1
|
Fagbémi MNA, Nivelle R, Muller M, Mélard C, Lalèyè P, Rougeot C. Effect of high temperatures on sex ratio and differential expression analysis (RNA-seq) of sex-determining genes in Oreochromis niloticus from different river basins in Benin. ENVIRONMENTAL EPIGENETICS 2024; 9:dvad009. [PMID: 38487307 PMCID: PMC10939319 DOI: 10.1093/eep/dvad009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/09/2023] [Accepted: 01/10/2024] [Indexed: 03/17/2024]
Abstract
The high temperature sex reversal process leading to functional phenotypic masculinization during development has been widely described in Nile tilapia (Oreochromis n iloticus) under laboratory or aquaculture conditions and in the wild. In this study, we selected five wild populations of O. niloticus from different river basins in Benin and produced twenty full-sib families of mixed-sex (XY and XX) by natural reproduction. Progenies were exposed to room temperature or high (36.5°C) temperatures between 10 and 30 days post-fertilization (dpf). In control groups, we observed sex ratios from 40% to 60% males as expected, except for 3 families from the Gobé region which showed a bias towards males. High temperature treatment significantly increased male rates in each family up to 88%. Transcriptome analysis was performed by RNA-sequencing (RNA-seq) on brains and gonads from control and treated batches of six families at 15 dpf and 40 dpf. Analysis of differentially expressed genes, differentially spliced genes, and correlations with sex reversal was performed. In 40 dpf gonads, genes involved in sex determination such as dmrt1, cyp11c1, amh, cyp19a1b, ara, and dax1 were upregulated. In 15 dpf brains, a negative correlation was found between the expression of cyp19a1b and the reversal rate, while at 40 dpf a negative correlation was found between the expression of foxl2, cyp11c1, and sf1 and positive correlation was found between dmrt1 expression and reversal rate. Ontology analysis of the genes affected by high temperatures revealed that male sex differentiation processes, primary male sexual characteristics, autophagy, and cilium organization were affected. Based on these results, we conclude that sex reversal by high temperature treatment leads to similar modifications of the transcriptomes in the gonads and brains in offspring of different natural populations of Nile tilapia, which thus may activate a common cascade of reactions inducing sex reversal in progenies.
Collapse
Affiliation(s)
- Mohammed Nambyl A Fagbémi
- Aquaculture Research and Education Centre (CEFRA), Liège University, query author on which is prefered, 10 Chemin de la Justice B-4500, Tihange, Belgium
- Laboratory of Hydrobiology and Aquaculture (LHA), Faculty of Agricultural Sciences, University of Abomey-Calavi, 01 BP: 526, Cotonou, Benin
| | - Renaud Nivelle
- Aquaculture Research and Education Centre (CEFRA), Liège University, query author on which is prefered, 10 Chemin de la Justice B-4500, Tihange, Belgium
- Laboratory for Organogenesis and Regeneration (LOR), Interdisciplinary Research Institute in Biomedical Sciences (GIGA-I3), Liège University, Sart Tilman, Liège, Belgium
| | - Marc Muller
- Laboratory for Organogenesis and Regeneration (LOR), Interdisciplinary Research Institute in Biomedical Sciences (GIGA-I3), Liège University, Sart Tilman, Liège, Belgium
| | - Charles Mélard
- Aquaculture Research and Education Centre (CEFRA), Liège University, query author on which is prefered, 10 Chemin de la Justice B-4500, Tihange, Belgium
| | - Philippe Lalèyè
- Laboratory of Hydrobiology and Aquaculture (LHA), Faculty of Agricultural Sciences, University of Abomey-Calavi, 01 BP: 526, Cotonou, Benin
| | - Carole Rougeot
- Aquaculture Research and Education Centre (CEFRA), Liège University, query author on which is prefered, 10 Chemin de la Justice B-4500, Tihange, Belgium
| |
Collapse
|
2
|
Li M, Sun L, Zhou L, Wang D. Tilapia, a good model for studying reproductive endocrinology. Gen Comp Endocrinol 2024; 345:114395. [PMID: 37879418 DOI: 10.1016/j.ygcen.2023.114395] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/07/2023] [Accepted: 10/21/2023] [Indexed: 10/27/2023]
Abstract
The Nile tilapia (Oreochromis niloticus), with a system of XX/XY sex determination, is a worldwide farmed fish with a shorter sexual maturation time than that of most cultured fish. Tilapia show a spawning cycle of approximately 14 days and can be artificially propagated in the laboratory all year round to obtain genetically all female (XX) and all male (XY) fry. Its genome sequence has been opened, and a perfect gene editing platform has been established. With a moderate body size, it is convenient for taking enough blood to measure hormone level. In recent years, using tilapia as animal model, we have confirmed that estrogen is crucial for female development because 1) mutation of star2, cyp17a1 or cyp19a1a (encoding aromatase, the key enzyme for estrogen synthesis) results in sex reversal (SR) due to estrogen deficiency in XX tilapia, while mutation of star1, cyp11a1, cyp17a2, cyp19a1b or cyp11c1 affects fertility due to abnormal androgen, cortisol and DHP levels in XY tilapia; 2) when the estrogen receptors (esr2a/esr2b) are mutated, the sex is reversed from female to male, while when the androgen receptors are mutated, the sex cannot be reversed; 3) the differentiated ovary can be transdifferentiated into functional testis by inhibition of estrogen synthesis, and the differentiated testis can be transdifferentiated into ovary by simultaneous addition of exogenous estrogen and androgen synthase inhibitor; 4) loss of male pathway genes amhy, dmrt1, gsdf causes SR with upregulation of cyp19a1a in XY tilapia. Disruption of estrogen synthesis rescues the male to female SR of amhy and gsdf but not dmrt1 mutants; 5) mutation of female pathway genes foxl2 and sf-1 causes SR with downregulation of cyp19a1a in XX tilapia; 6) the germ cell SR of foxl3 mutants fails to be rescued by estrogen treatment, indicating that estrogen determines female germ cell fate through foxl3. This review also summarized the effects of deficiency of other steroid hormones, such as androgen, DHP and cortisol, on fish reproduction. Overall, these studies demonstrate that tilapia is an excellent animal model for studying reproductive endocrinology of fish.
Collapse
Affiliation(s)
- Minghui Li
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| | - Lina Sun
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| | - Linyan Zhou
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| | - Deshou Wang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China.
| |
Collapse
|
3
|
Horie Y, Kanazawa N, Takahashi C, Tatarazako N, Iguchi T. Gonadal Soma-Derived Factor Expression is a Potential Biomarker for Predicting the Effects of Endocrine-Disrupting Chemicals on Gonadal Differentiation in Japanese Medaka (Oryzias Latipes). ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:1875-1884. [PMID: 35502944 DOI: 10.1002/etc.5353] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/20/2022] [Accepted: 04/27/2022] [Indexed: 06/14/2023]
Abstract
Chemicals with androgenic or estrogenic activity induce the sex reversal and/or intersex condition in various teleost fish species. Previously, we reported that exposure to 17α-methyltestosterone, bisphenol A, or 4-nonylphenol induces changes in expression of the gonadal soma-derived factor (gsdf) gene accompanied by disruption of gonadal differentiation in Japanese medaka (Oryzias latipes). These findings suggest that gsdf expression might be a useful biomarker for predicting the potential effect of chemicals on gonadal differentiation. We examined the gsdf expression in Japanese medaka exposed to chemicals with estrogenic or androgenic activity. Exposure to the androgenic steroid 17β-trenbolone at 0.5-22.1 μg/L induced the development of ovotestis (presence of ovarian tissue with testicular tissue) and female-to-male sex reversal in XX embryos, and exposure at 6.32 and 22.1 μg/L significantly increased gsdf expression in XX embryos compared with controls at developmental stage 38 (1 day before hatching). In the present study, no statistically significant difference in gsdf mRNA expression was observed after exposure to 17β-estradiol, 17α-ethinylestradiol, and 4-t-octylphenol, which have estrogenic activity. In addition, antiandrogenic chemicals or chemicals without endocrine-disrupting activity did not induce changes in gsdf expression in XX or XY embryos. Thus, an increase in gsdf expression after androgen exposure was observed in XX embryos. Together, these findings indicate that gsdf expression might be useful for predicting the adverse effect of chemicals on gonadal differentiation. Environ Toxicol Chem 2022;41:1875-1884. © 2022 SETAC.
Collapse
Affiliation(s)
- Yoshifumi Horie
- Faculty of Bioresource Sciences, Akita Prefectural University, Nakano Simoshinjo, Akita, Japan
- Research Center for Inland Seas, Kobe University, Kobe, Japan
| | - Nobuhiro Kanazawa
- Faculty of Systems Science and Technology, Akita Prefectural University, Akita, Japan
| | - Chiho Takahashi
- Faculty of Bioresource Sciences, Akita Prefectural University, Nakano Simoshinjo, Akita, Japan
| | - Norihisa Tatarazako
- Department of Science and Technology for Biological Resources and Environment, Graduate School of Agriculture, Ehime University, Matsuyama, Japan
| | - Taisen Iguchi
- Department of Nanobioscience, Yokohama City University, Yokohama, Japan
| |
Collapse
|
4
|
Sexual plasticity in bony fishes: Analyzing morphological to molecular changes of sex reversal. AQUACULTURE AND FISHERIES 2022. [DOI: 10.1016/j.aaf.2022.02.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
5
|
Renn SC, Hurd PL. Epigenetic Regulation and Environmental Sex Determination in Cichlid Fishes. Sex Dev 2021; 15:93-107. [PMID: 34433170 PMCID: PMC8440468 DOI: 10.1159/000517197] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 05/12/2021] [Indexed: 12/14/2022] Open
Abstract
Studying environmental sex determination (ESD) in cichlids provides a phylogenetic and comparative approach to understand the evolution of the underlying mechanisms, their impact on the evolution of the overlying systems, and the neuroethology of life history strategies. Natural selection normally favors parents who invest equally in the development of male and female offspring, but evolution may favor deviations from this 50:50 ratio when environmental conditions produce an advantage for doing so. Many species of cichlids demonstrate ESD in response to water chemistry (temperature, pH, and oxygen concentration). The relative strengths of and the exact interactions between these factors vary between congeners, demonstrating genetic variation in sensitivity. The presence of sizable proportions of the less common sex towards the environmental extremes in most species strongly suggests the presence of some genetic sex-determining loci acting in parallel with the ESD factors. Sex determination and differentiation in these species does not seem to result in the organization of a final and irreversible sexual fate, so much as a life-long ongoing battle between competing male- and female-determining genetic and hormonal networks governed by epigenetic factors. We discuss what is and is not known about the epigenetic mechanism behind the differentiation of both gonads and sex differences in the brain. Beyond the well-studied tilapia species, the 2 best-studied dwarf cichlid systems showing ESD are the South American genus Apistogramma and the West African genus Pelvicachromis. Both species demonstrate male morphs with alternative reproductive tactics. We discuss the further neuroethology opportunities such systems provide to the study of epigenetics of alternative life history strategies and other behavioral variation.
Collapse
Affiliation(s)
| | - Peter L Hurd
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, CA
- Department of Psychology, University of Alberta, Edmonton, AB, CA
| |
Collapse
|
6
|
Shi H, Ru X, Mustapha UF, Jiang D, Huang Y, Pan S, Zhu C, Li G. Characterization, expression, and regulatory effects of nr0b1a and nr0b1b in spotted scat (Scatophagus argus). Comp Biochem Physiol B Biochem Mol Biol 2021; 256:110644. [PMID: 34224854 DOI: 10.1016/j.cbpb.2021.110644] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 06/25/2021] [Accepted: 06/29/2021] [Indexed: 12/20/2022]
Abstract
Nuclear receptor subfamily 0 group B member 1 (Nr0b1) belongs to the nuclear receptor (NR) superfamily. It plays critical roles in sex determination, sex differentiation, and gonadal development in mammals. In this study, the duplicated genes nr0b1a and nr0b1b were identified in spotted scat (Scatophagus argus). Phylogenetic and synteny analyses revealed that, unlike nr0b1a, nr0b1b was retained in several species of teleosts after an nr0b1 gene duplication event but was secondarily lost in other fish species, amphibians, reptiles, birds, and mammals. In a sequence analysis, only 1.5 LXXLL-related repeat motifs were identified in spotted scat Nr0b1a, Nr0b1b, and non-mammalian Nr0b1a/Nr0b1, different from the 3.5 repeat motifs in mammalian Nr0b1. By qPCR, nr0b1a and nr0b1b were highly expressed in testes from stages IV to V and in ovaries from stages II to IV, respectively. Male-to-female sex reversal was induced in XY spotted scat by the administration of exogenous E2. A qPCR analysis showed that nr0b1b mRNA expression was higher in sex-reversed XY fish than in control XY fish, with no difference in nr0b1a. A luciferase assay showed that spotted scat Nr0b1a and Nr0b1b did not individually activate cyp19a1a gene transcription. As in mammals, spotted scat Nr0b1a suppressed Nr5a1-mediated cyp19a1a expression, despite containing only 1.5 LXXLL-related repeat motifs in its N-terminal region, while Nr0b1b stimulated Nr5a1-mediated cyp19a1a transcription. These results demonstrated that nr0b1a and nr0b1b in spotted scat have distinct expression patterns and regulatory effects and further indicate that nr0b1b might be involved in ovarian development by regulating Nr5a1-mediated cyp19a1a expression.
Collapse
Affiliation(s)
- Hongjuan Shi
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Key Laboratory of Marine Ecology and Aquaculture Environment of Zhanjiang, Guangdong South China Sea Key Laboratory of Aquaculture for Aquatic Economic Animals, Fisheries College, Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Ocean University, Zhanjiang 524088, China
| | - Xiaoying Ru
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Key Laboratory of Marine Ecology and Aquaculture Environment of Zhanjiang, Guangdong South China Sea Key Laboratory of Aquaculture for Aquatic Economic Animals, Fisheries College, Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Ocean University, Zhanjiang 524088, China
| | - Umar Farouk Mustapha
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Key Laboratory of Marine Ecology and Aquaculture Environment of Zhanjiang, Guangdong South China Sea Key Laboratory of Aquaculture for Aquatic Economic Animals, Fisheries College, Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Ocean University, Zhanjiang 524088, China
| | - Dongneng Jiang
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Key Laboratory of Marine Ecology and Aquaculture Environment of Zhanjiang, Guangdong South China Sea Key Laboratory of Aquaculture for Aquatic Economic Animals, Fisheries College, Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yang Huang
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Key Laboratory of Marine Ecology and Aquaculture Environment of Zhanjiang, Guangdong South China Sea Key Laboratory of Aquaculture for Aquatic Economic Animals, Fisheries College, Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Ocean University, Zhanjiang 524088, China
| | - Shuhui Pan
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Key Laboratory of Marine Ecology and Aquaculture Environment of Zhanjiang, Guangdong South China Sea Key Laboratory of Aquaculture for Aquatic Economic Animals, Fisheries College, Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Ocean University, Zhanjiang 524088, China
| | - Chunhua Zhu
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Key Laboratory of Marine Ecology and Aquaculture Environment of Zhanjiang, Guangdong South China Sea Key Laboratory of Aquaculture for Aquatic Economic Animals, Fisheries College, Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Ocean University, Zhanjiang 524088, China
| | - Guangli Li
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Key Laboratory of Marine Ecology and Aquaculture Environment of Zhanjiang, Guangdong South China Sea Key Laboratory of Aquaculture for Aquatic Economic Animals, Fisheries College, Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Ocean University, Zhanjiang 524088, China.
| |
Collapse
|
7
|
Mamta SK, Sudhakumari C, Kagawa H, Dutta-Gupta A, Senthilkumaran B. Controlled release of sex steroids through osmotic pump alters brain GnRH1 and catecholaminergic system dimorphically in the catfish, Clarias gariepinus. Brain Res Bull 2020; 164:325-333. [PMID: 32860867 DOI: 10.1016/j.brainresbull.2020.08.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 08/15/2020] [Accepted: 08/19/2020] [Indexed: 10/23/2022]
Abstract
The present study aimed to evaluate osmotic pump-mediated controlled release of estrogen in males and androgen in females to analyze the impact on gonadotropin-releasing hormone (GnRH1), catecholamines (CAs) and other associated genes in the catfish, Clarias gariepinus. During pre-spawning phase, catfish were separately implanted osmotic pumps loaded with 17β-estradiol (E2) in males and 17α-methyltestosterone (MT) in females at a dose of 10 μg/100 μl or saline (100 μl) controls into both sexes to release for 21 days and all fishes were maintained as per the duration. Further, GnRH1 expression levels were analysed in the discrete regions of brain after E2 and MT treatments in male and female catfish, respectively using qPCR which revealed that GnRH1 expression was significantly higher in E2 treated male as compared to the control. On the other hand, GnRH1 expression was lower in MT treated female when compared to the control in the discrete regions of brain. In addition, certain brain and monoaminergic system related genes showed a differential response. Catfish GnRH1 could be localized in preoptic area-hypothalamus (POA-HYP) that correlated with the expression profile in the discrete regions of catfish brain. Serum levels of sex steroids in the treated male fish indicated that the treatment of E2 could maintain and impart feminization effect even in the presence of endogenous androgen during gonadal recrudescence while such an effect was not seen in females with androgen treatment. Measurement of CAs, L-3,4-dihydroxyphenylalanine, dopamine and norepinephrine levels in the male and female brain after the controlled release of E2 and MT, respectively confirmed the modulation of neurotransmitters in the E2treated male than MT treated female fish. These results collectively suggest the severity of estrogenic over androgenic compounds to alter reproductive status even at a minimal dose by targeting CAs and GnRH1 at the level of brain of catfish. This study provides insights into the reproductive toxicity of sex steroid analogues at the level of brain GnRH1 and CA-ergic system in addition to serum T, 11-KT and E2 levels during gonadal recrudescence, which is a crucial period of gametogenesis preceding spawning.
Collapse
Affiliation(s)
- Sajwan-Khatri Mamta
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad, 500046, Telangana, India
| | - Chenichery Sudhakumari
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad, 500046, Telangana, India
| | - Hirohiko Kagawa
- Department of Marine Biology and Environmental Sciences, Faculty of Agriculture, University of Miyazaki, Miyazaki, 889-2192, Japan
| | - Aparna Dutta-Gupta
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad, 500046, Telangana, India
| | - Balasubramanian Senthilkumaran
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad, 500046, Telangana, India.
| |
Collapse
|
8
|
Fan Z, Zou Y, Liang D, Tan X, Jiao S, Wu Z, Li J, Zhang P, You F. Roles of forkhead box protein L2 (foxl2) during gonad differentiation and maintenance in a fish, the olive flounder (Paralichthys olivaceus). Reprod Fertil Dev 2020; 31:1742-1752. [PMID: 31537253 DOI: 10.1071/rd18233] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 06/06/2019] [Indexed: 12/17/2022] Open
Abstract
As an important maricultured fish, the olive flounder Paralichthys olivaceus shows sex-dimorphic growth. Thus, the molecular mechanisms involved in sex control in P. olivaceus have attracted researchers' attention. Among the sex-related genes, forkhead box protein L2 (foxl2) exhibits significant sex-dimorphic expression patterns and plays an important role in fish gonad differentiation and development. The present study first investigated the expression levels and promoter methylation dynamics of foxl2 during flounder gonad differentiation under treatments of high temperature and exogenous 17β-oestradiol (E2). During high temperature treatment, the expression of flounder foxl2 may be repressed via maintenance of DNA methylation. Then, flounder with differentiated testis at Stages I-II were treated with exogenous 5ppm E2 or 5ppm E2+150ppm trilostane (TR) to investigate whether exogenous sex hormones could induce flounder sex reversal. The differentiated testis exhibited phenotypic variations of gonadal dysgenesis with upregulation of female-related genes (foxl2 and cytochrome P450 family 19 subfamily A (cyp19a)) and downregulation of male-related genes (cytochrome P450 family 11 subfamily B member 2 (cyp11b2), doublesex- and mab-3 related transcription factor 1 (dmrt1), anti-Mullerian hormone (amh) and SRY-box transcription factor 9 (sox9)). Furthermore, a cotransfection assay of the cells of the flounder Sertoli cell line indicated that Foxl2 was able alone or with nuclear receptor subfamily 5 group A member 2 (Nr5a2) jointly to upregulate expression of cyp19a. Moreover, Foxl2 and Nr5a2 repressed the expression of dmrt1. In summary, Foxl2 may play an important role in ovarian differentiation by maintaining cyp19a expression and antagonising the expression of dmrt1. However, upregulation of foxl2 is not sufficient to induce the sex reversal of differentiated testis.
Collapse
Affiliation(s)
- Zhaofei Fan
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, PR China; and Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), 1 Wenhai Road, Qingdao 266237, PR China; and University of Chinese Academy of Sciences, 19 (A) Yuquan Road, Beijing 100049, PR China
| | - Yuxia Zou
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, PR China; and Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), 1 Wenhai Road, Qingdao 266237, PR China
| | - Dongdong Liang
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, PR China; and Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), 1 Wenhai Road, Qingdao 266237, PR China; and University of Chinese Academy of Sciences, 19 (A) Yuquan Road, Beijing 100049, PR China
| | - Xungang Tan
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, PR China; and Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), 1 Wenhai Road, Qingdao 266237, PR China
| | - Shuang Jiao
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, PR China; and Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), 1 Wenhai Road, Qingdao 266237, PR China
| | - Zhihao Wu
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, PR China; and Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), 1 Wenhai Road, Qingdao 266237, PR China
| | - Jun Li
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, PR China; and Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), 1 Wenhai Road, Qingdao 266237, PR China
| | - Peijun Zhang
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, PR China; and Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), 1 Wenhai Road, Qingdao 266237, PR China
| | - Feng You
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, PR China; and Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), 1 Wenhai Road, Qingdao 266237, PR China; and Corresponding author.
| |
Collapse
|
9
|
Huang M, Wang Q, Chen J, Chen H, Xiao L, Zhao M, Zhang H, Li S, Liu Y, Zhang Y, Lin H. The co-administration of estradiol/17α-methyltestosterone leads to male fate in the protogynous orange-spotted grouper, Epinephelus coioides. Biol Reprod 2018; 100:745-756. [DOI: 10.1093/biolre/ioy211] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 08/18/2018] [Accepted: 11/06/2018] [Indexed: 11/14/2022] Open
Affiliation(s)
- Minwei Huang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
- Key Laboratory for Tropical Marine Fishery Resource Protection and Utilization of Hainan Province, Hainan Tropical Ocean University, Sanya 570228, China
| | - Qing Wang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
- College of Marine Sciences, South China Agricultural University, Guangzhou, People's Republic of China
| | - Jiaxing Chen
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
- Key Laboratory for Tropical Marine Fishery Resource Protection and Utilization of Hainan Province, Hainan Tropical Ocean University, Sanya 570228, China
| | - Huimin Chen
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
- Key Laboratory for Tropical Marine Fishery Resource Protection and Utilization of Hainan Province, Hainan Tropical Ocean University, Sanya 570228, China
| | - Ling Xiao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
- Key Laboratory for Tropical Marine Fishery Resource Protection and Utilization of Hainan Province, Hainan Tropical Ocean University, Sanya 570228, China
| | - Mi Zhao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
- Key Laboratory for Tropical Marine Fishery Resource Protection and Utilization of Hainan Province, Hainan Tropical Ocean University, Sanya 570228, China
| | - Haifa Zhang
- Marine Fisheries Development Center of Guangdong Province, Huizhou, People's Republic of China
| | - Shuisheng Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
- Key Laboratory for Tropical Marine Fishery Resource Protection and Utilization of Hainan Province, Hainan Tropical Ocean University, Sanya 570228, China
| | - Yun Liu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
- Key Laboratory for Tropical Marine Fishery Resource Protection and Utilization of Hainan Province, Hainan Tropical Ocean University, Sanya 570228, China
| | - Yong Zhang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
- Key Laboratory for Tropical Marine Fishery Resource Protection and Utilization of Hainan Province, Hainan Tropical Ocean University, Sanya 570228, China
- Marine Fisheries Development Center of Guangdong Province, Huizhou, People's Republic of China
| | - Haoran Lin
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
- Key Laboratory for Tropical Marine Fishery Resource Protection and Utilization of Hainan Province, Hainan Tropical Ocean University, Sanya 570228, China
- College of Ocean, Hainan University, Haikou, People's Republic of China
| |
Collapse
|
10
|
Epigenetic control of cyp19a1a expression is critical for high temperature induced Nile tilapia masculinization. J Therm Biol 2017; 69:76-84. [DOI: 10.1016/j.jtherbio.2017.06.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 06/11/2017] [Accepted: 06/18/2017] [Indexed: 01/17/2023]
|
11
|
Shi H, Gao T, Liu Z, Sun L, Jiang X, Chen L, Wang D. Blockage of androgen and administration of estrogen induce transdifferentiation of testis into ovary. J Endocrinol 2017; 233:65-80. [PMID: 28148717 DOI: 10.1530/joe-16-0551] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 02/01/2017] [Indexed: 12/24/2022]
Abstract
Induction of sex reversal of XY fish has been restricted to the sex undifferentiated period. In the present study, differentiated XY tilapia were treated with trilostane (TR), metopirone (MN) and glycyrrhetinic acid (GA) (inhibitor of 3β-HSD, Cyp11b2 and 11β-HSD, respectively) alone or in combination with 17β-estradiol (E2) from 30 to 90 dah (days after hatching). At 180 dah, E2 alone resulted in 8.3%, and TR, MN and GA alone resulted in no secondary sex reversal (SSR), whereas TR + E2, MN + E2 and GA + E2 resulted in 88.3, 60.0 and 46.7% of SSR, respectively. This sex reversal could be rescued by simultaneous administration of 11-ketotestosterone (11-KT). Compared with the control XY fish, decreased serum 11-KT and increased E2 level were detected in SSR fish. Immunohistochemistry analyses revealed that Cyp19a1a, Cyp11b2 and Dmrt1 were expressed in the gonads of GA + E2, MN + E2 and TR + E2 SSR XY fish at 90 dah, but only Cyp19a1a was expressed at 180 dah. When the treatment was applied from 60 to 120 dah, TR + E2 resulted in 3.3% of SSR, MN + E2 and GA + E2 resulted in no SSR. These results demonstrated that once 11-KT was synthesized, it could antagonize E2-induced male-to-female SSR, which could be abolished by simultaneous treatment with the inhibitor of steroidogenic enzymes. The upper the enzyme was located in the steroidogenic pathway, the higher SSR rate was achieved when it was inhibited as some of the precursors, such as androstenedione, testosterone and 5α-dihydrotestosterone, could act as androgens. These results highlight the key role of androgen in male sex maintenance.
Collapse
Affiliation(s)
- Hongjuan Shi
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education)Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, People's Republic of China
| | - Tian Gao
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education)Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, People's Republic of China
| | - Zhilong Liu
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education)Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, People's Republic of China
| | - Lina Sun
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education)Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, People's Republic of China
| | - Xiaolong Jiang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education)Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, People's Republic of China
| | - Lili Chen
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education)Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, People's Republic of China
| | - Deshou Wang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education)Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, People's Republic of China
| |
Collapse
|
12
|
Baroiller JF, D'Cotta H. The Reversible Sex of Gonochoristic Fish: Insights and Consequences. Sex Dev 2016; 10:242-266. [PMID: 27907925 DOI: 10.1159/000452362] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2016] [Indexed: 01/06/2023] Open
Abstract
Fish sex reversal is a means to understand sex determination and differentiation, but it is also used to control sex in aquaculture. This review discusses sex reversal in gonochoristic fish, with the coexistence of genetic and environmental influences. The different periods of fish sensitivity to sex reversal treatments are presented with the mechanisms implicated. The old players of sex differentiation are revisited with transcriptome data and loss of function studies following hormone- or temperature-induced sex reversal. We also discuss whether cortisol is the universal mediator of sex reversal in fish due to its implication in ovarian meiosis and 11KT increase. The large plasticity in fish for sex reversal is also evident in the brain, with a reversibility existing even in adulthood. Studies on epigenetics are presented, since it links the environment, gene expression, and sex reversal, notably the association of DNA methylation in sex reversal. Manipulations with exogenous factors reverse the primary sex in many fish species under controlled conditions, but several questions arise on whether this can occur under wild conditions and what is the ecological significance. Cases of sex reversal in wild fish populations are shown and their fitness and future perspectives are discussed.
Collapse
|
13
|
Abstract
Egg or sperm? The mechanism of sexual fate decision in germ cells has been a long‐standing issue in biology. A recent analysis identified foxl3 as a gene that determines the sexual fate decision of germ cells in the teleost fish, medaka. foxl3/Foxl3 acts in female germline stem cells to repress commitment into male fate (spermatogenesis), indicating that the presence of mitotic germ cells in the female is critical for continuous sexual fate decision of germ cells in medaka gonads. Interestingly, foxl3 is found in most vertebrate genomes except for mammals. This provides the interesting possibility that the sexual fate of germ cells in mammals is determined in a different way compared to foxl3‐possessing vertebrates. Considering the fact that germline stem cells are the cells where foxl3 begins to express and sexual fate decision initiates and mammalian ovary does not have typical germline stem cells, the mechanism in mammals may have been co‐evolved with germline stem cell loss in mammalian ovary.
Collapse
Affiliation(s)
- Minoru Tanaka
- Laboratory of Molecular Genetics of Reproduction, National Institute for Basic Biology, Okazaki, Japan
| |
Collapse
|
14
|
Cole BJ, Brander SM, Jeffries KM, Hasenbein S, He G, Denison MS, Fangue NA, Connon RE. Changes in Menidia beryllina Gene Expression and In Vitro Hormone-Receptor Activation After Exposure to Estuarine Waters Near Treated Wastewater Outfalls. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2016; 71:210-23. [PMID: 27155869 PMCID: PMC7938872 DOI: 10.1007/s00244-016-0282-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Accepted: 04/25/2016] [Indexed: 05/14/2023]
Abstract
Fishes in estuarine waters are frequently exposed to treated wastewater effluent, among numerous other sources of contaminants, yet the impacts of these anthropogenic chemicals are not well understood in these dynamic and important waterways. Inland silversides (Menidia beryllina) at an early stage of development [12 days posthatch (dph)] were exposed to waters from two estuarine wastewater-treatment outfall locations in a tidal estuary, the Sacramento/San Joaquin Delta (California, USA) that had varied hydrology and input volumes. The genomic response caused by endocrine-disrupting compounds (EDCs) in these waters was determined using quantitative polymerase chain reaction on a suite of hormonally regulated genes. Relative androgenic and estrogenic activities of the waters were measured using CALUX reporter bioassays. The presence of bifenthrin, a pyrethroid pesticide and known EDC, as well as caffeine and the anti-inflammatory pharmaceutical ibuprofen, which were used as markers of wastewater effluent input, were determined using instrumental analysis. Detectable levels of bifenthrin (2.89 ng L(-1)) were found on one of the sampling dates, and caffeine was found on all sampling dates, in water from the Boynton Slough. Neither compound was detected at the Carquinez Strait site, which has a much smaller effluent discharge input volume relative to the receiving water body size compared with Boynton Slough. Water samples from both sites incubated in the CALUX cell line induced estrogenic and androgenic activity in almost all instances, though the estrogenicity was relatively higher than the androgenicity. Changes in the abundance of mRNA transcripts of endocrine-responsive genes and indicators of general chemical stress were observed after a 96-h exposure to waters from both locations. The relative levels of endocrine response, changes in gene transcript abundance, and contaminant concentrations were greater in water from the Boynton Slough site despite those effluents undergoing a more advanced treatment process. The availability of a widely geographically distributed estuarine model species (M. beryllina) now allows for improved assessment of treated effluent impacts across brackish, estuarine, and marine environments.
Collapse
Affiliation(s)
- Bryan J Cole
- Department of Anatomy, Physiology & Cell Biology, School of Veterinary Medicine, University of California, Davis, One Shields Avenue, Davis, CA, 95616, USA.
| | - Susanne M Brander
- Department of Biology & Marine Biology, University of North Carolina, Wilmington, 601 South College Road, Wilmington, NC, 28403, USA
| | - Ken M Jeffries
- Department of Anatomy, Physiology & Cell Biology, School of Veterinary Medicine, University of California, Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - Simone Hasenbein
- Department of Anatomy, Physiology & Cell Biology, School of Veterinary Medicine, University of California, Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - Guochun He
- Department of Environmental Toxicology, University of California, Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - Michael S Denison
- Department of Environmental Toxicology, University of California, Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - Nann A Fangue
- Wildlife, Fish & Conservation Biology, University of California, Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - Richard E Connon
- Department of Anatomy, Physiology & Cell Biology, School of Veterinary Medicine, University of California, Davis, One Shields Avenue, Davis, CA, 95616, USA
| |
Collapse
|
15
|
Chen L, Jiang X, Feng H, Shi H, Sun L, Tao W, Xi Q, Wang D. Simultaneous exposure to estrogen and androgen resulted in feminization and endocrine disruption. J Endocrinol 2016; 228:205-18. [PMID: 26759274 DOI: 10.1530/joe-15-0432] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/12/2016] [Indexed: 01/05/2023]
Abstract
Estrogen, which is synthesized earlier in females than androgen in males, is critical for sex determination in non-mammalian vertebrates. However, it remains unknown that what would happen to the gonadal phenotype if estrogen and androgen were administrated simultaneously. In this study, XY and XX tilapia fry were treated with the same dose of 17α-methyltestosterone (MT) and 17β-estradiol (E2) alone and in combination from 0 to 30 days after hatching. Treatment of XY fish with E2 resulted in male to female sex reversal, while treatment of XX fish with MT resulted in female to male sex reversal. In contrast, simultaneous treatment of XX and XY fish with MT and E2 resulted in female, but with cyp11b2 and cyp19a1a co-expressed in the ovary. Serum 11-ketotestosteron level of the MT and E2 simultaneously treated XX and XY female was similar to that of the XY control, while serum E2 level of these two groups was similar to that of the XX control. Transcriptomic cluster analysis revealed that the MT and E2 treated XX and XY gonads clustered into the same branch with the XX control. However a small fraction of genes, which showed disordered expression, may be associated with stress response. These results demonstrated that estrogen could maintain the female phenotype of XX fish and feminize XY fish even in the presence of androgen. Simultaneous treatment with estrogen and androgen up-regulated the endogenous estrogen and androgen synthesis, and resulted in disordered gene expression and endocrine disruption in tilapia.
Collapse
Affiliation(s)
- Lili Chen
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education)Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Xiaolong Jiang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education)Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Haiwei Feng
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education)Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Hongjuan Shi
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education)Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Lina Sun
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education)Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Wenjing Tao
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education)Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Qingping Xi
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education)Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Deshou Wang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education)Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| |
Collapse
|
16
|
Pfennig F, Standke A, Gutzeit HO. The role of Amh signaling in teleost fish--Multiple functions not restricted to the gonads. Gen Comp Endocrinol 2015; 223:87-107. [PMID: 26428616 DOI: 10.1016/j.ygcen.2015.09.025] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 09/24/2015] [Accepted: 09/25/2015] [Indexed: 12/16/2022]
Abstract
This review summarizes the important role of Anti-Müllerian hormone (Amh) during gonad development in fishes. This Tgfβ-domain bearing hormone was named after one of its known functions, the induction of the regression of Müllerian ducts in male mammalian embryos. Later in development it is involved in male and female gonad differentiation and extragonadal expression has been reported in mammals as well. Teleosts lack Müllerian ducts, but they have amh orthologous genes. amh expression is reported from 21 fish species and possible regulatory interactions with further factors like sex steroids and gonadotropic hormones are discussed. The gonadotropin Fsh inhibits amh expression in all fish species studied. Sex steroids show no consistent influence on amh expression. Amh is produced in male Sertoli cells and female granulosa cells and inhibits germ cell proliferation and differentiation as well as steroidogenesis in both sexes. Therefore, Amh might be a central player in gonad development and a target of gonadotropic Fsh. Furthermore, there is evidence that an Amh-type II receptor is involved in germ cell regulation. Amh and its corresponding type II receptor are also present in brain and pituitary, at least in some teleosts, indicating additional roles of Amh effects in the brain-pituitary-gonadal axis. Unraveling Amh signaling is important in stem cell research and for reproduction as well as for aquaculture and in environmental science.
Collapse
Affiliation(s)
- Frank Pfennig
- Institut für Zoologie, TU Dresden, D-01062 Dresden, Germany.
| | - Andrea Standke
- Institut für Zoologie, TU Dresden, D-01062 Dresden, Germany
| | | |
Collapse
|