1
|
Spinsante C, Carducci F, Carotti E, Canapa A, Bizzaro D, Biscotti MA, Barucca M. A bioinformatic approach to characterize the vitellogenin receptor and the low density lipoprotein receptor superfamily in the newt Cynops orientalis. Sci Rep 2025; 15:3403. [PMID: 39870874 PMCID: PMC11772764 DOI: 10.1038/s41598-025-88011-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 01/23/2025] [Indexed: 01/29/2025] Open
Abstract
The Low Density Lipoprotein receptors (LDLRs) gene family includes 15 receptors: very low-density lipoprotein receptor (VLDLR), LDLR, Sorting-related receptor with A-type repeats (SORLA), and 12 LDL receptor-related proteins (LRPs): LRP1, LRP1B, LRP2, LRP3, LRP4, LRP5, LRP6, LRP8, LRP10, LRP11, LRP12, LRP13. Most of these are involved in the transduction of key signals during embryonic development and in the regulation of cholesterol homeostasis. In oviparous animals, the VLDL receptor is also known as VTGR since it facilitates the uptake of vitellogenin in ovary. In tetrapods, information concerning genes encoding these proteins is limited to a few taxa. Here, we report the characterization of VTGR in the amphibian Cynops orientalis. The secondary structure analyses and the expression profiles obtained from hepatic and gonadal tissues of C. orientalis supported the role of VTGR as vitellogenin oocyte membrane receptor in this species. Moreover, to get a holistic view of the evolutionary history of this gene superfamily, we extended our investigation to all 15 genes belonging to the LDLR superfamily analyzing through a phylogenetic analysis a total of 161 sequences belonging to 11 genera of vertebrates. The position of LRP8 in the tree and its expression findings in C. orientalis ovary allowed us to suggest that other proteins of the LDLR superfamily could act as receptors during vitellogenesis.
Collapse
Affiliation(s)
- Chiara Spinsante
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131, Ancona, Italy
| | - Federica Carducci
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131, Ancona, Italy
| | - Elisa Carotti
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131, Ancona, Italy
| | - Adriana Canapa
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131, Ancona, Italy
| | - Davide Bizzaro
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131, Ancona, Italy
| | - Maria Assunta Biscotti
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131, Ancona, Italy.
| | - Marco Barucca
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131, Ancona, Italy
| |
Collapse
|
2
|
Finn RN, Cerdà J. Genetic adaptations for the oceanic success of fish eggs. Trends Genet 2024; 40:540-554. [PMID: 38395683 DOI: 10.1016/j.tig.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/11/2024] [Accepted: 01/11/2024] [Indexed: 02/25/2024]
Abstract
Genetic adaptations of organisms living in extreme environments are fundamental to our understanding of where life can evolve. Water is the single limiting parameter in this regard, yet when released in the oceans, the single-celled eggs of marine bony fishes (teleosts) have no means of acquiring it. They are strongly hyposmotic to seawater and lack osmoregulatory systems. Paradoxically, modern teleosts successfully release vast quantities of eggs in the extreme saline environment and recorded the most explosive radiation in vertebrate history. Here, we highlight key genetic adaptations that evolved to solve this paradox by filling the pre-ovulated eggs with water. The degree of water acquisition is uniquely prevalent to marine teleosts, permitting the survival and oceanic dispersal of their eggs.
Collapse
Affiliation(s)
- Roderick Nigel Finn
- Department of Biological Sciences, University of Bergen, 5020 Bergen, Norway; Institute of Biotechnology and Biomedicine (IBB), Universitat Autònoma de Barcelona, 08193 Bellaterra, (Cerdanyola del Vallès), Spain.
| | - Joan Cerdà
- Institute of Biotechnology and Biomedicine (IBB), Universitat Autònoma de Barcelona, 08193 Bellaterra, (Cerdanyola del Vallès), Spain; Institute of Marine Sciences, Spanish National Research Council (CSIC), 08003 Barcelona, Spain.
| |
Collapse
|
3
|
Ferré A, Chauvigné F, Gozdowska M, Kulczykowska E, Finn RN, Cerdà J. Neurohypophysial and paracrine vasopressinergic signaling regulates aquaporin trafficking to hydrate marine teleost oocytes. Front Endocrinol (Lausanne) 2023; 14:1222724. [PMID: 37635977 PMCID: PMC10454913 DOI: 10.3389/fendo.2023.1222724] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/18/2023] [Indexed: 08/29/2023] Open
Abstract
The dual aquaporin (Aqp1ab1/Aqp1ab2)-mediated hydration of marine teleost eggs, which occurs during oocyte meiosis resumption (maturation), is considered a key adaptation underpinning their evolutionary success in the oceans. However, the endocrine signals controlling this mechanism are almost unknown. Here, we investigated whether the nonapeptides arginine vasopressin (Avp, formerly vasotocin) and oxytocin (Oxt, formerly isotocin) are involved in marine teleost oocyte hydration using the gilthead seabream (Sparus aurata) as a model. We show that concomitant with an increased systemic production of Avp and Oxt, the nonapeptides are also produced and accumulated locally in the ovarian follicles during oocyte maturation and hydration. Functional characterization of representative Avp and Oxt receptor subtypes indicates that Avpr1aa and Oxtrb, expressed in the postvitellogenic oocyte, activate phospholipase C and protein kinase C pathways, while Avpr2aa, which is highly expressed in the oocyte and in the follicular theca and granulosa cells, activates the cAMP-protein kinase A (PKA) cascade. Using ex vivo, in vitro and mutagenesis approaches, we determined that Avpr2aa plays a major role in the PKA-mediated phosphorylation of the aquaporin subdomains driving membrane insertion of Aqp1ab2 in the theca and granulosa cells, and of Aqp1ab1 and Aqp1ab2 in the distal and proximal regions of the oocyte microvilli, respectively. The data further indicate that luteinizing hormone, which surges during oocyte maturation, induces the synthesis of Avp in the granulosa cells via progestin production and the nuclear progestin receptor. Collectively, our data suggest that both the neurohypophysial and paracrine vasopressinergic systems integrate to differentially regulate the trafficking of the Aqp1ab-type paralogs via a common Avp-Avpr2aa-PKA pathway to avoid competitive occupancy of the same plasma membrane space and maximize water influx during oocyte hydration.
Collapse
Affiliation(s)
- Alba Ferré
- Institute of Agrifood Research and Technology (IRTA)-Institute of Biotechnology and Biomedicine (IBB), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - François Chauvigné
- Institute of Marine Sciences, Spanish National Research Council (CSIC), Barcelona, Spain
| | - Magdalena Gozdowska
- Department of Genetics and Marine Biotechnology, Institute of Oceanology, Polish Academy of Sciences, Sopot, Poland
| | - Ewa Kulczykowska
- Department of Genetics and Marine Biotechnology, Institute of Oceanology, Polish Academy of Sciences, Sopot, Poland
| | - Roderick Nigel Finn
- Institute of Agrifood Research and Technology (IRTA)-Institute of Biotechnology and Biomedicine (IBB), Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Joan Cerdà
- Institute of Agrifood Research and Technology (IRTA)-Institute of Biotechnology and Biomedicine (IBB), Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
4
|
Regulation of vtg and VtgR in mud crab Scylla paramamosain by miR-34. Mol Biol Rep 2022; 49:7367-7376. [PMID: 35715603 DOI: 10.1007/s11033-022-07530-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/24/2022] [Accepted: 04/27/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Vitellogenin (Vtg) is the precursor of major yolk protein and plays a crucial role in the maturation of oocytes and the production of eggs in oviparous animals. Vitellogenin receptor (VtgR) mediates the transport of Vtg explicitly to oocytes in the membrane. In a previous study, we found that miR-34 can regulate the expression of some eyestalk genes and affect reproduction in mud crab Scylla paramamosain, one of the most important economic crabs on the coasts of southern China. METHODS AND RESULTS In this study, firstly, we found that miR-34 can target at 3'-UTR of Vtg and VtgR genes by using bioinformatic tools and predicted miR-34 might depress the expression of Vtg and VtgR. Secondly, the relative luciferase activity of HEK293T cells co-transfected with miRNA mimic and pmir-RB-REPORTTM-Vtg/VtgR-3'UTR was significantly lower than those of cells co-transfected with mimic NC and pmir-RB-REPORTTM-Vtg/VtgR-3'UTR. Finally, in vivo experiments showed that agomiR-34 could repress the expression of Vtg and VtgR genes, while Antigomir-34 could promote the expression of these two genes. CONCLUSIONS These results confirm our hypothesis and previous published results that miR-34 may indirectly regulate ovarian development by binding to the 3'-UTR of Vtg and VtgR genes and inhibiting their expression.
Collapse
|
5
|
Sharma L, Pipil S, Rawat VS, Sehgal N. Role of cathepsins B and D in proteolysis of yolk in the catfish Clarias gariepinus. FISH PHYSIOLOGY AND BIOCHEMISTRY 2022; 48:749-765. [PMID: 35482165 DOI: 10.1007/s10695-022-01062-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
Yolk processing pathways vary in the oocytes of benthophil and pelagophil teleosts. The present study investigated the yolk processing pattern in the oocytes of the fresh water catfish Clarias gariepinus at vitellogenic, maturation, and ovulated stages. This study concludes that during maturation stage, an electrophoretic shift in the major peptide band on Polyacrylamide gel electrophoresis (PAGE) occurs due to a decrease in the size of the yolk protein. The PMF spectrum of corresponding peptides from vitellogenic and ovulated oocytes revealed a difference in the minor ions. A minor difference in the molecular weight of the corresponding peptides occurs due to a difference in their amino acid composition. Maximal activity of the proteases cathepsin D and cathepsin B was observed in the vitellogenic oocytes, thus confirming their role in the processing of yolk. A significant transient increase in the activity of cathepsin B in the mature oocytes also suggests its role in oocyte maturation.
Collapse
Affiliation(s)
- Luni Sharma
- Maitreyi College, University of Delhi, Delhi, 110021, India
| | - Supriya Pipil
- Department of Zoology, University of Delhi, Delhi, 110007, India
| | | | - Neeta Sehgal
- Department of Zoology, University of Delhi, Delhi, 110007, India.
| |
Collapse
|
6
|
Abstract
Our understanding of the functions of vitellogenin (Vtg) in reproduction has undergone an evolutionary transformation over the past decade. Primarily, Vtg was regarded as a female-specific reproductive protein, which is cleaved into yolk proteins including phosvitin (Pv) and lipovitellin (Lv), stored in eggs, providing the nutrients for early embryos. Recently, Vtg has been shown to be an immunocomponent factor capable of protecting the host against the attack by microbes including bacteria and viruses. Moreover, Pv and Lv that both are proteolytically cleaved products of maternal Vtg, as well as Pv-derived small peptides, all display an antibacterial role in developing embryos. In addition, both Vtg and yolk protein Pv possess antioxidant activity capable of protecting cells from damage by free radicals. Collectively, these data indicate that Vtg, in addition to being involved in yolk protein formation, also plays non-nutritional roles via functioning as immune-relevant molecules and antioxidant reagents.
Collapse
|
7
|
Oogenesis and Egg Quality in Finfish: Yolk Formation and Other Factors Influencing Female Fertility. FISHES 2018. [DOI: 10.3390/fishes3040045] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Egg quality in fishes has been a topic of research in aquaculture and fisheries for decades as it represents an important life history trait and is critical for captive propagation and successful recruitment. A major factor influencing egg quality is proper yolk formation, as most fishes are oviparous and the developing offspring are entirely dependent on stored egg yolk for nutritional sustenance. These maternally derived nutrients consist of proteins, carbohydrates, lipids, vitamins, minerals, and ions that are transported from the liver to the ovary by lipoprotein particles including vitellogenins. The yolk composition may be influenced by broodstock diet, husbandry, and other intrinsic and extrinsic conditions. In addition, a number of other maternal factors that may influence egg quality also are stored in eggs, such as gene transcripts, that direct early embryonic development. Dysfunctional regulation of gene or protein expression may lead to poor quality eggs and failure to thrive within hours of fertilization. These gene transcripts may provide important markers as their expression levels may be used to screen broodstock for potential spawning success. In addition to such intrinsic factors, stress may lead to ovarian atresia or reproductive failure and can impact fish behavior, fecundity, and ovulation rate. Finally, postovulatory aging may occur when eggs become overripe and the fish fails to spawn in a timely fashion, leading to low fertility, often encountered during manual strip spawning of fish.
Collapse
|
8
|
Biscotti MA, Barucca M, Carducci F, Canapa A. New Perspectives on the Evolutionary History of Vitellogenin Gene Family in Vertebrates. Genome Biol Evol 2018; 10:2709-2715. [PMID: 30239716 PMCID: PMC6185446 DOI: 10.1093/gbe/evy206] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/14/2018] [Indexed: 12/22/2022] Open
Abstract
Vitellogenin (Vtg) is a glycolipophosphoprotein produced by oviparous and ovoviviparous species and is the precursor protein of the yolk, an essential nutrient reserve for embryonic development and early larval stages. Vtg is encoded by a family of paralog genes whose number varies in the different vertebrate lineages. Its evolution has been the subject of considerable analyses but it remains still unclear. In this work, microsyntenic and phylogenetic analyses were performed in order to increase our knowledge on the evolutionary history of this gene family in vertebrates. Our results support the hypothesis that the vitellogenin gene family is expanded from two genes both present at the beginning of vertebrate radiation through multiple independent duplication events occurred in the diverse lineages.
Collapse
Affiliation(s)
- Maria Assunta Biscotti
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Ancona, Italy
| | - Marco Barucca
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Ancona, Italy
| | - Federica Carducci
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Ancona, Italy
| | - Adriana Canapa
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Ancona, Italy
| |
Collapse
|
9
|
Andersen Ø, Xu C, Timmerhaus G, Kirste KH, Naeve I, Mommens M, Tveiten H. Resolving the complexity of vitellogenins and their receptors in the tetraploid Atlantic salmon (Salmo salar
): Ancient origin of the phosvitin-less VtgC in chondrichthyean fishes. Mol Reprod Dev 2017; 84:1191-1202. [DOI: 10.1002/mrd.22881] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 08/26/2017] [Indexed: 01/19/2023]
Affiliation(s)
- Øivind Andersen
- Nofima AS; Ås Norway
- Department of Animal and Aquaculture Sciences; Norwegian University of Life Sciences; Ås Norway
| | - Chunxia Xu
- Department of Animal and Aquaculture Sciences; Norwegian University of Life Sciences; Ås Norway
| | | | | | | | | | | |
Collapse
|
10
|
Johnson KM, Lema SC. Temporal patterns of induction and recovery of biomarker transcriptional responses to 4-Nonylphenol and 17β-estradiol in the estuarine arrow goby, Clevelandia ios. ENVIRONMENTAL TOXICOLOGY 2017; 32:1513-1529. [PMID: 27696670 DOI: 10.1002/tox.22371] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 09/17/2016] [Accepted: 09/17/2016] [Indexed: 06/06/2023]
Abstract
Several estuaries along the Pacific Ocean coast of North America were identified recently as having elevated 4-nonylphenol (4-NP) in sediments and biota, raising concerns about reproductive impacts for wildlife given 4-NP's established estrogenic activity as an endocrine-disrupting compound. Here we characterize 4-NP mediated induction and recovery of estrogen-sensitive gene transcripts in the arrow goby (Clevelandia ios), an intertidal fish abundant in estuarine mud flats on the west coast of North America. Male gobies were exposed to waterborne 4-NP at 10 μg/L or 100 μg/L for 20 days followed by a 20 day depuration period. Additional males were treated with 17β-estradiol (E2; 50 ng/L). 4-NP at 100 μg/L elevated hepatic mRNAs encoding vitellogenins A (vtgA) and C (vtgC) and choriogenin L (chgL) within 72 h, and choriogenin H minor (chgHm) within 12 days. Hepatic mRNAs encoding estrogen receptor alpha (esr1) were also elevated after 12 days of 4-NP exposure, but returned to pre-exposure levels at 20 days even under continuing 4-NP treatment. 4-NP did not alter mRNA levels of estrogen receptor gamma (esr2a) in the liver, or of esr1, esr2a, and cytochrome P450 aromatase B (cyp19a1b) in the brain. The temporal pattern of initial induction for hepatic vtgA, vtgC, and chgL transcripts by 4-NP mirrored the pattern by E2, while chgHm and esr1 mRNA induction by 4-NP lagged 2-11 days behind the responses of these transcripts to E2. These findings establish 4-NP concentration- and time-dependent induction patterns of choriogenin and vitellogenin transcription following exposure to environmentally relevant 4-NP concentrations, while concurrently demonstrating tissue-specific induction patterns for esr1 by estrogenic compounds. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 1513-1529, 2017.
Collapse
Affiliation(s)
- Kaitlin M Johnson
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, California, 93407, USA
| | - Sean C Lema
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, California, 93407, USA
| |
Collapse
|
11
|
Cerdà J, Chauvigné F, Finn RN. The Physiological Role and Regulation of Aquaporins in Teleost Germ Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 969:149-171. [DOI: 10.1007/978-94-024-1057-0_10] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
12
|
Yilmaz O, Prat F, Ibáñez AJ, Köksoy S, Amano H, Sullivan CV. Multiple vitellogenins and product yolk proteins in European sea bass (Dicentrarchus labrax): Molecular characterization, quantification in plasma, liver and ovary, and maturational proteolysis. Comp Biochem Physiol B Biochem Mol Biol 2015; 194-195:71-86. [PMID: 26643259 DOI: 10.1016/j.cbpb.2015.11.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 11/03/2015] [Accepted: 11/26/2015] [Indexed: 11/30/2022]
Abstract
Three complete vitellogenin (Vtg) polypeptides of European sea bass (Dicentrarchus labrax), an acanthomorph teleost spawning pelagic eggs in seawater, were deduced from cDNA and identified as VtgAa, VtgAb and VtgC based on current Vtg nomenclature and phylogeny. Label free quantitative mass spectrometry verified the presence of the three sea bass Vtgs or their product yolk proteins (YPs) in liver, plasma and ovary of postvitellogenic females. As evidenced by normalized spectral counts, VtgAb-derived protein was 2- to 5-fold more abundant, depending on sample type, than for VtgAa, while VtgC-derived protein was less abundant, albeit only 3-fold lower than for VtgAb in the ovary. Western blotting with Vtg type-specific antisera raised against corresponding gray mullet (Mugil cephalus) lipovitellins (Lvs) detected all three types of sea bass Vtg in the blood plasma of gravid females and/or estrogenized males and showed that all three forms of sea bass Lv undergo limited partial degradation during oocyte maturation. The comparatively high levels of VtgC-derived YPs in fully-grown oocytes and the maturational proteolysis of all three types of Lv differ from what has been reported for other teleosts spawning pelagic eggs in seawater but are similar to recent findings for two species of North American Moronidae, the striped bass (Morone saxatilis) and white perch (Morone americana), which spawn pelagic and demersal eggs, respectively in fresh water. Together with the high Vtg sequence homologies and virtually identical structural features of each type of Vtg between species, these findings indicate that the moronid multiple Vtg systems do not substantially vary with reproductive environment.
Collapse
Affiliation(s)
- Ozlem Yilmaz
- Akdeniz University, Fisheries Faculty, Antalya, 07070, Turkey
| | - Francisco Prat
- Instituto de Ciencias Marinas de Andalucía, Consejo Superior de Investigaciones Científicas, Avda. República Saharaui 2, 11510 Puerto Real, Cádiz, Spain
| | - A Jose Ibáñez
- Instituto de Acuicultura de Torre de la Sal, Consejo Superior de Investigaciones Científicas, Torre de la Sal, s/n 12595, Ribera de Cabanes, Castellòn, Spain
| | - Sadi Köksoy
- Central Research and Immunology Laboratories, Akdeniz University, Faculty of Medicine, Antalya, 07070, Turkey
| | - Haruna Amano
- School of Marine Biosciences, Kitasato University, 1-15-1 Kitasato, Minami, Sagamihara, Kanagawa 252-0373, Japan
| | - Craig V Sullivan
- Department of Biology, College of Agriculture and Life Sciences, North Carolina State University, Raleigh, NC 27695-7617, USA.
| |
Collapse
|
13
|
Schilling J, Loziuk PL, Muddiman DC, Daniels HV, Reading BJ. Mechanisms of Egg Yolk Formation and Implications on Early Life History of White Perch (Morone americana). PLoS One 2015; 10:e0143225. [PMID: 26580971 PMCID: PMC4651544 DOI: 10.1371/journal.pone.0143225] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 11/02/2015] [Indexed: 12/23/2022] Open
Abstract
The three white perch (Morone americana) vitellogenins (VtgAa, VtgAb, VtgC) were quantified accurately and precisely in the liver, plasma, and ovary during pre-, early-, mid-, and post-vitellogenic oocyte growth using protein cleavage-isotope dilution mass spectrometry (PC-IDMS). Western blotting generally mirrored the PC-IDMS results. By PC-IDMS, VtgC was quantifiable in pre-vitellogenic ovary tissues and VtgAb was quantifiable in pre-vitellogenic liver tissues however, neither protein was detected by western blotting in these respective tissues at this time point. Immunohistochemistry indicated that VtgC was present within pre-vitellogenic oocytes and localized to lipid droplets within vitellogenic oocytes. Affinity purification coupled to tandem mass spectrometry using highly purified VtgC as a bait protein revealed a single specific interacting protein (Y-box binding protein 2a-like [Ybx2a-like]) that eluted with suramin buffer and confirmed that VtgC does not bind the ovary vitellogenin receptors (LR8 and Lrp13). Western blotting for LR8 and Lrp13 showed that both receptors were expressed during vitellogenesis with LR8 and Lrp13 expression highest in early- and mid-vitellogenesis, respectively. The VtgAa within the ovary peaked during post-vitellogenesis, while VtgAb peaked during early-vitellogenesis in both white perch and the closely related striped bass (M. saxatilis). The VtgC was steadily accumulated by oocytes beginning during pre-vitellogenesis and continued until post-vitellogenesis and its composition varies widely between striped bass and white perch. In striped bass, the VtgC accounted for 26% of the vitellogenin-derived egg yolk, however in the white perch it comprised only 4%. Striped bass larvae have an extended developmental window and these larvae have yolk stores that may enable them to survive in the absence of food for twice as long as white perch after hatch. Thus, the VtgC may play an integral role in providing nutrients to late stage fish larvae prior to the onset of exogenous feeding and its composition in the egg yolk may relate to different early life histories among this diverse group of animals.
Collapse
Affiliation(s)
- Justin Schilling
- Department of Applied Ecology, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Philip L. Loziuk
- W. M. Keck FTMS Laboratory for Human Health Research, Department of Chemistry, North Carolina State University, Raleigh, North Carolina, United States of America
| | - David C. Muddiman
- W. M. Keck FTMS Laboratory for Human Health Research, Department of Chemistry, North Carolina State University, Raleigh, North Carolina, United States of America
- Center for Comparative Medicine and Translational Research, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Harry V. Daniels
- Department of Applied Ecology, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Benjamin J. Reading
- Department of Applied Ecology, North Carolina State University, Raleigh, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
14
|
Sun C, Zhang S. Immune-Relevant and Antioxidant Activities of Vitellogenin and Yolk Proteins in Fish. Nutrients 2015. [PMID: 26506386 DOI: 10.3390/nu710543] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2023] Open
Abstract
Vitellogenin (Vtg), the major egg yolk precursor protein, is traditionally thought to provide protein- and lipid-rich nutrients for developing embryos and larvae. However, the roles of Vtg as well as its derived yolk proteins lipovitellin (Lv) and phosvitin (Pv) extend beyond nutritional functions. Accumulating data have demonstrated that Vtg, Lv and Pv participate in host innate immune defense with multifaceted functions. They can all act as multivalent pattern recognition receptors capable of identifying invading microbes. Vtg and Pv can also act as immune effectors capable of killing bacteria and virus. Moreover, Vtg and Lv are shown to possess phagocytosis-promoting activity as opsonins. In addition to these immune-relevant functions, Vtg and Pv are found to have antioxidant activity, which is able to protect the host from oxidant stress. These non-nutritional functions clearly deepen our understanding of the physiological roles of the molecules, and at the same time, provide a sound basis for potential application of the molecules in human health.
Collapse
Affiliation(s)
- Chen Sun
- Laboratory for Evolution & Development, Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, Qingdao 266003, China.
| | - Shicui Zhang
- Laboratory for Evolution & Development, Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
15
|
Sun C, Zhang S. Immune-Relevant and Antioxidant Activities of Vitellogenin and Yolk Proteins in Fish. Nutrients 2015; 7:8818-29. [PMID: 26506386 PMCID: PMC4632452 DOI: 10.3390/nu7105432] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 08/24/2015] [Accepted: 08/25/2015] [Indexed: 12/17/2022] Open
Abstract
Vitellogenin (Vtg), the major egg yolk precursor protein, is traditionally thought to provide protein- and lipid-rich nutrients for developing embryos and larvae. However, the roles of Vtg as well as its derived yolk proteins lipovitellin (Lv) and phosvitin (Pv) extend beyond nutritional functions. Accumulating data have demonstrated that Vtg, Lv and Pv participate in host innate immune defense with multifaceted functions. They can all act as multivalent pattern recognition receptors capable of identifying invading microbes. Vtg and Pv can also act as immune effectors capable of killing bacteria and virus. Moreover, Vtg and Lv are shown to possess phagocytosis-promoting activity as opsonins. In addition to these immune-relevant functions, Vtg and Pv are found to have antioxidant activity, which is able to protect the host from oxidant stress. These non-nutritional functions clearly deepen our understanding of the physiological roles of the molecules, and at the same time, provide a sound basis for potential application of the molecules in human health.
Collapse
Affiliation(s)
- Chen Sun
- Laboratory for Evolution & Development, Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, Qingdao 266003, China.
| | - Shicui Zhang
- Laboratory for Evolution & Development, Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
16
|
Hiramatsu N, Todo T, Sullivan CV, Schilling J, Reading BJ, Matsubara T, Ryu YW, Mizuta H, Luo W, Nishimiya O, Wu M, Mushirobira Y, Yilmaz O, Hara A. Ovarian yolk formation in fishes: Molecular mechanisms underlying formation of lipid droplets and vitellogenin-derived yolk proteins. Gen Comp Endocrinol 2015; 221:9-15. [PMID: 25660470 DOI: 10.1016/j.ygcen.2015.01.025] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 01/15/2015] [Accepted: 01/25/2015] [Indexed: 11/24/2022]
Abstract
Fish egg yolk is largely derived from vitellogenins, which are synthesized in the liver, taken up from the maternal circulation by growing oocytes via receptor-mediated endocytosis and enzymatically processed into yolk proteins that are stored in the ooplasm. Lipid droplets are another major component of fish egg yolk, and these are mainly composed of neutral lipids that may originate from maternal plasma lipoproteins. This review aims to briefly summarize our current understanding of the molecular mechanisms underlying yolk formation in fishes. A hypothetical model of oocyte growth is proposed based on recent advances in our knowledge of fish yolk formation.
Collapse
Affiliation(s)
- Naoshi Hiramatsu
- Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido 041-8611, Japan.
| | - Takashi Todo
- Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido 041-8611, Japan
| | | | - Justin Schilling
- Department of Biology, North Carolina State University, Raleigh, NC 27695-7617, USA; Department of Applied Ecology, North Carolina State University, Raleigh, NC 27695-7617, USA(1)
| | - Benjamin J Reading
- Department of Biology, North Carolina State University, Raleigh, NC 27695-7617, USA; Department of Applied Ecology, North Carolina State University, Raleigh, NC 27695-7617, USA(1)
| | - Takahiro Matsubara
- South Ehime Fisheries Research Center, Ehime University, Ainan, Ehime 798-4206, Japan
| | - Yong-Woon Ryu
- Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido 041-8611, Japan; South Ehime Fisheries Research Center, Ehime University, Ainan, Ehime 798-4206, Japan
| | - Hiroko Mizuta
- Graduate School of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido 041-8611, Japan
| | - Wenshu Luo
- Graduate School of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido 041-8611, Japan; Department of Genetics, SOKENDAI, Mishima 411-8540, Japan(1)
| | - Osamu Nishimiya
- Graduate School of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido 041-8611, Japan
| | - Meiqin Wu
- Graduate School of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido 041-8611, Japan
| | - Yuji Mushirobira
- Graduate School of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido 041-8611, Japan
| | - Ozlem Yilmaz
- National Institute of Agronomic Research, Campus de Beaulieu, 35000 Rennes Cedex, France
| | - Akihiko Hara
- Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido 041-8611, Japan
| |
Collapse
|
17
|
Yilmaz O, Prat F, Ibañez AJ, Amano H, Koksoy S, Sullivan CV. Estrogen-induced yolk precursors in European sea bass, Dicentrarchus labrax: Status and perspectives on multiplicity and functioning of vitellogenins. Gen Comp Endocrinol 2015; 221:16-22. [PMID: 25637672 DOI: 10.1016/j.ygcen.2015.01.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 12/30/2014] [Accepted: 01/10/2015] [Indexed: 01/22/2023]
Abstract
The estrogen-inducible egg yolk precursor, vitellogenin, of the European sea bass (Dicentrarchus labrax) has received considerable scientific attention by virtue of its central importance in determination of oocyte growth and egg quality in this important aquaculture species. However, the multiplicity of vitellogenins in the sea bass has only recently been examined. Recent cloning and homology analyses have revealed that the sea bass possesses the three forms of vitellogenin, VtgAa, VtgAb and VtgC, reported to occur in some other highly evolved teleosts. Progress has been made in assessing the relative abundance and special structural features of the three Vtgs and their likely roles in oocyte maturation and embryonic nutrition. This report discusses these findings in the context of our prior knowledge of vitellogenesis in this species and of the latest advances in our understanding of the evolution and function of multiple Vtgs in acanthomorph fishes.
Collapse
Affiliation(s)
- Ozlem Yilmaz
- Akdeniz University, Fisheries Faculty, Antalya 07070, Turkey; National Institute of Agrinomic Research, Campus de Beaulieu, 35000 Rennes Cedex, France(1).
| | - Francisco Prat
- Instituto de Acuicultura de Torre de la Sal (CSIC), 12595 Castellón, Spain; Instituto de Ciencias Marinas de Andalucía (CSIC), 11510 Cádiz, Spain(1)
| | - Antonio José Ibañez
- Instituto de Acuicultura de Torre de la Sal (CSIC), 12595 Castellón, Spain; Electron and Confocal Microscopy Service, University of Valencia, 46100 Valencia, Spain(1)
| | - Haruna Amano
- School of Marine Biosciences, Kitasato University, 1-15-1 Kitasato, Minami, Sagamihara, Kanagawa 252-0373, Japan
| | - Sadi Koksoy
- Faculty of Medicine, Akdeniz University, Antalya 07070, Turkey
| | - Craig V Sullivan
- Department of Biology, North Carolina State University, Raleigh, NC 27695-7617, USA; Carolina AquaGyn, P.O. Box 12914, Raleigh, NC 27605, USA(1)
| |
Collapse
|
18
|
Williams VN, Reading BJ, Hiramatsu N, Amano H, Glassbrook N, Hara A, Sullivan CV. Multiple vitellogenins and product yolk proteins in striped bass, Morone saxatilis: molecular characterization and processing during oocyte growth and maturation. FISH PHYSIOLOGY AND BIOCHEMISTRY 2014; 40:395-415. [PMID: 24005815 DOI: 10.1007/s10695-013-9852-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2013] [Accepted: 08/19/2013] [Indexed: 06/02/2023]
Abstract
The multiple vitellogenin (Vtg) system of striped bass, a perciform species spawning nearly neutrally buoyant eggs in freshwater, was investigated. Vitellogenin cDNA cloning, Western blotting of yolk proteins (YPs) using Vtg and YP type-specific antisera, and tandem mass spectrometry (MS/MS) of the YPs revealed the complex mechanisms of yolk formation and maturation in this species. It was discovered that striped bass possesses a tripartite Vtg system (VtgAa, VtgAb, and VtgC) in which all three forms of Vtg make a substantial contribution to the yolk. The production of Vtg-derived YPs is generally similar to that described for other perciforms. However, novel amino-terminal labeling of oocyte YPs prior to MS/MS identified multiple alternative sites for cleavage of these proteins from their parent Vtg, revealing a YP mixture far more complex than reported previously. This approach also revealed that the major YP product of each form of striped bass Vtg, lipovitellin heavy chain (LvH), undergoes limited degradation to smaller polypeptides during oocyte maturation, unlike the case in marine fishes spawning buoyant eggs in which LvHAa undergoes extensive proteolysis to osmotically active free amino acids. These differences likely reflect the lesser need for hydration of pelagic eggs spawned in freshwater. The detailed characterization of Vtgs and their proteolytic fate(s) during oocyte growth and maturation establishes striped bass as a freshwater model for investigating teleost multiple Vtg systems.
Collapse
Affiliation(s)
- V N Williams
- Department of Biology, College of Agriculture and Life Sciences, North Carolina State University, 127 David Clark Labs, Raleigh, NC, 27695, USA,
| | | | | | | | | | | | | |
Collapse
|
19
|
Williams VN, Reading BJ, Amano H, Hiramatsu N, Schilling J, Salger SA, Islam Williams T, Gross K, Sullivan CV. Proportional accumulation of yolk proteins derived from multiple vitellogenins is precisely regulated during vitellogenesis in striped bass (Morone saxatilis). ACTA ACUST UNITED AC 2014; 321:301-15. [DOI: 10.1002/jez.1859] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Revised: 02/07/2014] [Accepted: 02/20/2014] [Indexed: 11/10/2022]
Affiliation(s)
- Valerie N. Williams
- Department of Applied Ecology; College of Agriculture and Life Sciences of North Carolina State University; Raleigh North Carolina
| | - Benjamin J. Reading
- Department of Applied Ecology; College of Agriculture and Life Sciences of North Carolina State University; Raleigh North Carolina
| | - Haruna Amano
- Graduate School of Fisheries Sciences; Hokkaido University; Hakodate Hokkaido Japan
| | - Naoshi Hiramatsu
- Graduate School of Fisheries Sciences; Hokkaido University; Hakodate Hokkaido Japan
| | - Justin Schilling
- Department of Applied Ecology; College of Agriculture and Life Sciences of North Carolina State University; Raleigh North Carolina
| | - Scott A. Salger
- Department of Applied Ecology; College of Agriculture and Life Sciences of North Carolina State University; Raleigh North Carolina
| | - Taufika Islam Williams
- Mass Spectrometry Laboratory; College of Agriculture and Life Sciences of North Carolina State University; Raleigh North Carolina
| | - Kevin Gross
- Department of Statistics; North Carolina State University; Raleigh North Carolina
| | - Craig V. Sullivan
- Department of Applied Ecology; College of Agriculture and Life Sciences of North Carolina State University; Raleigh North Carolina
| |
Collapse
|
20
|
Schilling J, Nepomuceno A, Schaff JE, Muddiman DC, Daniels HV, Reading BJ. Compartment Proteomics Analysis of White Perch (Morone americana) Ovary Using Support Vector Machines. J Proteome Res 2014; 13:1515-26. [DOI: 10.1021/pr401067g] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Justin Schilling
- Department of Applied Ecology, College
of Agriculture and Life Sciences, ‡W. M. Keck FT-ICR
Mass Spectrometry Laboratory, Department of Chemistry, and §Genomic Sciences
Laboratory, North Carolina State University, Raleigh 27695, North Carolina, United States
| | - Angelito Nepomuceno
- Department of Applied Ecology, College
of Agriculture and Life Sciences, ‡W. M. Keck FT-ICR
Mass Spectrometry Laboratory, Department of Chemistry, and §Genomic Sciences
Laboratory, North Carolina State University, Raleigh 27695, North Carolina, United States
| | - Jennifer E. Schaff
- Department of Applied Ecology, College
of Agriculture and Life Sciences, ‡W. M. Keck FT-ICR
Mass Spectrometry Laboratory, Department of Chemistry, and §Genomic Sciences
Laboratory, North Carolina State University, Raleigh 27695, North Carolina, United States
| | - David C. Muddiman
- Department of Applied Ecology, College
of Agriculture and Life Sciences, ‡W. M. Keck FT-ICR
Mass Spectrometry Laboratory, Department of Chemistry, and §Genomic Sciences
Laboratory, North Carolina State University, Raleigh 27695, North Carolina, United States
| | - Harry V. Daniels
- Department of Applied Ecology, College
of Agriculture and Life Sciences, ‡W. M. Keck FT-ICR
Mass Spectrometry Laboratory, Department of Chemistry, and §Genomic Sciences
Laboratory, North Carolina State University, Raleigh 27695, North Carolina, United States
| | - Benjamin J. Reading
- Department of Applied Ecology, College
of Agriculture and Life Sciences, ‡W. M. Keck FT-ICR
Mass Spectrometry Laboratory, Department of Chemistry, and §Genomic Sciences
Laboratory, North Carolina State University, Raleigh 27695, North Carolina, United States
| |
Collapse
|
21
|
Rawat VS, Rani KV, Phartyal R, Sehgal N. Vitellogenin genes in fish: differential expression on exposure to estradiol. FISH PHYSIOLOGY AND BIOCHEMISTRY 2013; 39:39-46. [PMID: 22535407 DOI: 10.1007/s10695-012-9626-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 02/20/2012] [Indexed: 05/31/2023]
Abstract
Three types of vitellogenins (Vgs) namely vitellogenin A (VgA), vitellogenin B (VgB) and vitellogenin C (VgC) have been identified in fishes. The existence of VgA and VgB is reported in the Indian freshwater murrel Channa punctatus. Gene-specific primers were designed using available nucleotide sequences in National Centre for Biotechnology Information (NCBI), for amplification of VgA and VgB cDNA. Differential processing of Vgs is evident in many fishes. Adult male murrel expressed both the VgA and VgB genes when estradiol-17β (E(2)) is injected in vivo and Vg levels in blood quantified by Enzyme linked immunosorbent assay (ELISA) showed a dose-related response in such treatments. Cultured hepatocytes on treatment with E(2), however, expressed only VgB as detected by RT-PCR, suggesting different regulatory mechanism for the VgA and VgB genes.
Collapse
Affiliation(s)
- V S Rawat
- Department of Zoology, Hindu College, University of Delhi, Delhi, 110007, India
| | | | | | | |
Collapse
|
22
|
Cerdà J, Zapater C, Chauvigné F, Finn RN. Water homeostasis in the fish oocyte: new insights into the role and molecular regulation of a teleost-specific aquaporin. FISH PHYSIOLOGY AND BIOCHEMISTRY 2013; 39:19-27. [PMID: 22278707 DOI: 10.1007/s10695-012-9608-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Accepted: 01/17/2012] [Indexed: 05/31/2023]
Abstract
The discovery of the role of a teleost-specific aquaporin (Aqp1ab) during the process of oocyte hydration in marine fish producing pelagic (floating) eggs, recently confirmed by molecular approaches, has revealed that this mechanism is more sophisticated than initially thought. Recent phylogenetic and genomic studies suggest that Aqp1ab likely evolved by tandem duplication from a common ancestor and further neofunctionalized in oocytes for water transport. Investigations into the regulation of Aqp1ab during oogenesis indicate that the mRNA and protein product are highly accumulated during early oocyte growth, possibly through the transcriptional activation of the aqp1ab promoter by the classical nuclear progesterone receptor and perhaps by Sry-related high mobility group [HMG]-box (Sox) transcription factors. During oocyte growth and maturation, Aqp1ab intracellular trafficking may be regulated by phosphorylation and/or dephosphorylation of specific C-terminal residues in Aqp1ab, as well as by signal-mediated sorting processes. These mechanisms possibly regulate the temporal insertion of Aqp1ab into the oocyte plasma membrane during oocyte hydration, although the intracellular signaling pathways involved are yet unknown. Interestingly, in some freshwater species that spawn partially hydrated eggs, high accumulation of transcripts encoding functional Aqp1ab channels have also been found in the ovary. These findings suggest that the Aqp1ab-mediated mechanism for oocyte hydration is likely conserved in teleosts. The tight regulation of Aqp1ab during oogenesis, at both the transcriptional and posttranslational levels, highlights the essential physiological role of this water channel and opens new research avenues for understanding the molecular basis of egg formation in fish.
Collapse
Affiliation(s)
- J Cerdà
- Laboratory of Institut de Recerca i Tecnologia Agroalimentàries-Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas, 08003, Barcelona, Spain.
| | | | | | | |
Collapse
|
23
|
Applebaum SL, Finn RN, Faulk CK, Joan Holt G, Scott Nunez B. Developmental expression, differential hormonal regulation and evolution of thyroid and glucocorticoid receptor variants in a marine acanthomorph teleost (Sciaenops ocellatus). Gen Comp Endocrinol 2012; 176:39-51. [PMID: 22226731 DOI: 10.1016/j.ygcen.2011.12.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2011] [Revised: 12/13/2011] [Accepted: 12/17/2011] [Indexed: 10/14/2022]
Abstract
Interactions between the thyroid hormone (TH) and corticosteroid (CS) hormone axes are suggested to regulate developmental processes in vertebrates with a larval phase. To investigate this hypothesis, we isolated three nuclear receptors from a larval acanthomorph teleost, the red drum (Sciaenops ocellatus), and established their orthologies as thraa, thrb-L and gra-L using phylogenomic and functional analyses. Functional characterization of the TH receptors in COS-1 cells revealed that Thraa and Thrb-L exhibit dose-dependent transactivation of a luciferase reporter in response to T3, while SoThraa is constitutively active at a low level in the absence of ligand. To test whether interactions between the TH and CS systems occur during development, we initially quantified the in vivo receptor transcript expression levels, and then examined their response to treatment with triiodothyronine (T3) or cortisol. We find that sothraa and sothrb-L are autoregulated in response to exogenous T3 only during early larval development. T3 did not affect sogra-L expression levels, nor did cortisol alter levels of sothraa or sothrb-L at any stage. While differential expression of the receptors in response to non-canonical ligand hormone was not observed under the conditions in this study, the correlation between sothraa and sogra-L transcript abundance during development suggests a coordinated function of the TH and CS systems. By comparing the findings in the present study to earlier investigations, we suggest that the up-regulation of thraa may be a specific feature of metamorphosis in acanthomorph teleosts.
Collapse
Affiliation(s)
- Scott L Applebaum
- The University of Texas at Austin, Marine Science Institute, 750 Channel View Drive, Port Aransas, TX 78373, USA.
| | | | | | | | | |
Collapse
|
24
|
Samaee SM, Estévez A. Evidence for the fragmentation of VtgAb LvH in common dentex (Dentex dentex), a marine pelagophil teleost. Theriogenology 2011; 76:110-4. [PMID: 21458053 DOI: 10.1016/j.theriogenology.2011.01.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Revised: 01/17/2011] [Accepted: 01/17/2011] [Indexed: 11/18/2022]
Abstract
Since the timing of the lipovitellin heavy chain (LvH) of vitellogenin Ab (VtgAb) degradation during marine teleosts ontogeny is poorly understood, the current study was planned to address some aspects of this shortcoming. Fertilized eggs (before epiboly) of Dentex dentex were analysed. Vtg-derived proteins, that appeared as 6 protein bands after SDS-PAGE, were purified using specific ion exchange chromatography. Five bands (i.e., ∼78, ∼57, ∼22, ∼19, and ∼17 kDa) were merely stained with Coomassie Blue and one band (i.e., ∼16 kDa) only with Periodic Acid Schiff (PAS). The ∼16 kDa protein band was subjected to a mass spectrometry-based sequencing. These results showed that the ∼16 kDa protein band contains a mixture of "LvH-Ab" derivatives with the same molecular weight. The specific staining system (i.e., PAS) also revealed the glycosylation of some of the LvH-Ab fragments inside the ∼16 kDa protein band. The study provides new data about fragmentation of the LvH-Ab in marine pelagophil teleosts.
Collapse
Affiliation(s)
- S-M Samaee
- Department of Organismic Biology, Faculty of Natural Sciences, University of Salzburg, Salzburg, Austria.
| | | |
Collapse
|
25
|
Zapater C, Chauvigné F, Norberg B, Finn RN, Cerdà J. Dual neofunctionalization of a rapidly evolving aquaporin-1 paralog resulted in constrained and relaxed traits controlling channel function during meiosis resumption in teleosts. Mol Biol Evol 2011; 28:3151-69. [PMID: 21653921 DOI: 10.1093/molbev/msr146] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The preovulatory hydration of teleost oocytes is a unique process among vertebrates. The hydration mechanism is most pronounced in marine acanthomorph teleosts that spawn pelagic (floating) eggs; however, the molecular pathway for water influx remains poorly understood. Recently, we revealed that whole-genome duplication (WGD) resulted in teleosts harboring the largest repertoire of molecular water channels in the vertebrate lineage and that a duplicated aquaporin-1 paralog is implicated in the oocyte hydration process. However, the origin and function of the aquaporin-1 paralogs remain equivocal. By integrating the molecular phylogeny with synteny and structural analyses, we show here that the teleost aqp1aa and -1ab paralogs (previously annotated as aqp1a and -1b, respectively) arose by tandem duplication rather than WGD and that the Aqp1ab C-terminus is the most rapidly evolving subdomain within the vertebrate aquaporin superfamily. The functional role of Aqp1ab was investigated in Atlantic halibut, a marine acanthomorph teleost that spawns one of the largest pelagic eggs known. We demonstrate that Aqp1ab is required for full hydration of oocytes undergoing meiotic maturation. We further show that the rapid structural divergence of the C-terminal regulatory domain causes ex vivo loss of function of halibut Aqp1ab when expressed in amphibian oocytes but not in zebrafish or native oocytes. However, by using chimeric constructs of halibut Aqp1aa and -1ab and antisera specifically raised against the C-terminus of Aqp1ab, we found that this cytoplasmic domain regulates in vivo trafficking to the microvillar portion of the oocyte plasma membrane when intraoocytic osmotic pressure is at a maximum. Interestingly, by coinjecting polyA(+) mRNA from postvitellogenic halibut follicles, ex vivo intracellular trafficking of Aqp1ab is rescued in amphibian oocytes. These data reveal that the physiological role of Aqp1ab during meiosis resumption is conserved in teleosts, but the remarkable degeneracy of the cytoplasmic domain has resulted in alternative regulation of the trafficking mechanism.
Collapse
Affiliation(s)
- Cinta Zapater
- Laboratory of Institut de Recerca i Tecnologia Agroalimentàries, Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas, Barcelona, Spain
| | | | | | | | | |
Collapse
|
26
|
Amano H, Mochizuki M, Fujita T, Hiramatsu N, Todo T, Hara A. Purification and characterization of a novel incomplete-type vitellogenin protein (VgC) in Sakhalin taimen (Hucho perryi). Comp Biochem Physiol A Mol Integr Physiol 2010; 157:41-8. [DOI: 10.1016/j.cbpa.2010.05.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2010] [Revised: 05/06/2010] [Accepted: 05/07/2010] [Indexed: 10/19/2022]
|
27
|
Cerdà J, Finn RN. Piscine aquaporins: an overview of recent advances. ACTA ACUST UNITED AC 2010; 313:623-50. [PMID: 20717996 DOI: 10.1002/jez.634] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Revised: 06/15/2010] [Accepted: 06/29/2010] [Indexed: 11/08/2022]
Abstract
Aquaporins are a superfamily of integral membrane proteins that facilitate the rapid and yet highly selective flux of water and other small solutes across biological membranes. Since their discovery, they have been documented throughout the living biota, with the majority of research focusing on mammals and plants. Here, we review available data for piscine aquaporins, including Agnatha (jawless fish), Chondrichthyes (chimaeras, sharks, and rays), Dipnoi (lungfishes), and Teleostei (ray-finned bony fishes). Recent evidence suggests that the aquaporin superfamily has specifically expanded in the chordate lineage consequent to serial rounds of whole genome duplication, with teleost genomes harboring the largest number of paralogs. The selective retention and dichotomous clustering of most duplicated paralogs in Teleostei, with differential tissue expression profiles, implies that novel or specialized physiological functions may have evolved in this clade. The recently proposed new nomenclature of the piscine aquaporin superfamily is discussed in relation to the phylogenetic signal and genomic synteny, with the teleost aquaporin-8 paralogs used as a case study to illustrate disparities between the underlying codons, molecular phylogeny, and physical locus. Structural data indicate that piscine aquaporins display similar channel restriction residues found in the tetrapod counterparts, and hence their functional properties seem to be conserved. However, emerging evidence suggests that regulation of aquaporin function in teleosts may have diverged in some cases. Cell localization and experimental studies imply that the physiological roles of piscine aquaporins extend at least to osmoregulation, reproduction, and early development, although in most cases their specific functions remain to be elucidated.
Collapse
Affiliation(s)
- Joan Cerdà
- Laboratory of Institut de Recerca i Tecnologia Agroalimentàries (IRTA)- Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain.
| | | |
Collapse
|
28
|
Tingaud-Sequeira A, Calusinska M, Finn RN, Chauvigné F, Lozano J, Cerdà J. The zebrafish genome encodes the largest vertebrate repertoire of functional aquaporins with dual paralogy and substrate specificities similar to mammals. BMC Evol Biol 2010; 10:38. [PMID: 20149227 PMCID: PMC2829555 DOI: 10.1186/1471-2148-10-38] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Accepted: 02/11/2010] [Indexed: 01/15/2023] Open
Abstract
Background Aquaporins are integral membrane proteins that facilitate the transport of water and small solutes across cell membranes. These proteins are vital for maintaining water homeostasis in living organisms. In mammals, thirteen aquaporins (AQP0-12) have been characterized, but in lower vertebrates, such as fish, the diversity, structure and substrate specificity of these membrane channel proteins are largely unknown. Results The screening and isolation of transcripts from the zebrafish (Danio rerio) genome revealed eighteen sequences structurally related to the four subfamilies of tetrapod aquaporins, i.e., aquaporins (AQP0, -1 and -4), water and glycerol transporters or aquaglyceroporins (Glps; AQP3 and AQP7-10), a water and urea transporter (AQP8), and two unorthodox aquaporins (AQP11 and -12). Phylogenetic analyses of nucleotide and deduced amino acid sequences demonstrated dual paralogy between teleost and human aquaporins. Three of the duplicated zebrafish isoforms have unlinked loci, two have linked loci, while DrAqp8 was found in triplicate across two chromosomes. Genomic sequencing, structural analysis, and maximum likelihood reconstruction, further revealed the presence of a putative pseudogene that displays hybrid exons similar to tetrapod AQP5 and -1. Ectopic expression of the cloned transcripts in Xenopus laevis oocytes demonstrated that zebrafish aquaporins and Glps transport water or water, glycerol and urea, respectively, whereas DrAqp11b and -12 were not functional in oocytes. Contrary to humans and some rodents, intrachromosomal duplicates of zebrafish AQP8 were water and urea permeable, while the genomic duplicate only transported water. All aquaporin transcripts were expressed in adult tissues and found to have divergent expression patterns. In some tissues, however, redundant expression of transcripts encoding two duplicated paralogs seems to occur. Conclusion The zebrafish genome encodes the largest repertoire of functional vertebrate aquaporins with dual paralogy to human isoforms. Our data reveal an early and specific diversification of these integral membrane proteins at the root of the crown-clade of Teleostei. Despite the increase in gene copy number, zebrafish aquaporins mostly retain the substrate specificity characteristic of the tetrapod counterparts. Based upon the integration of phylogenetic, genomic and functional data we propose a new classification for the piscine aquaporin superfamily.
Collapse
Affiliation(s)
- Angèle Tingaud-Sequeira
- Laboratory of Institut de Recerca i Tecnologia Agroalimentàries-Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas, 08003 Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
29
|
Lubzens E, Young G, Bobe J, Cerdà J. Oogenesis in teleosts: how eggs are formed. Gen Comp Endocrinol 2010; 165:367-89. [PMID: 19505465 DOI: 10.1016/j.ygcen.2009.05.022] [Citation(s) in RCA: 566] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2009] [Revised: 05/07/2009] [Accepted: 05/29/2009] [Indexed: 11/25/2022]
Abstract
One of the major objectives of the aquaculture industry is the production of a large number of viable eggs with high survival. Major achievements have been made in recent years in improving protocols for higher efficiency of egg production and viability of progeny. Main gaps remain, however, in understanding the dynamic processes associated with oogenesis, the formation of an egg, from the time that germ cells turn into oogonia, until the release of ova during spawning in teleosts. Recent studies on primordial germ-cells, yolk protein precursors and their processing within the developing oocyte, the deposition of vitamins in eggs, structure and function of egg envelopes and oocyte maturation processes, further reveal the complexity of oogenesis. Moreover, numerous circulating endocrine and locally-acting paracrine and autocrine factors regulate the various stages of oocyte development and maturation. Though it is clear that the major regulators during vitellogenesis and oocyte maturation are the pituitary gonadotropins (LH and FSH) and sex steroids, the picture emerging from recent studies is of complex hormonal cross-talk at all stages between the developing oocyte and its surrounding follicle layers to ensure coordination of the various processes that are involved in the production of a fertilizable egg. In this review we aim at highlighting recent advances on teleost fish oocyte differentiation, maturation and ovulation, including those involved in the degeneration and reabsorption of ovarian follicles (atresia). The role of blood-borne and local ovarian factors in the regulation of the key steps of development reveal new aspects associated with egg formation.
Collapse
Affiliation(s)
- Esther Lubzens
- Department of Marine Biology, Israel Oceanographic and Limnological Research, 81080 Haifa, Israel.
| | | | | | | |
Collapse
|
30
|
Kristoffersen BA, Nerland A, Nilsen F, Kolarevic J, Finn RN. Genomic and Proteomic Analyses Reveal Non-Neofunctionalized Vitellogenins in a Basal Clupeocephalan, the Atlantic Herring, and Point to the Origin of Maturational Yolk Proteolysis in Marine Teleosts. Mol Biol Evol 2009; 26:1029-44. [DOI: 10.1093/molbev/msp014] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
31
|
Finn RN, Kolarevic J, Kongshaug H, Nilsen F. Evolution and differential expression of a vertebrate vitellogenin gene cluster. BMC Evol Biol 2009; 9:2. [PMID: 19123940 PMCID: PMC2632621 DOI: 10.1186/1471-2148-9-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2008] [Accepted: 01/05/2009] [Indexed: 02/01/2023] Open
Abstract
Background The multiplicity or loss of the vitellogenin (vtg) gene family in vertebrates has been argued to have broad implications for the mode of reproduction (placental or non-placental), cleavage pattern (meroblastic or holoblastic) and character of the egg (pelagic or benthic). Earlier proposals for the existence of three forms of vertebrate vtgs present conflicting models for their origin and subsequent duplication. Results By integrating phylogenetics of novel vtg transcripts from old and modern teleosts with syntenic analyses of all available genomic variants of non-metatherian vertebrates we identify the gene orthologies between the Sarcopterygii (tetrapod branch) and Actinopterygii (fish branch). We argue that the vertebrate vtg gene cluster originated in proto-chromosome m, but that vtg genes have subsequently duplicated and rearranged following whole genome duplications. Sequencing of a novel fourth vtg transcript in labrid species, and the presence of duplicated paralogs in certain model organisms supports the notion that lineage-specific gene duplications frequently occur in teleosts. The data show that the vtg gene cluster is more conserved between acanthomorph teleosts and tetrapods, than in ostariophysan teleosts such as the zebrafish. The differential expression of the labrid vtg genes are further consistent with the notion that neofunctionalized Aa-type vtgs are important determinants of the pelagic or benthic character of the eggs in acanthomorph teleosts. Conclusion The vertebrate vtg gene cluster existed prior to the separation of Sarcopterygii from Actinopterygii >450 million years ago, a period associated with the second round of whole genome duplication. The presence of higher copy numbers in a more highly expressed subcluster is particularly prevalent in teleosts. The differential expression and latent neofunctionalization of vtg genes in acanthomorph teleosts is an adaptive feature associated with oocyte hydration and spawning in the marine environment.
Collapse
Affiliation(s)
- Roderick Nigel Finn
- Department of Biology, University of Bergen, Bergen High Technology Center, Postbox 7803, N-5020, Bergen, Norway.
| | | | | | | |
Collapse
|