1
|
Zhou Y, Yu S, Zhang W. The Molecular Basis of Multiple Morphological Abnormalities of Sperm Flagella and Its Impact on Clinical Practice. Genes (Basel) 2024; 15:1315. [PMID: 39457439 PMCID: PMC11506864 DOI: 10.3390/genes15101315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/06/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
Multiple morphological abnormalities of the sperm flagella (MMAF) is a specific form of severe flagellar or ciliary deficiency syndrome. MMAF is characterized by primary infertility with abnormal morphology in the flagella of spermatozoa, presenting with short, absent, bent, coiled, and irregular flagella. As a rare disease first named in 2014, studies in recent years have shed light on the molecular defects of MMAF that comprise the structure and biological function of the sperm flagella. Understanding the molecular genetics of MMAF may provide opportunities for the development of diagnostic and therapeutic strategies for this rare disease. This review aims to summarize current studies regarding the molecular pathogenesis of MMAF and describe strategies of genetic counseling, clinical diagnosis, and therapy for MMAF.
Collapse
Affiliation(s)
- Yujie Zhou
- School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China; (Y.Z.); (S.Y.)
| | - Songyan Yu
- School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China; (Y.Z.); (S.Y.)
| | - Wenyong Zhang
- Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
2
|
Liang Z, Dai C, He F, Wang Y, Huang Y, Li H, Wu Y, Hu Y, Xu K. AKAP3-mediated type I PKA signaling is required for mouse sperm hyperactivation and fertility†. Biol Reprod 2024; 110:684-697. [PMID: 38145487 DOI: 10.1093/biolre/ioad180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 11/14/2023] [Accepted: 12/19/2023] [Indexed: 12/27/2023] Open
Abstract
The protein kinase A (PKA) signaling pathway, which mediates protein phosphorylation, is important for sperm motility and male fertility. This process relies on A-kinase anchoring proteins that organize PKA and its signalosomes within specific subcellular compartments. Previously, it was found that the absence of A-kinase anchoring protein 3 (AKAP3) leads to multiple morphological abnormalities in mouse sperm. But how AKAP3 regulates sperm motility is yet to be elucidated. AKAP3 has two amphipathic domains, here named dual and RI, in its N-terminus. These domains are responsible for binding regulatory subunits I alpha (RIα) and II alpha (RIIα) of PKA and for RIα only, respectively. Here, we generated mutant mice lacking the dual and RI domains of AKAP3. It was found that the deletion of these domains caused male mouse infertile, accompanied by mild defects in the fibrous sheath of sperm tails. Additionally, the levels of serine/threonine phosphorylation of PKA substrates and tyrosine phosphorylation decreased in the mutant sperm, which exhibited a defect in hyperactivation under capacitation conditions. The protein levels of PKA subunits remained unchanged. But, interestingly, the regulatory subunit RIα was mis-localized from principal piece to midpiece of sperm tail, whereas this was not observed for RIIα. Further protein-protein interaction assays revealed a preference for AKAP3 to bind RIα over RIIα. Collectively, our findings suggest that AKAP3 is important for sperm hyperactivity by regulating type-I PKA signaling pathway mediated protein phosphorylation via its dual and RI domains.
Collapse
Affiliation(s)
- Zhongkun Liang
- Center for Reproductive Medicine, SunYat-Sen Memorial Hospital of SunYat-Sen University, Guangzhou 510120, China
| | - Chaowei Dai
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Fenfen He
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yu Wang
- Prenatal Diagnostic Center of Obstetrics and Gynecology Department, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Yihua Huang
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Heying Li
- Analysis and Testing Center, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510535, China
| | - Yongming Wu
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yafang Hu
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Kaibiao Xu
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
3
|
Sun B, Ma J, Liu J, Li Y, Bi J, Te L, Zuo X, Wang S. Mechanisms of damage to sperm structure in mice on the zinc-deficient diet. J Trace Elem Med Biol 2023; 79:127251. [PMID: 37392679 DOI: 10.1016/j.jtemb.2023.127251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 06/05/2023] [Accepted: 06/22/2023] [Indexed: 07/03/2023]
Abstract
BACKGROUND Zinc (Zn)is an essential trace element for spermatogenesis and its deficiency causes abnormal spermatogenesis. OBJECTIVE The present study was conducted to examine the mechanisms by which Zn-deficient diet impairs sperm morphology and its reversibility. METHODS 30 SPF grade male Kunming (KM) mice were randomly divided into three groups, 10 mice per group. Zn-normal diet group (ZN group) was given Zn-normal diet(Zn content= 30 mg/kg)for 8 weeks. Zn-deficienct diet group (ZD group) was given Zn-deficienct diet(Zn content< 1 mg/kg)for 8 weeks. Zn-deficient and Zn-normal diet group(ZDN group)was given 4 weeks Zn-deficienct diet followed by 4 weeks Zn-normal diet. After 8 weeks, the overnight fasted mice were sacrificed, and blood and organs were collected for further analysis. RESULTS The experimental results showed that Zn-deficienct diet leads to increased abnormal morphology sperm and testicular oxidative stress.The rate of abnormal morphology sperm, chromomycin A3(CMA3), DNA fragmentation index (DFI), malondialdehyde (MDA) were significantly increased, and a-kinase anchor protein 4(AKAP4), dynein axonemal heavy chain 1(DNAH1), sperm associated antigen 6(SPAG6), cilia and flagella associated protein 44(CFAP44), glutathione peroxidase (GSH-PX), superoxide dismutase (SOD), total antioxidant capacity (T-AOC), nuclear factor erythroid 2-related factor (NRF2), NAD(P)H:quinone oxidoreductase 1(NQO1)and heme oxygenase 1(HO1) were significantly decreased in the ZD group mice. While the changes in above indicators caused by Zn-deficient diet were significantly alleviated in the ZDN group. CONCLUSION It was concluded that Zn-deficient diet causes abnormal morphology sperm and testicular oxidative stress in male mice. Abnormal morphology sperm caused by Zn-deficient diet are reversible, and Zn-normal diet can alleviate them.
Collapse
Affiliation(s)
- Bo Sun
- Graduate School of Hebei Medical University, Shijiazhuang 050017, China
| | - Jing Ma
- Hebei Key Laboratory of Reproductive Medicine, Hebei Institute of Reproductive Health Science and Technology, Shijiazhuang 050071, China
| | - Junsheng Liu
- Graduate School of Hebei Medical University, Shijiazhuang 050017, China
| | - Yuejia Li
- Graduate School of Hebei Medical University, Shijiazhuang 050017, China
| | - Jiajie Bi
- Chengde Medical College, Chengde 067000, China
| | - Liger Te
- Graduate School of Hebei Medical University, Shijiazhuang 050017, China
| | - Xin Zuo
- School of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050024, China
| | - Shusong Wang
- Graduate School of Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Reproductive Medicine, Hebei Institute of Reproductive Health Science and Technology, Shijiazhuang 050071, China; Chengde Medical College, Chengde 067000, China; School of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050024, China.
| |
Collapse
|
4
|
Zhan CH, Ding DS, Zhang W, Wang HL, Mao ZY, Liu GJ. The cancer-testis antigen a-kinase anchor protein 3 facilitates breast cancer progression via activation of the PTEN/PI3K/AKT/mTOR signaling. Bioengineered 2022; 13:8478-8489. [PMID: 35322748 PMCID: PMC9161980 DOI: 10.1080/21655979.2022.2051687] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The cancer-testis antigen A-kinase anchor protein 3 (AKAP3) has been shown to have a strong association with breast cancer (BC). However, its role in BC progression received scant attention. We aimed to explore the prognostic implication of aberrant AKAP3 expression for a better knowledge of BC progression and improved treatment. AKAP3 expression was quantitated using tissue microarrays and immunohistochemistry (IHC). Cell viability, invasion, migration, apoptosis, and expressions of PTEN/PI3K/AKT/mTOR signaling components were assessed in AKAP3-overexpressed or si-AKAP3-transfected BC cells. Finally, elevated AKAP3 expression was observed in BC versus paracancerous tissues. BC patients with high AKAP3 expression showed a worse prognosis than low expression patients (P < 0.0001). AKAP3 overexpressions fueled cell growth, proliferation, migration, and invasion in HCC1937 and MDA-MB-468 BC cell lines, alongside increased expressions of PI3K/AKT/mTOR signaling components and PTEN suppression. These effects were pronouncedly reversed, together with elevated apoptosis, in cells transfected with si-AKAP3. Therefore, AKAP3 is upregulated in BC and promotes BC cell growth, invasion, and migration via PTEN/PI3K/AKT/mTOR signaling activation. It may serve as a prognosis indicator for BC survival.
Collapse
Affiliation(s)
- Chuan-Hua Zhan
- Department of Clinical Laboratory, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Edong Healthcare Group, Huangshi, P.R. China.,Hubei Key Laboratory of Kidney Disease Pathogenesis and Intervention, Huangshi, P.R. China
| | - Dong-Shen Ding
- Hubei Key Laboratory of Kidney Disease Pathogenesis and Intervention, Huangshi, P.R. China.,Department of Medical Oncology, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Edong Healthcare Group, Huangshi, P.R. China
| | - Wei Zhang
- Department of Clinical Laboratory, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Edong Healthcare Group, Huangshi, P.R. China.,Hubei Key Laboratory of Kidney Disease Pathogenesis and Intervention, Huangshi, P.R. China
| | - Hong-Liang Wang
- Department of Clinical Laboratory, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Edong Healthcare Group, Huangshi, P.R. China.,Hubei Key Laboratory of Kidney Disease Pathogenesis and Intervention, Huangshi, P.R. China
| | - Zhe-Yu Mao
- Hubei Key Laboratory of Kidney Disease Pathogenesis and Intervention, Huangshi, P.R. China.,Department of Breast Cancer Surgery, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Edong Healthcare Group, Huangshi, P.R. China
| | - Guo-Jun Liu
- Hubei Key Laboratory of Kidney Disease Pathogenesis and Intervention, Huangshi, P.R. China.,Department of Breast Cancer Surgery, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Edong Healthcare Group, Huangshi, P.R. China
| |
Collapse
|
5
|
Rafaee A, Kashani-Amin E, Meybodi AM, Ebrahim-Habibi A, Sabbaghian M. Structural modeling of human AKAP3 protein and in silico analysis of single nucleotide polymorphisms associated with sperm motility. Sci Rep 2022; 12:3656. [PMID: 35256641 PMCID: PMC8901789 DOI: 10.1038/s41598-022-07513-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 01/28/2022] [Indexed: 11/20/2022] Open
Abstract
AKAP3 is a member of the A-kinase anchoring proteins and it is a constituent of the sperm fibrous sheath. AKAP3 is needed for the formation of sperm flagellum structure, sperm motility, and male fertility. This study aims to model the AKAP3 tertiary structure and identify the probable impact of four mutations characterized in infertile men on the AKAP3 structure. The T464S, I500T, E525K, and I661T substitutions were analyzed using in silico methods. The secondary structure and three-dimensional model of AKAP3 were determined using PSI-BLAST based secondary structure prediction and Robetta servers. The TM-score was used to quantitatively measure the structural similarities between native and mutated models. All of the desired substitutions were classified as benign. I-Mutant results showed all of the substitutions decreased AKAP3 stability; however, the I500T and I661T were more effective. Superposition and secondary structure comparisons between native and mutants showed no dramatic deviations. Our study provided an appropriate model for AKAP3. Destabilization of AKAP3 caused by these substitutions did not appear to induce structural disturbances. As AKAP3 is involved in male infertility, providing more structural insights and the impact of mutations that cause protein functional diversity could elucidate the etiology of male fertility problems at molecular level.
Collapse
Affiliation(s)
- Alemeh Rafaee
- Department of Andrology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran.,Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Elaheh Kashani-Amin
- Biosensor Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Anahita Mohseni Meybodi
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran.,Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada
| | - Azadeh Ebrahim-Habibi
- Biosensor Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Marjan Sabbaghian
- Department of Andrology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran.
| |
Collapse
|
6
|
Yeast Two-Hybrid Screen Identifies PKA-Riα Interacting Proteins during Mouse Spermiogenesis. Genes (Basel) 2021; 12:genes12121941. [PMID: 34946890 PMCID: PMC8700991 DOI: 10.3390/genes12121941] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/26/2021] [Accepted: 11/29/2021] [Indexed: 12/26/2022] Open
Abstract
cAMP-dependent protein kinase (PKA) signaling plays various roles during mammalian spermatogenesis, ranging from the regulation of gene expression to the modulation of sperm motility. However, the molecular mechanisms that govern the multifaceted functions of PKA during spermatogenesis remain largely unclear. We previously found that PKA regulatory subunit I α (RIα) and catalytic subunit α (Cα) co-sediment with polyribosomal fractions of mouse testis lysate on sucrose gradient and the stimulation of PKA activity facilitates protein synthesis in post-meiotic elongating spermatids, indicating that type I PKA is intricately associated with protein translation machinery and regulates protein synthesis during mouse spermiogenesis. Since PKA activity is often regulated by interacting proteins that form complexes with its regulatory subunits, the identification of PKA-RIα interacting proteins in post-meiotic spermatogenic cells will facilitate our understanding of its regulatory roles in protein synthesis and spermiogenesis. In the present study, we applied a yeast two-hybrid screen to identify PKA-Riα-binding proteins using a cDNA library generated from mouse round and elongating spermatids. Numerous proteins were found to potentially interact with PKA-RIα, including proteostasis modulators, metabolic enzymes, cytoskeletal regulators, and mitochondrial proteins, many of which are specifically expressed in testes. Consistently, the examination of MENA (mouse ENA/VASP homolog) in developing mouse testes suggested that post-meiotic spermatogenic cells express a short isoform of MENA that interacts with PKA-RIα in yeast two-hybrid assay. The identification of PKA-RIα interacting proteins provides us solid basis to further explore how PKA signaling regulates protein synthesis and cellular morphogenesis during mouse spermatogenesis.
Collapse
|
7
|
Baro Graf C, Ritagliati C, Stival C, Luque GM, Gentile I, Buffone MG, Krapf D. Everything you ever wanted to know about PKA regulation and its involvement in mammalian sperm capacitation. Mol Cell Endocrinol 2020; 518:110992. [PMID: 32853743 DOI: 10.1016/j.mce.2020.110992] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 08/11/2020] [Accepted: 08/12/2020] [Indexed: 12/29/2022]
Abstract
The 3', 5'-cyclic adenosine monophosphate (cAMP) dependent protein kinase (PKA) is a tetrameric holoenzyme comprising a set of two regulatory subunits (PKA-R) and two catalytic (PKA-C) subunits. The PKA-R subunits act as sensors of cAMP and allow PKA-C activity. One of the first signaling events observed during mammalian sperm capacitation is PKA activation. Thus, understanding how PKA activity is restricted in space and time is crucial to decipher the critical steps of sperm capacitation. It is widely accepted that PKA specificity depends on several levels of regulation. Anchoring proteins play a pivotal role in achieving proper localization signaling, subcellular targeting and cAMP microdomains. These multi-factorial regulation steps are necessary for a precise spatio-temporal activation of PKA. Here we discuss recent understanding of regulatory mechanisms of PKA in mammalian sperm, such as post-translational modifications, in the context of its role as the master orchestrator of molecular events conducive to capacitation.
Collapse
Affiliation(s)
- Carolina Baro Graf
- Laboratory of Cell Signal Transduction Networks, Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET-UNR, Rosario, Argentina; Laboratorio de Medicina Reproductiva (LMR), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Carla Ritagliati
- Laboratory of Cell Signal Transduction Networks, Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET-UNR, Rosario, Argentina
| | - Cintia Stival
- Laboratory of Cell Signal Transduction Networks, Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET-UNR, Rosario, Argentina
| | - Guillermina M Luque
- Laboratory of Cellular and Molecular Reproductive Biology, Instituto de Biología y Medicina Experimental (IBYME), CONICET, Buenos Aires, Argentina
| | - Iñaki Gentile
- Laboratory of Cell Signal Transduction Networks, Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET-UNR, Rosario, Argentina
| | - Mariano G Buffone
- Laboratory of Cellular and Molecular Reproductive Biology, Instituto de Biología y Medicina Experimental (IBYME), CONICET, Buenos Aires, Argentina
| | - Dario Krapf
- Laboratory of Cell Signal Transduction Networks, Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET-UNR, Rosario, Argentina; Laboratorio de Medicina Reproductiva (LMR), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina.
| |
Collapse
|
8
|
Wong J, Damdimopoulos A, Damdimopoulou P, Gasperoni JG, Tran SC, Grommen SVH, De Groef B, Dworkin S. Transcriptome analysis of the epididymis from Plag1 deficient mice suggests dysregulation of sperm maturation and extracellular matrix genes. Dev Dyn 2020; 249:1500-1513. [PMID: 32959928 DOI: 10.1002/dvdy.254] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/13/2020] [Accepted: 09/08/2020] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND The transcription factor pleomorphic adenoma gene 1 (PLAG1) is required for male fertility. Mice deficient in PLAG1 exhibit decreased sperm motility and abnormal epididymal tubule elongation and coiling, indicating impaired sperm maturation during epididymal transit. However, the downstream transcriptomic profile of the Plag1 knockout (KO; Plag1-/- ) murine epididymis is currently unknown. RESULTS In this study, the PLAG1-dependent epididymal transcriptome was characterised using RNA sequencing. Several genes important for the control of sperm maturation, motility, capacitation and the acrosome reaction were dysregulated in Plag1-/- mice. Surprisingly, several cell proliferation genes were upregulated, and Ki67 analysis indicated that cell proliferation is aberrantly upregulated in the cauda epididymis stroma of Plag1-/- mice. Gene ontology analysis showed an overall upregulation of genes encoding extracellular matrix components, and an overall downregulation of genes encoding metalloendopeptidases in the epididymides from Plag1-/- mice. CONCLUSION Together, these results suggest a defect in the epididymal extracellular matrix in Plag1-/- mice. These results imply that in addition to maintaining epididymal integrity directly, PLAG1 may also regulate several genes involved in the regulation of sperm maturation and capacitation. Moreover, PLAG1 may also be involved in regulating tissue homeostasis and ensuring proper structure and maintenance of the extracellular matrix in the epididymis.
Collapse
Affiliation(s)
- Joanne Wong
- Department of Physiology, Anatomy and Microbiology, School of Life Sciences, La Trobe University, Bundoora, Victoria, Australia
| | - Anastasios Damdimopoulos
- Bioinformatics and Expression Analysis core facility, Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - Pauliina Damdimopoulou
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Jemma G Gasperoni
- Department of Physiology, Anatomy and Microbiology, School of Life Sciences, La Trobe University, Bundoora, Victoria, Australia
| | - Stephanie C Tran
- Department of Physiology, Anatomy and Microbiology, School of Life Sciences, La Trobe University, Bundoora, Victoria, Australia
| | - Sylvia V H Grommen
- Department of Physiology, Anatomy and Microbiology, School of Life Sciences, La Trobe University, Bundoora, Victoria, Australia
| | - Bert De Groef
- Department of Physiology, Anatomy and Microbiology, School of Life Sciences, La Trobe University, Bundoora, Victoria, Australia
| | - Sebastian Dworkin
- Department of Physiology, Anatomy and Microbiology, School of Life Sciences, La Trobe University, Bundoora, Victoria, Australia
| |
Collapse
|
9
|
Geadkaew-Krenc A, Grams R, Phadungsil W, Chaibangyang W, Kosa N, Adisakwattana P, Dekumyoy P. Evaluation of Rhophilin Associated Tail Protein (ROPN1L) in the Human Liver Fluke Opisthorchis viverrini for Diagnostic Approach. THE KOREAN JOURNAL OF PARASITOLOGY 2020; 58:475-479. [PMID: 32871643 PMCID: PMC7462799 DOI: 10.3347/kjp.2020.58.4.475] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 07/29/2020] [Indexed: 11/30/2022]
Abstract
Tegumental and excretory-secretory proteins are reported as diagnostic antigens for human opisthorchiasis. Rhophilin associated tail protein1-like (OvROPN1L) protein of Opisthorchis viverrini sperm tail showed potential as a diagnostic antigen. The OvROPN1L recombinant fragments were assayed for diagnostic antigenicity for human opisthorchiasis using indirect ELISA. The strongest antigenic region was a N-terminus peptide of M1 - P56. One synthetic peptide (P1, L3-Q13) of this region showed the highest antigenicity to opisthorchiasis. Sera from other parasitic infections including Strongyloides stercoralis, hookworm, Taenia spp, minute intestinal flukes, Paragonimus spp showed lower reactivity to P1. Peptide P1 is located in the disordered N-terminus of ROPN1L supporting its suitability as linear epitope. In the Platyhelminthes the N-terminal sequence of ROPN1L is diverging with taxonomic distance further suggesting that peptide P1 has potential as diagnostic tool in the genus Opisthorchis/Clonorchis. It should be further evaluated in combination with peptides derived from other O. viverrini antigens to increase its diagnostic power.
Collapse
Affiliation(s)
- Amornrat Geadkaew-Krenc
- Graduate Program in Biomedical Sciences, Faculty of Allied Health Sciences, Thammasat University, Pathumthani 12120, Thailand
| | - Rudi Grams
- Graduate Program in Biomedical Sciences, Faculty of Allied Health Sciences, Thammasat University, Pathumthani 12120, Thailand
| | - Wansika Phadungsil
- Graduate Program in Biomedical Sciences, Faculty of Allied Health Sciences, Thammasat University, Pathumthani 12120, Thailand
| | - Wanlapa Chaibangyang
- Graduate Program in Biomedical Sciences, Faculty of Allied Health Sciences, Thammasat University, Pathumthani 12120, Thailand.,Sysmex Co., Ltd, Pathumwan, Bangkok 10330 Thailand
| | - Nanthawat Kosa
- Graduate Program in Biomedical Sciences, Faculty of Allied Health Sciences, Thammasat University, Pathumthani 12120, Thailand
| | - Poom Adisakwattana
- Department of Helminthology, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Paron Dekumyoy
- Department of Helminthology, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| |
Collapse
|
10
|
Xu K, Yang L, Zhang L, Qi H. Lack of AKAP3 disrupts integrity of the subcellular structure and proteome of mouse sperm and causes male sterility. Development 2020; 147:147/2/dev181057. [DOI: 10.1242/dev.181057] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 11/20/2019] [Indexed: 12/23/2022]
Abstract
ABSTRACT
The development and maintenance of the correct morphology of sperm is important for their functions. Cellular morphogenesis of sperm occurs during the post-meiotic developmental stage; however, little is known about what coordinates this process. In the present study, we investigated the role of A-kinase anchoring protein 3 (AKAP3) during mouse spermiogenesis, using both mouse genetics and proteomics. It was found that AKAP3 is essential for the formation of the specific subcellular structure of the sperm flagellum, motility of sperm and male fertility. Additionally, lack of AKAP3 caused global changes of the sperm proteome and mislocalization of sperm proteins, including accumulation of RNA metabolism and translation factors and displacement of PKA subunits in mature sperm, which may underlie misregulated PKA activity and immotility in sperm. Interestingly, sperm lacking a complete fibrous sheath from both Akap3 and Akap4 null mice accumulated F-actin filaments and morphological defects during post-testicular maturation in the epididymis. These results suggest that the subcellular structures of sperm could be formed via independent pathways, and elucidate the roles of AKAP3 during the coordinated synthesis and organization of the sperm proteome and sperm morphology.
Collapse
Affiliation(s)
- Kaibiao Xu
- CAS Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510630, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510630, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lele Yang
- CAS Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510630, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510630, China
| | - Lan Zhang
- GIBH-GMU Joint-school of Biological Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Huayu Qi
- CAS Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510630, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510630, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- GIBH-GMU Joint-school of Biological Sciences, Guangzhou Medical University, Guangzhou 511436, China
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510005, China
| |
Collapse
|
11
|
Zhao Y, Kan FWK. Human OVGP1 enhances tyrosine phosphorylation of proteins in the fibrous sheath involving AKAP3 and increases sperm-zona binding. J Assist Reprod Genet 2019; 36:1363-1377. [PMID: 31254143 PMCID: PMC6642236 DOI: 10.1007/s10815-019-01502-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 06/07/2019] [Indexed: 12/26/2022] Open
Abstract
Purpose To investigate if the recombinant human oviduct-specific glycoprotein (rHuOVGP1)–enhanced tyrosine-phosphorylated (pY) proteins are components of specific structure(s) of the sperm tail and if rHuOVGP1 binds to the oocyte and enhances sperm-egg binding. Methods Immunofluorescent staining and confocal microscopy were performed to examine the localization of pY proteins, outer dense fiber (ODF), and A-Kinase Associated Protein 3 (AKAP3) in human sperm during capacitation. Western blot and immunoprecipitation were employed to analyze protein levels of pY proteins and AKAP3. Immunofluorescent staining was performed to examine the binding of rHuOVGP1 to human oocytes. The effect of rHuOVGP1 on enhancing sperm-zona binding was examined using hemizona assay. Results pY proteins were detected mainly in the fibrous sheath (FS) surrounding the ODF with a relatively weak immunoreaction in the neck and mid-piece. Western blot analysis revealed co-migration of the pY 105 kDa protein with AKAP3, which was further confirmed by immunoprecipitation correlating immunofluorescent results of co-localization of pY proteins with AKAP3 in the sperm tail. rHuOVGP1 binds specifically to the zona pellucida (ZP) of human oocytes. Prior incubation of sperm and/or ZP with rHuOVGP1 increased sperm-egg binding. Conclusions The present study revealed that one of the major rHuOVGP1-enhanced pY proteins could be AKAP3 of the FS and that rHuOVGP1 is capable of binding to human ZP and its presence in the medium results in an increase in sperm-zona binding. Supplement of rHuOVGP1 in in vitro fertilization media could be beneficial for enhancement of the fertilizing ability of human sperm.
Collapse
Affiliation(s)
- Yuewen Zhao
- Department of Biomedical and Molecular Sciences, Faculty of Health Sciences, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - Frederick W K Kan
- Department of Biomedical and Molecular Sciences, Faculty of Health Sciences, Queen's University, Kingston, Ontario, K7L 3N6, Canada.
| |
Collapse
|
12
|
Shen S, Li D, Liang J, Wang J. Testis-specific calcium-binding protein CBP86-IV (CABYR) binds with phosphoglycerate kinase 2 in vitro and in vivo experiment. Andrologia 2019; 51:e13287. [PMID: 30972801 DOI: 10.1111/and.13287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 03/15/2019] [Accepted: 03/20/2019] [Indexed: 12/14/2022] Open
Abstract
The investigation of the interacting proteins with testis-specific calcium-binding protein CBP86-IV (CABYR) was carried out in human spermatozoa. The total RNA from human spermatozoa was extracted, and the ORF sequence of TSCBP86-IV gene was amplified and cloned into expression vector pET-28a. The positive recombinant clones were transformed into Escherichia coli strain BL21 (DE3) to express fusion protein. Then, co-immunoprecipitation (Co-IP) of TSCBP86-IV was performed in BL21 cell lysate expressing CBP86-IV recombinant protein. The immune complex was captured and identified by mass spectrometry. Reverse Co-IP of potential interacting proteins was performed in human sperm cell lysate. The potential protein interactions were confirmed by yeast two-hybrid system. Thirteen proteins were successfully identified in immune complex from E. coli cell lysate. Phosphoglycerate kinase 2 (PGK2) further showed positive results both in reverse Co-IP and yeast two-hybrid experiments and was confirmed to be interacted with TSCBP86-IV in human sperm cells.
Collapse
Affiliation(s)
- Shulin Shen
- Department of Andrology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Dongrun Li
- Department of Andrology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jihong Liang
- Department of Andrology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jinzi Wang
- Guangxi Key Laboratory of Utilization of Microbial and Botanical Resources, Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi University for Nationalities, Nanning, China
| |
Collapse
|
13
|
Panner Selvam MK, Agarwal A, Dias TR, Martins AD, Samanta L. Presence of Round Cells Proteins do not Interfere with Identification of Human Sperm Proteins from Frozen Semen Samples by LC-MS/MS. Int J Mol Sci 2019; 20:ijms20020314. [PMID: 30646561 PMCID: PMC6359632 DOI: 10.3390/ijms20020314] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 01/08/2019] [Accepted: 01/10/2019] [Indexed: 12/22/2022] Open
Abstract
In sperm proteomic experiments round cells and leukocyte proteins are profiled along with sperm proteome. The influence of round cell and leukocyte proteins on the sperm proteome has not been investigated. The objective of this study was to identify if the proteins from round cells, including leukocytes, interfere with the proteomic analysis of spermatozoa in frozen semen samples. Proteomic profiling of sperm was performed using liquid chromatography-tandem mass spectrometry in four groups: Group 1 contained neat semen with round cells and leukocytes ≥ 1 × 106/mL, group 2 contained neat semen with round cells ≥ 1 × 106/mL that was processed by 65% density gradient to remove the round cells and leukocytes, group 3 contained neat semen with round cells < 1 × 106/mL, and group 4 contained neat semen with round cells < 1 × 106/mL that was processed by 65% density gradient to remove the round cells. Pure leukocyte culture was used as control group. A total of 1638, 1393, 1755, and 1404 proteins were identified in groups 1, 2, 3, and 4, respectively. Comparative analysis of group 1 vs. 3 revealed 26 (1.18%) differentially expressed proteins (DEPs). On the other hand, only 6 (0.31%) DEPs were observed with group 2 vs. 4. Expression of these DEPs were either absent or very low in the control group. The results of our proteomics analysis failed to show any influence of non-spermatogenic round cell proteins on sperm proteome identification. These results validate the use of neat semen samples for sperm proteomic studies.
Collapse
Affiliation(s)
| | - Ashok Agarwal
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH 44195, USA.
| | - Tânia R Dias
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH 44195, USA.
- Universidade da Beira Interior, 6201-001 Covilhã, Portugal.
- Department of Microscopy, Laboratory of Cell Biology, Institute of Biomedical Sciences Abel Salazar and Unit for Multidisciplinary Research in Biomedicine, University of Porto, 4050-313 Porto, Portugal.
| | - Ana D Martins
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH 44195, USA.
- Department of Microscopy, Laboratory of Cell Biology, Institute of Biomedical Sciences Abel Salazar and Unit for Multidisciplinary Research in Biomedicine, University of Porto, 4050-313 Porto, Portugal.
| | - Luna Samanta
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH 44195, USA.
- Redox Biology Laboratory, Department of Zoology, School of Life Sciences, Ravenshaw University, Cuttack 753003, India.
| |
Collapse
|
14
|
Fluorescence- and magnetic-activated cell sorting strategies to separate spermatozoa involving plural contributors from biological mixtures for human identification. Sci Rep 2016; 6:36515. [PMID: 27857155 PMCID: PMC5114643 DOI: 10.1038/srep36515] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 10/13/2016] [Indexed: 01/13/2023] Open
Abstract
No effective method has been developed to distinguish sperm cells originating from different men in multi-suspect sexual assault cases. Here we combined MACS and FACS to isolate single donor sperm cells from forensic mixture samples including female vaginal epithelial cells and sperm cells from multiple contributors. Sperms from vaginal swab were isolated by MACS using FITC-conjugated A kinase anchor protein 3 (AKAP3) antibody; target individual sperm cells involving two or three donors were separated by FACS using FITC-labeled blood group A/B antigen antibody. This procedure was further tested in two mock multi-suspect sexual assault samples and one practical casework sample. Our results showed that complete single donor STR profiles could be successfully obtained from sperm/epithelial cell and sperm mixtures from two contributors. For unbalanced sperm/epithelial cells and sperm cells mixtures, sensitivity results revealed that target cells could be detected at as low as 1:32 and 1:8 mixed ratios, respectively. Although highly relies on cell number and blood types or secretor status of the individuals, this procedure would still be useful tools for forensic DNA analysis of multi-suspect sexual assault cases by the combined use of FACS and MACS based on sperm-specific AKAP3 antigen and human blood type antigen.
Collapse
|
15
|
Kerns K, Morales P, Sutovsky P. Regulation of Sperm Capacitation by the 26S Proteasome: An Emerging New Paradigm in Spermatology. Biol Reprod 2016; 94:117. [PMID: 27053366 DOI: 10.1095/biolreprod.115.136622] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 03/24/2016] [Indexed: 12/12/2022] Open
Abstract
The ubiquitin proteasome system (UPS) participates in many biological processes ranging from cell cycle and antigen processing to cellular defense and signaling. Work of the last decade has made it evident that the UPS is involved in many sperm-related processes leading up to and as part of fertilization. The current knowledge of UPS involvement and changes during sperm capacitation are reviewed together with a list of known proteasome-associated sperm proteins and a discussion of the relationships between these proteins and the proteasome. Proteasomal inhibitors such as MG-132 and epoxomicin significantly alter capacitation and prevent acrosome reaction. The 26S proteasome degrades AKAP3, an A-kinase anchoring protein, partially regulating the release of protein-kinase A (PKA), a vital component necessary for the steps leading up to capacitation. Further, changes occur in 20S core subunit localization and abundance throughout capacitation. Proteasome-interacting valosine-containing protein (VCP) undergoes tyrosine phosphorylation; however, its physiological roles in capacitation and fertilization remain unknown. The E1-type ubiquitin-activating enzyme (UBA1) inhibitor PYR-41 also alters acrosomal membrane remodeling during capacitation. Furthermore, after capacitation, the acrosomal proteasomes facilitate the degradation of zona pellucida glycoproteins leading up to fertilization. Methods to modulate the sperm proteasome activity during sperm storage and capacitation may translate to increased reproductive efficiency in livestock animals. Human male infertility diagnostics may benefit from incorporation of research outcomes built upon relationships between UPS and capacitation. Altogether, the studies reviewed here support the involvement of UPS in sperm capacitation and present opportunities for new discoveries.
Collapse
Affiliation(s)
- Karl Kerns
- Division of Animal Sciences, University of Missouri, Columbia, Missouri
| | - Patricio Morales
- Department of Biomedicine, Faculty of Health Sciences, University of Antofagasta, Antofagasta, Chile Instituto Antofagasta, Antofagasta, Chile
| | - Peter Sutovsky
- Division of Animal Sciences, University of Missouri, Columbia, Missouri Department of Obstetrics, Gynecology and Women's Health, University of Missouri, Columbia, Missouri
| |
Collapse
|
16
|
Dema A, Perets E, Schulz MS, Deák VA, Klussmann E. Pharmacological targeting of AKAP-directed compartmentalized cAMP signalling. Cell Signal 2015; 27:2474-87. [PMID: 26386412 DOI: 10.1016/j.cellsig.2015.09.008] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 09/08/2015] [Accepted: 09/14/2015] [Indexed: 01/26/2023]
Abstract
The second messenger cyclic adenosine monophosphate (cAMP) can bind and activate protein kinase A (PKA). The cAMP/PKA system is ubiquitous and involved in a wide array of biological processes and therefore requires tight spatial and temporal regulation. Important components of the safeguard system are the A-kinase anchoring proteins (AKAPs), a heterogeneous family of scaffolding proteins defined by its ability to directly bind PKA. AKAPs tether PKA to specific subcellular compartments, and they bind further interaction partners to create local signalling hubs. The recent discovery of new AKAPs and advances in the field that shed light on the relevance of these hubs for human disease highlight unique opportunities for pharmacological modulation. This review exemplifies how interference with signalling, particularly cAMP signalling, at such hubs can reshape signalling responses and discusses how this could lead to novel pharmacological concepts for the treatment of disease with an unmet medical need such as cardiovascular disease and cancer.
Collapse
Affiliation(s)
- Alessandro Dema
- Max Delbrück Center for Molecular Medicine Berlin in the Helmholtz Association (MDC), Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | - Ekaterina Perets
- Max Delbrück Center for Molecular Medicine Berlin in the Helmholtz Association (MDC), Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | - Maike Svenja Schulz
- Max Delbrück Center for Molecular Medicine Berlin in the Helmholtz Association (MDC), Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | - Veronika Anita Deák
- Max Delbrück Center for Molecular Medicine Berlin in the Helmholtz Association (MDC), Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | - Enno Klussmann
- Max Delbrück Center for Molecular Medicine Berlin in the Helmholtz Association (MDC), Robert-Rössle-Straße 10, 13125 Berlin, Germany; DZHK, German Centre for Cardiovascular Research, Oudenarder Straße 16, 13347 Berlin, Germany.
| |
Collapse
|