 transcription factor cytosolic level was reduced. CONCLUSION Vitamin D-related improvement of insulin signalling and insulin regulation of glucose metabolism in the rat heart is accompanied by the decrease of blood NEFA level and dysregulation of cardiac FOXO1 signalling.
Collapse
Affiliation(s)
- Tamara Ivkovic
- Laboratory for Molecular Biology and Endocrinology, Vinca Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Tijana Culafic
- Laboratory for Molecular Biology and Endocrinology, Vinca Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Snezana Tepavcevic
- Laboratory for Molecular Biology and Endocrinology, Vinca Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Snjezana Romic
- Laboratory for Molecular Biology and Endocrinology, Vinca Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Mojca Stojiljkovic
- Laboratory for Molecular Biology and Endocrinology, Vinca Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Milan Kostic
- Laboratory for Molecular Biology and Endocrinology, Vinca Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Jelena Stanisic
- Laboratory for Molecular Biology and Endocrinology, Vinca Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Goran Koricanac
- Laboratory for Molecular Biology and Endocrinology, Vinca Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
7
|
Zhang Z, Yu B, Sun Y, Zhang K, Tan X, Lu Y, Wang N, Xia F. Self-Reported Outdoor Light Exposure Time and Incident Heart Failure. J Am Heart Assoc 2024; 13:e031830. [PMID: 38348794 PMCID: PMC11010087 DOI: 10.1161/jaha.123.031830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 01/03/2024] [Indexed: 02/21/2024]
Abstract
BACKGROUND A healthy lifestyle is an important factor for preventing heart failure. However, the association between outdoor light exposure time and heart failure is still unknown. The aim of this study was to examine the association between outdoor light exposure time and the incidence of heart failure. METHODS AND RESULTS This cohort study included participants from the UK Biobank recruited from 2006 to 2010 who were 40 to 70 years of age and free of heart failure at baseline. The mean follow-up time was 12.61 years. The outdoor light exposure time was self-reported at baseline. A restricted cubic spline was performed to examine the potential nonlinear relationship between outdoor light exposure and the incidence of heart failure. Cox proportional hazard models were used to estimate the hazard ratios (HRs) and 95% CIs. During a mean follow-up of 12.61 years, 13 789 participants were first diagnosed with heart failure. There was a nonlinear (J-shaped) trend between outdoor light time and heart failure risk. Cox proportional hazard regression models showed that, compared with participants who received an average of 1.0 to 2.5 hours of outdoor light per day, those with <1.0 hours or >2.5 hours had a higher risk of heart failure after the model was adjusted for age and sex (<1.0 hours: HR, 1.27 [95% CI, 1.18-1.36]; >2.5 hours: HR, 1.11 [95% CI, 1.07-1.15]). These associations were still significant in the fully adjusted models (<1.0 hours: HR, 1.10 [95% CI, 1.03-1.18]; >2.5 hours: HR, 1.07 [95% CI, 1.03-1.11]). CONCLUSIONS We found a J-shaped association between outdoor light exposure time and the risk of incident heart failure, suggesting that moderate exposure to outdoor light may be a prevention strategy for heart failure.
Collapse
Affiliation(s)
- Ziteng Zhang
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People’s HospitalShanghai JiaoTong University School of MedicineShanghaiChina
| | - Bowei Yu
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People’s HospitalShanghai JiaoTong University School of MedicineShanghaiChina
| | - Ying Sun
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People’s HospitalShanghai JiaoTong University School of MedicineShanghaiChina
| | - Kun Zhang
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People’s HospitalShanghai JiaoTong University School of MedicineShanghaiChina
| | - Xiao Tan
- School of Public HealthZhejiang UniversityHangzhouChina
- Department of Medical SciencesUppsala UniversityUppsalaSweden
| | - Yingli Lu
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People’s HospitalShanghai JiaoTong University School of MedicineShanghaiChina
| | - Ningjian Wang
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People’s HospitalShanghai JiaoTong University School of MedicineShanghaiChina
| | - Fangzhen Xia
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People’s HospitalShanghai JiaoTong University School of MedicineShanghaiChina
| |
Collapse
|
8
|
Zendehdel A, Shakarami A, Moghadam ES. Physiological Evidence and Therapeutic Outcomes of Vitamin D on Cardiovascular Diseases. Curr Cardiol Rev 2024; 20:CCR-EPUB-137511. [PMID: 38243935 PMCID: PMC11071673 DOI: 10.2174/011573403x263417231107110618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/04/2023] [Accepted: 09/28/2023] [Indexed: 01/22/2024] Open
Abstract
Vitamin D hormone is an important regulator of various physiological functions, and its deficiency is characterized by an imbalance in parathyroid hormone and calcium homeostasis. The role of vitamin D in cardiovascular physiology is well demonstrated in animal and humanbased studies. In this context, hyperlipidemia, increased atherogenic plaques, cardiac inflammation, hypertension, myocarditis, myocardial infarction, and heart failure are some of the commonest known conditions connected with vitamin D deficiency. Supplementation of vitamin D is recommended to achieve normal serum vitamin D concentrations, nonetheless, in clinical trials often seen discrepancies concerning the supplementation effects and effectiveness. This review summarizes the data on the role of vitamin D in cardiovascular health along with some recent clinical findings regarding the effects of vitamin D supplementation.
Collapse
Affiliation(s)
- Abolfazl Zendehdel
- Department of Geriatric Medicine, Ziaeian Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Shakarami
- Department of Cardiology, Faculty of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | | |
Collapse
|
9
|
Shakarami A. Association Between Nutrients and Cardiovascular Diseases. Curr Cardiol Rev 2024; 20:CCR-EPUB-137030. [PMID: 38185894 PMCID: PMC11071670 DOI: 10.2174/011573403x263414231101095310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 08/31/2023] [Accepted: 09/27/2023] [Indexed: 01/09/2024] Open
Abstract
Cardiovascular diseases (CVD) constitute a leading cause of global mortality. Inflammation and oxidative stress are key molecular underpinnings of CVD pathogenesis. This comprehensive review explores the multifaceted role of nutrients in cardiovascular health beyond their impact on cardiac events. The manuscript examines the influence of macronutrients such as fats and carbohydrates, as well as micronutrients including vitamins and folate, on CVD. Additionally, the interplay between dietary supplements and CVD risk reduction is investigated. The purpose of this manuscript is to provide a comprehensive overview of the diverse mechanisms through which nutrients contribute to cardiovascular well-being, addressing both cardioprotective effects and their broader implications. Through an analysis of pertinent studies, we illuminate the complex relationship between nutrition, lifestyle, and cardiovascular health, underscoring the significance of a holistic approach to CVD prevention and management.
Collapse
Affiliation(s)
- Amir Shakarami
- Department of Cardiology, Faculty of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| |
Collapse
|
10
|
Nemeth Z, Patonai A, Simon-Szabó L, Takács I. Interplay of Vitamin D and SIRT1 in Tissue-Specific Metabolism-Potential Roles in Prevention and Treatment of Non-Communicable Diseases Including Cancer. Int J Mol Sci 2023; 24:ijms24076154. [PMID: 37047134 PMCID: PMC10094444 DOI: 10.3390/ijms24076154] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/13/2023] [Accepted: 03/16/2023] [Indexed: 04/14/2023] Open
Abstract
The importance of the prevention and control of non-communicable diseases, including obesity, metabolic syndrome, type 2 diabetes, cardiovascular diseases, and cancer, is increasing as a requirement of the aging population in developed countries and the sustainability of healthcare. Similarly, the 2013-2030 action plan of the WHO for the prevention and control of non-communicable diseases seeks these achievements. Adequate lifestyle changes, alone or with the necessary treatments, could reduce the risk of mortality or the deterioration of quality of life. In our recent work, we summarized the role of two central factors, i.e., appropriate levels of vitamin D and SIRT1, which are connected to adequate lifestyles with beneficial effects on the prevention and control of non-communicable diseases. Both of these factors have received increased attention in relation to the COVID-19 pandemic as they both take part in regulation of the main metabolic processes, i.e., lipid/glucose/energy homeostasis, oxidative stress, redox balance, and cell fate, as well as in the healthy regulation of the immune system. Vitamin D and SIRT1 have direct and indirect influence of the regulation of transcription and epigenetic changes and are related to cytoplasmic signaling pathways such as PLC/DAG/IP3/PKC/MAPK, MEK/Erk, insulin/mTOR/cell growth, proliferation; leptin/PI3K-Akt-mTORC1, Akt/NFĸB/COX-2, NFĸB/TNFα, IL-6, IL-8, IL-1β, and AMPK/PGC-1α/GLUT4, among others. Through their proper regulation, they maintain normal body weight, lipid profile, insulin secretion and sensitivity, balance between the pro- and anti-inflammatory processes under normal conditions and infections, maintain endothelial health; balance cell differentiation, proliferation, and fate; and balance the circadian rhythm of the cellular metabolism. The role of these two molecules is interconnected in the molecular network, and they regulate each other in several layers of the homeostasis of energy and the cellular metabolism. Both have a central role in the maintenance of healthy and balanced immune regulation and redox reactions; therefore, they could constitute promising targets either for prevention or as complementary therapies to achieve a better quality of life, at any age, for healthy people and patients under chronic conditions.
Collapse
Affiliation(s)
- Zsuzsanna Nemeth
- Department of Internal Medicine and Oncology, Semmelweis University, Koranyi S. u 2/a, 1083 Budapest, Hungary
| | - Attila Patonai
- Department of Surgery, Transplantation and Gastroenterology, Semmelweis University, Ulloi u. 78, 1082 Budapest, Hungary
| | - Laura Simon-Szabó
- Department of Molecular Biology, Semmelweis University, Tuzolto u. 37-47, 1094 Budapest, Hungary
| | - István Takács
- Department of Internal Medicine and Oncology, Semmelweis University, Koranyi S. u 2/a, 1083 Budapest, Hungary
| |
Collapse
|
11
|
Akgun-Unal N, Ozyildirim S, Unal O, Gulbahce-Mutlu E, Mogulkoc R, Baltaci AK. The effects of resveratrol and melatonin on biochemical and molecular parameters in diabetic old female rat hearts. Exp Gerontol 2023; 172:112043. [PMID: 36494013 DOI: 10.1016/j.exger.2022.112043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 11/30/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022]
Abstract
The roles of melatonin and resveratrol-enhanced activation of SIRT1 (silent information regulator 1), GLUT4 (glucose transporter type 4), and PGC-1α (peroxisome proliferator-activated receptor gamma coactivator 1-alpha) in mediating the protective effects on the heart in aged female rats with streptozotocin-induced diabetes were investigated. 16-month-old 48 Wistar female rats were separated into 8 groups with equal numbers. Group 1: Control, Group 2: Resveratrol Control, Group 3: Melatonin Control, Group 4: Resveratrol and Melatonin Control, Group 5: Diabetes, Group 6: Diabetes Resveratrol, Group 7: Diabetes Melatonin, Group 8: Diabetes Resveratrol and Melatonin. A single dose of 40 mg/kg intraperitoneal streptozotocin was injected into the rats of Groups 5, 6, 7, and 8 to induce experimental diabetes. Blood glucose levels were measured from the tail veins of the animals six days after the injections, using a diagnostic glucose kit. Rats with a blood glucose levels ≥300 mg/dl were considered diabetic. 5 mg/kg/day of resveratrol (intraperitoneal) and melatonin (subcutaneous) were administered for four weeks. At the end of the applications, SIRT1, GLUT4, PGC-1α gene expression as well as MDA and GSH levels in the heart tissues were determined by the PCR method from heart tissue samples taken under general anesthesia. The findings of our study show that suppressed antioxidant activity and decreased GLUT4, SIRT1, and PGC-1α gene expression in heart tissue can be reversed by the combination of resveratrol, melatonin, and resveratrol + melatonin in a diabetic aged female rat model. Resveratrol and melatonin supplementation may have a protective effect on cardiac functions in the diabetic aged female rat model.
Collapse
Affiliation(s)
- Nilufer Akgun-Unal
- Department of Biophysics, Medicine Faculty, Ondokuz Mayis University, Samsun, Turkey.
| | - Serhan Ozyildirim
- Department of Cardiology, Institution of Cardiology, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Omer Unal
- Department of Physiology, Medical Faculty, Kirikkale University, Kirikkale, Turkey
| | - Elif Gulbahce-Mutlu
- Department of Medical Biology, Medical Faculty, KTO Karatay University, Konya, Turkey
| | - Rasim Mogulkoc
- Department of Physiology, Medical Faculty, Selcuk University, Konya, Turkey
| | | |
Collapse
|
12
|
Aerobic Exercise Ameliorates Myocardial Fibrosis via Affecting Vitamin D Receptor and Transforming Growth Factor-β1 Signaling in Vitamin D-Deficient Mice. Nutrients 2023; 15:nu15030741. [PMID: 36771445 PMCID: PMC9919278 DOI: 10.3390/nu15030741] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/26/2023] [Accepted: 01/29/2023] [Indexed: 02/04/2023] Open
Abstract
Myocardial fibrosis is a pathological phenomenon associated with cardiovascular disease (CVD) that plays a crucial role in the development of heart diseases. Vitamin D deficiency can promote the development of CVD and exercise plays a role in the treatment of CVD. This study aimed to explore the effects of 12-week aerobic exercise training on myocardial fibrosis in vitamin D-deficient mice. A vitamin D-deficient mouse model was induced by a vitamin D-deficient (0 IU Vitamin D3/kg) diet. Twenty-four C57BL/6J male mice were randomly divided into three groups: a control sedentary group (CONS, n = 8), a vitamin D-deficient sedentary group (VDDS, n = 8), and a vitamin D-deficient exercise group (VDDE, n = 8) which was aerobically trained for 12 weeks. The results showed that the serum 25-hydroxyvitamin D [25(OH)D] levels of the VDDS group were <50 nmol/L, which was significantly lower than that of the CONS group. Compared with the CONS group, the VDDS group showed cardiac dysfunction and significant fibrosis, together with lower vitamin D receptor (VDR) mRNA and protein expression levels, higher mRNA expression levels of profibrotic and inflammatory factors, and higher transforming growth factor-β1 (TGF-β1) and phospho-Smad2/3 (P-Smad2/3) protein expression levels. Serum 25(OH)D levels in the VDDE group were significantly higher than those in the VDDS group. Compared with the VDDS group, the VDDE group showed improved cardiac function and alleviated myocardial fibrosis. Meanwhile, the VDDE group had significantly higher VDR mRNA and protein expression levels; lower mRNA expression levels of profibrotic and inflammatory factors; and lower TGF-β1 and P-Smad2/3 protein expression levels. In conclusion, aerobic exercise training remains a promising intervention for treating myocardial fibrosis in vitamin D deficiency.
Collapse
|
13
|
Combination of Talazoparib and Calcitriol Enhanced Anticancer Effect in Triple−Negative Breast Cancer Cell Lines. Pharmaceuticals (Basel) 2022; 15:ph15091075. [PMID: 36145297 PMCID: PMC9504984 DOI: 10.3390/ph15091075] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 12/13/2022] Open
Abstract
Monotherapy for triple−negative breast cancer (TNBC) is often ineffective. This study aimed to investigate the effect of calcitriol and talazoparib combination on cell proliferation, migration, apoptosis and cell cycle in TNBC cell lines. Monotherapies and their combination were studied for (i.) antiproliferative effect (using real−time cell analyzer assay), (ii.) cell migration (CIM−Plate assay), and (iii.) apoptosis and cell cycle analysis (flow cytometry) in MDA−MB−468 and BT−20 cell lines. The optimal antiproliferative concentration of talazoparib and calcitriol in BT−20 was 91.6 and 10 µM, respectively, and in MDA−MB−468, it was 1 mM and 10 µM. Combined treatment significantly increased inhibition of cell migration in both cell lines. The combined treatment in BT−20 significantly increased late apoptosis (89.05 vs. control 0.63%) and S and G2/M populations (31.95 and 24.29% vs. control (18.62 and 12.09%)). Combined treatment in MDA−MB−468 significantly increased the S population (45.72%) and decreased G0/G1 (45.86%) vs. the control (26.79 and 59.78%, respectively). In MDA−MB−468, combined treatment significantly increased necrosis, early and late apoptosis (7.13, 33.53 and 47.1% vs. control (1.5, 3.1 and 2.83%, respectively)). Talazoparib and calcitriol combination significantly affected cell proliferation and migration, induction of apoptosis and necrosis in TNBC cell lines. This combination could be useful as a formulation to treat TNBC.
Collapse
|
14
|
Severino P, D’Amato A, Prosperi S, Myftari V, Labbro Francia A, Önkaya M, Notari C, Papisca I, Canuti ES, Yarden Revivo M, Birtolo LI, Celli P, Galardo G, Maestrini V, d’Ettorre G, Mancone M, Fedele F. The Mutual Relationship among Cardiovascular Diseases and COVID-19: Focus on Micronutrients Imbalance. Nutrients 2022; 14:3439. [PMID: 36014944 PMCID: PMC9416353 DOI: 10.3390/nu14163439] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 08/12/2022] [Accepted: 08/15/2022] [Indexed: 12/16/2022] Open
Abstract
Micronutrients are ions and vitamins humbly required by the human body. They play a main role in several physiological mechanisms and their imbalance is strongly associated with potentially-fatal complications. Micronutrient imbalance is associated with many cardiovascular diseases, such as arrythmias, heart failure, and ischemic heart disease. It has been also observed in coronavirus disease 2019 (COVID-19), particularly in most severe patients. The relationship between cardiovascular diseases and COVID-19 is mutual: the latter triggers cardiovascular disease onset and worsening while patients with previous cardiovascular disease may develop a more severe form of COVID-19. In addition to the well-known pathophysiological mechanisms binding COVID-19 and cardiovascular diseases together, increasing importance is being given to the impact of micronutrient alterations, often present during COVID-19 and able to affect the balance responsible for a good functioning of the cardiovascular system. In particular, hypokalemia, hypomagnesemia, hyponatremia, and hypocalcemia are strongly associated with worse outcome, while vitamin A and D deficiency are associated with thromboembolic events in COVID-19. Thus, considering how frequent the cardiovascular involvement is in patients with COVID-19, and how it majorly affects their prognosis, this manuscript provides a comprehensive review on the role of micronutrient imbalance in the interconnection between COVID-19 and cardiovascular diseases.
Collapse
Affiliation(s)
- Paolo Severino
- Department of Clinical, Internal, Anesthesiology and Cardiovascular Sciences, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| | - Andrea D’Amato
- Department of Clinical, Internal, Anesthesiology and Cardiovascular Sciences, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| | - Silvia Prosperi
- Department of Clinical, Internal, Anesthesiology and Cardiovascular Sciences, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| | - Vincenzo Myftari
- Department of Clinical, Internal, Anesthesiology and Cardiovascular Sciences, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| | - Aurora Labbro Francia
- Department of Clinical, Internal, Anesthesiology and Cardiovascular Sciences, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| | - Merve Önkaya
- Department of Clinical, Internal, Anesthesiology and Cardiovascular Sciences, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| | - Claudia Notari
- Department of Clinical, Internal, Anesthesiology and Cardiovascular Sciences, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| | - Ilaria Papisca
- Department of Clinical, Internal, Anesthesiology and Cardiovascular Sciences, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| | - Elena Sofia Canuti
- Department of Clinical, Internal, Anesthesiology and Cardiovascular Sciences, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| | - Mia Yarden Revivo
- Department of Clinical, Internal, Anesthesiology and Cardiovascular Sciences, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| | - Lucia Ilaria Birtolo
- Department of Clinical, Internal, Anesthesiology and Cardiovascular Sciences, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| | - Paola Celli
- Anesthesiology and Intensive Care Unit, Sapienza University of Rome, Policlinico Umberto I, 00161 Rome, Italy
| | - Gioacchino Galardo
- Medical Emergency Unit, Sapienza University of Rome, Policlinico Umberto I, 00185 Rome, Italy
| | - Viviana Maestrini
- Department of Clinical, Internal, Anesthesiology and Cardiovascular Sciences, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| | - Gabriella d’Ettorre
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy
| | - Massimo Mancone
- Department of Clinical, Internal, Anesthesiology and Cardiovascular Sciences, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| | - Francesco Fedele
- Department of Clinical, Internal, Anesthesiology and Cardiovascular Sciences, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| |
Collapse
|
15
|
Vitamin D Status and Parkinson's Disease. Brain Sci 2022; 12:brainsci12060790. [PMID: 35741675 PMCID: PMC9221008 DOI: 10.3390/brainsci12060790] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/09/2022] [Accepted: 06/14/2022] [Indexed: 02/04/2023] Open
Abstract
Parkinson’s disease (PD) is a complex and progressive neurodegenerative disease, characterized by resting tremor, rigidity, slowness of movement, and postural instability. Furthermore, PD is associated with a wide spectrum of non-motor symptoms that add to overall disability. In recent years, some investigations, from basic science to clinical applications, have focused on the role of vitamin D in PD, often with controversial findings. Vitamin D has widespread effects on several biological processes in the central nervous system, including neurotransmission in dopaminergic neural circuits. Various studies have recorded lower levels of vitamin D in PD patients than in healthy controls. Low vitamin D status has also been correlated with the risk for PD and motor severity, whereas less is known about the effects vitamin D has on cognitive function and other non-motor symptoms. This review aims to better characterize the correlation between vitamin D and PD, clarify the role of vitamin D in PD prevention and treatment, and discuss avenues for future research in this field.
Collapse
|
16
|
Cai Z, Yuan S, Luan X, Feng J, Deng L, Zuo Y, Li J. Pyroptosis-Related Inflammasome Pathway: A New Therapeutic Target for Diabetic Cardiomyopathy. Front Pharmacol 2022; 13:842313. [PMID: 35355717 PMCID: PMC8959892 DOI: 10.3389/fphar.2022.842313] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 02/07/2022] [Indexed: 12/14/2022] Open
Abstract
Pyroptosis is a highly specific type of inflammatory programmed cell death that is mediated by Gasdermine (GSDM). It is characterized by inflammasome activation, caspase activation, and cell membrane pore formation. Diabetic cardiomyopathy (DCM) is one of the leading diabetic complications and is a critical cause of fatalities in chronic diabetic patients, it is defined as a clinical condition of abnormal myocardial structure and performance in diabetic patients without other cardiac risk factors, such as hypertension, significant valvular disease, etc. There are no specific drugs in treating DCM despite decades of basic and clinical investigations. Although the relationship between DCM and pyroptosis is not well established yet, current studies provided the impetus for us to clarify the significance of pyroptosis in DCM. In this review, we summarize the recent literature addressing the role of pyroptosis and the inflammasome in the development of DCM and summary the potential use of approaches targeting this pathway which may be future anti-DCM strategies.
Collapse
Affiliation(s)
- Zhengyao Cai
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Department of Cardiology, Institute of Cardiovascular Research, The Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, China
| | - Suxin Yuan
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Department of Cardiology, Institute of Cardiovascular Research, The Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, China
| | - Xingzhao Luan
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jian Feng
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Department of Cardiology, Institute of Cardiovascular Research, The Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, China
- *Correspondence: Jian Feng,
| | - Li Deng
- Department of Rheumatology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yumei Zuo
- Department of outpatient, The 13th Retired Cadre Recuperation Clinic Of Chengdu, Institute of Cardiovascular Research, Chengdu, China
| | - Jiafu Li
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Department of Cardiology, Institute of Cardiovascular Research, The Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, China
| |
Collapse
|
17
|
Boehi F, Manetsch P, Hottiger MO. Interplay between ADP-ribosyltransferases and essential cell signaling pathways controls cellular responses. Cell Discov 2021; 7:104. [PMID: 34725336 PMCID: PMC8560908 DOI: 10.1038/s41421-021-00323-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 08/04/2021] [Indexed: 02/07/2023] Open
Abstract
Signaling cascades provide integrative and interactive frameworks that allow the cell to respond to signals from its environment and/or from within the cell itself. The dynamic regulation of mammalian cell signaling pathways is often modulated by cascades of protein post-translational modifications (PTMs). ADP-ribosylation is a PTM that is catalyzed by ADP-ribosyltransferases and manifests as mono- (MARylation) or poly- (PARylation) ADP-ribosylation depending on the addition of one or multiple ADP-ribose units to protein substrates. ADP-ribosylation has recently emerged as an important cell regulator that impacts a plethora of cellular processes, including many intracellular signaling events. Here, we provide an overview of the interplay between the intracellular diphtheria toxin-like ADP-ribosyltransferase (ARTD) family members and five selected signaling pathways (including NF-κB, JAK/STAT, Wnt-β-catenin, MAPK, PI3K/AKT), which are frequently described to control or to be controlled by ADP-ribosyltransferases and how these interactions impact the cellular responses.
Collapse
Affiliation(s)
- Flurina Boehi
- Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland.,Cancer Biology PhD Program of the Life Science Zurich Graduate School, University of Zurich, Zurich, Switzerland
| | - Patrick Manetsch
- Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland.,Molecular Life Science PhD Program of the Life Science Zurich Graduate School, University of Zurich, Zurich, Switzerland
| | - Michael O Hottiger
- Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
18
|
Hu J, Wu J, Wan F, Kou L, Yin S, Sun Y, Li Y, Zhou Q, Wang T. Calcitriol Alleviates MPP +- and MPTP-Induced Parthanatos Through the VDR/PARP1 Pathway in the Model of Parkinson's Disease. Front Aging Neurosci 2021; 13:657095. [PMID: 34393753 PMCID: PMC8362855 DOI: 10.3389/fnagi.2021.657095] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 03/08/2021] [Indexed: 01/13/2023] Open
Abstract
The pathogenesis of Parkinson’s disease (PD) is currently unclear. Recent studies have suggested a correlation between vitamin D and PD. Vitamin D and its analogs have protective effects in animal models of PD, but these studies have not clarified the mechanism. Parthanatos is a distinct type of cell death caused by excessive activation of poly (ADP-ribose) polymerase-1 (PARP1), and the activation of PARP1 in PD models suggests that parthanatos may exist in PD pathophysiology. 1,25-Dihydroxyvitamin D3 (calcitriol) is a potential inhibitor of PARP1 in macrophages. This study aimed to investigate whether calcitriol treatment improves PD models and its effects on the parthanatos pathway. A 1-methyl-4-phenylpyridinium (MPP+)-induced cell model and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) subacute animal model were selected as the in vitro and in vivo PD models, and calcitriol was applied in these models. Results showed that parthanatos existed in the MPP+-induced cell model and pretreatment with calcitriol improved cell viability, reduced the excessive activation of PARP1, and relieved parthanatos. The application of calcitriol in the MPTP subacute animal model also improved behavioral tests, restored the damage to dopamine neurons, and reduced the activation of PARP1-related signaling pathways. To verify whether calcitriol interacts with PARP1 through its vitamin D receptor (VDR), siRNA, and overexpression plasmids were used to downregulate or overexpress VDR. Following the downregulation of VDR, the expression and activation of PARP1 increased and PARP1 was inhibited when VDR was overexpressed. Coimmunoprecipitation verified the combination of VDR and PARP1. In short, calcitriol can substantially improve parthanatos in the MPP+-induced cell model and MPTP model, and the protective effect might be partly through the VDR/PARP1 pathway, which provides a new possibility for the treatment of PD.
Collapse
Affiliation(s)
- Junjie Hu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiawei Wu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fang Wan
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liang Kou
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sijia Yin
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yadi Sun
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yunna Li
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiulu Zhou
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Wang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
19
|
Nikooyeh B, Hollis BW, Neyestani TR. The effect of daily intake of vitamin D-fortified yogurt drink, with and without added calcium, on serum adiponectin and sirtuins 1 and 6 in adult subjects with type 2 diabetes. Nutr Diabetes 2021; 11:26. [PMID: 34389701 PMCID: PMC8363611 DOI: 10.1038/s41387-021-00168-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 05/28/2021] [Accepted: 07/14/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Some evidence suggests indirect ameliorating effects of vitamin D in diabetes via adiponectin and sirtuins. This study aimed to evaluate the effects of daily intake of vitamin D-fortified yogurt drink, either with or without added calcium, on serum adiponectin, sirtuins (SIRT)1 and 6. METHODS Briefly, 75 adults aged 30-60 years from both sexes with type 2 diabetes were randomly allocated to one of the three groups: (i) D-fortified-yogurt drink (DY; containing 1000 IU vitamin D and 300 mg calcium), (ii) Ca+D-fortified-yogurt drink (CDY; containing 1000 IU vitamin D and 500 mg calcium) and (iii) plain yogurt drink (PY; containing no detectable vitamin D and 300 mg calcium). All assessments were performed initially and after 12 weeks. RESULTS A significant within-group increment in serum adiponectin concentrations was observed in both DY and CDY groups (+60.4 ± 8.6, +57.5 ± 6.4 µg/L, respectively; p < 0.001 for both). The concentrations of SIRT1 and SIRT6 had a significant within-group increment only in the CDY group (p = 0.003, p = 0.001 respectively). Being in CDY group was more favorable predictor of improvement in SIRT6 concentrations. Changes of 25(OH)D were a significant predictor of changes of adiponectin. However, this association disappeared following adjustment for changes of SIRT1. In contrast, the association between changes of 25(OH)D and HbA1c remained significant even after adjustment for SIRT1. CONCLUSIONS Daily consumption of vitamin D-fortified yogurt drink for 12 weeks resulted in an increase in circulating concentrations of SIRT1 and SIRT6 in T2D subjects and D+Ca-fortified yogurt drink was more in favor of SIRT6 increment.
Collapse
Affiliation(s)
- Bahareh Nikooyeh
- Laboratory of Nutrition Research, National Nutrition and Food Technology Research Institute and Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bruce W Hollis
- Division of Neonatology, Department of Pediatrics, Medical University of South Carolina, Charleston, SC, USA
| | - Tirang R Neyestani
- Laboratory of Nutrition Research, National Nutrition and Food Technology Research Institute and Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
20
|
Jia R, Yang F, Yan P, Ma L, Yang L, Li L. Paricalcitol inhibits oxidative stress-induced cell senescence of the bile duct epithelium dependent on modulating Sirt1 pathway in cholestatic mice. Free Radic Biol Med 2021; 169:158-168. [PMID: 33872698 DOI: 10.1016/j.freeradbiomed.2021.04.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 03/30/2021] [Accepted: 04/13/2021] [Indexed: 12/25/2022]
Abstract
BACKGROUND Clinical studies indicate that vitamin D receptor (VDR) expression is reduced in primary biliary cirrhosis patient livers. However, the mechanism by which activated VDR effect cholestatic liver injury remains unclear. METHODS Mice were injected intraperitoneally with the VDR agonist paricalcitol or a vehicle 3 days prior to bile duct ligation (BDL) and for 5 or 28 days after surgery. The analyses of liver morphology and necrotic areas were based on H&E staining. Serum biochemical indicators of liver damage were analyzed by commercial kits. The mechanisms of paricalcitol on cholestatic liver injury were determined by Western blot analysis. RESULTS Paricalcitol ameliorated the BDL-induced liver damage in mice. Paricalcitol increased the proliferation of BECs to promote the repair of the bile duct. Paricalcitol also reduced the BDL-induced oxidative stress level in the mice. Mechanistic analysis revealed that paricalcitol decreased the number of SA-β-gal-positive cells and downregulated the expression of p53, p21 and p16 proteins which was associated with reducing oxidative stress. Additionally, paricalcitol exerted the inhibitory effect of cell senescence was through reducing DNA damage and promoting DNA repair. Interesting, we found that paricalcitol prevented the downregulation of oxidative stress-induced Sirt1 expression in the BDL mice and t-BHP-induced BECs models. Moreover, paricalcitol suppressed cell senescence through a Sirt1-dependent pathway. These results were confirmed by antioxidant ALCAR and the Sirt1 inhibitor EX-527. CONCLUSION Paricalcitol alleviated cholestatic liver injury through promoting the repair of damaged bile ducts and reducing oxidative stress-induced cell senescence of the bile duct via modulating Sirt1 pathway.
Collapse
Affiliation(s)
- Rongjun Jia
- Department of Cell Biology, School of Medicine, Taizhou University, Taizhou, PR China; Department of Cell Biology, Jinzhou Medical University, Jinzhou, PR China.
| | - Fan Yang
- Department of Cell Biology, Jinzhou Medical University, Jinzhou, PR China.
| | - Pengfei Yan
- Department of Cell Biology, Jinzhou Medical University, Jinzhou, PR China.
| | - Liman Ma
- Department of Cell Biology, School of Medicine, Taizhou University, Taizhou, PR China.
| | - Longfei Yang
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, PR China.
| | - Lihua Li
- Department of Cell Biology, School of Medicine, Taizhou University, Taizhou, PR China.
| |
Collapse
|
21
|
Al-Ishaq RK, Kubatka P, Brozmanova M, Gazdikova K, Caprnda M, Büsselberg D. Health implication of vitamin D on the cardiovascular and the renal system. Arch Physiol Biochem 2021; 127:195-209. [PMID: 31291127 DOI: 10.1080/13813455.2019.1628064] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Vitamin D regulates the calcium and phosphorus balance in the body. The activated form of vitamin D (1 α,25-dihydroxyvitamin D) binds to vitamin D receptor which regulates genes that control cell proliferation, differentiation and apoptosis. In the cardiovascular system, the vitamin D receptor is present in cardiomyocytes and the arterial wall. A clear correlation between vitamin D level and cardiovascular diseases is established. Vitamin D deficiency affects the renin-angiotensin system leading to ventricular hypertrophy and eventually to stroke. While clinical trials highlighted the positive effects of vitamin D supplements on cardiovascular disease these still need to be confirmed. This review outlines the association between vitamin D and cardiovascular and renal disease summarising the experimental data of selective cardiovascular disorders.
Collapse
Affiliation(s)
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
- Division of Oncology, Biomedical Center Martin, Jessenius Faculty of Medicine, Comenius University, in Bratislava, Martin, Slovakia
| | - Martina Brozmanova
- Department of Pathophysiology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
- Biomedical Center Martin, Jessenius Faculty of Medicine, Comenius University, in Bratislava, Martin, Slovakia
| | - Katarina Gazdikova
- Department of Nutrition, Faculty of Nursing and Professional Health Studies, Slovak Medical University, Bratislava, Slovak
- Department of General Medicine, Faculty of Medicine, Slovak Medical University, Bratislava, Slovak
| | - Martin Caprnda
- 1st Department of Internal Medicine, Faculty of Medicine, Comenius University and University Hospital, Bratislava, Slovakia
| | - Dietrich Büsselberg
- Department of Physiology and Biophysics, Weill Cornell College of Medicine, Doha, Qatar
| |
Collapse
|
22
|
Li X, Yu P, Yu Y, Xu T, Liu J, Cheng Y, Yang X, Cui X, Yin C, Liu Y. Hydrogen sulfide ameliorates high glucose-induced pro-inflammation factors in HT-22 cells: Involvement of SIRT1-mTOR/NF-κB signaling pathway. Int Immunopharmacol 2021; 95:107545. [PMID: 33765609 DOI: 10.1016/j.intimp.2021.107545] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 02/05/2021] [Accepted: 02/25/2021] [Indexed: 12/12/2022]
Abstract
Hyperglycemia-induced neuroinflammation promotes the progression of diabetic encephalopathy. Hydrogen sulfide (H2S) exerts anti-inflammatory and neuroprotective activities against neurodegenerative diseases. However, the effects of H2S on hyperglycemia-induced neuroinflammation has not been investigated in neurons. Herein, by using HT-22 neuronal cells, we found that high glucose decreased the levels of endogenous H2S and its catalytic enzyme, cystathionine-β-synthase (CBS). The administration of sodium hydrosulfide (NaHS, a H2S donor) or S-adenosylmethionine (SAMe, an allosteric activator of CBS) restored high glucose-induced downregulation of CBS and H2S levels. Importantly, H2S ameliorated high glucose-induced inflammation in HT-22 cells, evidenced by NaHS or SAMe inhibited the pro-inflammatory cytokines (IL-1β, IL-6, TNF-α) expression in HT-22 cells exposed to high glucose. Furthermore, NaHS or SAMe restored the SIRT1 level and the phosphorylation of mTOR and NF-κB p65 disturbed by high glucose in HT-22 cells, suggesting H2S reversed high glucose-induced alteration of SIRT1-mTOR/NF-κB signaling pathway. Our results demonstrated that exogenous H2S treatment or enhancing endogenous H2S synthesis prevents the inflammatory processes in the neurons with the exposure of high glucose. Therefore, increasing the H2S level using NaHS or SAMe might shed light on the prophylactic treatment of diabetic encephalopathy.
Collapse
Affiliation(s)
- Xinrui Li
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Peiquan Yu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Yinghua Yu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Illawarra Health and Medical Research Institute, School of Medicine, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Ting Xu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Jiao Liu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Yuan Cheng
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Xia Yang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Xiaoying Cui
- Queensland Brain Institute, The University of Queensland, St Lucia, QLD 4113, Australia
| | - Cui Yin
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Yi Liu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Department of Biophysics, School of Life Sciences, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China.
| |
Collapse
|
23
|
Li Y, Zheng N, Ding X. Mitophagy Disequilibrium, a Prominent Pathological Mechanism in Metabolic Heart Diseases. Diabetes Metab Syndr Obes 2021; 14:4631-4640. [PMID: 34858041 PMCID: PMC8629916 DOI: 10.2147/dmso.s336882] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/09/2021] [Indexed: 12/18/2022] Open
Abstract
With overall food intake among the general population as high as ever, metabolic syndrome (MetS) has become a global epidemic and is responsible for many serious life-threatening diseases, especially heart failure. In multiple metabolic disorders, maintaining a dynamic balance of mitochondrial number and function is necessary to prevent the overproduction of reactive oxygen species (ROS), which has been proved to be one of the important mechanisms of cardiomyocyte injury due to the mismatching of oxygen consumption and mitochondrial population and finally to heart failure. Mitophagy is a process that eliminates damaged or redundant mitochondria. It is mediated by a series of signaling molecules, including PINK, parkin, BINP3, FUNDC1, CTSD, Drp1, Rab9 and mTOR. Meanwhile, increasing evidence also showed that the interaction between ferroptosis and mitophagy interfered with mitochondrial homeostasis. This review will focus on these essential molecules and pathways of mitophagy and cell homeostasis affected by hypoxia and other stimuli in metabolic heart diseases.
Collapse
Affiliation(s)
- Yunhao Li
- The First Clinical College, China Medical University, Shenyang, Liaoning, People’s Republic of China
| | - Ningning Zheng
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, Liaoning, People’s Republic of China
| | - Xudong Ding
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, People’s Republic of China
- Correspondence: Xudong Ding Department of Anesthesiology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Shenyang, 110004, People’s Republic of ChinaTel +8618940257698 Email
| |
Collapse
|
24
|
Xiu L, Yao XA, Jiang T. Correlation Between 25-Hydroxyvitamin D Level and Cardiac Diastolic Dysfunction in Chinese Adults with Early-Onset Type 2 Diabetes Mellitus: A Cross-Sectional Study. Diabetes Metab Syndr Obes 2021; 14:1823-1831. [PMID: 33953582 PMCID: PMC8089088 DOI: 10.2147/dmso.s299422] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 04/01/2021] [Indexed: 12/13/2022] Open
Abstract
PURPOSE Chinese adults with early-onset type 2 diabetes mellitus have impaired diastolic function. This study aims to analyse the association between serum vitamin D levels and cardiac diastolic dysfunction in Chinese adults with early-onset type 2 diabetes mellitus. PATIENTS AND METHODS We enrolled Chinese adults with early-onset type 2 diabetes mellitus in this study. These patients were divided into two groups: those with diastolic dysfunction and those without diastolic dysfunction. We then compared the levels of serum 25-hydroxyvitamin D [25-(OH)D] between the two groups. The correlation between diastolic function and 25-(OH)D was evaluated by Pearson correlation analysis. Finally, binary logistic regression was used to analyse the relationship between the decrease in diastolic function and 25-(OH)D and other indexes in Chinese adults with early-onset type 2 diabetes mellitus. RESULTS The level of 25-(OH)D in patients with early-onset type 2 diabetes mellitus complicated with cardiac diastolic dysfunction was significantly lower than that in patients without cardiac diastolic dysfunction (P<0.01). The degree of liver fibrosis in adult patients with early-onset type 2 diabetes mellitus complicated with diastolic dysfunction was significantly higher than that in adult patients without diastolic dysfunction (P<0.01). Moreover, decreased 25-(OH)D levels were associated with decreased diastolic function in adults with early-onset type 2 diabetes. CONCLUSION 25-(OH)-D was identified as an independent predictor of decreased diastolic function in adults with early-onset type 2 diabetes. The serum 25-(OH)D level in adults with early-onset type 2 diabetes was significantly reduced. 25-(OH)D influences the reduction in diastolic function in adults with early-onset type 2 diabetes and can be used as a predictor of decreased diastolic function in such patients.
Collapse
Affiliation(s)
- Lei Xiu
- Department of Endocrinology, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, People’s Republic of China
| | - Xiao-ai Yao
- Department of Endocrinology, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, People’s Republic of China
| | - Tao Jiang
- Department of Endocrinology, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, People’s Republic of China
- Correspondence: Tao Jiang Department of Endocrinology, Beijing Shijitan Hospital, Capital Medical University, No. 10 Tieyilu, Yang Fang Dian, Beijing, 100038, People’s Republic of ChinaTel/Fax +86-10-63926692 Email
| |
Collapse
|
25
|
Gorman S, Weller RB. Investigating the Potential for Ultraviolet Light to Modulate Morbidity and Mortality From COVID-19: A Narrative Review and Update. Front Cardiovasc Med 2020; 7:616527. [PMID: 33426009 PMCID: PMC7786057 DOI: 10.3389/fcvm.2020.616527] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 11/26/2020] [Indexed: 12/16/2022] Open
Abstract
During the COVID-19 (coronavirus disease of 2019) pandemic, researchers have been seeking low-cost and accessible means of providing protection from its harms, particularly for at-risk individuals such as those with cardiovascular disease, diabetes and obesity. One possible way is via safe sun exposure, and/or dietary supplementation with induced beneficial mediators (e.g., vitamin D). In this narrative review, we provide rationale and updated evidence on the potential benefits and harms of sun exposure and ultraviolet (UV) light that may impact COVID-19. We review recent studies that provide new evidence for any benefits (or otherwise) of UV light, sun exposure, and the induced mediators, vitamin D and nitric oxide, and their potential to modulate morbidity and mortality induced by infection with SARS-CoV-2 (severe acute respiratory disease coronavirus-2). We identified substantial interest in this research area, with many commentaries and reviews already published; however, most of these have focused on vitamin D, with less consideration of UV light (or sun exposure) or other mediators such as nitric oxide. Data collected to-date suggest that ambient levels of both UVA and UVB may be beneficial for reducing severity or mortality due to COVID-19, with some inconsistent findings. Currently unresolved are the nature of the associations between blood 25-hydroxyvitamin D and COVID-19 measures, with more prospective data needed that better consider lifestyle factors, such as physical activity and personal sun exposure levels. Another short-coming has been a lack of measurement of sun exposure, and its potential to influence COVID-19 outcomes. We also discuss possible mechanisms by which sun exposure, UV light and induced mediators could affect COVID-19 morbidity and mortality, by focusing on likely effects on viral pathogenesis, immunity and inflammation, and potential cardiometabolic protective mechanisms. Finally, we explore potential issues including the impacts of exposure to high dose UV radiation on COVID-19 and vaccination, and effective and safe doses for vitamin D supplementation.
Collapse
Affiliation(s)
- Shelley Gorman
- Telethon Kids Institute, University of Western Australia, Perth, WA, Australia
| | - Richard B. Weller
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
26
|
Ginsberg C, Zelnick LR, Block GA, Chertow GM, Chonchol M, Hoofnagle A, Kestenbaum B, de Boer IH. Differential effects of phosphate binders on vitamin D metabolism in chronic kidney disease. Nephrol Dial Transplant 2020; 35:616-623. [PMID: 32160298 DOI: 10.1093/ndt/gfaa010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 10/25/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Phosphate binders are commonly used in the treatment of patients with hyperphosphatemia. While phosphate binders are used to lower phosphate, the effects of specific phosphate binder types on vitamin D metabolism are unknown. METHODS We performed a secondary analysis of the Phosphate Normalization Trial in which patients with moderate to advanced chronic kidney disease were randomized to receive either placebo, sevelamer carbonate, lanthanum carbonate or calcium acetate for 9 months. We evaluated changes in serum concentrations of vitamin D metabolites including 24,25-dihydroxyvitamin D3 [24,25(OH)2D3], 1,25-dihydroxyvitamin D3 [1,25(OH)2D3], the ratio of 24,25(OH)2D3 to 25-hydroxyvitamin D [the vitamin D metabolite ratio (VMR)] and the ratio of serum 1,25(OH)2D to 25-hydroxyvitamin D. RESULTS Compared with placebo, randomization to the calcium acetate arm was associated with a 0.6 ng/mL (95% CI 0.2, 1) and 13.5 pg/ng (95% CI 5.5, 21.5) increase in 24,25(OH)2D and VMR, respectively, and a 5.2 pg/mL (95% CI 1.1, 9.4) reduction in 1,25(OH)2D. Randomization to sevelamer carbonate was associated with a 0.5 ng/mL (95% CI -0.9, -0.1) and 11.8 pg/ng (95% CI -20, -3.5) reduction in 24,25(OH)2D3 and VMR, respectively. There was no association of the sevelamer arm with the change in 1,25(OH)2D3, and randomization to lanthanum carbonate was not associated with a change in any of the vitamin D metabolites. CONCLUSION Administration of different phosphate binders to patients with moderate to severe CKD results in unique changes in vitamin D metabolism.
Collapse
Affiliation(s)
- Charles Ginsberg
- Division of Nephrology-Hypertension, University of California, San Diego, San Diego, CA, USA.,Division of Nephrology, Nephrology Section, Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
| | - Leila R Zelnick
- Division of Nephrology and Kidney Research Institute, University of Washington, Seattle, WA, USA
| | | | - Glenn M Chertow
- Division of Nephrology, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Michel Chonchol
- Division of Renal Diseases and Hypertension, University of Anschutz Medical Center, Aurora, CO, USA
| | - Andrew Hoofnagle
- Department of Laboratory Medicine, University of Washington, Seattle, WA, USA
| | - Bryan Kestenbaum
- Division of Nephrology and Kidney Research Institute, University of Washington, Seattle, WA, USA
| | - Ian H de Boer
- Division of Nephrology and Kidney Research Institute, University of Washington, Seattle, WA, USA.,VA Puget Sound Health Care System, Seattle, WA, USA
| |
Collapse
|
27
|
Vitamin D and Cardiovascular Disease, with Emphasis on Hypertension, Atherosclerosis, and Heart Failure. Int J Mol Sci 2020; 21:ijms21186483. [PMID: 32899880 PMCID: PMC7555466 DOI: 10.3390/ijms21186483] [Citation(s) in RCA: 157] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 08/24/2020] [Accepted: 08/31/2020] [Indexed: 12/14/2022] Open
Abstract
Vitamin D deficiency is the most common nutritional deficiency, affecting almost one billion people worldwide. Vitamin D is mostly known for its role in intestinal calcium absorption and bone mineralization. However, the observation of seasonal changes in blood pressure and the subsequent identification of vitamin D receptor (VDR) and 1α-hydroxylase in cardiomyocytes, as well as endothelial and vascular smooth muscle cells, implicated a role of vitamin D in the cardiovascular system. Animal studies provided compelling evidence that vitamin D signaling is essential for cardiovascular integrity, especially for the regulation of vascular tone and as an antifibrotic and antihypertrophic signaling pathway in the heart. In addition, observational studies reported an association between vitamin D deficiency and risk of hypertension, atherosclerosis, and heart failure. However, recent clinical intervention studies failed to prove the causal relationship between vitamin D supplementation and beneficial effects on cardiovascular health. In this review, we aim to highlight our current understanding of the role of vitamin D in the cardiovascular system and to find potential explanations for the large discrepancies between the outcome of experimental studies and clinical intervention trials.
Collapse
|
28
|
Song YJ, Zhong CB, Wu W. Cardioprotective effects of melatonin: Focusing on its roles against diabetic cardiomyopathy. Biomed Pharmacother 2020; 128:110260. [PMID: 32447213 DOI: 10.1016/j.biopha.2020.110260] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/01/2020] [Accepted: 05/10/2020] [Indexed: 02/06/2023] Open
Abstract
Melatonin is a pineal-produced indole known for its anti-aging, antiapoptotic and antioxidant properties. In past decades, the protective potentials of melatonin for cardiovascular diseases, such as atherosclerosis and myocardial infarction, have been widely revealed, triggering more investigations focused on other cardioprotective effects of melatonin. Recently, the roles of melatonin in diabetic cardiomyopathy (DCM) have attracted increased attention. In this regard, researchers found that melatonin attenuated cardiac fibrosis and hypertrophy, thus interrupting the development of DCM. Retinoid-related orphan receptor α is a key melatonin receptor that contributed to the cardioprotective effect of melatonin in hearts with DCM. For the downstream mechanisms, the inhibition of mammalian STE20-like kinase 1 plays a pivotal role, which exerts antiapoptotic and proautophagic effects, thus enhancing cardiac tolerance in high-glucose conditions. In addition, other signalling mechanisms, such as sirtuin-1/peroxisome proliferator-activated receptor gamma-coactivator alpha and endoplasmic reticulum-related signalling, are also involved in the protective effects of melatonin on cardiomyocytes under diabetic conditions. This review will focus on the protective signalling mechanisms regulated by melatonin and provide a better understanding of the therapeutic applications of melatonin signalling in DCM.
Collapse
Affiliation(s)
- Yan-Jun Song
- Department of Cardiology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Science, 1 Shuai Fu Yuan, Beijing, 100730, PR China.
| | - Chong-Bin Zhong
- Department of Cardiology, Heart Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510282, PR China.
| | - Wei Wu
- Department of Cardiology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Science, 1 Shuai Fu Yuan, Beijing, 100730, PR China.
| |
Collapse
|
29
|
Mocayar Marón FJ, Ferder L, Reiter RJ, Manucha W. Daily and seasonal mitochondrial protection: Unraveling common possible mechanisms involving vitamin D and melatonin. J Steroid Biochem Mol Biol 2020; 199:105595. [PMID: 31954766 DOI: 10.1016/j.jsbmb.2020.105595] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 01/09/2020] [Accepted: 01/16/2020] [Indexed: 12/11/2022]
Abstract
From an evolutionary point of view, vitamin D and melatonin appeared very early and share functions related to defense mechanisms. In the current clinical setting, vitamin D is exclusively associated with phosphocalcic metabolism. Meanwhile, melatonin has chronobiological effects and influences the sleep-wake cycle. Scientific evidence, however, has identified new actions of both molecules in different physiological and pathological settings. The biosynthetic pathways of vitamin D and melatonin are inversely related relative to sun exposure. A deficiency of these molecules has been associated with the pathogenesis of cardiovascular diseases, including arterial hypertension, neurodegenerative diseases, sleep disorders, kidney diseases, cancer, psychiatric disorders, bone diseases, metabolic syndrome, and diabetes, among others. During aging, the intake and cutaneous synthesis of vitamin D, as well as the endogenous synthesis of melatonin are remarkably depleted, therefore, producing a state characterized by an increase of oxidative stress, inflammation, and mitochondrial dysfunction. Both molecules are involved in the homeostatic functioning of the mitochondria. Given the presence of specific receptors in the organelle, the antagonism of the renin-angiotensin-aldosterone system (RAAS), the decrease of reactive species of oxygen (ROS), in conjunction with modifications in autophagy and apoptosis, anti-inflammatory properties inter alia, mitochondria emerge as the final common target for melatonin and vitamin D. The primary purpose of this review is to elucidate the common molecular mechanisms by which vitamin D and melatonin might share a synergistic effect in the protection of proper mitochondrial functioning.
Collapse
Affiliation(s)
- Feres José Mocayar Marón
- Área de Farmacología, Departamento de Patología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Argentina; Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Mendoza, Argentina
| | - León Ferder
- Department of Pediatrics, Nephrology Division, Miller School of Medicine, University of Miami, FL, USA
| | - Russel J Reiter
- Department of Cellular and Structural Biology, University of Texas Health Science at San Antonio, San Antonio, TX, USA
| | - Walter Manucha
- Área de Farmacología, Departamento de Patología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Argentina; Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Mendoza, Argentina.
| |
Collapse
|
30
|
Zhou Y, Li KS, Liu L, Li SL. MicroRNA‑132 promotes oxidative stress‑induced pyroptosis by targeting sirtuin 1 in myocardial ischaemia‑reperfusion injury. Int J Mol Med 2020; 45:1942-1950. [PMID: 32236570 DOI: 10.3892/ijmm.2020.4557] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 11/19/2019] [Indexed: 11/05/2022] Open
Abstract
The present study aimed to investigate the roles of miR‑132 in myocardial ischaemia/reperfusion (I/R) injury and the underlying mechanisms. The myocardial I/R model was established using C57BL/J6 mice. Haematoxylin and eosin staining was performed to observe the injury of myocardial tissues. Commercial kits were used to measure the levels of serum myocardial enzymes and inflammatory factors. The in vitro I/R model was established by the hypoxia/reoxygenation method using H9C2 cells. A dual luciferase reporter assay was used to confirm the binding of miR‑132 and sirtuin 1 (SIRT1). Cell pyroptosis was determined using flow cytometry. Reverse transcription‑quantitative PCR was performed to determine the expression of miR‑132, SIRT1 and inflammatory factors. The levels of peroxisome proliferator‑activated receptor gamma coactivator (PGC)‑1α/nuclear factor erythroid‑2‑related factor 2 (Nrf2) signalling, oxidative stress and pyroptosis‑related proteins were detected by western blotting. Apparent histologic injury and elevated levels of serum myocardial enzymes and inflammatory factors were observed in the myocardial I/R model. miR‑132 was significantly upregulated and SIRT1 was markedly downregulated in I/R myocardial tissues. miR‑132 directly targeted SIRT1 and negatively regulated the expression of SIRT1. PGC‑1α, Nrf2, endothelial nitric oxide synthase and superoxide dismutase levels were significantly decreased, while inducible nitric oxide synthase and malondialdehyde levels were significantly increased by I/R induction. The pyroptosis‑related proteins NLRP3, caspase‑1 and interleukin (IL)‑1β were also significantly elevated by I/R induction. Inhibition of miR‑132 activated PGC‑1α/Nrf2 signalling and inhibited oxidative stress and the expression of the pyroptosis‑related proteins NLRP3, caspase‑1 and IL‑1β, which were all reversed by inhibiting SIRT1 with EX527. The findings of the present study indicated that inhibition of miR‑132 may ameliorate myocardial I/R injury by inhibiting oxidative stress and pyroptosis through activation of PGC‑1α/Nrf2 signalling by targeting SIRT1.
Collapse
Affiliation(s)
- Yan Zhou
- Department of Otolaryngology, Union Hospital, Tongji Medical College, Wuhan, Hubei 430000, P.R. China
| | - Kun-Sheng Li
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Lu Liu
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430000, P.R. China
| | - Shi-Liang Li
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430000, P.R. China
| |
Collapse
|
31
|
Wang D, Li Y, Wang N, Luo G, Wang J, Luo C, Yu W, Hao L. 1α,25-Dihydroxyvitamin D 3 prevents renal oxidative damage via the PARP1/SIRT1/NOX4 pathway in Zucker diabetic fatty rats. Am J Physiol Endocrinol Metab 2020; 318:E343-E356. [PMID: 31891537 DOI: 10.1152/ajpendo.00270.2019] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Diabetic nephropathy (DN) is one of the most important renal complications associated with diabetes, and the mechanisms are yet to be fully understood. To date, few studies have shown the antioxidant effects of 1α,25-dihydroxyvitamin-D3 [1,25(OH)2D3] on hyperglycemia-induced renal injury. The aim of the present study was to explore the potential mechanism by which 1,25(OH)2D3 reduced oxidative stress in diabetic rat kidneys. In this study, we established a vitamin D-deficient spontaneous diabetes model: 5-6 wk of age Zucker diabetic fatty (ZDF) rats were treated with or without 1,25(OH)2D3 for 7 wk, age-matched Zucker lean rats served as control. Results showed that ZDF rats treated with 1,25(OH)2D3 had decreased body mass, food intake, water intake, and urine volume. 1,25(OH)2D3 ameliorated urine glucose, blood glucose and abnormal glucose tolerance. Additionally, 1,25(OH)2D3 significantly lowered microalbuminuria, decreased the glomerular basement membrane thickness, and in some degree inhibited glomerular hypertrophy, mesangial expansion, and tubular dilatation. Furthermore, 1,25(OH)2D3 attenuated renal oxidative damage, as reflected by the levels of malondialdehyde, reduced glutathione, 4-hydroxynonenal, 8-hydroxy-2'-deoxyguanosine, and reactive oxygen species production, and notably inhibited poly(ADP-ribose) polymerase-1 (PARP1), activated sirtuin 1 (SIRT1), and decreased the expression of NADPH oxidase 4 (NOX4). Of interest, the abovementioned proteins could be involved in the antioxidant mechanism of 1,25(OH)2D3 in diabetic rat kidneys. Our study showed that oxidative stress might be a major contributor to DN pathogenesis and uncovered the antioxidant role of 1,25(OH)2D3 in diabetic nephropathy that was associated with the PARP1/SIRT1/ NOX4 pathway.
Collapse
Affiliation(s)
- Dongxia Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Ministry of Education Key Laboratory of Environment, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yanyan Li
- Shenzhen Center for Chronic Disease Control, Shenzhen, Guangdong, China
| | - Ning Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Ministry of Education Key Laboratory of Environment, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Gang Luo
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Ministry of Education Key Laboratory of Environment, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jun Wang
- Shenzhen Center for Chronic Disease Control, Shenzhen, Guangdong, China
| | - Can Luo
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Ministry of Education Key Laboratory of Environment, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wei Yu
- Shenzhen Center for Chronic Disease Control, Shenzhen, Guangdong, China
| | - Liping Hao
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Ministry of Education Key Laboratory of Environment, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
32
|
Wang(a) J, Wang S, Wang(b) J, Xiao M, Guo Y, Tang Y, Zhang J, Gu J. Epigenetic Regulation Associated With Sirtuin 1 in Complications of Diabetes Mellitus. Front Endocrinol (Lausanne) 2020; 11:598012. [PMID: 33537003 PMCID: PMC7848207 DOI: 10.3389/fendo.2020.598012] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 11/27/2020] [Indexed: 01/19/2023] Open
Abstract
Diabetes mellitus (DM) has been one of the largest health concerns of the 21st century due to the serious complications associated with the disease. Therefore, it is essential to investigate the pathogenesis of DM and develop novel strategies to reduce the burden of diabetic complications. Sirtuin 1 (SIRT1), a nicotinamide adenosine dinucleotide (NAD+)-dependent deacetylase, has been reported to not only deacetylate histones to modulate chromatin function but also deacetylate numerous transcription factors to regulate the expression of target genes, both positively and negatively. SIRT1 also plays a crucial role in regulating histone and DNA methylation through the recruitment of other nuclear enzymes to the chromatin. Furthermore, SIRT1 has been verified as a direct target of many microRNAs (miRNAs). Recently, numerous studies have explored the key roles of SIRT1 and other related epigenetic mechanisms in diabetic complications. Thus, this review aims to present a summary of the rapidly growing field of epigenetic regulatory mechanisms, as well as the epigenetic influence of SIRT1 on the development and progression of diabetic complications, including cardiomyopathy, nephropathy, and retinopathy.
Collapse
Affiliation(s)
- Jie Wang(a)
- School of Nursing, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Shudong Wang
- Department of Cardiology at the First Hospital of Jilin University, Changchun, China
| | - Jie Wang(b)
- School of Nursing, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Mengjie Xiao
- School of Nursing, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yuanfang Guo
- School of Nursing, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yufeng Tang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Jingjing Zhang
- Department of Cardiology at the First Hospital of China Medical University, and Department of Cardiology at the People’s Hospital of Liaoning Province, Shenyang, China
| | - Junlian Gu
- School of Nursing, Cheeloo College of Medicine, Shandong University, Jinan, China
- *Correspondence: Junlian Gu,
| |
Collapse
|
33
|
Left Ventricular Hypertrophy: Roles of Mitochondria CYP1B1 and Melatonergic Pathways in Co-Ordinating Wider Pathophysiology. Int J Mol Sci 2019; 20:ijms20164068. [PMID: 31434333 PMCID: PMC6720185 DOI: 10.3390/ijms20164068] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 08/11/2019] [Accepted: 08/16/2019] [Indexed: 02/07/2023] Open
Abstract
Left ventricular hypertrophy (LVH) can be adaptive, as arising from exercise, or pathological, most commonly when driven by hypertension. The pathophysiology of LVH is consistently associated with an increase in cytochrome P450 (CYP)1B1 and mitogen-activated protein kinases (MAPKs) and a decrease in sirtuins and mitochondria functioning. Treatment is usually targeted to hypertension management, although it is widely accepted that treatment outcomes could be improved with cardiomyocyte hypertrophy targeted interventions. The current article reviews the wide, but disparate, bodies of data pertaining to LVH pathoetiology and pathophysiology, proposing a significant role for variations in the N-acetylserotonin (NAS)/melatonin ratio within mitochondria in driving the biological underpinnings of LVH. Heightened levels of mitochondria CYP1B1 drive the ‘backward’ conversion of melatonin to NAS, resulting in a loss of the co-operative interactions of melatonin and sirtuin-3 within mitochondria. NAS activates the brain-derived neurotrophic factor receptor, TrkB, leading to raised trophic signalling via cyclic adenosine 3′,5′-monophosphate (cAMP)-response element binding protein (CREB) and the MAPKs, which are significantly increased in LVH. The gut microbiome may be intimately linked to how stress and depression associate with LVH and hypertension, with gut microbiome derived butyrate, and other histone deacetylase inhibitors, significant modulators of the melatonergic pathways and LVH more generally. This provides a model of LVH that has significant treatment and research implications.
Collapse
|
34
|
Schwarz N, Nicholls SJ, Psaltis PJ. Vitamin D and Cardiovascular Disease. Heart Lung Circ 2019; 27:903-906. [PMID: 30047471 DOI: 10.1016/j.hlc.2018.05.098] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 05/02/2018] [Indexed: 10/28/2022]
Affiliation(s)
- Nisha Schwarz
- Vascular Research Centre, Heart Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Stephen J Nicholls
- Vascular Research Centre, Heart Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia; Discipline of Medicine, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Peter J Psaltis
- Vascular Research Centre, Heart Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia; Discipline of Medicine, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia.
| |
Collapse
|
35
|
Sanz RL, Mazzei L, Manucha W. Implications of the transcription factor WT1 linked to the pathologic cardiac remodeling post-myocardial infarction. CLINICA E INVESTIGACION EN ARTERIOSCLEROSIS 2018; 31:121-127. [PMID: 30292449 DOI: 10.1016/j.arteri.2018.08.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 07/20/2018] [Accepted: 08/08/2018] [Indexed: 02/07/2023]
Abstract
New advances in the treatment of acute myocardial infarction involve novel signaling pathways and cellular progeny. In this sense, regeneration is a novel tool that would contribute to post-infarction physiological ventricular remodeling. More specifically, re-expression of the WT1 transcription factor in the myocardial wall by ischemia and infarction would be related to the invasion of cells with the capacity for regeneration. This mechanism seems not to be sufficient to restore muscle cells and lost vessels entirely. Of particular interest, the presence of the heat-shock response protein 70 (Hsp70) and its interaction with the vitamin D receptor would modulate the expression of WT1 positively. In this context, it is proposed that the activation of vitamin D receptors associated with Hsp70 could favor physiological cardiac remodeling and reduce the progression to heart failure.
Collapse
Affiliation(s)
- Raúl Lelio Sanz
- Área de Farmacología, Departamento de Patología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Luciana Mazzei
- Área de Farmacología, Departamento de Patología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina; Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mendoza, Argentina
| | - Walter Manucha
- Área de Farmacología, Departamento de Patología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina; Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mendoza, Argentina.
| |
Collapse
|
36
|
Abstract
Vitamin D is critical in mineral homeostasis and skeletal health and plays a regulatory role in nonskeletal tissues. Vitamin D deficiency is associated with chronic inflammatory diseases, including diabetes and obesity, both strong risk factors for cardiovascular diseases (CVDs). CVDs, including coronary artery disease, myocardial infarction, hypertrophy, cardiomyopathy, cardiac fibrosis, heart failure, aneurysm, peripheral arterial disease, hypertension, and atherosclerosis, are major causes of morbidity and mortality. The association of these diseases with vitamin D deficiency and improvement with vitamin D supplementation suggest its therapeutic benefit. The authors review the findings on the association of vitamin D deficiency and CVDs.
Collapse
Affiliation(s)
- Vikrant Rai
- Department of Clinical and Translational Science, Creighton University School of Medicine, CRISS II Room 510, 2500 California Plaza, Omaha, NE 68178, USA
| | - Devendra K Agrawal
- Department of Clinical and Translational Science, Creighton University School of Medicine, CRISS II Room 510, 2500 California Plaza, Omaha, NE 68178, USA.
| |
Collapse
|