1
|
Zhang Y, Zheng Z, Liu Y. The Osteogenic Potential of Oligopeptides Derived from Black Bean: Insights into Structure-Activity Relationship. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025. [PMID: 40261276 DOI: 10.1021/acs.jafc.5c02771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
Food-derived oligopeptides have emerged as promising natural candidates for antiosteoporosis therapy due to their remarkable osteogenic activity. However, the structure-osteogenic activity relationship of these oligopeptides remains poorly defined. In this study, we investigated for the first time the correlation between the structural characteristics and osteogenic effects of black bean-derived oligopeptides. Among the 70 oligopeptides analyzed, 36, 29, and 30 oligopeptides were found to significantly enhance the proliferation (108.28%-136.78%), differentiation (115.02%-182.41%), and mineralization (110.91%-159.41%) of MC3T3-E1 cells, respectively. Notably, tetrapeptides demonstrated marked efficacy in inducing osteogenesis in vitro, with their mineralization activity significantly correlated with their isoelectric point (pI) values and net charge. Tetrapeptides containing lysine residues, such as KIGT and KGVG, were particularly effective in stimulating osteogenic mineralization. Furthermore, reliable three-dimensional quantitative structure-activity relationship (3D-QSAR) models were successfully established for all of the tetrapeptides. Importantly, the potent osteogenic tetrapeptides were characterized by bulky, electropositive, or hydrogen-bond acceptor groups at the R1 side chain of the N-terminal, along with electronegative or non-hydrogen bond acceptor groups at the R3 position and electronegative or hydrogen-bond acceptor groups at the R4 side chain of the C-terminal. Additionally, network pharmacology analysis highlighted the potential application of these osteogenic tetrapeptides in osteoporosis interventions. In conclusion, our findings demonstrated that the osteogenic activity of black bean-derived oligopeptides is attributed to their specific amino acid composition and structural features, providing novel insights for the efficient discovery and optimization of food-derived osteogenic oligopeptides.
Collapse
Affiliation(s)
- Yan Zhang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, People's Republic of China
| | - Zhaojun Zheng
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, People's Republic of China
| | - Yuanfa Liu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, People's Republic of China
| |
Collapse
|
2
|
Mu J, Li J, Chen Z, Chen Y, Lin Q, Zhang L, Fang Y, Liang Y. Rice bran peptides target lectin-like oxidized low-density lipoprotein receptor-1 to ameliorate atherosclerosis. Food Funct 2025; 16:867-884. [PMID: 39636043 DOI: 10.1039/d4fo04514a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Food-derived multifunctional peptides offer numerous health benefits through different biochemical pathways. However, their impact on aging-related atherosclerotic cardiovascular disease (ASCVD), especially atherosclerosis, remains underexplored despite cardiovascular disease (CVD) being the leading cause of death globally. In this study, NHANES data and Mendelian randomization were used to analyze the association between lipid metabolism disorders, systemic immune responses, dietary inflammatory index, and ASCVD. The results showed that they were all positively correlated with ASCVD. A dietary intervention was used to induce a mouse model of atherosclerosis through a high-fat diet (HFD). Our findings demonstrate that rice bran peptide could mitigate the typical pathological features of atherosclerosis. Molecular docking analysis further predicted that lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) is a key target of rice bran peptide. This prediction was validated through a two-cell model of endothelial cells and lox-1-interfered macrophages. Therefore, targeting LOX-1 with rice bran peptide inhibits the excessive uptake of oxidized LDL (ox-LDL) by macrophages, thereby hindering the mass production of foam cells, which is crucial in preventing the early onset of atherosclerosis.
Collapse
Affiliation(s)
- Jianfei Mu
- Molecular Nutrition Branch, National Engineering Research Center of Rice and By-product Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, P.R. China.
| | - Jiajia Li
- Molecular Nutrition Branch, National Engineering Research Center of Rice and By-product Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, P.R. China.
| | - Zhongxu Chen
- Molecular Nutrition Branch, National Engineering Research Center of Rice and By-product Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, P.R. China.
| | - Yajuan Chen
- Molecular Nutrition Branch, National Engineering Research Center of Rice and By-product Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, P.R. China.
| | - Qinlu Lin
- Molecular Nutrition Branch, National Engineering Research Center of Rice and By-product Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, P.R. China.
| | - Lingyu Zhang
- Molecular Nutrition Branch, National Engineering Research Center of Rice and By-product Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, P.R. China.
| | - Yong Fang
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, Jiangsu, P.R. China
| | - Ying Liang
- Molecular Nutrition Branch, National Engineering Research Center of Rice and By-product Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, P.R. China.
| |
Collapse
|
3
|
Suryaningtyas IT, Marasinghe CK, Lee B, Je JY. Oral administration of PIISVYWK and FSVVPSPK peptides attenuates obesity, oxidative stress, and inflammation in high fat diet-induced obese mice. J Nutr Biochem 2025; 136:109791. [PMID: 39490639 DOI: 10.1016/j.jnutbio.2024.109791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 10/07/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024]
Abstract
The bioactive peptides PIISVYWK (P1) and FSVVPSPK (P2), derived from the blue mussel Mytilus edulis, exhibit significant benefits in combating obesity, oxidative stress, and inflammation. This study demonstrates that these peptides inhibit the differentiation of bone marrow-derived mesenchymal stem cells (BMMSCs) into adipocytes by downregulating the adipogenic transcription factors peroxisome proliferator-activated receptor gamma (PPARγ), CCAAT/enhancer-binding protein alpha (C/EBPα), and sterol regulatory element-binding protein 1 (SREBP-1). Furthermore, P1 and P2 reduce lipogenesis and enhance lipolysis through the activation of AMP-activated protein kinase (AMPK) and hormone-sensitive lipase (HSL). These peptides also decrease intracellular reactive oxygen species (ROS) generation during adipogenesis and inhibit the mitogen-activated protein kinase (MAPK) pathway, thereby reducing inflammation. The involvement of heme oxygenase-1 (HO-1) in this mechanism is confirmed by the reversal of these effects upon HO-1 inhibition. In vivo, oral administration of P1 and P2 in high-fat diet (HFD) obese mice prevents weight gain, reduces adipose tissue accumulation, lowers adipogenic and lipogenic biomarkers, improves serum cholesterol levels, enhances lipolysis, and decreases pro-inflammatory cytokine production. These findings suggest that P1 and P2 peptides may effectively prevent obesity and related metabolic disorders by activating the HO-1/nuclear factor erythroid 2-related factor 2 (Nrf2) pathway.
Collapse
Affiliation(s)
- Indyaswan T Suryaningtyas
- Department of Food and Nutrition, Pukyong National University, Busan, Republic of Korea; Research Center for Food Technology and Processing, National Research and Innovation Agency, Yogyakarta, Indonesia
| | - Chathuri K Marasinghe
- Department of Food and Nutrition, Pukyong National University, Busan, Republic of Korea
| | - Bonggi Lee
- Department of Food and Nutrition, Pukyong National University, Busan, Republic of Korea
| | - Jae-Young Je
- Major of Human Bioconvergence, Division of Smart Healthcare, Pukyong National University, Busan, Republic of Korea.
| |
Collapse
|
4
|
Ticinesi A, Siniscalchi C, Meschi T, Nouvenne A. Gut microbiome and bone health: update on mechanisms, clinical correlations, and possible treatment strategies. Osteoporos Int 2025; 36:167-191. [PMID: 39643654 DOI: 10.1007/s00198-024-07320-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 11/12/2024] [Indexed: 12/09/2024]
Abstract
The intestinal microbiome is increasingly regarded as a relevant modulator of the pathophysiology of several age-related conditions, including frailty, sarcopenia, and cognitive decline. Aging is in fact associated with alteration of the equilibrium between symbiotic bacteria and opportunistic pathogens, leading to dysbiosis. The microbiome is able to regulate intestinal permeability and systemic inflammation, has a central role in intestinal amino acid metabolism, and produces a large number of metabolites and byproducts, with either beneficial or detrimental consequences for the host physiology. Recent evidence, from both preclinical animal models and clinical studies, suggests that these microbiome-centered pathways could contribute to bone homeostasis, regulating the balance between osteoblast and osteoclast function. In this systematic review, we provide an overview of the mechanisms involved in the gut-bone axis, with a particular focus on microbiome function and microbiome-derived mediators including short-chain fatty acids. We also review the current evidence linking gut microbiota dysbiosis with osteopenia and osteoporosis, and the results of the intervention studies on pre-, pro-, or post-biotics targeting bone mineral density loss in both animal models and human beings, indicating knowledge gaps and highlighting possible avenues for future research.
Collapse
Affiliation(s)
- Andrea Ticinesi
- Department of Medicine and Surgery, University of Parma, Via Antonio Gramsci 14, 43126, Parma, Italy.
- Microbiome Research Hub, University of Parma, Parma, Italy.
- Department of Continuity of Care and Multicomplexity, Parma University-Hospital, Parma, Italy.
| | - Carmine Siniscalchi
- Department of Continuity of Care and Multicomplexity, Parma University-Hospital, Parma, Italy
| | - Tiziana Meschi
- Department of Medicine and Surgery, University of Parma, Via Antonio Gramsci 14, 43126, Parma, Italy
- Microbiome Research Hub, University of Parma, Parma, Italy
- Department of Continuity of Care and Multicomplexity, Parma University-Hospital, Parma, Italy
| | - Antonio Nouvenne
- Department of Medicine and Surgery, University of Parma, Via Antonio Gramsci 14, 43126, Parma, Italy
- Microbiome Research Hub, University of Parma, Parma, Italy
- Department of Continuity of Care and Multicomplexity, Parma University-Hospital, Parma, Italy
| |
Collapse
|
5
|
Wang K, Jian M, Chen Y, Du M, Wang Z, Xu B, Tang N, Cheng Y, Gan J. Soy Peptide Ameliorate TGF-β1-Mediated Osteoblast Differentiation through Smad and MAPK Signaling Pathways. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:23246-23257. [PMID: 39391963 DOI: 10.1021/acs.jafc.4c04882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
The aim of this study was to determine the osteogenic activity and mechanism of soybean peptide VVELLKAFEEKF (SOP) and the potential relationship between SOP and transforming growth factor-β1 (TGF-β1). The results show that SOP promotes MC3T3-E1 cell proliferation by altering cell progression. SOP induced cell differentiation and mineralization in a dose-dependent manner at 0.7-7 μM. Moreover, SOP stimulates osteoblast differentiation, which may be achieved through the activation of p38-MAPK and Smad2/3 signaling pathways. Furthermore, treatment with a TβRI inhibitor (SB525334) inhibited the phosphorylation levels of p38 and Smad2/3, which indicates the involvement of TβRI in the process of osteoblast differentiation caused by SOP. Besides, in non-FBS-cultured MC3T3-E1 cells, SOP and TGF-β1 promoted the phosphorylation of Smad2/3 and alkaline phosphatase (ALP) activity, but the effect was lost when SOP was incubated separately, indicating that SOP stimulated osteoblast differentiation by promoting TGF-β1 activity. In vivo, SOP significantly restores bone mineral density loss and behavioral deficits in a model of glucocorticoid-induced osteoporosis (GIOP) in zebrafish. These results suggest that SOP may have the function of promoting bone remodeling and may be used as a potential active factor for functional food development to prevent osteoporosis.
Collapse
Affiliation(s)
- Kuaitian Wang
- College of Life Science, Yantai University, Yantai, Shandong 264000, China
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Mengqi Jian
- College of Life Science, Yantai University, Yantai, Shandong 264000, China
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yuhang Chen
- College of Life Science, Yantai University, Yantai, Shandong 264000, China
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Mengdi Du
- College of Life Science, Yantai University, Yantai, Shandong 264000, China
| | - Zhenhua Wang
- College of Life Science, Yantai University, Yantai, Shandong 264000, China
| | - Bo Xu
- College of Life Science, Yantai University, Yantai, Shandong 264000, China
| | - Ning Tang
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yongqiang Cheng
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Jing Gan
- College of Life Science, Yantai University, Yantai, Shandong 264000, China
| |
Collapse
|
6
|
Yan Z, Gui Y, Liu C, Zhang X, Wen C, Olatunji OJ, Suttikhana I, Ashaolu TJ. Gastrointestinal digestion of food proteins: Anticancer, antihypertensive, anti-obesity, and immunomodulatory mechanisms of the derived peptides. Food Res Int 2024; 189:114573. [PMID: 38876600 DOI: 10.1016/j.foodres.2024.114573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/26/2024] [Accepted: 05/26/2024] [Indexed: 06/16/2024]
Abstract
Food proteins and their peptides play a significant role in the important biological processes and physiological functions of the body. The peptides show diverse biological benefits ranging from anticancer to antihypertensive, anti-obesity, and immunomodulatory, among others. In this review, an overview of food protein digestion in the gastrointestinal tract and the mechanisms involved was presented. As some proteins remain resistant and undigested, the multifarious factors (e.g. protein type and structure, microbial composition, pH levels and redox potential, host factors, etc.) affecting their colonic fermentation, the derived peptides, and amino acids that evade intestinal digestion are thus considered. The section that follows focuses on the mechanisms of the peptides with anticancer, antihypertensive, anti-obesity, and immunomodulatory effects. As further considerations were made, it is concluded that clinical studies targeting a clear understanding of the gastrointestinal stability, bioavailability, and safety of food-based peptides are still warranted.
Collapse
Affiliation(s)
- Zheng Yan
- Second People's Hospital of Wuhu City, Anhui Province, China.
| | - Yang Gui
- Second People's Hospital of Wuhu City, Anhui Province, China.
| | - Chunhong Liu
- Second People's Hospital of Wuhu City, Anhui Province, China.
| | - Xiaohai Zhang
- Second People's Hospital of Wuhu City, Anhui Province, China.
| | - Chaoling Wen
- Anhui College of Traditional Chinese Medicine, Wuhu City 241000, Anhui, China.
| | | | - Itthanan Suttikhana
- Department of Agroecosystems, Faculty of Agriculture and Technology, University of South Bohemia in České Budějovice, Branišovská 1645/31a, 370 05 České Budějovice 2, Czechia.
| | - Tolulope Joshua Ashaolu
- Institute for Global Health Innovations, Duy Tan University, Da Nang 550000, Viet Nam; Faculty of Medicine, Duy Tan University, Da Nang 550000, Viet Nam.
| |
Collapse
|
7
|
Zhou C, Yang L, Liu C, Ma H, Yang F, Chen L. Associations between special diet and incidence risk of osteoporosis: a Mendelian randomization study. Front Public Health 2024; 12:1364735. [PMID: 38873319 PMCID: PMC11171419 DOI: 10.3389/fpubh.2024.1364735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 05/06/2024] [Indexed: 06/15/2024] Open
Abstract
Introduction Osteoporosis is a prevalent challenge in clinical orthopedics, affecting a significant percentage of individuals aged 50 and above. The goal of this study was to comprehensively understand the relationships between a specialized dietary regimen and the risk of developing osteoporosis. Methods This study employed extensive genome-wide association study (GWAS) summary statistics derived from the UK Biobank. It encompassed 8 kinds of special diets and 7 datasets pertaining to osteoporosis and associated symptoms. The principal analytical approach employed was the inverse-variance weighted method. Additionally, sensitivity analysis was employed to elucidate the diverse multiplicity patterns observed in the final model. Results Our results showed that there is significant evidence that a gluten-free diet is associated with osteoporosis [odds ratio (OR): 1.080, 95% confidence interval (CI): 1.048-1.112, p = 4.23E-07)]. Furthermore, there exists a suggestive link between the three distinct dietary approaches and osteoporosis [(OR: 0.949, 95%CI: 0.929-0.970, p = 3.00E-06) for comprehensive consumption; (OR: 1.053, 95%CI: 1.018-1.089, p = 2.23E-03) for abstaining from wheat consumption; (OR: 1.036, 95%CI: 1.005-1.068, p = 1.97E-02) for abstaining from sugar consumption]. No additional correlation between the special dietary regimens and osteoporosis has been observed. Conclusion Our research has uncovered a notable correlation between a gluten-free diet and the occurrence of osteoporosis. Furthermore, it exerts a promoting influence on the onset of osteoporosis, which stands in direct contradiction to the therapeutic principles for Celiac Disease's complications. As such, a novel association among these three elements is postulated.
Collapse
Affiliation(s)
- Changwen Zhou
- The First Clinical Medical Research Institute, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
| | - Lixue Yang
- The First Clinical Medical Research Institute, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
- Affiliation Hospital of Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
| | - Ce Liu
- The First Clinical Medical Research Institute, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
| | - Hongzhong Ma
- The First Clinical Medical Research Institute, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
| | - Feng Yang
- The First Clinical Medical Research Institute, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
- Affiliation Hospital of Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
| | - Liheng Chen
- Affiliation Hospital of Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
| |
Collapse
|
8
|
Chen C, Huang L, Chen Y, Jin J, Xu Z, Liu F, Li K, Sun Y. Hydrolyzed egg yolk peptide prevented osteoporosis by regulating Wnt/β-catenin signaling pathway in ovariectomized rats. Sci Rep 2024; 14:10227. [PMID: 38702443 PMCID: PMC11068896 DOI: 10.1038/s41598-024-60514-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 04/24/2024] [Indexed: 05/06/2024] Open
Abstract
Hydrolyzed egg yolk peptide (YPEP) was shown to increase bone mineral density in ovariectomized rats. However, the underlying mechanism of YPEP on osteoporosis has not been explored. Recent studies have shown that Wnt/β-catenin signaling pathway and gut microbiota may be involved in the regulation of bone metabolism and the progression of osteoporosis. The present study aimed to explore the preventive effect of the YPEP supplementation on osteoporosis in ovariectomized (OVX) rats and to verify whether YPEP can improve osteoporosis by regulating Wnt/β-catenin signaling pathway and gut microbiota. The experiment included five groups: sham surgery group (SHAM), ovariectomy group (OVX), 17-β estradiol group (E2: 25 µg /kg/d 17β-estradiol), OVX with low-dose YPEP group (LYPEP: 10 mg /kg/d YPEP) and OVX with high-dose YPEP group (HYPEP: 40 mg /kg/d YPEP). In this study, all the bone samples used were femurs. Micro-CT analysis revealed improvements in both bone mineral density (BMD) and microstructure by YPEP treatment. The three-point mechanical bending test indicated an enhancement in the biomechanical properties of the YPEP groups. The serum levels of bone alkaline phosphatase (BALP), bone gla protein (BGP), calcium (Ca), and phosphorus (P) were markedly higher in the YPEP groups than in the OVX group. The LYPEP group had markedly lower levels of alkaline phosphatase (ALP), tartrate-resistant acid phosphatase (TRAP) and C-terminal telopeptide of type I collagen (CTX-I) than the OVX group. The YPEP groups had significantly higher protein levels of the Wnt3a, β-catenin, LRP5, RUNX2 and OPG of the Wnt/β-catenin signaling pathway compared with the OVX group. Compared to the OVX group, the ratio of OPG/RANKL was markedly higher in the LYPEP group. At the genus level, there was a significantly increase in relative abundance of Lachnospiraceae_NK4A136_group and a decrease in Escherichia_Shigella in YPEP groups, compared with the OVX group. However, in the correlation analysis, there was no correlation between these two bacteria and bone metabolism and microstructure indexes. These findings demonstrate that YPEP has the potential to improve osteoporosis, and the mechanism may be associated with its modulating effect on Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Chuanjing Chen
- School of Public Health, Qingdao University, Qingdao, China
| | - Ludi Huang
- School of Public Health, Qingdao University, Qingdao, China
| | | | - Jin Jin
- School of Public Health, Qingdao University, Qingdao, China
| | - Ze Xu
- School of Public Health, Qingdao University, Qingdao, China
| | - Fei Liu
- Fine Biotechnological R&D Center, Guangzhou, China
| | - Kelei Li
- School of Public Health, Qingdao University, Qingdao, China.
- Institute of Nutrition and Health, School of Public Health, Qingdao University, Qingdao, China.
| | - Yongye Sun
- School of Public Health, Qingdao University, Qingdao, China.
| |
Collapse
|
9
|
Qi L, Wang K, Zhou J, Zhang H, Guo Y, Zhang C. Phosphorylation modification of bovine bone collagen peptide enhanced its effect on mineralization of MC3T3-E1 cells via improving calcium-binding capacity. Food Chem 2024; 433:137365. [PMID: 37683462 DOI: 10.1016/j.foodchem.2023.137365] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 08/20/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023]
Abstract
This study aimed to investigate the effect of phosphorylation modification of collagen peptide on its calcium-binding capacity and pro-mineralization activity. In this study, collagen peptide (Leu-Thr-Phe, LTF) and phosphorylated LTF (P-LTF) were synthesized and further chelated with calcium ions. The results showed that phosphorylation of LTF significantly enhanced its calcium-binding capacity. Spectra analysis revealed that the calcium-binding sites of P-LTF were mainly carbonyl, carboxyl, and phosphate groups. Molecular docking further demonstrated that the phosphate group introduced by phosphorylation enhanced the calcium-binding capacity of LTF by ionic bonds and coordination bonds. The stability analysis results suggested that intestinal fluid could repair the peptide-calcium complex destroyed by gastric fluid. The cell experiment displayed that P-LTF-Ca significantly improved the mineralization activity of MC3T3-E1 cells, and the order of effective influence was P-LTF-Ca > LTF-Ca > P-LTF > LTF. This study provided the theoretical basis for the potential application of phosphorylation modification in improving bone health.
Collapse
Affiliation(s)
- Liwei Qi
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Kangyu Wang
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jiaojiao Zhou
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Hongru Zhang
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Laboratory of Biomass and Green Technologies, University of Liege-Gembloux Agro-Bio Tech, Passage des Déportés 2, B-5030 Gembloux, Belgium
| | - Yujie Guo
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Chunhui Zhang
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
10
|
Liu H, Xu S, Xu Z, Cheng S, Du M. Absorption characteristics and the effect on vascular endothelial cell permeability of an anticoagulant peptide. Food Res Int 2023; 173:113405. [PMID: 37803744 DOI: 10.1016/j.foodres.2023.113405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/19/2023] [Accepted: 08/26/2023] [Indexed: 10/08/2023]
Abstract
In the former report, the casein peptide TKLTEEEKNR (PfCN) exhibits strong thrombin inhibitory activity in vitro. Its absorption capabilities, however, are unclear. Therefore, we studied its absorption characteristics both in vivo and in vitro. PfCN was carried by cells from the apical chamber to the basolateral chamber via active translocation in Caco-2 cells. Meanwhile, it can also be transported by HUVECs. We found that PfCN can be taken up by HUVECs using confocal laser imaging. PfCN has been proven to have good absorption properties in in vivo experiments. After five minutes of oral treatment, PfCN was identified in the blood, peaking at 82.75 ± 36.52 ng/mL in 30 min. And PfCN vanished from the blood circulation after 120 min. According to in vivo experiments, excessive concentrations of PfCN will alter the permeability of HUVECs. As a result, there is a foundation for PfCN application in the food sector. Meanwhile, we also hope this article can give an idea to the researchers who studying the absorption of functional peptides.
Collapse
Affiliation(s)
- Hanxiong Liu
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China
| | - Shiqi Xu
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China
| | - Zhe Xu
- College of Life Sciences, Key Laboratory of Biotechnology and Bioresources Utilization, Dalian Minzu University, Dalian 116029, China
| | - Shuzhen Cheng
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China
| | - Ming Du
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
11
|
Mu J, Lin Q, Liang Y. An update on the effects of food-derived active peptides on the intestinal microecology. Crit Rev Food Sci Nutr 2023; 63:11625-11639. [PMID: 35791779 DOI: 10.1080/10408398.2022.2094889] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The intestinal microecology is a research hotspot, and neologisms related to the gut such as gut-brain axis, gut-lung axis, gut-bone axis, gut-skin axis, gut-renal axis, and gut-liver axis have emerged from recent research. Meticulous investigation has discovered that food-derived active peptides (FDAPs) are bioactive substances that optimize the structure of the gut microbiota to improve human health. However, few reviews have summarized and emphasized the nutritional value of FDAPs and their mechanisms of action in regulating the composition of the gut microbiota. We aim to provide an update on the latest research on FDAPs by comparing, summarizing, and discussing the potential food sources of FDAPs, their physiological functions, and regulatory effects on the intestinal microecology. The key findings are that few studies have analyzed the potential mechanisms and molecular pathways through which FDAPs maintain intestinal microecological homeostasis. We found that an imbalance in the ratio of Bacteroidetes and Firmicutes in the gut microbiota and abnormal production of short-chain fatty acids are key to the occurrence and development of various diseases. This review provides theoretical support for future comprehensive research on the digestion, distribution, metabolism, and excretion of FDAPs and the mechanisms underlying the interactions between FDAPs and the intestinal microecology.
Collapse
Affiliation(s)
- Jianfei Mu
- Molecular Nutrition Branch, National Engineering Research Center of Rice and By-Product Deep Processing/College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Qinlu Lin
- Molecular Nutrition Branch, National Engineering Research Center of Rice and By-Product Deep Processing/College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Ying Liang
- Molecular Nutrition Branch, National Engineering Research Center of Rice and By-Product Deep Processing/College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, China
| |
Collapse
|
12
|
Yue S, Feng X, Cai Y, Ibrahim SA, Liu Y, Huang W. Regulation of Tumor Apoptosis of Poriae cutis-Derived Lanostane Triterpenes by AKT/PI3K and MAPK Signaling Pathways In Vitro. Nutrients 2023; 15:4360. [PMID: 37892435 PMCID: PMC10610537 DOI: 10.3390/nu15204360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/07/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Poria cocos is traditionally used as both food and medicine. Triterpenoids in Poria cocos have a wide range of pharmacological activities, such as diuretic, sedative and tonic properties. In this study, the anti-tumor activities of poricoic acid A (PAA) and poricoic acid B (PAB), purified by high-speed counter-current chromatography, as well as their mechanisms and signaling pathways, were investigated using a HepG2 cell model. After treatment with PAA and PAB on HepG2 cells, the apoptosis was obviously increased (p < 0.05), and the cell cycle arrested in the G2/M phase. Studies showed that PAA and PAB can also inhibit the occurrence and development of tumor cells by stimulating the generation of ROS in tumor cells and inhibiting tumor migration and invasion. Combined Polymerase Chain Reaction and computer simulation of molecular docking were employed to explore the mechanism of tumor proliferation inhibition by PAA and PAB. By interfering with phosphatidylinositol-3-kinase/protein kinase B, Mitogen-activated protein kinases and p53 signaling pathways; and further affecting the expression of downstream caspases; matrix metalloproteinase family, cyclin-dependent kinase -cyclin, Intercellular adhesion molecules-1, Vascular Cell Adhesion Molecule-1 and Cyclooxygenase -2, may be responsible for their anti-tumor activity. Overall, the results suggested that PAA and PAB induced apoptosis, halted the cell cycle, and inhibited tumor migration and invasion through multi-pathway interactions, which may serve as a potential therapeutic agent against cancer.
Collapse
Affiliation(s)
- Shuai Yue
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China;
| | - Xi Feng
- Department of Nutrition, Food Science and Packaging, San Jose State University, San Jose, CA 95192, USA;
| | - Yousheng Cai
- School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China;
| | - Salam A. Ibrahim
- Department of Family and Consumer Sciences, North Carolina A&T State University, 171 Carver Hall, Greensboro, NC 27411, USA;
| | - Ying Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China;
| | - Wen Huang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China;
| |
Collapse
|
13
|
Singh S, Sarma DK, Verma V, Nagpal R, Kumar M. From Cells to Environment: Exploring the Interplay between Factors Shaping Bone Health and Disease. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1546. [PMID: 37763665 PMCID: PMC10532995 DOI: 10.3390/medicina59091546] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 09/29/2023]
Abstract
The skeletal system is an extraordinary structure that serves multiple purposes within the body, including providing support, facilitating movement, and safeguarding vital organs. Moreover, it acts as a reservoir for essential minerals crucial for overall bodily function. The intricate interplay of bone cells plays a critical role in maintaining bone homeostasis, ensuring a delicate balance. However, various factors, both intrinsic and extrinsic, can disrupt this vital physiological process. These factors encompass genetics, aging, dietary and lifestyle choices, the gut microbiome, environmental toxins, and more. They can interfere with bone health through several mechanisms, such as hormonal imbalances, disruptions in bone turnover, direct toxicity to osteoblasts, increased osteoclast activity, immune system aging, impaired inflammatory responses, and disturbances in the gut-bone axis. As a consequence, these disturbances can give rise to a range of bone disorders. The regulation of bone's physiological functions involves an intricate network of continuous processes known as bone remodeling, which is influenced by various intrinsic and extrinsic factors within the organism. However, our understanding of the precise cellular and molecular mechanisms governing the complex interactions between environmental factors and the host elements that affect bone health is still in its nascent stages. In light of this, this comprehensive review aims to explore emerging evidence surrounding bone homeostasis, potential risk factors influencing it, and prospective therapeutic interventions for future management of bone-related disorders.
Collapse
Affiliation(s)
- Samradhi Singh
- National Institute for Research in Environmental Health, Bhopal 462030, India; (S.S.); (D.K.S.)
| | - Devojit Kumar Sarma
- National Institute for Research in Environmental Health, Bhopal 462030, India; (S.S.); (D.K.S.)
| | - Vinod Verma
- Stem Cell Research Centre, Department of Hematology, Sanjay Gandhi Post-Graduate Institute of Medical Sciences, Lucknow 226014, India
| | - Ravinder Nagpal
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, FL 32302, USA;
| | - Manoj Kumar
- National Institute for Research in Environmental Health, Bhopal 462030, India; (S.S.); (D.K.S.)
| |
Collapse
|
14
|
Calcium-binding capacity of peptides obtained from sheep bone and structural characterization and stability of the peptide-calcium chelate. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01580-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
15
|
Co-administration of Antarctic krill peptide EEEFDATR and calcium shows superior osteogenetic activity. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101728] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
16
|
Yan Q, Cai L, Guo W. New Advances in Improving Bone Health Based on Specific Gut Microbiota. Front Cell Infect Microbiol 2022; 12:821429. [PMID: 35860378 PMCID: PMC9289272 DOI: 10.3389/fcimb.2022.821429] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 06/01/2022] [Indexed: 12/31/2022] Open
Abstract
The gut microbiota has been shown to play an important role in the pathogenesis of various diseases, including metabolic diseases, cardiovascular diseases, and cancer. Recent studies suggest that the gut microbiota is also closely associated with bone metabolism. However, given the high diversity of the gut microbiota, the effects of different taxa and compositions on bone are poorly understood. Previous studies demonstrated that the mechanisms underlying the effects of the gut microbiota on bone mainly include its modulation of nutrient absorption, intestinal permeability, metabolites (such as short-chain amino acids), immune responses, and hormones or neurotransmitters (such as 5-hydroxytryptamine). Several studies found that external interventions, such as dietary changes, improved bone health and altered the composition of the gut microbiota. This review summarises the beneficial gut bacteria and explores how dietary, natural, and physical factors alter the diversity and composition of the gut microbiota to improve bone health, thereby providing potential new insight into the prevention of osteoporosis.
Collapse
|
17
|
Sun P, Zhang C, Huang Y, Yang J, Zhou F, Zeng J, Lin Y. Jiangu granule ameliorated OVX rats bone loss by modulating gut microbiota-SCFAs-Treg/Th17 axis. Biomed Pharmacother 2022; 150:112975. [PMID: 35453007 DOI: 10.1016/j.biopha.2022.112975] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/06/2022] [Accepted: 04/12/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Postmenopausal osteoporosis (PMOP) is a common disease that has decreased bone strength as its main symptom after menopause. Effective treatment for PMOP remains lacking, but traditional Chinese medicine has some advantages in delaying bone loss. Jiangu granule is a traditional Chinese medicine prescription commonly used to treat PMOP. Previous studies have demonstrated its efficacy, but the mechanism of action remains uncharacterized. PURPOSE This study aims to observe and discuss the mechanism of Jiangu granule to ameliorate bone loss in OVX rats by regulating the gut microbiota (GM)-short-chain fatty acids (SCFAs)- Treg/Th17 axis. METHODS Female SD rats were divided into the sham operation (S), Jiangu granule (J), and model group (M). Bilateral ovaries were surgically removed from the rats in the J and M groups. After 6 and 12 weeks, rats were sacrificed, and femur, tibia, vertebrae, serum, spleen, colon, and feces samples were collected. We detected the strength of bones, gut microbiota structure, and SCFAs in feces, the Treg and Th17 cell levels in the spleen, and cytokine levels in the serum. RESULT Jiangu granule restored the abundance of gut microbiota, increased the content of SCFAs, reduced the permeability of colon epithelium, increased the proportion of Treg cells in the spleen, changed the osteoimmunomodulation-related cytokines, effectively prevented bone loss, and enhanced bone strength. CONCLUSION Jiangu granule can effectively improve bone loss in OVX rats, possibly by regulating the "GM-SCFAs-Treg/Th17″ axis.
Collapse
Affiliation(s)
- Pan Sun
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China; Longhua Hospital, Institute of Spine, Shanghai University of Traditional Chinese Medicine, Key Laboratory, Ministry of Education of China, Shanghai 200032, China
| | - Chutian Zhang
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Yunmei Huang
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Juan Yang
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China; The Second Affiliated Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Fen Zhou
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Jianwei Zeng
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Yanping Lin
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China; College of Acupuncture and Moxibustion, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China.
| |
Collapse
|
18
|
Wang K, Kong X, Du M, Yu W, Wang Z, Xu B, Yang J, Xu J, Liu Z, Cheng Y, Gan J. Novel Soy Peptide CBP: Stimulation of Osteoblast Differentiation via TβRI-p38-MAPK-Depending RUNX2 Activation. Nutrients 2022; 14:1940. [PMID: 35565907 PMCID: PMC9105634 DOI: 10.3390/nu14091940] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 04/27/2022] [Accepted: 04/27/2022] [Indexed: 01/06/2023] Open
Abstract
DEDEQIPSHPPR, the calcium-binding peptide (CBP) identified in soy yogurt, was proven to be a potential cofactor in osteoporosis prevention in our previous study, but the mechanism was unknown. In this study, the activity of alkaline phosphatase (ALP) and osteocalcin (OCN), the regulation of RUNX2, and the expression of TβRI were investigated to elucidate the underlying mechanism. The results show that CBP upregulated ALP activity and OCN concentration and increased the expression of RUNX2 and the activation of the MAPK signaling pathway. Similarly, the expression of osteogenesis-related genes in osteoblasts also increased upon CBP treatment. Moreover, the CBP-induced enhancement of ALP activity and phosphorylation levels in the p38 pathway was inhibited by treatment with a p38 inhibitor (SB203538) and TβRI inhibitor (SB431542), respectively, suggesting that p38 and TβRI were involved in the osteogenic action. Based on the signaling pathways, the intracellular calcium concentration was significantly elevated by CBP, which was correlated with the increased behavioral functions and the relative fluorescence intensity of the bone mass. These findings suggest that CBP stimulates osteoblast differentiation and bone mineralization through the activation of RUNX2 via mechanisms related to the TβRI-p38-MAPK signaling pathways, further highlighting CBP's important potential for treating osteoporosis.
Collapse
Affiliation(s)
- Kuaitian Wang
- College of Life Science, Yantai University, Yantai 264000, China; (K.W.); (X.K.); (M.D.); (W.Y.); (Z.W.); (B.X.); (J.Y.); (J.X.); (Z.L.)
| | - Xiao Kong
- College of Life Science, Yantai University, Yantai 264000, China; (K.W.); (X.K.); (M.D.); (W.Y.); (Z.W.); (B.X.); (J.Y.); (J.X.); (Z.L.)
| | - Mengdi Du
- College of Life Science, Yantai University, Yantai 264000, China; (K.W.); (X.K.); (M.D.); (W.Y.); (Z.W.); (B.X.); (J.Y.); (J.X.); (Z.L.)
| | - Wei Yu
- College of Life Science, Yantai University, Yantai 264000, China; (K.W.); (X.K.); (M.D.); (W.Y.); (Z.W.); (B.X.); (J.Y.); (J.X.); (Z.L.)
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Zhenhua Wang
- College of Life Science, Yantai University, Yantai 264000, China; (K.W.); (X.K.); (M.D.); (W.Y.); (Z.W.); (B.X.); (J.Y.); (J.X.); (Z.L.)
| | - Bo Xu
- College of Life Science, Yantai University, Yantai 264000, China; (K.W.); (X.K.); (M.D.); (W.Y.); (Z.W.); (B.X.); (J.Y.); (J.X.); (Z.L.)
| | - Jianrong Yang
- College of Life Science, Yantai University, Yantai 264000, China; (K.W.); (X.K.); (M.D.); (W.Y.); (Z.W.); (B.X.); (J.Y.); (J.X.); (Z.L.)
| | - Jingru Xu
- College of Life Science, Yantai University, Yantai 264000, China; (K.W.); (X.K.); (M.D.); (W.Y.); (Z.W.); (B.X.); (J.Y.); (J.X.); (Z.L.)
| | - Zhili Liu
- College of Life Science, Yantai University, Yantai 264000, China; (K.W.); (X.K.); (M.D.); (W.Y.); (Z.W.); (B.X.); (J.Y.); (J.X.); (Z.L.)
| | - Yongqiang Cheng
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Jing Gan
- College of Life Science, Yantai University, Yantai 264000, China; (K.W.); (X.K.); (M.D.); (W.Y.); (Z.W.); (B.X.); (J.Y.); (J.X.); (Z.L.)
| |
Collapse
|
19
|
Xu Z, Han S, Chen H, Zhu Z, Han L, Dong X, Du M, Li T. Characterization of Chelation and Absorption of Calcium by a Mytilus edulis Derived Osteogenic Peptide. Front Nutr 2022; 9:840638. [PMID: 35449539 PMCID: PMC9016177 DOI: 10.3389/fnut.2022.840638] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 02/17/2022] [Indexed: 11/13/2022] Open
Abstract
In a previous study, the peptide LGKDQVRT, which was identified by enzymatic hydrolysis, released during the proteolysis of Mytilus edulis, had potential osteogenic activity. In this study, the octapeptide LGKDQVRT was able to spontaneously bind calcium in a 1:1 stoichiometric ratio, and the calcium-binding site likely involves calcium and amino acid VAL6 in the LGKDQVRT peptide to form a metal-donor to metal acceptor complex. The peptide LGKDQVRT has the activity of promoting the proliferation and differentiation of osteoblasts. The results of this study suggest that hydrolyzed peptides from Mytilus edulis protein can be used as a dietary supplement to improve calcium absorption and prevent osteoporosis.
Collapse
Affiliation(s)
- Zhe Xu
- Key Laboratory of Biotechnology and Bioresources Utilization, College of Life Sciences, Dalian Minzu University, Ministry of Education, Dalian, China
| | - Shiying Han
- Key Laboratory of Biotechnology and Bioresources Utilization, College of Life Sciences, Dalian Minzu University, Ministry of Education, Dalian, China
| | - Hui Chen
- Key Laboratory of Marine Fishery Resources Exploitment and Utilization of Zhejiang Province, College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
| | - Zhixuan Zhu
- Key Laboratory of Biotechnology and Bioresources Utilization, College of Life Sciences, Dalian Minzu University, Ministry of Education, Dalian, China
| | - Lingyu Han
- Key Laboratory of Biotechnology and Bioresources Utilization, College of Life Sciences, Dalian Minzu University, Ministry of Education, Dalian, China
| | - Xiufang Dong
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Ming Du
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Tingting Li
- Key Laboratory of Biotechnology and Bioresources Utilization, College of Life Sciences, Dalian Minzu University, Ministry of Education, Dalian, China
| |
Collapse
|
20
|
de Sire A, de Sire R, Curci C, Castiglione F, Wahli W. Role of Dietary Supplements and Probiotics in Modulating Microbiota and Bone Health: The Gut-Bone Axis. Cells 2022; 11:cells11040743. [PMID: 35203401 PMCID: PMC8870226 DOI: 10.3390/cells11040743] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 02/04/2022] [Accepted: 02/09/2022] [Indexed: 02/04/2023] Open
Abstract
Osteoporosis is characterized by an alteration of bone microstructure with a decreased bone mineral density, leading to the incidence of fragility fractures. Around 200 million people are affected by osteoporosis, representing a major health burden worldwide. Several factors are involved in the pathogenesis of osteoporosis. Today, altered intestinal homeostasis is being investigated as a potential additional risk factor for reduced bone health and, therefore, as a novel potential therapeutic target. The intestinal microflora influences osteoclasts’ activity by regulating the serum levels of IGF-1, while also acting on the intestinal absorption of calcium. It is therefore not surprising that gut dysbiosis impacts bone health. Microbiota alterations affect the OPG/RANKL pathway in osteoclasts, and are correlated with reduced bone strength and quality. In this context, it has been hypothesized that dietary supplements, prebiotics, and probiotics contribute to the intestinal microecological balance that is important for bone health. The aim of the present comprehensive review is to describe the state of the art on the role of dietary supplements and probiotics as therapeutic agents for bone health regulation and osteoporosis, through gut microbiota modulation.
Collapse
Affiliation(s)
- Alessandro de Sire
- Physical Medicine and Rehabilitation Unit, Department of Medical and Surgical Sciences, University of Catanzaro “Magna Graecia”, 88100 Catanzaro, Italy
- Correspondence: (A.d.S.); (W.W.)
| | - Roberto de Sire
- Gastroenterology Unit, Department of Clinical Medicine and Surgery, University Federico II of Naples, 80126 Naples, Italy; (R.d.S.); (F.C.)
| | - Claudio Curci
- Physical Medicine and Rehabilitation Unit, Department of Neurosciences, ASST Carlo Poma, 46100 Mantova, Italy;
| | - Fabiana Castiglione
- Gastroenterology Unit, Department of Clinical Medicine and Surgery, University Federico II of Naples, 80126 Naples, Italy; (R.d.S.); (F.C.)
| | - Walter Wahli
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Clinical Sciences Building, Singapore 308232, Singapore
- Toxalim Research Center in Food Toxicology (UMR 1331), French National Research Institute for Agriculture, Food, and the Environment (INRAE), F-31300 Toulouse, France
- Center for Integrative Genomics, University of Lausanne, Le Génopode, CH-1015 Lausanne, Switzerland
- Correspondence: (A.d.S.); (W.W.)
| |
Collapse
|
21
|
Zhong X, Zhang F, Yin X, Cao H, Wang X, Liu D, Chen J, Chen X. Bone Homeostasis and Gut Microbial-Dependent Signaling Pathways. J Microbiol Biotechnol 2021; 31:765-774. [PMID: 34176870 PMCID: PMC9705830 DOI: 10.4014/jmb.2104.04016] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/27/2021] [Accepted: 06/13/2021] [Indexed: 12/15/2022]
Abstract
Although research on the osteal signaling pathway has progressed, understanding of gut microbial-dependent signaling pathways for metabolic and immune bone homeostasis remains elusive. In recent years, the study of gut microbiota has shed light on our understanding of bone homeostasis. Here, we review microbiota-mediated gut-bone crosstalk via bone morphogenetic protein/SMADs, Wnt and OPG/receptor activator of nuclear factor-kappa B ligand signaling pathways in direct (translocation) and indirect (metabolite) manners. The mechanisms underlying gut microbiota involvement in these signaling pathways are relevant in immune responses, secretion of hormones, fate of osteoblasts and osteoclasts and absorption of calcium. Collectively, we propose a signaling network for maintaining a dynamic homeostasis between the skeletal system and the gut ecosystem. Additionally, the role of gut microbial improvement by dietary intervention in osteal signaling pathways has also been elucidated. This review provides unique resources from the gut microbial perspective for the discovery of new strategies for further improving treatment of bone diseases by increasing the abundance of targeted gut microbiota.
Collapse
Affiliation(s)
- Xiaohui Zhong
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, P.R. China
| | - Feng Zhang
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, P.R. China,Clinical Assessment Center of Functional Food, Affiliated Hospital of Jiangnan University, Wuxi 214125, P.R. China,Nutritional Department, Affiliated Hospital of Jiangnan University, Wuxi 214125, P.R. China
| | - Xinyao Yin
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, P.R. China
| | - Hong Cao
- Clinical Assessment Center of Functional Food, Affiliated Hospital of Jiangnan University, Wuxi 214125, P.R. China,Department of Endocrinology, Affiliated Hospital of Jiangnan University, Wuxi 214125, P.R. China,Nutritional Department, Affiliated Hospital of Jiangnan University, Wuxi 214125, P.R. China
| | - Xuesong Wang
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, P.R. China,Department of Orthopedics, Affiliated Hospital of Jiangnan University, Wuxi 214125, P.R.China
| | - Dongsong Liu
- Department of Orthopedics, Affiliated Hospital of Jiangnan University, Wuxi 214125, P.R.China
| | - Jing Chen
- Department of Orthopedics, Affiliated Hospital of Jiangnan University, Wuxi 214125, P.R.China
| | - Xue Chen
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, P.R. China,Corresponding author Phone: +86-15861589177 E-mail:
| |
Collapse
|
22
|
Xu Z, Fan F, Chen H, Shi P, Zhu D, Yang M, Wang Z, Ei-Seedi HR, Du M. Absorption and transport of a Mytilus edulis-derived peptide with the function of preventing osteoporosis. Food Funct 2021; 12:2102-2111. [PMID: 33564802 DOI: 10.1039/d0fo02353a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The YPRKDETGAERT peptide (PME-1) identified from the Mytilus edulis proteins has been shown to promote the proliferation and differentiation of osteoblasts and it has good bone-forming activity in vitro. Further, PME-1 has been shown to prevent osteoporosis in vivo. PME-1 can be absorbed through the gastrointestinal tract, and the passing rate in monolayer Caco-2 cells was 6.57%. PME-1 can also enter the blood circulation and the concentration of PME-1 in serum reached the maximum, 61.06 ± 26.32 ng mL-1, 20 min after feeding. The multifunctional in vivo imager was used to further determine the distribution of the 5-FITC-(Acp)-YPRKDETGAERT peptide (PME-1-FITC) 2 h after feeding the peptide, and the result confirmed the above results and showed that a part of PME-1-FITC can affect bone in vivo. Therefore, PME-1 not only was easily absorbed in the gastrointestinal tract, but also has the potential beneficial effect on preventing osteoporosis.
Collapse
Affiliation(s)
- Zhe Xu
- School of Food Science and Technology, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China. and College of Life Sciences, Key Laboratory of Biotechnology and Bioresources Utilization, Dalian Minzu University, Ministry of Education, Dalian 116029, China
| | - Fengjiao Fan
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210046, China
| | - Hui Chen
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Pujie Shi
- School of Food Science and Technology, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China.
| | - Dongyang Zhu
- School of Food Science and Technology, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China.
| | - Meilian Yang
- School of Food Science and Technology, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China.
| | - Zhenyu Wang
- School of Food Science and Technology, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China.
| | - Hesham R Ei-Seedi
- Pharmacognosy Group, Department of Medicinal Chemistry, Uppsala University, Biomedical Centre, Uppsala 75123, Sweden
| | - Ming Du
- School of Food Science and Technology, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
23
|
Shi Y, Feng R, Mao J, Liu S, Zhou Z, Ji Z, Chen S, Mao J. Structural Characterization of Peptides From Huangjiu and Their Regulation of Hepatic Steatosis and Gut Microbiota Dysbiosis in Hyperlipidemia Mice. Front Pharmacol 2021; 12:689092. [PMID: 34220514 PMCID: PMC8243288 DOI: 10.3389/fphar.2021.689092] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 06/04/2021] [Indexed: 12/13/2022] Open
Abstract
Hyperlipidemia is a chronic disorder that is difficult to cure and usually treated with long-term lipid-reducing drugs. Recent trends have led to the use of diet therapies or food-derived strategies in the treatment of such long-term diseases. The Chinese rice wine (huangjiu) contains a wide range of bioactive peptides that are produced during the multi-species fermentation process. To clarify the regulation effects of lipid metabolism and gut microbiota by huangjiu bioactive peptides, three huangjiu peptides were isolated, purified and characterized by hyper-filtration, macroporous resin, gel filtration separation and structural identification. Meanwhile, a mouse model of high-fat diet-induced hyperlipidemia was established to study the effects of huangjiu peptides on serum biomarker, hepatic metabolism and gut microbiota dysbiosis. Experimental results showed that huangjiu peptides T1 and T2 (HpT1, HpT2) treatment alleviated the increase in serum total cholesterol, triglyceride, low-density lipoprotein cholesterol levels and aberrant hepatic lipid accumulation in the high-fat diet-induced hyperlipidemia mice. Furthermore, HpT2 and HpT1 restored the α-diversity and structure of gut microbial community after hyperlipidemia-induced microbiota disturbance compared with simvastatin and HpT3. The administration of HpT2 and HpT1 regulated the microbiota-mediated gut ecology through alterations of characteristic taxa including Lactobacillus, Ileibacterium, Faecalibaculum and Alloprevotella by linear discriminant analysis effect size analysis. Collectively, our results offer new insights into the abilities of food-derived peptides on alleviation of high-fat diet-induced hyperlipidemia, hepatic steatosis and gut dysbiosis in mice.
Collapse
Affiliation(s)
- Ying Shi
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China.,Jiangnan University (Shaoxing) Industrial Technology Research Institute, Shaoxing, China
| | - Ruixue Feng
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jieqi Mao
- College of Agriculture and Environmental Sciences, University of California, Davis, CA, United States
| | - Shuangping Liu
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China.,Jiangnan University (Shaoxing) Industrial Technology Research Institute, Shaoxing, China.,National Engineering Research Center of Chinese Rice Wine, Zhejiang Guyuelongshan Shaoxing Wine CO., Ltd, Shaoxing, China
| | - Zhilei Zhou
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China.,Jiangnan University (Shaoxing) Industrial Technology Research Institute, Shaoxing, China
| | - Zhongwei Ji
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China.,Jiangnan University (Shaoxing) Industrial Technology Research Institute, Shaoxing, China
| | - Shuguang Chen
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS and PUMC), Beijing, China
| | - Jian Mao
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China.,Jiangnan University (Shaoxing) Industrial Technology Research Institute, Shaoxing, China
| |
Collapse
|
24
|
Abstract
Aims The effect of the gut microbiota (GM) and its metabolite on bone health is termed the gut-bone axis. Multiple studies have elucidated the mechanisms but findings vary greatly. A systematic review was performed to analyze current animal models and explore the effect of GM on bone. Methods Literature search was performed on PubMed and Embase databases. Information on the types and strains of animals, induction of osteoporosis, intervention strategies, determination of GM, assessment on bone mineral density (BMD) and bone quality, and key findings were extracted. Results A total of 30 studies were included, of which six studies used rats and 24 studies used mice. Osteoporosis or bone loss was induced in 14 studies. Interventions included ten with probiotics, three with prebiotics, nine with antibiotics, two with short-chain fatty acid (SCFA), six with vitamins and proteins, two with traditional Chinese medicine (TCM), and one with neuropeptide Y1R antagonist. In general, probiotics, prebiotics, nutritional interventions, and TCM were found to reverse the GM dysbiosis and rescue bone loss. Conclusion Despite the positive therapeutic effect of probiotics, prebiotics, and nutritional or pharmaceutical interventions on osteoporosis, there is still a critical knowledge gap regarding the role of GM in rescuing bone loss and its related pathways. Cite this article: Bone Joint Res 2021;10(1):51–59.
Collapse
Affiliation(s)
- Jie Li
- Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Wing Tung Percy Ho
- Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Chaoran Liu
- Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Simon Kwoon-Ho Chow
- Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Margaret Ip
- Department of Microbiology, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Jun Yu
- Department of Medicine & Therapeutics, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Hei Sunny Wong
- Department of Medicine & Therapeutics, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Wing-Hoi Cheung
- Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Joseph Jao Yiu Sung
- Department of Medicine & Therapeutics, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Ronald Man Yeung Wong
- Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| |
Collapse
|
25
|
Xu Z, Chen H, Fan F, Shi P, Cheng S, Tu M, Ei-Seedi HR, Du M. Pharmacokinetics and Transport of an Osteogenic Dodecapeptide. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:9961-9967. [PMID: 32786858 DOI: 10.1021/acs.jafc.0c02779] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A dodecapeptide with the amino acid sequence of IEELEEELEAER (PIE), identified from Mytilus edulis proteolysis hydrolysates, has shown good bone-forming activity in previous studies. The pharmacokinetics and transport of the PIE peptide in vivo or in vitro were investigated in this study. The results showed that the PIE peptide can be transported into monolayer Caco-2 cells, and the PIE peptide was identified in the serum after the mice reached the highest value of 173.60 ± 60.30 ng/mL, in which it was quantified by an optimized mass spectrometry method. In addition, the PIE peptide has a promoting effect on the bone morphogenetic protein pathway at the gene and protein levels. According to the distribution of PIE-FITC in ovariectomized mice after orally administrated PIE-FITC, it was confirmed that it can enter the gastrointestinal tract and serum, and reach the bones. Taken together, the PIE peptide can be absorbed well both in vitro and in vivo, and it could promote pre-osteoblast differentiation factors.
Collapse
Affiliation(s)
- Zhe Xu
- School of Food Science and Technology, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Hui Chen
- School of Food Science and Technology, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Fengjiao Fan
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210046, China
| | - Pujie Shi
- School of Food Science and Technology, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Shuzhen Cheng
- School of Food Science and Technology, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Maolin Tu
- School of Food Science and Technology, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Hesham R Ei-Seedi
- Pharmacognosy Group, Department of Medicinal Chemistry, Uppsala University, Biomedical Centre, Uppsala 75 123, Sweden
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
| | - Ming Du
- School of Food Science and Technology, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
26
|
Anaya K, Podszun M, Franco OL, de Almeida Gadelha CA, Frank J. The Coconut Water Antimicrobial Peptide CnAMP1 Is Taken up into Intestinal Cells but Does Not Alter P-Glycoprotein Expression and Activity. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2020; 75:396-403. [PMID: 32462366 PMCID: PMC7378125 DOI: 10.1007/s11130-020-00826-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Coconut antimicrobial peptide-1 (CnAMP1) is a naturally occurring bioactive peptide from green coconut water (Cocos nucifera L.). Although biological activities have been reported, the physiological relevance of these reports remains elusive as it is unknown if CnAMP1 is taken up into intestinal cells. To address this open question, we investigated the cytotoxicity of CnAMP1 in intestinal cells and its cellular uptake into human intestinal cells. Considering the importance of the P-glycoprotein (P-gp) to the intestinal metabolism of xenobiotics, we also investigated the influence of CnAMP1 on P-gp activity and expression. Both cell lines showed intracellular fluorescence after incubation with fluorescein labelled CnAMP1, indicating cellular uptake of the intact or fragmented peptide. CnAMP1 (12.5-400 μmol/L) showed no signs of cytotoxicity in LS180 and differentiated Caco-2 cells and did not affect P-gp expression and activity. Further research is required to investigate the identity of CnAMP1 hydrolysis fragments and their potential biological activities.
Collapse
Affiliation(s)
- Katya Anaya
- Faculty of Health Sciences of Trairi, Federal University of Rio Grande do Norte, Santa Cruz, RN 59200-000 Brazil
- Institute of Nutritional Sciences, University of Hohenheim, D-70599 Stuttgart, Germany
- Department of Molecular Biology, Federal University of Paraíba, João Pessoa, PB 58051-900 Brazil
| | - Maren Podszun
- Institute of Nutritional Sciences, University of Hohenheim, D-70599 Stuttgart, Germany
| | - Octavio Luiz Franco
- Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF 70790-160 Brazil
- S-Inova Biotech, Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, MS 79117-900 Brazil
| | | | - Jan Frank
- Institute of Nutritional Sciences, University of Hohenheim, D-70599 Stuttgart, Germany
| |
Collapse
|