1
|
Identification of Fish Species and Targeted Genetic Modifications Based on DNA Analysis: State of the Art. Foods 2023; 12:foods12010228. [PMID: 36613444 PMCID: PMC9818732 DOI: 10.3390/foods12010228] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/22/2022] [Accepted: 12/30/2022] [Indexed: 01/05/2023] Open
Abstract
Food adulteration is one of the most serious problems regarding food safety and quality worldwide. Besides misleading consumers, it poses a considerable health risk associated with the potential non-labeled allergen content. Fish and fish products are one of the most expensive and widely traded commodities, which predisposes them to being adulterated. Among all fraud types, replacing high-quality or rare fish with a less valuable species predominates. Because fish differ in their allergen content, specifically the main one, parvalbumin, their replacement can endanger consumers. This underlines the need for reliable, robust control systems for fish species identification. Various methods may be used for the aforementioned purpose. DNA-based methods are favored due to the characteristics of the target molecule, DNA, which is heat resistant, and the fact that through its sequencing, several other traits, including the recognition of genetic modifications, can be determined. Thus, they are considered to be powerful tools for identifying cases of food fraud. In this review, the major DNA-based methods applicable for fish meat and product authentication and their commercial applications are discussed, the possibilities of detecting genetic modifications in fish are evaluated, and future trends are highlighted, emphasizing the need for comprehensive and regularly updated online database resources.
Collapse
|
2
|
Liu X, Zeng S, Liu S, Wang G, Lai H, Zhao X, Bi S, Guo D, Chen X, Yi H, Su Y, Zhang Y, Li G. Identifying the Related Genes of Muscle Growth and Exploring the Functions by Compensatory Growth in Mandarin Fish ( Siniperca chuatsi). Front Physiol 2020; 11:553563. [PMID: 33117188 PMCID: PMC7552573 DOI: 10.3389/fphys.2020.553563] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 08/31/2020] [Indexed: 01/16/2023] Open
Abstract
How organisms display many different biochemical, physiological processes through genes expression and regulatory mechanisms affecting muscle growth is a central issue in growth and development. In Siniperca chuatsi, the growth-related genes and underlying relevant mechanisms are poorly understood, especially for difference of body sizes and compensatory growth performance. Muscle from 3-month old individuals of different sizes was used for transcriptome analysis. Results showed that 8,942 different expression genes (DEGs) were identified after calculating the RPKM. The DEGs involved in GH-IGF pathways, protein synthesis, ribosome synthesis and energy metabolisms, which were expressed significantly higher in small individuals (S) than large fish (L). In repletion feeding and compensatory growth experiments, eight more significant DEGs were used for further research (GHR2, IGFR1, 4ebp, Mhc, Mlc, Myf6, MyoD, troponin). When food was plentiful, eight genes participated in and promoted growth and muscle synthesis, respectively. Starvation can be shown to inhibit the expression of Mhc, Mlc and troponin, and high expression of GHR2, IGFR1, and 4ebp inhibited growth. Fasting promoted the metabolic actions of GHR2, IGFR1, and 4ebp rather than the growth-promoting actions. MyoD can sense and regulate the hunger, which also worked with Mhc and Mlc to accelerate the compensatory growth of S. chuatsi. This study is helpful to understand the regulation mechanisms of muscle growth-related genes. The elected genes will contribute to the selective breeding in future as candidate genes.
Collapse
Affiliation(s)
- Xuange Liu
- Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Guangzhou, China.,Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, China
| | - Shuang Zeng
- Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Guangzhou, China.,Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, China
| | - Shuang Liu
- Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Guangzhou, China.,Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, China
| | - Gongpei Wang
- Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Guangzhou, China.,Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, China
| | - Han Lai
- Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Guangzhou, China.,Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, China
| | - Xiaopin Zhao
- Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Guangzhou, China.,Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, China
| | - Sheng Bi
- Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Guangzhou, China.,Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, China
| | - Dingli Guo
- Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Guangzhou, China.,Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, China
| | - Xiaoli Chen
- Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Guangzhou, China.,Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, China
| | - Huadong Yi
- Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Guangzhou, China.,Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, China
| | - Yuqin Su
- Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Guangzhou, China.,Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, China
| | - Yong Zhang
- Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Guangzhou, China.,Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, China
| | - Guifeng Li
- Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Guangzhou, China.,Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, China
| |
Collapse
|
3
|
Correlation analysis of mandarin fish (Siniperca chuatsi) growth hormone gene polymorphisms and growth traits. J Genet 2019. [DOI: 10.1007/s12041-019-1100-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
4
|
Tonelli FMP, Lacerda SMSN, Tonelli FCP, Costa GMJ, de França LR, Resende RR. Progress and biotechnological prospects in fish transgenesis. Biotechnol Adv 2017; 35:832-844. [PMID: 28602961 DOI: 10.1016/j.biotechadv.2017.06.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 05/04/2017] [Accepted: 06/05/2017] [Indexed: 12/14/2022]
Abstract
The history of transgenesis is marked by milestones such as the development of cellular transdifferentiation, recombinant DNA, genetic modification of target cells, and finally, the generation of simpler genetically modified organisms (e.g. bacteria and mice). The first transgenic fish was developed in 1984, and since then, continuing technological advancements to improve gene transfer have led to more rapid, accurate, and efficient generation of transgenic animals. Among the established methods are microinjection, electroporation, lipofection, viral vectors, and gene targeting. Here, we review the history of animal transgenesis, with an emphasis on fish, in conjunction with major developments in genetic engineering over the past few decades. Importantly, spermatogonial stem cell modification and transplantation are two common techniques capable of revolutionizing the generation of transgenic fish. Furthermore, we discuss recent progress and future biotechnological prospects of fish transgenesis, which has strong applications for the aquaculture industry. Indeed, some transgenic fish are already available in the current market, validating continued efforts to improve economically important species with biotechnological advancements.
Collapse
Affiliation(s)
- Fernanda M P Tonelli
- Laboratório de Sinalização Celular e Nanobiotecnologia, Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Instituto Nanocell, Divinópolis, MG, Brazil
| | - Samyra M S N Lacerda
- Laboratório de Biologia Celular, Departamento de Morfologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Flávia C P Tonelli
- Laboratório de Sinalização Celular e Nanobiotecnologia, Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Guilherme M J Costa
- Laboratório de Biologia Celular, Departamento de Morfologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Luiz Renato de França
- Laboratório de Biologia Celular, Departamento de Morfologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Instituto Nacional de Pesquisas da Amazônia (INPA), Manaus, AM, Brazil.
| | - Rodrigo R Resende
- Laboratório de Sinalização Celular e Nanobiotecnologia, Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Instituto Nanocell, Divinópolis, MG, Brazil.
| |
Collapse
|
5
|
Li M, Wang D. Gene editing nuclease and its application in tilapia. Sci Bull (Beijing) 2017; 62:165-173. [PMID: 36659401 DOI: 10.1016/j.scib.2017.01.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 09/15/2016] [Accepted: 09/26/2016] [Indexed: 01/21/2023]
Abstract
Gene editing nucleases including zinc-finger nucleases (ZFNs), transcription activator like effector nucleases (TALENs) and clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated (Cas) system (CRISPR/Cas9) provide powerful tools that improve our ability to understand the physiological processes and their underlying mechanisms. To date, these approaches have already been widely used to generate knockout and knockin models in a large number of species. Fishes comprise nearly half of extant vertebrate species and provide excellent models for studying many aspects of biology. In this review, we present an overview of recent advances in the use of gene editing nucleases for studies of fish species. We focus particularly on the use of TALENs and CRISPR/Cas9 genome editing for studying sex determination in tilapia.
Collapse
Affiliation(s)
- Minghui Li
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education, China), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Deshou Wang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education, China), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China.
| |
Collapse
|
6
|
Ye D, Zhu Z, Sun Y. Fish genome manipulation and directional breeding. SCIENCE CHINA-LIFE SCIENCES 2015; 58:170-7. [DOI: 10.1007/s11427-015-4806-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 10/29/2014] [Indexed: 12/26/2022]
|
7
|
Forabosco F, Löhmus M, Rydhmer L, Sundström L. Genetically modified farm animals and fish in agriculture: A review. Livest Sci 2013. [DOI: 10.1016/j.livsci.2013.01.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
8
|
Gene transfer and mutagenesis mediated by Sleeping Beauty transposon in Nile tilapia (Oreochromis niloticus). Transgenic Res 2013; 22:913-24. [PMID: 23417791 DOI: 10.1007/s11248-013-9693-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Accepted: 02/04/2013] [Indexed: 10/27/2022]
Abstract
The success of gene transfer has been demonstrated in many of vertebrate species, whereas the efficiency of producing transgenic animals remains pretty low due to the random integration of foreign genes into a recipient genome. The Sleeping Beauty (SB) transposon is able to improve the efficiency of gene transfer in zebrafish and mouse, but its activity in tilapia (Oreochromis niloticus) has yet to be characterized. Herein, we demonstrate the potential of using the SB transposon system as an effective tool for gene transfer and insertional mutagenesis in tilapia. A transgenic construct pT2/tiHsp70-SB11 was generated by subcloning the promoter of tilapia heat shock protein 70 (tiHsp70) gene, the SB11 transposase gene and the carp β-actin gene polyadenylation signal into the second generation of SB transposon. Transgenic tilapia was produced by microinjection of this construct with in vitro synthesized capped SB11 mRNA. SB11 transposon was detected in 28.89 % of founders, 12.9 % of F1 and 43.75 % of F2. Analysis of genomic sequences flanking integrated transposons indicates that this transgenic tilapia line carries two copies of SB transposon, which landed into two different endogenous genes. Induced expression of SB11 gene after heat shock was detected using reverse transcription PCR in F2 transgenic individuals. In addition, the Cre/loxP system was introduced to delete the SB11 cassette for stabilization of gene interruption and bio-safety. These findings suggest that the SB transposon system is active and can be used for efficient gene transfer and insertional mutagenesis in tilapia.
Collapse
|
9
|
Reindl KM, Sheridan MA. Peripheral regulation of the growth hormone-insulin-like growth factor system in fish and other vertebrates. Comp Biochem Physiol A Mol Integr Physiol 2012; 163:231-45. [DOI: 10.1016/j.cbpa.2012.08.003] [Citation(s) in RCA: 169] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2012] [Revised: 08/03/2012] [Accepted: 08/07/2012] [Indexed: 10/28/2022]
|
10
|
Jang HJ, Kim YM, Rengaraj D, Shin YS, Han JY. DNA methyltransferase 3a is Correlated with Transgene Expression in Transgenic Quails. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2011. [DOI: 10.5187/jast.2011.53.3.269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
11
|
Jang HJ, Choi JW, Kim YM, Shin SS, Lee K, Han JY. Reactivation of Transgene Expression by Alleviating CpG Methylation of the Rous sarcoma virus Promoter in Transgenic Quail Cells. Mol Biotechnol 2011; 49:222-8. [DOI: 10.1007/s12033-011-9393-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
12
|
Cows I, Bolland J, Nunn A, Kerins G, Stein J, Blackburn J, Hart A, Henry C, Britton JR, Coop G, Peeler E. Defining environmental risk assessment criteria for genetically modified fishes to be placed on the EU market. ACTA ACUST UNITED AC 2010. [DOI: 10.2903/sp.efsa.2010.en-69] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- I.G. Cows
- Hull International Fisheries Institute, Food and Environmental Research Agency, Bournemouth University, Center for Environment, Fisheries and Aquaculture Science
| | - J.D. Bolland
- Hull International Fisheries Institute, Food and Environmental Research Agency, Bournemouth University, Center for Environment, Fisheries and Aquaculture Science
| | - A.D. Nunn
- Hull International Fisheries Institute, Food and Environmental Research Agency, Bournemouth University, Center for Environment, Fisheries and Aquaculture Science
| | - G. Kerins
- Hull International Fisheries Institute, Food and Environmental Research Agency, Bournemouth University, Center for Environment, Fisheries and Aquaculture Science
| | - J. Stein
- Hull International Fisheries Institute, Food and Environmental Research Agency, Bournemouth University, Center for Environment, Fisheries and Aquaculture Science
| | - J. Blackburn
- Hull International Fisheries Institute, Food and Environmental Research Agency, Bournemouth University, Center for Environment, Fisheries and Aquaculture Science
| | - A. Hart
- Hull International Fisheries Institute, Food and Environmental Research Agency, Bournemouth University, Center for Environment, Fisheries and Aquaculture Science
| | - C. Henry
- Hull International Fisheries Institute, Food and Environmental Research Agency, Bournemouth University, Center for Environment, Fisheries and Aquaculture Science
| | - J. R. Britton
- Hull International Fisheries Institute, Food and Environmental Research Agency, Bournemouth University, Center for Environment, Fisheries and Aquaculture Science
| | - G. Coop
- Hull International Fisheries Institute, Food and Environmental Research Agency, Bournemouth University, Center for Environment, Fisheries and Aquaculture Science
| | - E. Peeler
- Hull International Fisheries Institute, Food and Environmental Research Agency, Bournemouth University, Center for Environment, Fisheries and Aquaculture Science
| |
Collapse
|
13
|
Rajesh R, Majumdar KC. The growth hormone-encoding gene isolated and characterized from Labeo rohita Hamilton is expressed in CHO cells under the control of constitutive promoters in 'autotransgene' constructs. FISH PHYSIOLOGY AND BIOCHEMISTRY 2008; 34:413-436. [PMID: 18958599 DOI: 10.1007/s10695-008-9201-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2007] [Accepted: 01/04/2008] [Indexed: 05/27/2023]
Abstract
The growth hormone (GH) gene along with its regulatory sequences has been isolated from the blood and pituitary gland of Labeo rohita. This GH gene is approximately 2.8 kb long and consists of five exons and four introns of varying sizes with AG/TA in its exon-intron junctions. The promoter has a single cyclic AMP response unit (CRE) element, TATA, CAT and several Pit 1 binding sequences. The 1169-bp gene transcript starts 54 bp upstream of the ATG initiation codon and has two polyadenylation signals, ATTAAA, after the TAG stop codon. The mature mRNA has the poly (A) tail inserted 16 bp downstream of the second polyadenylation signal. Four chimeric 'autotransgenes' were constructed having either histone 3 or beta-actin promoter and cDNA or the total GH gene. The functionality of the individual components of the autotransgene was determined in the Chinese hamster ovary (CHO) cells by transfection experiments. Based on the results, the transcription of the GH gene is initiated at the transcription start signal of the respective promoters and terminates at the 3' regulatory sequence of the GH gene. Expression of GH in CHO cells shows that the fish promoters are active, the splicing signal is recognized, and the mRNA produced is stable and translated. The GH protein produced is effectively translocated and secreted into the medium. These results indicate the usefulness of CHO cells in determining the property of individual components of autotransgenes constructed from L. rohita and overall functional commonality between fish and mammal.
Collapse
Affiliation(s)
- R Rajesh
- Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, India
| | | |
Collapse
|
14
|
de Azevedo Figueiredo M, Lanes CFC, Almeida DV, Proietti MC, Marins LF. The effect of GH overexpression on GHR and IGF-I gene regulation in different genotypes of GH-transgenic zebrafish. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2007; 2:228-33. [PMID: 20483296 DOI: 10.1016/j.cbd.2007.04.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2007] [Revised: 04/16/2007] [Accepted: 04/24/2007] [Indexed: 11/18/2022]
Abstract
Most biological actions of growth hormone (GH) are mediated by the insulin-like growth factor I (IGF-I) that is produced after the interaction of the hormone with a specific cell surface receptor, the GH receptor (GHR). Even though the GH excess on fish metabolism is poorly known, several species have been genetically engineered for this hormone in order to improve growth for aquaculture. In some GH-transgenic fish growth has been dramatically increased, while in others high levels of transgene expression have shown inhibition of the growth response. In this study, we used for the first time different genotypes (hemizygous and homozygous) of a GH-transgenic zebrafish (Danio rerio) lineage as a model for studying the GH resistance induced by different GH transgene expression levels. The results obtained here demonstrated that homozygous fish did not grow as expected and have a lower condition factor, which implies a catabolic state. These findings are explained by a decreased IGF-I and GHR gene expression as a consequence of GH resistance. Together, our results demonstrated that homozygous GH-transgenic fish showed similar characteristics to the starvation-induced fish and could be an interesting model for studying the regulation of the GH/GHR/IGF-I axis in fish.
Collapse
Affiliation(s)
- Márcio de Azevedo Figueiredo
- Departamento de Ciências Fisiológicas, Fundação Universidade Federal do Rio Grande, CP 474, 96201-900, Rio Grande, RS, Brazil
| | | | | | | | | |
Collapse
|
15
|
Hallerman EM, McLean E, Fleming IA. Effects of growth hormone transgenes on the behavior and welfare of aquacultured fishes: A review identifying research needs. Appl Anim Behav Sci 2007. [DOI: 10.1016/j.applanim.2006.09.008] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
16
|
Eppler E, Caelers A, Shved N, Hwang G, Rahman AM, Maclean N, Zapf J, Reinecke M. Insulin-like growth factor I (IGF-I) in a growth-enhanced transgenic (GH-overexpressing) bony fish, the tilapia (Oreochromis niloticus): indication for a higher impact of autocrine/paracrine than of endocrine IGF-I. Transgenic Res 2007; 16:479-89. [PMID: 17431805 DOI: 10.1007/s11248-007-9093-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2006] [Accepted: 03/19/2007] [Indexed: 01/07/2023]
Abstract
Several lines of growth hormone (GH)-overexpressing fish have been produced and analysed for growth and fertility parameters. However, only few data are available on the growth-promoting hormone insulin-like growth factor I (IGF-I) that mediates most effects of GH, and these are contradictory. Using quantitative real-time RT-PCR, radioimmunoassay, in situ hybridization, immunohistochemistry, and radiochromatography we investigated IGF-I and IGF binding proteins (IGFBPs) in an adult (17 months old) transgenic (GH-overexpressing) tilapia (Oreochromis niloticus). The transgenics showed an around 1.5-fold increase in length and an approximately 2.3-fold higher weight than the non-transgenics. Using radioimmunoassay, the serum IGF-I levels were lower (6.22 +/- 0.75 ng/ml) in transgenic than in wild-type (15.01 +/- 1.49 ng/ml) individuals (P = 0.0012). Radioimmunoassayable IGF-I in transgenic liver was 4.2-times higher than in wild-type (16.0 +/- 2.21 vs. 3.83 +/- 0.71 ng/g, P = 0.0017). No hepatocytes in wild-type but numerous hepatocytes in transgenic liver contained IGF-I-immunoreactivity. RT-PCR revealed a 1.4-times higher IGF-I mRNA expression in the liver of the transgenics (10.51 +/- 0.82 vs. 7.3 +/- 0.49 pg/microg total RNA, P = 0.0032). In correspondence, in situ hybridization showed more IGF-I mRNA containing hepatocytes in the transgenics. A twofold elevated IGF-I mRNA expression was determined in the skeletal muscle of transgenics (0.33 +/- 0.02 vs. 0.16 +/- 0.01 pg/microg total RNA, P < 0.0001). Both liver and serum of transgenics showed increased IGF-I binding. The increased IGFBP content in the liver may lead to retention of IGF-I, and/or the release of IGF-I into the circulation may be slower resulting in accumulation of IGF-I in the hepatocytes. Our results indicate that the enhanced growth of the transgenics likely is due to enhanced autocrine/paracrine action of IGF-I in extrahepatic sites, as shown here for skeletal muscle.
Collapse
Affiliation(s)
- Elisabeth Eppler
- Division of Neuroendocrinology, Institute of Anatomy, University of Zürich, Winterthurerstr 190, Zürich, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Rasmussen RS, Morrissey MT. Biotechnology in Aquaculture: Transgenics and Polyploidy. Compr Rev Food Sci Food Saf 2007. [DOI: 10.1111/j.1541-4337.2007.00013.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
18
|
Yazawa R, Hirono I, Aoki T. Characterization of promoter activities of four different Japanese flounder promoters in transgenic zebrafish. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2005; 7:625-33. [PMID: 16027989 PMCID: PMC1475948 DOI: 10.1007/s10126-005-0011-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2005] [Accepted: 04/03/2005] [Indexed: 05/03/2023]
Abstract
An important consideration in transgenic research is the choice of promoter for regulating the expression of a foreign gene. In this study several tissue-specific and inducible promoters derived from Japanese flounder Paralichthys olivaceus were identified, and their promoter activity was examined in transgenic zebrafish. The 5' flanking regions of the Japanese flounder complement component C3, gelatinase B, keratin, and tumor necrosis factor (TNF) genes were linked to green fluorescence protein (GFP) as a reporter gene. The promoter regulatory constructs were introduced into fertilized zebrafish eggs. As a result we obtained several stable transgenic zebrafish that displayed green fluorescence in different tissues. Complement component C3 promoter regulated GFP expression in liver, and gelatinase B promoter regulated it in the pectoral fin and gills. Keratin promoter regulated GFP expression in skin and liver. TNF gene promoter regulated GFP expression in the pharynx and heart. TNF promoter had lipoplysaccharide-inducible activity, such that when transgenic embryos were immersed lipopolysaccharide, GFP expression increased in the epithelial tissues. These 4 promoters regulated the expression of GFP in different patterns in transgenic zebrafish.
Collapse
Affiliation(s)
- Ryosuke Yazawa
- Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology, Konan 4-5-7, Minato, Tokyo 108-8477 Japan
| | - Ikuo Hirono
- Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology, Konan 4-5-7, Minato, Tokyo 108-8477 Japan
| | - Takashi Aoki
- Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology, Konan 4-5-7, Minato, Tokyo 108-8477 Japan
| |
Collapse
|
19
|
Caelers A, Maclean N, Hwang G, Eppler E, Reinecke M. Expression of endogenous and exogenous growth hormone (GH) messenger (m) RNA in a GH-transgenic tilapia (Oreochromis niloticus). Transgenic Res 2005; 14:95-104. [PMID: 15865052 DOI: 10.1007/s11248-004-5791-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
We have previously produced transgenic fish from crosses between a wild-type female tilapia (Oreochromis niloticus) and a G transgenic male. This line of growth-enhanced tilapia carries a single copy of a chinook salmon (s) growth hormone (GH) gene spliced to an ocean pout antifreeze promoter (OPA-FPcsGH) co-ligated to a carp beta-actin/lacZ reporter gene construct, integrated into the tilapia genome. Because little is known about the expression sites of transgenes, we have characterised the gene expression patterns of sGH and tilapia (t)GH in transgenic tilapia using a newly established real-time PCR to measure the absolute mRNA amounts of both hormones. The sGH gene, which was expected to be expressed mainly in liver, was also found to be expressed in other organs, such as gills, heart, brain, skeletal muscle, kidney, spleen, intestine and testes. However, in pituitary no sGH mRNA but only tGH mRNA was found. Tilapia GH mRNA in wild-type pituitary amounted to 226 +/- 30 pg/microg total RNA but in transgenics only to 187 +/- 43 pg/microg total RNA. Liver exhibited the highest level of sGH mRNA (8.3 +/- 2.5 pg/microg total RNA) but the extrahepatic sites expressed considerable amounts of sGH mRNA ranging from 4.1 +/- 2.0 pg/microg total RNA in gills to 0.2 +/- 0.08 pg/microg total RNA in kidney. The widespread expression of the sGH gene is assumed to be due to the tissue specificity of the type III AFP gene promoter. It is assumed that our transgenic experiments, which in contrast to some other approaches caused no obvious organ abnormalities, mimick the GH expression during ontogeny. Because sGH mRNA is expressed both in liver and in extrahepatic sites it may not only promote secretion and release of liver-derived (endocrine) IGF-I leading to an overall growth enhancement but also stimulate IGF-I expression within the different organs in a paracrine/autocrine manner and, thus, further promote organ growth.
Collapse
Affiliation(s)
- Antje Caelers
- Division of Neuroendocrinology, Institute of Anatomy, University of Zürich, Zürich, Switzerland
| | | | | | | | | |
Collapse
|
20
|
Rajesh R, Majumdar KC. Transgene integration - an analysis in autotransgenic Labeo rohita Hamilton (Pisces: Cyprinidae). FISH PHYSIOLOGY AND BIOCHEMISTRY 2005; 31:281-287. [PMID: 20035471 PMCID: PMC3233902 DOI: 10.1007/s10695-006-0037-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Transgenic Labeo rohita founder population was analyzed for the presence of autotransgene having histone 3 promoter and growth hormone (GH) cDNA (LRH3-GHcDNA) or total GH gene (LRH3-GH2.8) by PCR with transgene specific primers. Transgene specific amplification was seen with LRH3-GHcDNA in five out of seven individuals and all three fishes with LRH3-GH2.8, indicating their transgenic nature. Transgene integration was also studied by Southern hybridization of DNA isolated from blood of the transgenic fishes with two different probes (histone 3 promoter and cDNA of L. rohita). Autotransgene integration was confirmed in all PCR positive transgenic individuals. The site of integration of the transgene in the genome of the four transgenic fish could be determined by inverse PCR. Two individuals showed integration at the same site whereas in the remaining two individuals the integration sites were different.
Collapse
Affiliation(s)
- R Rajesh
- Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500 007, India,
| | | |
Collapse
|
21
|
Thayanithy V, Venugopal T, Anathy V, Kirankumar S, Pandian TJ. Growth enhancement and food conversion efficiency of transgenic fishLabeo rohita. ACTA ACUST UNITED AC 2004; 301:477-90. [PMID: 15181642 DOI: 10.1002/jez.a.78] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Three family lines of fast growing transgenic rohu Labeo rohita (rohu) were generated by electroporated-sperm-mediated transfer of the vectors harboring CMV promoter or grass carp beta-actin promoter fused to endogenous rohu GH (rGH) cDNA. The gene transfer efficiency was 25%. The transgenic rohu (family line 1) with CMV promoter showed a growth enhancement of four times normal size, whereas those (family lines 2 and 3) generated with beta-actin promoter grew 4.5 and 5.8 times faster than their respective control siblings. Southern analysis confirmed the transgene extrachromosomal (Te) persistence until the 60th week in family 1. The individuals of family lines 2 and 3, however, showed integration (Ti), as well as persistence as extrachromosomal copies (Te) until the age of 30 weeks. Mosaicism of the transgene was shown at the levels of its presence and expression. The ectopic expression of rGH mRNA was confirmed by RT-PCR. Feeding experiments revealed that the transgenic rohu ate food at a lower rate but grew more efficiently than their control siblings.
Collapse
Affiliation(s)
- Venugopal Thayanithy
- Department of Genetics, Center for Advanced Studies in Functional Genomics, School of Biological Sciences, Madurai Kamaraj University, Madurai 625 021 India
| | | | | | | | | |
Collapse
|
22
|
Abstract
Over the past 15 years researchers have generated stable lines of several species of transgenic fish important for aquaculture. 'All-fish' growth hormone (GH) gene constructs and antifreeze protein (AFP) genes have been successfully introduced into the fish genome resulting in a significant acceleration of growth rate and an increase in cold and freeze tolerance. However, neither gene modification is completely understood; there are still questions to be resolved. Expression rates are still low, producing variable growth enhancement rates and less than desired levels of freeze resistance. Transgene strategies are also being developed to provide improved pathogen resistance and modified metabolism for better utilization of the diet. Additional challenges are to tailor the genetically modified fish strains to prevent release of the modified genes into the environment.
Collapse
|
23
|
Maclean N, Rahman MA, Sohm F, Hwang G, Iyengar A, Ayad H, Smith A, Farahmand H. Transgenic tilapia and the tilapia genome. Gene 2002; 295:265-77. [PMID: 12354662 DOI: 10.1016/s0378-1119(02)00735-7] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The tilapia fish (Oreochromis niloticus) has an important place in the aquaculture of the developing world. It is also a very useful laboratory animal, and readily lends itself to the transgenic technology. Through the use of reporter genes, a range of potential gene promoters have been tested in tilapia, both through transient and stable expression of the reporter construct. Using the transgenic technology, growth enhanced lines of tilapia have been produced. These fish have no abnormalities and offer a considerable growth advantage for future exploitation. It is however crucial that transgenic fish, to be exploited in aquaculture, be sterile, and various methods of achieving sterility are considered. These include triploidy, gene knock out of crucial hormone encoding genes via homologous recombination, and knock down of the function of the same genes via ribozyme or antisense technologies. Transgenic tilapia also offer the potential for exploitation as biofactories in the production of valuable pharmaceutical products, and this is also discussed.
Collapse
Affiliation(s)
- N Maclean
- Division of Cell Science, School of Biological Sciences, University of Southampton, Bassett Crescent East, Southampton SO16 7PX, UK.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Masri S, Rast H, Ripley T, James D, Green M, Jia X, Devlin RH. Detection of genetically modified coho salmon using polymerase chain reaction (PCR) amplification. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2002; 50:3161-3164. [PMID: 12009980 DOI: 10.1021/jf011606p] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
A PCR-based protocol for the identification of genetically modified salmon carrying a growth hormone transgene was developed. Several primer pairs were examined, and the primers that gave consistent results were selected to conduct routine testing. Comparison among several DNA extraction procedures, as well as different buffer compositions, led to the adoption of TriZol as the method of choice. Low potassium and high magnesium chloride concentrations were very important in the overall success of the PCR reaction, whereas buffer pH, ranging from 8.3 to 9.2, had little impact on the amplification reaction. The optimal primer annealing temperature was 52 degrees C. Although fish muscle tissues were the primary source for DNA samples, detection of the transgene was also possible in bones, skin, fins, and other organs. No benefits were achieved by the addition of additives such as dimethyl sulfoxide and betaine to the PCR reaction. This optimized PCR method was used to identify all samples tested (61 samples and 17 controls) with 100% accuracy.
Collapse
Affiliation(s)
- Saad Masri
- CFIA, Centre for Plant Health, 8801 East Saanich Road, Sidney, British Columbia V8L 1H3, Canada.
| | | | | | | | | | | | | |
Collapse
|
25
|
Chou CY, Horng LS, Tsai HJ. Uniform GFP-expression in transgenic medaka (Oryzias latipes) at the F0 generation. Transgenic Res 2001; 10:303-15. [PMID: 11592710 DOI: 10.1023/a:1016671513425] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A green fluorescent protein (GFP) cDNA flanked by inverted terminal repeats (ITR) of adeno-associated virus was constructed. The construct sharply improved the efficiency and specificity of the transient expression of genes driven by two general promoters (cytomegalovirus and medaka beta-actin) and one muscle-specific promoter (zebrafish alpha-actin) in transgenic medaka. In addition, treatment with ITR sequence-containing constructs resulted in a dramatic increase in the number of embryos showing uniform GFP-expression at F0. Of the GFP-positive embryos, 34.6% (81/234), 10% (10/60), and 18% (38/212) showed homogenous GFP-expression for the derivative constructs of the cytomegalovirus, alpha-actin, and beta-actin promoters, respectively. As a result of uniform GFP-expression, green fluorescence in founders was (a) extended for an entire lifetime without degradation, and (b) transmitted as a genetic trait to F1 and F2 progeny of some transgenic lines via Mendelian inheritance. A Southern blot analysis revealed a random integration of the transgene into the genome of founders and progeny in both head-to-tail and tail-to-tail concatemerization patterns. Interestingly, some transgenic medaka with uniform and strong fluorescence could be visually noticeable to the unaided eye.
Collapse
Affiliation(s)
- C Y Chou
- Institute of Fisheries Science, National Taiwan University, Taipei, Taiwan
| | | | | |
Collapse
|
26
|
Nam YK, Noh JK, Cho YS, Cho HJ, Cho KN, Kim CG, Kim DS. Dramatically accelerated growth and extraordinary gigantism of transgenic mud loach Misgurnus mizolepis. Transgenic Res 2001; 10:353-62. [PMID: 11592714 DOI: 10.1023/a:1016696104185] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Transgenic mud loaches (Misgurnus mizolepis), in which the entire transgene originated from the same species, have been generated by microinjecting the mud loach growth hormone (mlGH) gene fused to the mud loach beta-actin promoter. Out of 4,100 eggs injected, 7.5% fish derived from the injected eggs showed dramatically accelerated growth, with a maximum of 35-fold faster growth than their non-transgenic siblings. Many fast-growing transgenic individuals showed extraordinary gigantism: their body weight and total length (largest fish attained to 413 g and 41.5 cm) were larger and longer than even those of 12-year-old normal broodstock (maximum size reached to 89 g and 28 cm). Of 46 transgenic founders tested, 30 individuals transmitted the transgene to next generation with a wide range of germ-line transmission frequencies ranging from 2% to 33%. The growth performance of the subsequent generation (F1) was also dramatically accelerated up to 35-fold, although the levels of enhanced growth were variable among transgenic lines. Three transgenic germ-lines up to F4 were established, showing the expected Mendelian inheritance of the transgene. Expression of GH mRNA in many tissues was detected by RT-PCR analyses. The time required to attain marketable size (10 g) in these transgenic lines was only 30-50 days after fertilization, while at least 6 months in non-transgenic fish. Besides growth enhancement, significantly improved feed-conversion efficiency up to 1.9-fold was also observed.
Collapse
Affiliation(s)
- Y K Nam
- Research Center for Ocean Industrial Development, Pukyong National University, Pusan, South Korea
| | | | | | | | | | | | | |
Collapse
|
27
|
Rowlerson A, Veggetti A. Cellular Mechanisms of Post-Embryonic Muscle Growth in Aquaculture Species. FISH PHYSIOLOGY 2001. [DOI: 10.1016/s1546-5098(01)18006-4] [Citation(s) in RCA: 152] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
28
|
Nicoll CS, Rodgers BD, Kelley KM. Hormonal Regulation of Growth and Development of Nonmammalian Vertebrates. Compr Physiol 1999. [DOI: 10.1002/cphy.cp070503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
29
|
de la Fuente J, Guillén I, Martínez R, Estrada MP. Growth regulation and enhancement in tilapia: basic research findings and their applications. GENETIC ANALYSIS : BIOMOLECULAR ENGINEERING 1999; 15:85-90. [PMID: 10596745 DOI: 10.1016/s1050-3862(99)00027-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Growth manipulation in fish is one of the targets of gene transfer experiments. The aim is to produce strains with improved growth performance. The transfer of growth hormone transgenes has been successful in many fish species. Now detailed knowledge of the molecular events that control growth in fish is necessary in order to efficiently manipulate this process. We have selected tilapia for our studies because these species are suitable for basic research as well as for the development of improved strains for aquaculture. Here we review the results of basic and applied research in the field of growth control and manipulation in tilapia. Our experiments produced new scientific results on growth control in tilapia. These results were used to develop a new aquacultured line with improved growth performance. Many of these results are probably applicable to other teleosts.
Collapse
Affiliation(s)
- J de la Fuente
- Mammalian Cell Genetics Division, Centro de Ingeniería Genética y Biotecnología, Havana, Cuba.
| | | | | | | |
Collapse
|
30
|
Pitkänen TI, Krasnov A, Teerijoki H, Mölsä H. Transfer of growth hormone (GH) transgenes into Arctic charr. (Salvelinus alpinus L.) I. Growth response to various GH constructs. GENETIC ANALYSIS : BIOMOLECULAR ENGINEERING 1999; 15:91-8. [PMID: 10596746 DOI: 10.1016/s1050-3862(99)00011-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Four constructs containing salmonid growth hormone (GH) genes were transferred to Arctic charr (Salvelinus alpinus L.). Cytomegalovirus (CMV) and piscine metallothionein B (OnMT) and histone 3 (OnH3) promoters connected to sockeye salmon growth hormone 1 gene (OnGH1) were used for ectopic expression, and Atlantic salmon growth hormone 2 gene with 5'flanking region (SsGH2) was tested for pituitary-specific expression. Charr carrying the OnGH1 constructs showed a dramatic increase in growth rate. The 10-month old transformed fish were 14-fold heavier than control siblings. The ability of the CMVGH1 construct to promote growth was greater than that obtained in fish with piscine promoters. Analysis of individual growth curves of charr carrying the OnH3GH1 transgene indicated a stable ratio of specific growth rates in transformed and control fish regardless of fish size. No alteration in growth performance was found in fish carrying the SsGH2 transgene. There was evidence that the transformed rainbow trout (Oncorhynchus mykiss) were unable to produce SsGH2 mRNA in their pituitary glands. The presence of the transgene in various tissues was examined in trout to evaluate the reliability of one-tissue sampling.
Collapse
Affiliation(s)
- T I Pitkänen
- Institute of Applied Biotechnology, University of Kuopio, Finland.
| | | | | | | |
Collapse
|
31
|
Mori T, Devlin RH. Transgene and host growth hormone gene expression in pituitary and nonpituitary tissues of normal and growth hormone transgenic salmon. Mol Cell Endocrinol 1999; 149:129-39. [PMID: 10375025 DOI: 10.1016/s0303-7207(98)00248-2] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Growth hormone (GH) gene expression has been examined in control and transgenic coho salmon containing a transgene comprised of the sockeye salmon GH1 gene under the control of the MT-B promoter from the same species. This transgene dramatically enhances the growth of salmonids, and raises serum GH levels some forty-fold. Transcript levels from this transgene were detected by RT-PCR using construct-specific GH primers in all tissues examined (liver, kidney, skin, intestine, stomach, muscle, spleen, pyloric caeca), and ranged from 0.1 - 9.4 pg/50 microg total RNA in different tissues as estimated by dot blot analysis. Interestingly, GH gene expression was also observed in intestine of control coho salmon by RT-PCR capable of detecting host and transgene transcripts using general primers. Sequence analysis of the intestinal GH mRNA from controls indicated it was derived from the coho GH2 gene. GH mRNA abundance analyzed by northern analysis indicates lower levels are found in large (400-500 g) than small transgenic salmon (20-21 g). No molecular evidence for transgene expression was obtained in tissues from transgenic fry, despite an obvious increase in size relative to control siblings, suggesting very low levels of transgene expression early in development. GH mRNA levels (per microg RNA) were also examined in the pituitary gland, and were found to be significantly lower (P < 0.01) in transgenic coho compared to nontransgenic animals of the same size. Pituitary glands of transgenic animals were also smaller than control animals of the same size, and pituitary size, expressed as a proportion of body weight, decreased with body size in transgenic but not control animals. These results imply that pituitary GH expression is regulated by negative feed-back controls as occurs in other vertebrate systems. GH mRNA was examined in pituitary glands by whole-mount in situ hybridization, and, whereas overall levels appeared reduced in transgenic animals, the site of hybridization did not differ between transgenic and control glands.
Collapse
Affiliation(s)
- T Mori
- Laboratory of Physiology, Faculty of Fisheries, Hokkaido University, Hakodate, Japan.
| | | |
Collapse
|
32
|
Construction, electroporatic transfer and expression of ZpβypGH and ZpβrtGH in zebrafish. J Biosci 1998. [DOI: 10.1007/bf02709167] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
33
|
Chen TT, Vrolijk NH, Lu JK, Lin CM, Reimschuessel R, Dunham RA. Transgenic fish and its application in basic and applied research. BIOTECHNOLOGY ANNUAL REVIEW 1998; 2:205-36. [PMID: 9729110 DOI: 10.1016/s1387-2656(08)70011-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Since 1985, transgenic fish have been successfully produced by microinjecting or electroporating desired foreign DNA into unfertilized or newly fertilized eggs using many different fish species. More recently, transgenic fish have also been produced by infecting newly fertilized eggs with pantropic, defective retroviral vectors carrying desired foreign DNA. These transgenic fish can serve as excellent experimental models for basic scientific investigations as well as in biotechnological applications. In this paper, we will review the current status of the transgenic fish research and its potential application in basic and applied research.
Collapse
Affiliation(s)
- T T Chen
- Biotechnology Center, University of Connecticut, Storrs, USA
| | | | | | | | | | | |
Collapse
|
34
|
Rahman MA, Mak R, Ayad H, Smith A, Maclean N. Expression of a novel piscine growth hormone gene results in growth enhancement in transgenic tilapia (Oreochromis niloticus). Transgenic Res 1998; 7:357-69. [PMID: 9859224 DOI: 10.1023/a:1008837105299] [Citation(s) in RCA: 126] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Several lines of transgenic G1 and G2 tilapia fish (Oreochromis niloticus) have been produced following egg injection with gene constructs carrying growth hormone coding sequences of fish origin. Using a construct in which an ocean pout antifreeze promoter drives a chinook salmon growth hormone gene, dramatic growth enhancement has been demonstrated, in which the mean weight of the 7 month old G2 transgenic fish is more than three fold that of their non transgenic siblings. Somewhat surprisingly G1 fish transgenic for a construct consisting of a sockeye salmon metallothionein promoter spliced to a sockeye salmon growth hormone gene exhibited no growth enhancement, although salmon transgenic for this construct do show greatly enhanced growth. The growth enhanced transgenic lines were also strongly positive in a radio-immuno assay for the specific hormone in their serum, whereas the non growth enhanced lines were negative. Attempts to induce expression from the metallothionein promoter by exposing fish to increased levels of zinc were also unsuccessful. Homozygous transgenic fish have been produced from the ocean pout antifreeze/chinook salmon GH construct and preliminary trials suggest that their growth performance is similar to that of the hemizygous transgenics. No abnormalities were apparent in the growth enhanced fish, although minor changes to skull shape and reduced fertility were noted in some fish. There is also preliminary evidence for improved food conversion ratios when growth enhanced transgenic tilapia are compared to their non-transgenic siblings. The long term objective of this study is to produce lines of tilapia which are both growth enhanced and sterile, so offering improved strains of this important food fish for aquaculture.
Collapse
Affiliation(s)
- M A Rahman
- Division of Cell Science, School of Biological Sciences, University of Southampton, UK
| | | | | | | | | |
Collapse
|
35
|
Affiliation(s)
- N Maclean
- School of Biological Sciences, University of Southampton, Hampshire, UK.
| |
Collapse
|
36
|
Tsai HJ, Lai CH, Yang HS. Sperm as a carrier to introduce an exogenous DNA fragment into the oocyte of Japanese abalone (Haliotis divorsicolor suportexta). Transgenic Res 1997; 6:85-95. [PMID: 9032981 DOI: 10.1023/a:1018413318223] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We investigated gene transfer in abalone via electroporated sperm. The mobility of sperm electroporated either in seawater or in marine invertebrate physiological solution was as good as that of the control group. The fertilization rate reached as high as 94.7-99.6% (93.0-99.7% for the control group) when 200 eggs were fertilized by 10(6) or 10(7) sperm treated with electroporation at 10 kV and 2(7) pulses for six cycles. Moreover, the fertilization rate of sperm electroporated in the presence of foreign DNA (opAFP-2000CAT) ranging from 0.1 to 3.2 micrograms and at voltages ranging from 2 to 10 kV, at 2(7) or 2(11) pulses for six or 12 cycles showed no differences from the control sperm. After DNase digestion, the genome of the electroporated sperm was analysed by polymerase chain reaction, and it was shown that a 138-bp product was amplified, corresponding to the transgene's amplification product. Southern blotting also showed that a positive band located at the same position as that of opAFP-2000CAT was found in the electroporated sperm after DNase treatment. Analysis by PCR of the genome isolated from a trochophore-stage abalone larva, derived from sperm electroporated with 3.2 micrograms opAFP-2000CAT, showed the existence of foreign DNA in 13 out of 20 examined samples (65%). The integration of the transferred DNA into the genome of transgenic abalone was also shown by Southern blot analysis. Furthermore, CAT activity was positive for the experimental larvae, but the level of CAT expression was lower than that of larvae derived from sperm electroporated with pCAT-Control vector, driven by SV40 promoter and enhancer sequences. These results demonstrate the potential for the use of sperm as mass gene transfer strategy in marine mollusks such as abalone.
Collapse
Affiliation(s)
- H J Tsai
- Institute of Fisheries Science, National Taiwan University, Taipei, Taiwan
| | | | | |
Collapse
|
37
|
Iyengar A, Müller F, Maclean N. Regulation and expression of transgenes in fish -- a review. Transgenic Res 1996; 5:147-66. [PMID: 8673142 DOI: 10.1007/bf01969704] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Transgenic fish, owing to a number of advantages which they offer over other species, are proving to be valuable model systems for the study of gene regulation and development genetics in addition to being useful targets for the genetic manipulation of commercially important traits. Despite having begun only a decade ago, the production of transgenic fish has become commonplace in a number of laboratories world-wide and considerable progress has been made. In this review, we initially consider the various regulatory elements and coding genes which have been used in fish, and subsequently discuss and compare both the transient and long-term fate and expression patterns of injected DNA sequences in the context of the different factors which are likely to have an effect on the expression of transgenes.
Collapse
Affiliation(s)
- A Iyengar
- Department of Biology, School of Biological Sciences, University of Southampton, UK
| | | | | |
Collapse
|
38
|
Germ line transmission and expression of alacZ containing transgene in tilapia (Oreochromis niloticus). Transgenic Res 1996. [DOI: 10.1007/bf01969426] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
39
|
Uses of Biotechnology to Enhance Production. ACTA ACUST UNITED AC 1996. [DOI: 10.1016/s0167-9309(96)80020-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
40
|
Abstract
Biotechnology and the use of biologically based agents for the betterment of mankind is an active field which is founded on the interaction between many basic sciences. This is achieved in coordination with engineering and technology for scaling up purposes. The application of modern recombinant DNA technology gave momentum and new horizons to the field of biotechnology both in the academic setting and in industry. The applications of biotechnology are being used in many fields including agriculture, medicine, industry, marine science and the environment. The final products of biotechnological applications are diverse. In the medical applications of biotechnology, for example, the field has been evolving in such a way that the final product could be a small molecule (e.g. drug/antibiotic) that can be developed based on genetic information by drug design or drug screening using a cloned and expressed target protein.
Collapse
Affiliation(s)
- M R el-Gewely
- Department of Biotechnology, University of Tromsø, Norway
| |
Collapse
|
41
|
Affiliation(s)
- Z Gong
- Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
| | | |
Collapse
|
42
|
Cuil Z, Zhu Z. Hormonal replacement therapy in fish:human growth hormone gene function in hypophysectomized carp. FISH PHYSIOLOGY AND BIOCHEMISTRY 1993; 12:161-169. [PMID: 24202695 DOI: 10.1007/bf00004381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/02/1993] [Indexed: 06/02/2023]
Abstract
Transgenic common carp,Cyprinus carpio, produced by the microinjection of fertilized eggs with a linearized chimeric plasmid pMThGH, a human growth hormone (hGH) gene with a mouse metallothionein-1 (MT) gene promoter in pBR322, were used to produce F1 and F2 transgenics. Following hypophysectomy of the transgenic F2 common carp, non-transgenic common carp and non-transgenic crucian carp, growth was monitored for up to 110 days. In addition, recombinant hGH was injected subcutaenously into a group of the non-transgenic crucian carp. Growth rate analyses indicated that (1) hypophysectomy of non-transgenic common carp and crucian carp results in the cessation of growth, (2) hGH administration can stimulate the growth of hypophysectomized crucian carp and (3) hypophysectomized hGH-transgenic common carp continue to grow in the absence of their own growth hormone, suggesting that the hGH-transgene is being expressed in tissues other than the pituitary.
Collapse
Affiliation(s)
- Z Cuil
- Chinese Academy of Sciences, Institute of Hydrobiology, Wuhan, Hubei, 430072, China
| | | |
Collapse
|
43
|
Cavari B, Hong Y, Funkenstein B, Moav B, Schartl M. All-fish gene constructs for growth hormone gene transfer in fish. FISH PHYSIOLOGY AND BIOCHEMISTRY 1993; 11:345-352. [PMID: 24202494 DOI: 10.1007/bf00004584] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
In order to develop all-fish expression vectors for microinjection into fertilized fish eggs, we have prepared the following constructs: rainbow trout metallothionein a/b and the gilthead seabream growth hormone cDNA (ptMTa-gbsGHcDNA, ptMTb-gsbGHcDNA), carp β-actin gilthead seabream GH cDNA (pcAβ-gsbGHcDNA). The inducible metallothionein promoters a and b were cloned from rainbow trout, and the constitutive promoter β-actin was isolated from carp.The metallothionein promoters were cloned by using the PCR technique. The tMTa contains 430 bp, while the tMTb contains 260 bp (Hong et al. 1992). These two promoters were introduced to pGEM-3Z containing the GH cDNA of Sparus aurata to form ptMTa-gsbGH and ptMTb-gsbGH, respectively. The carp cytoplasmic β-actin gene was chosen as a source for isolating strong constitutive regulatory sequences. One of these regulatory sequences in pUC118 was ligated to GH cDNA of S. aurata to form the pcAβ-gsbGHcDNA.Expression of the constructs containing the metallothionein promoters was tested in fish cell culture and was found to be induced effectively by zinc. The ptMTa gsb-GH cDNA construct was microinjected into fertilized carp eggs, and integration in the genome of carp was detected in the DNA isolated from fins at the age of two months.
Collapse
Affiliation(s)
- B Cavari
- Israel Oceanographic and Limnological Research, Tel Shikmona, P.O. Box 8030, Haifa, 31080, Israel
| | | | | | | | | |
Collapse
|
44
|
Shimbo K, Toyoda J, Asakura M, Kondo H, Chiba A, Hara M, Suzuki T. The expression of rat GAP-43 cDNA in transgenic carp. Neurosci Res 1993; 17:177-81. [PMID: 8257558 DOI: 10.1016/0168-0102(93)90094-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
To understand more about growth-associated protein-43 (GAP-43), we produced transgenic carp by introduction of a rat GAP-43 cDNA linked to the Rous sarcoma virus-long terminal repeat into fertilized eggs. Of 180 eggs microinjected with exogenous gene, 59 embryos hatched and 4 fish were found to contain the exogenous gene sequences in the genomic DNA. From a mature female transgenic carp, parthenogenetically, 126 progeny were derived and 52 of them survived for more than 90 days. The exogenous gene sequences were detected in 22 F1 progeny, and its messenger RNA was detected in all of 10 transgenic F1 carp examined. In serum-free medium, cultured retinal ganglion cells isolated from transgenic carp elongated their axons, while non-transgenic cells did not elongate axons.
Collapse
Affiliation(s)
- K Shimbo
- Department of Physiology, St. Marianna University School of Medicine, Kawasaki, Japan
| | | | | | | | | | | | | |
Collapse
|
45
|
Du SJ, Gong ZY, Fletcher GL, Shears MA, King MJ, Idler DR, Hew CL. Growth enhancement in transgenic Atlantic salmon by the use of an "all fish" chimeric growth hormone gene construct. Nat Biotechnol 1992; 10:176-81. [PMID: 1368229 DOI: 10.1038/nbt0292-176] [Citation(s) in RCA: 245] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We have developed an "all fish" growth hormone (GH) chimeric gene construct by using an antifreeze protein gene (AFP) promoter from ocean pout linked to a chinook salmon GH cDNA clone. After microinjection into fertilized, nonactivated Atlantic salmon eggs via the micropyle, transgenic Atlantic salmon were generated. The presence of the transgene was detected by polymerase chain reaction (PCR) using specific oligonucleotide primers. A number of these transgenic fish showed dramatic increases in their growth rate. At one year old, the average increase of the transgenic fish was 2 to 6 fold and the largest transgenic fish was 13 times that of the average non-transgenic control.
Collapse
Affiliation(s)
- S J Du
- Research Institute, Hospital for Sick Children, Toronto, Canada
| | | | | | | | | | | | | |
Collapse
|
46
|
Affiliation(s)
- E S Weinberg
- Department of Biology, University of Pennsylvania, Philadelphia 19104
| |
Collapse
|
47
|
|
48
|
Penman DJ, Iyengar A, Beeching AJ, Rahman A, Sulaiman Z, Maclean N. Patterns of transgene inheritance in rainbow trout (Oncorhynchus mykiss). Mol Reprod Dev 1991; 30:201-6. [PMID: 1793597 DOI: 10.1002/mrd.1080300306] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
There have been very few studies of the inheritance of introduced genes (transgenes) in fish. We have followed the inheritance of the mammalian fusion gene MTrGH from founder generation transgenics (originating from eggs microinjected with the MTrGH DNA) to offspring in crosses with control fish. Initial screening of the founder generation transgenics was by analysing DNA from blood samples. Only three out of six fish which carried the novel gene in blood DNA transmitted it to their offspring, despite the presence of the gene in DNA extracted from the sperm of all four male fish in this group. The frequency of transgenics in the progeny groups from the three fish which transmitted the gene varied widely: in one of these groups more than one type of MTrGH restriction pattern was found. These results suggest widespread mosaicism in founder generation transgenics.
Collapse
Affiliation(s)
- D J Penman
- Department of Biology, University of Southampton, England
| | | | | | | | | | | |
Collapse
|
49
|
Abstract
Gene transfer into fish embryo is being performed in several species (trout, salmon, carps, tilapia, medaka, goldfish, zebrafish, loach, catfish, etc.). In most cases, pronuclei are not visible and microinjection must be done into the cytoplasm of early embryos. Several million copies of the gene are generally injected. In medaka, transgenesis was attempted by injection of the foreign gene into the nucleus of oocyte. Several reports indicate that the injected DNA was rapidly replicated in the early phase of embryo development, regardless of the origin and the sequence of the foreign DNA. The survival of the injected embryos was reasonably good and a large number reached maturity. The proportion of transgenic animals ranged from 1 to 50% or more, according to species and to experimentators. The reasons for this discrepancy have not been elucidated. In all species, the transgenic animals were mosaic. The copy number of the foreign DNA was different in the various tissues of an animal and a proportion lower than 50% of F1 offsprings received the gene from their parents. This suggests that the foreign DNA was integrated into the fish genome at the two cells stage or later. An examination of the integrated DNA in different cell types of an animal revealed that integration occurred mainly during early development. The transgene was found essentially unrearranged in the fish genome of the founders and offsprings. The transgenes were therefore stably transmitted to progeny in a Mendelian fashion. Southern blot analysis revealed the presence of possible junction fragments and also of minor bands which may result from a rearrangement of the injected DNA. In all species, the integrated DNA appeared mainly as random end-to-end concatemers. In adult trout blood cells, a small proportion of the foreign DNA was maintained in the form of non-integrated concatemers, as judged by the existence of end fragments. The transgenes were generally only poorly expressed. The majority of the injected gene constructs contained essentially mammalian or higher vertebrates sequences. The comparison of the expression efficiency of these constructs in transfected fish and mammalian cells indicates that some of the mammalian DNA sequences are most efficiently understood by the fish cell machinery. Chloramphenicol acetyl transferase gene under the control of promoters from Rous sarcoma virus, and human cytomegalovirus, was expressed in several tissues of transgenic fish. Chicken delta-crystallin gene was expressed in several tissues of transgenic fish.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- L M Houdebine
- Unité de Différenciation Cellulaire, Institut National de la Recherche Agronomique, Jouy en Josas, France
| | | |
Collapse
|
50
|
Knibb W, Robins A, Crocker L, Rizzon J, Heyward A, Wells J. Molecular cloning and sequencing of Australian black bream Acanthopagrus butcheri and barramundi Lates calcarifer fish growth hormone cDNA using polymerase chain reaction. DNA SEQUENCE : THE JOURNAL OF DNA SEQUENCING AND MAPPING 1991; 2:121-3. [PMID: 1777674 DOI: 10.3109/10425179109039680] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The complementary DNA (cDNA) encoding the preprotein growth hormone (pre-GH) from two Australian marine fish species, namely Acanthopagrus butcheri and Lates calcarifer, have been isolated, cloned and sequenced. The sequences were amplified from reverse transcribed total RNA of whole brains using Polymerase Chain Reaction (PCR) and oligonucleotide primers corresponding to the 5' and 3' regions of Pagrus major. Use of PCR offers a rapid method of isolating fish GH cDNA sequences for commercial and taxonomic applications. Sequence comparison indicates a high degree of conservation for GH cDNAs within the family Sparidae.
Collapse
Affiliation(s)
- W Knibb
- Department of Biochemistry, University of Adelaide, Australia
| | | | | | | | | | | |
Collapse
|