1
|
Olsson PO, Yeonwoo J, Park K, Yoo YM, Hwang WS. Live births from urine derived cells. PLoS One 2023; 18:e0278607. [PMID: 36696395 PMCID: PMC9876353 DOI: 10.1371/journal.pone.0278607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 11/21/2022] [Indexed: 01/26/2023] Open
Abstract
Here we report urine-derived cell (UDC) culture and subsequent use for cloning which resulted in the successful development of cloned canine pups, which have remained healthy into adulthood. Bovine UDCs were used in vitro to establish comparative differences between cell sources. UDCs were chosen as a readily available and noninvasive source for obtaining cells. We analyzed the viability of cells stored in urine over time and could consistently culture cells which had remained in urine for 48hrs. Cells were shown to be viable and capable of being transfected with plasmids. Although primarily of epithelial origin, cells were found from multiple lineages, indicating that they enter the urine from more than one source. Held in urine, at 4°C, the majority of cells maintained their membrane integrity for several days. When compared to in vitro fertilization (IVF) derived embryos or those from traditional SCNT, UDC derived embryos did not differ in total cell number or in the number of DNA breaks, measured by TUNEL stain. These results indicate that viable cells can be obtained from multiple species' urine, capable of being used to produce live offspring at a comparable rate to other cell sources, evidenced by a 25% pregnancy rate and 2 live births with no losses in the canine UDC cloning trial. This represents a noninvasive means to recover the breeding capacity of genetically important or infertile animals. Obtaining cells in this way may provide source material for human and animal studies where cells are utilized.
Collapse
Affiliation(s)
| | | | - Kyumi Park
- Department of Companion Animal & Animal Resources Science, Joongbu University, Geumsan-gun, Republic of Korea
| | - Yeong-Min Yoo
- Lab of Biochemistry and Molecular Biology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, South Korea
| | - W. S. Hwang
- UAE Biotech Research Center, Abu Dhabi, UAE
- * E-mail:
| |
Collapse
|
2
|
Olsson PO, Jeong YW, Jeong Y, Kang M, Park GB, Choi E, Kim S, Hossein MS, Son YB, Hwang WS. Insights from one thousand cloned dogs. Sci Rep 2022; 12:11209. [PMID: 35778582 PMCID: PMC9249891 DOI: 10.1038/s41598-022-15097-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 05/10/2022] [Indexed: 11/26/2022] Open
Abstract
Animal cloning has been popularized for more than two decades, since the birth of Dolly the Sheep 25 years ago in 1996. There has been an apparent waning of interest in cloning, evident by a reduced number of reports. Over 1500 dogs, representing approximately 20% of the American Kennel Club’s recognized breeds, have now been cloned, making the dog (Canis familiaris) one of the most successfully cloned mammals. Dogs have a unique relationship with humans, dating to prehistory, and a high degree of genome homology to humans. A number of phenotypic variations, rarely recorded in natural reproduction have been observed in in these more than 1000 clones. These observations differ between donors and their clones, and between clones from the same donor, indicating a non-genetic effect. These differences cannot be fully explained by current understandings but point to epigenetic and cellular reprograming effects of somatic cell nuclear transfer. Notably, some phenotypic variations have been reversed through further cloning. Here we summarize these observations and elaborate on the cloning procedure.
Collapse
Affiliation(s)
- P Olof Olsson
- UAE Biotech Research Center, Lane 2128 Al Wathba, Al Wathba South, Abu Dhabi, UAE
| | - Yeon Woo Jeong
- Department of Companion Animal and Animal Resources Science, Joongbu University, Geumsan-gun, 32713, Republic of Korea
| | - Yeonik Jeong
- UAE Biotech Research Center, Lane 2128 Al Wathba, Al Wathba South, Abu Dhabi, UAE
| | - Mina Kang
- UAE Biotech Research Center, Lane 2128 Al Wathba, Al Wathba South, Abu Dhabi, UAE
| | - Gang Bae Park
- UAE Biotech Research Center, Lane 2128 Al Wathba, Al Wathba South, Abu Dhabi, UAE
| | - Eunji Choi
- UAE Biotech Research Center, Lane 2128 Al Wathba, Al Wathba South, Abu Dhabi, UAE
| | - Sun Kim
- UAE Biotech Research Center, Lane 2128 Al Wathba, Al Wathba South, Abu Dhabi, UAE
| | | | - Young-Bum Son
- UAE Biotech Research Center, Lane 2128 Al Wathba, Al Wathba South, Abu Dhabi, UAE
| | - Woo Suk Hwang
- UAE Biotech Research Center, Lane 2128 Al Wathba, Al Wathba South, Abu Dhabi, UAE. .,North Eastern Federal University, Republic of Sakha, Yakutia, Russia.
| |
Collapse
|
3
|
Optimal Treatment of 6-Dimethylaminopurine Enhances the In Vivo Development of Canine Embryos by Rapid Initiation of DNA Synthesis. Int J Mol Sci 2021; 22:ijms22147757. [PMID: 34299380 PMCID: PMC8303139 DOI: 10.3390/ijms22147757] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/16/2021] [Accepted: 07/17/2021] [Indexed: 02/06/2023] Open
Abstract
Artificial activation of oocytes is an important step for successful parthenogenesis and somatic cell nuclear transfer (SCNT). Here, we investigated the initiation of DNA synthesis and in vivo development of canine PA embryos and cloned embryos produced by treatment with 1.9 mM 6-dimethylaminopurine (6-DMAP) for different lengths of time. For experiments, oocytes for parthenogenesis and SCNT oocytes were cultured for 4 min in 10 μM calcium ionophore, and then divided into 2 groups: (1) culture for 2 h in 6-DMAP (DMAP-2h group); (2) culture for 4 h in DMAP (DMAP-4h group). DNA synthesis was clearly detected in all parthenogenetic (PA) embryos and cloned embryos incorporated BrdU 4 h after activation in DMAP-2h and DMAP-4h groups. In vivo development of canine parthenogenetic fetuses was observed after embryo transfer and the implantation rates of PA embryos in DMAP-2h were 34%, which was significantly higher than those in DMAP-4h (6.5%, p < 0.05). However, in SCNT, there was no significant difference in pregnancy rate (DMAP-2h: 41.6% vs. DMAP-4h: 33.3%) and implantation rates (DMAP-2h: 4.94% vs. DMAP-4h: 3.19%) between DMAP-2h and DMAP-4h. In conclusion, the use of DMAP-2h for canine oocyte activation may be ideal for the in vivo development of PA zygotes, but it was not more effective in in vivo development of canine reconstructed SCNT oocytes. The present study demonstrated that DMAP-2h treatment on activation of canine parthenogenesis and SCNT could effectively induce the onset of DNA synthesis during the first cell cycle.
Collapse
|
4
|
Kim JJ, Park KB, Choi EJ, Hyun SH, Kim NH, Jeong YW, Hwang WS. Relationship between time post-ovulation and progesterone on oocyte maturation and pregnancy in canine cloning. Anim Reprod Sci 2017; 185:75-82. [PMID: 28843841 DOI: 10.1016/j.anireprosci.2017.08.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 08/07/2017] [Accepted: 08/09/2017] [Indexed: 11/24/2022]
Abstract
Canine oocytes ovulated at prophase complete meiosis and continue to develop in presence of a high progesterone concentration in the oviduct. Considering that meiotic competence of canine oocyte is accomplished in the oviductal environment, we postulate that hormonal milieu resulting from the circulating progesterone concentration may affect oocyte maturation and early development of embryos. From 237 oocyte donors, 2620 oocytes were collected and their meiotic status and morphology were determined. To determine optimal characteristics of the mature oocytes subjected to nuclear transfer, a proportion of the meiotic status of the oocytes were classified in reference to time post-ovulation as well as progesterone (P4) level. A high proportion of matured oocytes were collected from >126h (55.5%) post-ovulation or 40-50ngmL-1 (46.4%) group compared to the other groups. Of the oocyte donors that provided mature oocytes in vivo, there was no correlation between serum progesterone of donors and time post ovulation, however, time post-ovulation were significantly shorter for <30ng/mL group (P<0.05). Using mature oocytes, 1161 cloned embryos were reconstructed and transferred into 77 surrogates. In order to determine the relationship between pregnancy performance and serum progesterone level, embryos were transferred into surrogates showing various P4 serum levels. The highest pregnancy (31.8%) and live birth cloning efficacy (2.2%) rates were observed when the embryos were transferred into surrogates with circulating P4 levels were from 40 to 50ngmL-1. In conclusion, measurement of circulating progesterone of female dog could be a suitable an indicator of the optimal time to collect quality oocyte and to select surrogates for cloning.
Collapse
Affiliation(s)
- Joung Joo Kim
- Sooam Biotech Research Foundation, 64 Kyungin-ro, Guro-gu, Seoul, Republic of Korea
| | - Kang Bae Park
- Sooam Biotech Research Foundation, 64 Kyungin-ro, Guro-gu, Seoul, Republic of Korea
| | - Eun Ji Choi
- Sooam Biotech Research Foundation, 64 Kyungin-ro, Guro-gu, Seoul, Republic of Korea
| | - Sang Hwan Hyun
- Sooam Biotech Research Foundation, 64 Kyungin-ro, Guro-gu, Seoul, Republic of Korea; Laboratory of Veterinary Embryology and Biotechnology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea
| | - Nam-Hyung Kim
- Department of Animal Sciences, Chungbuk National University, Cheongju, Republic of Korea
| | - Yeon Woo Jeong
- Sooam Biotech Research Foundation, 64 Kyungin-ro, Guro-gu, Seoul, Republic of Korea.
| | - Woo Suk Hwang
- Sooam Biotech Research Foundation, 64 Kyungin-ro, Guro-gu, Seoul, Republic of Korea
| |
Collapse
|
5
|
Jeong YW, Kim JJ, Kim HD, Hwang KC, Hyun SH, Kim NH, Jeung EB, Hwang WS. Preimplantation development of cloned canine embryos recovered by hysterectomy or surgical uterine flushing and subsequent pregnancy outcomes. Theriogenology 2015; 86:1865-1872.e1. [PMID: 27587271 DOI: 10.1016/j.theriogenology.2015.10.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 10/13/2015] [Accepted: 10/17/2015] [Indexed: 11/18/2022]
Abstract
Dog cloning offers a substantial potential because of the advancements in assisted reproductive technology and development of the human disease model in line with the transgenic technique. However, little is known about the development of the canine cloned embryo during the preimplantation period. The aim of this study was to investigate the most efficient method and time for collecting cloned canine preimplantation embryos and to ascertain the developmental timeline of cloned canine embryos. Two hundred cloned embryos were created and transferred into 11 surrogates. The preimplantation stage cloned embryos were then collected on Days 7, 8, and 9 using an ovariohysterectomy or the Foley balloon catheter method. The recovery rate of reconstructed embryos was 63.6% and 60.6% for the ovariohysterectomy and Foley balloon catheter methods, respectively. Although significant differences were observed in the early developmental stages (one-cell and 16-cell stages), no significant difference was observed in the blastocyst stage. Significantly higher blastocyst rate was observed when the embryos were collected on Day 8 (11.4%) than on Day 7 (0.0%; P < 0.05). At the proximal uterine horn on Day 7, no embryos at any stage were found, whereas on Days 8 and 9, blastocysts were found. We have observed a 63% initial pregnancy rate at 25 to 30 days after embryo transfer and a 50% full-term pregnancy rate, whereas 6.3% of the puppies were born, and 5.5% were born live among the total transferred embryos. Our results suggest that cloned embryos can develop to blastocysts by Day 8, and full-term pregnancy can be achieved after embryo transfer in canine.
Collapse
Affiliation(s)
- Yeon Woo Jeong
- Sooam Biotech Research Foundation, Seoul, Republic of Korea
| | - Joung Joo Kim
- Sooam Biotech Research Foundation, Seoul, Republic of Korea
| | - Hyun Duk Kim
- Sooam Biotech Research Foundation, Seoul, Republic of Korea
| | - Kyu Chan Hwang
- Sooam Biotech Research Foundation, Seoul, Republic of Korea
| | - Sang Hwan Hyun
- Sooam Biotech Research Foundation, Seoul, Republic of Korea; Laboratory of Veterinary Embryology and Biotechnology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea
| | - Nam-Hyung Kim
- Department of Animal Sciences, Chungbuk National University, Cheongju, Republic of Korea
| | - Eui-Bae Jeung
- Laboratory of Veterinary Biochemistry and Molecular Biology, Chungbuk National University, Cheongju, Republic of Korea
| | - Woo Suk Hwang
- Sooam Biotech Research Foundation, Seoul, Republic of Korea.
| |
Collapse
|
6
|
Influence of somatic cell donor breed on reproductive performance and comparison of prenatal growth in cloned canines. Theriogenology 2014; 81:1207-13.e1. [PMID: 24613602 DOI: 10.1016/j.theriogenology.2014.01.036] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 01/22/2014] [Accepted: 01/26/2014] [Indexed: 11/20/2022]
Abstract
Using in vivo-flushed oocytes from a homogenous dog population and subsequent embryo transfer after nuclear transfer, we studied the effects of donor cells collected from 10 different breeds on cloning efficiency and perinatal development of resulted cloned puppies. The breeds were categorized into four groups according to their body weight: small (≤9 kg), medium (>9-20 kg), large (>20-40 kg), and ultra large (>40 kg). A total of 1611 cloned embryos were transferred into 454 surrogate bitches for production of cloned puppies. No statistically significant differences were observed for initial pregnancy rates at Day 30 of embryo transfer for the donor cells originated from different breeds. However, full-term pregnancy rates were 16.5%, 11.0%, 10.0%, and 7.1% for the donor cells originated from ultra-large breed, large, medium, and small breeds, respectively, where pregnancy rate in the ultra-large group was significantly higher compared with the small breeds (P < 0.01). Perinatal mortality until weaning was significantly higher in small breeds (33.3%) compared with medium, large, or ultra-large breeds where no mortality was observed. The mean birth weight of cloned pups significantly increased proportional to breed size. The highest litter size was examined in ultra-large breeds. There was no correlation between the number of embryo transferred and litter size. Taken together, the efficiency of somatic cell cloning and fetal survival after embryo transfer may be affected significantly by selecting the appropriate genotype.
Collapse
|
7
|
Kim GA, Oh HJ, Park JE, Kim MJ, Park EJ, Jo YK, Jang G, Kim MK, Kim HJ, Lee BC. Species-specific challenges in dog cloning. Reprod Domest Anim 2013; 47 Suppl 6:80-3. [PMID: 23279471 DOI: 10.1111/rda.12035] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Accepted: 07/06/2012] [Indexed: 11/28/2022]
Abstract
Somatic cell nuclear transfer (SCNT) is now an established procedure used in cloning of several species. SCNT in dogs involves multiple steps including the removal of the nuclear material, injection of a donor cell, fusion, activation of the reconstructed oocytes and finally transfer to a synchronized female recipient. There are therefore many factors that contribute to cloning efficiency. By performing a retrospective analysis of 2005-2012 published papers regarding dog cloning, we define the optimum procedure and summarize the specific feature for dog cloning.
Collapse
Affiliation(s)
- G A Kim
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Hall V, Hinrichs K, Lazzari G, Betts DH, Hyttel P. Early embryonic development, assisted reproductive technologies, and pluripotent stem cell biology in domestic mammals. Vet J 2013; 197:128-42. [PMID: 23810186 DOI: 10.1016/j.tvjl.2013.05.026] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 05/03/2013] [Accepted: 05/04/2013] [Indexed: 01/01/2023]
Abstract
Over many decades assisted reproductive technologies, including artificial insemination, embryo transfer, in vitro production (IVP) of embryos, cloning by somatic cell nuclear transfer (SCNT), and stem cell culture, have been developed with the aim of refining breeding strategies for improved production and health in animal husbandry. More recently, biomedical applications of these technologies, in particular, SCNT and stem cell culture, have been pursued in domestic mammals in order to create models for human disease and therapy. The following review focuses on presenting important aspects of pre-implantation development in cattle, pigs, horses, and dogs. Biological aspects and impact of assisted reproductive technologies including IVP, SCNT, and culture of pluripotent stem cells are also addressed.
Collapse
Affiliation(s)
- V Hall
- Department of Veterinary Clinical and Animal Sciences, University of Copenhagen, Denmark
| | | | | | | | | |
Collapse
|
9
|
Kim MJ, Oh HJ, Kim GA, Park JE, Park EJ, Jang G, Ra JC, Kang SK, Lee BC. Lessons Learned from Cloning Dogs. Reprod Domest Anim 2012; 47 Suppl 4:115-9. [DOI: 10.1111/j.1439-0531.2012.02064.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
10
|
Establishment of a canine model of human type 2 diabetes mellitus by overexpressing phosphoenolypyruvate carboxykinase. Int J Mol Med 2012; 30:321-9. [DOI: 10.3892/ijmm.2012.993] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Accepted: 04/10/2012] [Indexed: 11/05/2022] Open
|
11
|
Amstislavsky S, Lindeberg H, Luvoni GC. Reproductive Technologies Relevant to the Genome Resource Bank in Carnivora. Reprod Domest Anim 2011; 47:164-75. [DOI: 10.1111/j.1439-0531.2011.01886.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
12
|
Liu J, Li LL, Du S, Bai XY, Zhang HD, Tang S, Zhao MT, Ma BH, Quan FS, Zhao XE, Zhang Y. Effects of interval between fusion and activation, cytochalasin B treatment, and number of transferred embryos, on cloning efficiency in goats. Theriogenology 2011; 76:1076-83. [PMID: 21752443 DOI: 10.1016/j.theriogenology.2011.05.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2010] [Revised: 05/03/2011] [Accepted: 05/03/2011] [Indexed: 11/15/2022]
Abstract
To improve the efficiency of somatic cell nuclear transfer (SCNT) in goats, we evaluated the effects of the interval between fusion and activation (1 to 5 h), cytochalasin B (CB) treatment after electrofusion, and the number of transferred embryos on the in vivo and in vitro development of cloned caprine embryos. The majority of the reconstructed embryos had condensed chromosomes and metaphase-like chromosomes at 2 and 3 h after fusion; cleavage and blastocyst rates from those two groups were higher (P < 0.05) than those of embryos activated 1, 4, or 5 h after fusion. Treatment with CB between fusion and activation improved in vitro and in vivo development of nuclear transfer (NT) goat embryos by reducing the fragmentation rate (P < 0.05). Although there were no significant differences in NT efficiency, pregnancy rate and kids born per recipient were increased by transfer of 20 or 30 embryos per recipient compared with 10 embryos. We concluded that CB treatment for 2 to 3 h between fusion and activation was an efficient method for generating cloned goats by somatic cell NT. In addition, increasing the number of embryos transferred to each recipient resulted in more live offspring from fewer recipients.
Collapse
Affiliation(s)
- J Liu
- Key Laboratory of Animal Reproductive Physiology and Embryo Technology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Hong IH, Jeong YW, Shin T, Hyun SH, Park JK, Ki MR, Han SY, Park SI, Lee JH, Lee EM, Kim AY, You SY, Hwang WS, Jeong KS. Morphological abnormalities, impaired fetal development and decrease in myostatin expression following somatic cell nuclear transfer in dogs. Mol Reprod Dev 2011; 78:337-46. [PMID: 21520324 DOI: 10.1002/mrd.21309] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2010] [Accepted: 03/06/2011] [Indexed: 02/02/2023]
Abstract
Several mammals, including dogs, have been successfully cloned using somatic cell nuclear transfer (SCNT), but the efficiency of generating normal, live offspring is relatively low. Although the high failure rate has been attributed to incomplete reprogramming of the somatic nuclei during the cloning process, the exact cause is not fully known. To elucidate the cause of death in cloned offspring, 12 deceased offspring cloned by SCNT were necropsied. The clones were either stillborn just prior to delivery or died with dyspnea shortly after birth. On gross examination, defects in the anterior abdominal wall and increased heart and liver sizes were found. Notably, a significant increase in muscle mass and macroglossia lesions were observed in deceased SCNT-cloned dogs. Interestingly, the expression of myostatin, a negative regulator of muscle growth during embryogenesis, was down-regulated at the mRNA level in tongues and skeletal muscles of SCNT-cloned dogs compared with a normal dog. Results of the present study suggest that decreased expression of myostatin in SCNT-cloned dogs may be involved in morphological abnormalities such as increased muscle mass and macroglossia, which may contribute to impaired fetal development and poor survival rates.
Collapse
Affiliation(s)
- Il-Hwa Hong
- College of Veterinary Medicine, Kyungpook National University, Daegu, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Effective donor cell fusion conditions for production of cloned dogs by somatic cell nuclear transfer. Theriogenology 2011; 75:777-82. [DOI: 10.1016/j.theriogenology.2010.10.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Revised: 10/04/2010] [Accepted: 10/10/2010] [Indexed: 11/19/2022]
|
15
|
Jang G, Kim MK, Lee BC. Current status and applications of somatic cell nuclear transfer in dogs. Theriogenology 2010; 74:1311-20. [DOI: 10.1016/j.theriogenology.2010.05.036] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2010] [Revised: 05/27/2010] [Accepted: 05/27/2010] [Indexed: 01/21/2023]
|
16
|
Pronuclear formation of freeze-dried canine spermatozoa microinjected into mouse oocytes. J Assist Reprod Genet 2009; 26:531-6. [PMID: 19856094 DOI: 10.1007/s10815-009-9358-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2009] [Accepted: 10/08/2009] [Indexed: 10/20/2022] Open
Abstract
PURPOSE The aim of the present study was to investigate the fertilizing capacity of fresh, frozen-thawed and freeze-dried canine spermatozoa. METHODS After canine spermatozoa were injected into mouse oocytes, the rates of oocyte activation, male pronuclear formation and chromosomal aberrations were investigated. RESULTS The rates of oocyte activation were comparable (90.6-100%), no matter the sperm type injected. The percentage of male pronuclear formation was higher (P < 0.001) in the freeze-dried spermatozoa (92.3%) than the fresh (61.5%) and frozen-thawed (69.2%) spermatozoa. However, the chromosomal damage in the oocytes injected with freeze-dried spermatozoa was higher (72.9%: P < 0.001) than with fresh (26.9%) and frozen-thawed (21.4%) spermatozoa. CONCLUSIONS These data indicate using mouse oocytes that freeze-dried canine spermatozoa may potentially fertilize canine oocytes although chromosomal damage is frequently generated.
Collapse
|
17
|
Oh H, Hong S, Park J, Kang J, Kim M, Kim M, Kang S, Kim D, Jang G, Lee B. Improved efficiency of canine nucleus transfer using roscovitine-treated canine fibroblasts. Theriogenology 2009; 72:461-70. [PMID: 19497615 DOI: 10.1016/j.theriogenology.2009.03.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2008] [Revised: 03/16/2009] [Accepted: 03/29/2009] [Indexed: 12/25/2022]
|
18
|
Interspecies somatic cell nucleus transfer with porcine oocytes as recipients: A novel bioassay system for assessing the competence of canine somatic cells to develop into embryos. Theriogenology 2009; 72:549-59. [DOI: 10.1016/j.theriogenology.2009.04.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2009] [Revised: 03/14/2009] [Accepted: 04/08/2009] [Indexed: 01/08/2023]
|