1
|
Zhang X, Tang Y, Wang J, Yang M, Jiang J, Xue H, Wang Y, Zhang J, Wang X. Heat stress enhances the expression of METTL3 to mediate N6-methyladenosine modification of SOS2 and NLRP3 inflammasome activation in boar Sertoli cells. JOURNAL OF HAZARDOUS MATERIALS 2025; 488:137432. [PMID: 39884044 DOI: 10.1016/j.jhazmat.2025.137432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 01/14/2025] [Accepted: 01/27/2025] [Indexed: 02/01/2025]
Abstract
Heat stress negatively affects pig production by disrupting the immune homeostasis of Sertoli cells (SCs), which compromises sperm quality, culminating in male infertility. Herein, we aimed to study the mechanism by which the NLRP3 inflammasome is activated by heat stress through N6-methyladenosine (m6A) modification regulation in SCs. Initially, it was found that heat stress (44°C, 30 min) markedly activated ERK1/2 signaling, which subsequently promoted NLRP3 inflammasome activation and inflammatory cytokine release from SCs. Then, using an m6A dot-blot assay, m6A sequencing, and methylated RNA immunoprecipitation, we found that heat stress augmented the level of m6A modification in SCs, and METTL3 augmented the m6A modification of mRNA encoding SOS Ras/Rho guanine nucleotide exchange factor 2 (SOS2), a key activator of the ERK pathway. Furthermore, YTHDF1 recognized and bound to the m6A-modified SOS2 mRNA to enhance its translation efficiency, ultimately triggering ERK1/2 signaling activation. In vivo experiments demonstrated that heat stress-induced decline in semen quality in mice was associated with elevated levels of m6A modifications in the testis and NLRP3 inflammasome activation. However, the damage caused by heat stress could be attenuated by intraperitoneal injection of S-Adenosylhomocysteine (SAH), a specific methyltransferase inhibitor. Our results emphasize the critical roles of m6A in regulating NLRP3 inflammasome activation under heat stress, identifying a novel therapeutic avenue to address heat stress.
Collapse
Affiliation(s)
- Xuhua Zhang
- Chongqing Key Laboratory of Forage & Herbivore, College of Veterinary Medicine, Southwest University, Beibei, Chongqing 400715, PR China
| | - Yan Tang
- Chongqing Key Laboratory of Forage & Herbivore, College of Veterinary Medicine, Southwest University, Beibei, Chongqing 400715, PR China
| | - Jinxuan Wang
- Chongqing Key Laboratory of Forage & Herbivore, College of Veterinary Medicine, Southwest University, Beibei, Chongqing 400715, PR China
| | - Mengyu Yang
- Chongqing Key Laboratory of Forage & Herbivore, College of Veterinary Medicine, Southwest University, Beibei, Chongqing 400715, PR China
| | - Jing Jiang
- Chongqing Key Laboratory of Forage & Herbivore, College of Veterinary Medicine, Southwest University, Beibei, Chongqing 400715, PR China
| | - Hongyan Xue
- Chongqing Key Laboratory of Forage & Herbivore, College of Veterinary Medicine, Southwest University, Beibei, Chongqing 400715, PR China
| | - Yi Wang
- Department of Biomedical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Jiaojiao Zhang
- Chongqing Key Laboratory of Forage & Herbivore, College of Veterinary Medicine, Southwest University, Beibei, Chongqing 400715, PR China.
| | - Xianzhong Wang
- Chongqing Key Laboratory of Forage & Herbivore, College of Veterinary Medicine, Southwest University, Beibei, Chongqing 400715, PR China.
| |
Collapse
|
2
|
Katiyar R, Gonmei C, Deori S, Singh M, Abedin SN, Rautela R, Singh NS, Chakravarty H, Das M, Choudhury BU, Mishra VK. Effect of heat stress on pig production and its mitigation strategies: a review. Trop Anim Health Prod 2025; 57:139. [PMID: 40117038 DOI: 10.1007/s11250-025-04387-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 03/07/2025] [Indexed: 03/23/2025]
Abstract
Heat stress (HS) poses a significant challenge to pig production worldwide, with far-reaching consequences for productivity, reproduction, and overall animal welfare. Stress, broadly defined as the nonspecific physiological response to environmental demands, disrupts homeostasis, leading to health imbalances, behavioral changes, and reduced productive efficiency. Pigs are particularly susceptible to HS due to their limited thermoregulatory capacity, influenced by a low density of functional sweat glands and a thick subcutaneous fat layer. Rising global temperatures have exacerbated HS-induced economic losses in the swine industry, manifesting as decreased growth rates, poor reproductive performance, reduced feed efficiency, increased morbidity, and mortality. HS impairs pig production by diminishing feed intake and nutrient availability, which leads to reduced growth, suboptimal carcass quality, and compromised reproduction. Sows experience increased anestrus, extended weaning-to-estrus intervals, and smaller litter sizes, while boars exhibit reduced semen quality and fertility. The genetic selection for higher productivity has inadvertently lowered heat tolerance, as metabolic heat production increases with improved production traits. Furthermore, inadequate environmental management in pig housing exacerbates the impact of HS. Variations in heat tolerance among pigs underscore the importance of understanding genetic, physiological, and environmental factors influencing their response to HS. Research reveals genetic differences in thermotolerance, offering potential avenues for selective breeding to improve resilience. Effective management strategies, including nutritional adjustments, environmental modifications, and genetic selection, are crucial for mitigating the negative effects of HS and enhancing pig productivity. This review highlights the multifaceted impacts of HS on swine production, explores the physiological and reproductive consequences, and discusses adaptive and ameliorative measures to address these challenges, with a focus on maintaining sustainable pig production in the face of climatic changes.
Collapse
Affiliation(s)
- Rahul Katiyar
- ICAR Research Complex for NEH Region, Umiam, Meghalaya, India.
| | | | - Sourabh Deori
- ICAR Research Complex for NEH Region, Umiam, Meghalaya, India.
| | - Mahak Singh
- ICAR Research Complex for NEH Region, Nagaland Centre, Medziphema, Nagaland, India.
| | | | - Rupali Rautela
- ICAR-Central Institute for Research on Buffaloes, Hisar, Haryana, India
| | | | | | - Meena Das
- ICAR Research Complex for NEH Region, Umiam, Meghalaya, India
| | - B U Choudhury
- ICAR Research Complex for NEH Region, Tripura Centre, Lembucherra, Tripura, India
| | | |
Collapse
|
3
|
Song Y, Li D, Su D, Jiang T, Li L, Zhan S, Zhong T, Guo J, Cao J, Li L, Zhang H, Wang L. Short-term heat exposure affects thermogenesis and mitophagy in goat brown adipocytes. BMC Genomics 2025; 26:272. [PMID: 40108509 PMCID: PMC11921555 DOI: 10.1186/s12864-025-11467-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 03/10/2025] [Indexed: 03/22/2025] Open
Abstract
BACKGROUND Brown adipose tissue (BAT) has a significant impact in newborn goats on maintaining body temperature through non-shivering thermogenesis in response to cold exposure. However, the roles of heat treatment on BAT thermogenesis are still limited. RESULTS This study focused on the effects of short-term heat exposure on goat brown adipocytes. We found that the content of mitochondria and the proteins of UCP1 and PGC1α were increased after 12 h of heat exposure. Additionally, the triglyceride (TG) content was significantly decreased after 1, 2, 6 h of heat exposure. Furthermore, RNA-seq analysis of brown adipocytes after 12 h of heat exposure identified 1091 differentially expressed genes (DEGs). The KEGG enrichment analysis were mainly enriched in thermogenesis, fatty acid metabolism and mitophagy. In addition, we found that the amount of mitophagosomes and expression levels of mitophagy-related protein (LC3BII/LC3BI, BNIP3, and BECN) were elevated after 12 h of heat treatment. CONCLUSION These findings collectively indicate that heat exposure enhances the thermogenic capacity and mitophagy level of goat brown adipocytes. Our study provides evidence that heat exposure facilitates adaptive thermogenesis in goat brown adipocytes.
Collapse
Affiliation(s)
- Yulong Song
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P. R. China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P. R. China
- Key Laboratory of Agricultural Bioinformatics, Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P. R. China
| | - Die Li
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P. R. China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P. R. China
- Key Laboratory of Agricultural Bioinformatics, Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P. R. China
| | - Duo Su
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P. R. China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P. R. China
- Key Laboratory of Agricultural Bioinformatics, Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P. R. China
| | - Tingting Jiang
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P. R. China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P. R. China
- Key Laboratory of Agricultural Bioinformatics, Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P. R. China
| | - Longrui Li
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P. R. China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P. R. China
- Key Laboratory of Agricultural Bioinformatics, Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P. R. China
| | - Siyuan Zhan
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P. R. China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P. R. China
- Key Laboratory of Agricultural Bioinformatics, Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P. R. China
| | - Tao Zhong
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P. R. China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P. R. China
- Key Laboratory of Agricultural Bioinformatics, Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P. R. China
| | - Jiazhong Guo
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P. R. China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P. R. China
- Key Laboratory of Agricultural Bioinformatics, Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P. R. China
| | - Jiaxue Cao
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P. R. China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P. R. China
- Key Laboratory of Agricultural Bioinformatics, Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P. R. China
| | - Li Li
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P. R. China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P. R. China
- Key Laboratory of Agricultural Bioinformatics, Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P. R. China
| | - Hongping Zhang
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P. R. China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P. R. China
- Key Laboratory of Agricultural Bioinformatics, Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P. R. China
| | - Linjie Wang
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P. R. China.
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P. R. China.
- Key Laboratory of Agricultural Bioinformatics, Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P. R. China.
| |
Collapse
|
4
|
Ramzan H, Bukhari DA, Bibi Z, Arifullah, Isha, Nawaz A, Rehman A. Probiotic supplement for the treatment of polycystic ovarian syndrome. Pharmacol Ther 2025; 266:108785. [PMID: 39719172 DOI: 10.1016/j.pharmthera.2024.108785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 11/24/2024] [Accepted: 12/19/2024] [Indexed: 12/26/2024]
Abstract
Polycystic Ovarian Syndrome is one of the major prevalent causes of infertility reported worldwide nearly 6-26 %, especially in girls hitting puberty and women at their childbearing age. The main clinical manifestations include irregular menstrual cycle, small cysts on one or both ovaries, chronic oligo-anovulation, and hirsutism. The etiological criteria are very complex and related to many factors like obesity, insulin sensitivity, inflammation, hyperandrogenism, diabetes mellitus type II, cardiovascular diseases, and dysbiosis of gut microbiota. The given review focuses on managing PCOS through probiotics by analyzing the effects on the symptoms of the disease. The probiotics effective in treating PCOS belong to Bifidobacterium, Lactobacilli, Clostridium, Enterococcus, and other Lactic acid bacteria. Its significance in PCOS is mainly due to the antagonizing of the growth of pathogenic microorganisms, increasing intestinal mucus layer production, reducing intestinal permeability, and modulating the gastrointestinal immune system. Also, their interaction with certain hormones such as insulin, androgen, and estrogen through short-chain fatty acids influences fertility. More research is necessary to validate these results. Probiotic supplements could be a viable option for treating PCOS in adults.
Collapse
Affiliation(s)
- Habiba Ramzan
- Department of Zoology, Government College University, Lahore, Pakistan
| | | | - Zuhra Bibi
- Department of Zoology, Government College University, Lahore, Pakistan
| | - Arifullah
- Department of Zoology, Government College University, Lahore, Pakistan
| | - Isha
- Department of Zoology, Government College University, Lahore, Pakistan
| | - Atif Nawaz
- Department of Zoology, Government College University, Lahore, Pakistan
| | - Abdul Rehman
- Institute of Microbiology and Molecular Genetics, University of the Punjab, New Campus, Lahore 54590, Pakistan.
| |
Collapse
|
5
|
Monteiro MS, Carnevale RF, Muro BBD, Mezzina ALB, Carnino BB, Poor AP, Matajira CEC, Garbossa CAP. The Role of Nutrition Across Production Stages to Improve Sow Longevity. Animals (Basel) 2025; 15:189. [PMID: 39858189 PMCID: PMC11758652 DOI: 10.3390/ani15020189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 12/31/2024] [Accepted: 01/10/2025] [Indexed: 01/27/2025] Open
Abstract
Modern hyperprolific sows are increasingly susceptible to health challenges. Their rapid growth rates predispose them to locomotor disorders, while high metabolic demands, reduced backfat thickness, and increased protein accretion heighten their vulnerability to heat stress and dystocia. Additionally, prolonged farrowing negatively affects the oxidative and inflammatory status of these females. Additionally, prevalent conditions such as gastric ulcers and cystitis raise ethical, welfare, and economic concerns. Despite the several studies related to sow nutrition, there are no studies which compile and extrapolate nutrition approaches from the rearing period and their impact on sows' health and longevity. Also, the aim of our review was to shed light on gaps that require further investigation. Controlling body condition scores is crucial for maximizing productivity in sows. During gestation, high-fiber diets help maintain optimal body condition and prevent constipation, particularly during the peripartum period. Antioxidants offer a range of beneficial effects during this critical phase. Additionally, probiotics and acidifiers can enhance gut health and lower the risk of genitourinary infections. On the day of farrowing, energy supplementation emerges as a promising strategy to reduce farrowing duration. Collectively, these strategies address major health challenges, enhancing welfare and promoting sow's longevity.
Collapse
Affiliation(s)
- Matheus Saliba Monteiro
- Nerthus Research and Development LTDA, Sao Carlos 13563-651, Sao Paulo, Brazil; (M.S.M.); (B.B.D.M.)
| | - Rafaella Fernandes Carnevale
- Department of Animal Nutrition and Production, School of Veterinary Medicine and Animal Sciences, University of São Paulo (USP), Campus Pirassununga, Pirassununga 13635-900, Sao Paulo, Brazil; (R.F.C.); (A.L.B.M.); (B.B.C.)
- Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, 9820 Ghent, Belgium
| | - Bruno Bracco Donatelli Muro
- Nerthus Research and Development LTDA, Sao Carlos 13563-651, Sao Paulo, Brazil; (M.S.M.); (B.B.D.M.)
- Department of Animal Nutrition and Production, School of Veterinary Medicine and Animal Sciences, University of São Paulo (USP), Campus Pirassununga, Pirassununga 13635-900, Sao Paulo, Brazil; (R.F.C.); (A.L.B.M.); (B.B.C.)
- PoulPharm, 8870 Izegem, Belgium;
| | - Ana Lígia Braga Mezzina
- Department of Animal Nutrition and Production, School of Veterinary Medicine and Animal Sciences, University of São Paulo (USP), Campus Pirassununga, Pirassununga 13635-900, Sao Paulo, Brazil; (R.F.C.); (A.L.B.M.); (B.B.C.)
| | - Bruno Braga Carnino
- Department of Animal Nutrition and Production, School of Veterinary Medicine and Animal Sciences, University of São Paulo (USP), Campus Pirassununga, Pirassununga 13635-900, Sao Paulo, Brazil; (R.F.C.); (A.L.B.M.); (B.B.C.)
| | | | - Carlos Emilio Cabrera Matajira
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of São Paulo (USP), Sao Paulo 05508-000, Sao Paulo, Brazil;
| | - Cesar Augusto Pospissil Garbossa
- Department of Animal Nutrition and Production, School of Veterinary Medicine and Animal Sciences, University of São Paulo (USP), Campus Pirassununga, Pirassununga 13635-900, Sao Paulo, Brazil; (R.F.C.); (A.L.B.M.); (B.B.C.)
| |
Collapse
|
6
|
Huang Q, Xiao Y, Sun P. Rumen-mammary gland axis and bacterial extracellular vesicles: Exploring a new perspective on heat stress in dairy cows. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 19:70-75. [PMID: 39628643 PMCID: PMC11612815 DOI: 10.1016/j.aninu.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 05/08/2024] [Accepted: 08/30/2024] [Indexed: 12/06/2024]
Abstract
Heat stress poses a significant threat to the global livestock industry, particularly impacting dairy cows due to their higher metabolic heat production and increased susceptibility. The rumen microbiota plays a crucial role in regulating heat stress in dairy cows. Moreover, the rumen-mammary gland axis has been recently unveiled, indicating that rumen bacteria and their metabolites can influence mammary gland health and function. Extracellular vesicles, cell-derived vesicles, are known to carry various biomolecules and mediate intercellular communication and immune modulation. This review proposes the hypothesis that heat stress poses a threat to dairy cows via the rumen-mammary gland axis by regulating rumen microbiota and their secreted extracellular vesicles. It summarizes existing knowledge on bacterial extracellular vesicles and the rumen-mammary gland axis, suggesting that targeting the rumen microbiota and their extracellular vesicles, while enhancing mammary gland health through this axis, could be a promising strategy for preventing and alleviating heat stress in dairy cows. The aim of this review is to offer new insights and guide future research and development efforts concerning heat stress in dairy cows, thereby contributing to a deeper understanding of its pathogenesis and potential interventions.
Collapse
Affiliation(s)
- Qi Huang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yang Xiao
- Hebei Yancheng Food Co., Ltd., Baoding 072650, China
| | - Peng Sun
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
7
|
Knox RV. Swine fertility in a changing climate. Anim Reprod Sci 2024; 269:107537. [PMID: 38918086 DOI: 10.1016/j.anireprosci.2024.107537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/12/2024] [Accepted: 06/14/2024] [Indexed: 06/27/2024]
Abstract
Climate change has been linked to increasing temperatures and weather extremes. Certain regions around the world become more susceptible to environmental hazards that limit pig production and reproductive fertility. Environmental measures that link to pig fertility are needed to assess change, risk and develop solutions. Sub-populations of pigs display lower fertility in summer and are susceptible to heat stress. In the context of a warming climate, elevated temperatures and number of heat stress days increase body temperature and change the physiology, behavior, feed intake, and stress response of the pig. These changes could alter follicle development, oocyte quality, estrus expression, conception and litter size. In boars, sperm quality and production are reduced in response to summer heat stress. Nevertheless, while temperature increases have occurred over the years in some warmer locations, other regions have not shown those changes. Perhaps this involves the measures used for heat stress assessment or that climate is buffered in more temperate areas. Reductions in pig fertility are not always evident, and depend upon climate, year, genotype and management. This could also involve selection, as females more susceptible to heat stress and fertility failure, are subsequently culled. In the years from 1999 to 2020 when increases in global temperature from baseline occurred, measures of female fertility improved for farrowing rate and litter size. Progressive reduction in fertility may not be apparent in all geo-locations, but as temperatures increases become more widespread, these changes are likely to become more obvious and detectable.
Collapse
Affiliation(s)
- Robert V Knox
- Department of Animal Sciences, University of Illinois, Urbana-Champaign, IL 61801, USA.
| |
Collapse
|
8
|
Bai H, Zhao N, Li X, Ding Y, Guo Q, Chen G, Chang G. Whole-genome resequencing identifies candidate genes associated with heat adaptation in chickens. Poult Sci 2024; 103:104139. [PMID: 39127007 PMCID: PMC11367107 DOI: 10.1016/j.psj.2024.104139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 06/17/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
The wide distribution and diverse varieties of chickens make them important models for studying genetic adaptation. The aim of this study was to identify genes that alter heat adaptation in commercial chicken breeds by comparing genetic differences between tropical and cold-resistant chickens. We analyzed whole-genome resequencing data of 186 chickens across various regions in Asia, including the following breeds: Bian chickens (B), Dagu chickens (DG), Beijing-You chickens (BY), and Gallus gallus jabouillei from China; Gallus gallus murghi from India; Vietnam native chickens (VN); Thailand native chickens (TN) and Gallus gallus spadiceus from Thailand; and Indonesia native chickens (IN), Gallus gallus gallus, and Gallus gallus bankiva from Indonesia. In total, 5,454,765 SNPs were identified for further analyses. Population genetic structure analysis revealed that each local chicken breed had undergone independent evolution. Additionally, when K = 5, B, BY, and DG chickens shared a common ancestor and exhibited high levels of inbreeding, suggesting that northern cold-resistant chickens are likely the result of artificial selection. In contrast, the runs of homozygosity (ROH) and the ROH-based genomic inbreeding coefficient (FROH) results for IN, TN, and VN chickens showed low levels of inbreeding. Low population differentiation index values indicated low differentiation levels, suggesting low genetic diversity in tropical chickens, implying increased vulnerability to environmental changes, decreased adaptability, and disease resistance. Whole-genome selection sweep analysis revealed 69 candidate genes, including LGR4, G6PC, and NBR1, between tropical and cold-resistant chickens. The genes were further subjected to GO and KEGG enrichment analyses, revealing that most of the genes were primarily enriched in biological synthesis processes, metabolic processes, central nervous system development, ion transmembrane transport, and the Wnt signaling pathway. Our study identified heat adaptation genes and their functions in chickens that primarily affect chickens in high-temperature environments through metabolic pathways. These heat-resistance genes provide a theoretical basis for improving the heat-adaptation capacity of commercial chicken breeds.
Collapse
Affiliation(s)
- Hao Bai
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Institutes of Agricultural Science and Technology Development, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Ning Zhao
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Institutes of Agricultural Science and Technology Development, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Xing Li
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Institutes of Agricultural Science and Technology Development, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Yifan Ding
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Institutes of Agricultural Science and Technology Development, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Qixin Guo
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Institutes of Agricultural Science and Technology Development, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Guohong Chen
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Institutes of Agricultural Science and Technology Development, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Guobin Chang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Institutes of Agricultural Science and Technology Development, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
9
|
Funes J, Ismer A, Hoogewijs M, Wilsher S. Cervix-Deep Rectal Temperature Differential on the Day of Ovulation is Correlated With Embryo Recovery Results in Mares. Reprod Domest Anim 2024; 59:e14716. [PMID: 39205476 DOI: 10.1111/rda.14716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/13/2024] [Accepted: 08/18/2024] [Indexed: 09/04/2024]
Abstract
Variations in temperature throughout the reproductive tract have been noted in many species. A recent study found the cervix-rectum temperature differential (CR-TD) in cattle was related to fertility. The present study aimed to assess the CR-TD in mares around the time of ovulation and relate it to embryo recover. Over 52 cycles, mares were inseminated with a fertile stallion and embryo recovery was undertaken on Day 7 post ovulation. Further 10 control mares were not inseminated. Rectal and cervical temperatures were measured using a precision thermometer on four or five occasions: the day of deslorelin administration and insemination, the day before ovulation, the day of ovulation (Day 0), the day after ovulation and, for inseminated mares, before embryo recovery on Day 7. One-way ANOVA showed that the CR-TD was significantly lower on the day of ovulation in the 36 positive cycles, in which an embryo was recovered, versus the 16 in which the embryo flush was negative (0.21 ± 0.17 vs. 0.40 ± 0.09°C; p < 0.001). Control cycles showed equivalent CR-TD to positive (0.13 ± 0.22 vs. 0.21 ± 0.17°C; p = 0.196) but not negative cycles (0.13 ± 0.22 vs. 0.40 ± 0.09°C; p < 0.001). A positive embryo recovery was associated with lower CR-TDs from the time of insemination and deslorelin to the day after ovulation compared to the day of embryo flushing (RM ANOVA; p < 0.001; Pairwise comparisons; p ≤ 0.01, in all cases). Rectal or cervical temperatures per se showed no significant differences between positive, negative or control cycles at any time point. In conclusion, a thermoregulatory process occurs close to ovulation which results in a lower CR-TD in cycles that produced an embryo versus those which did not. Further characterisation of TDs within the reproductive tract of the mare would increase our understanding of the conditions required for optimum fertility.
Collapse
Affiliation(s)
| | - Ann Ismer
- Sharjah Equine Hospital, Sharjah, UAE
| | | | | |
Collapse
|
10
|
Rudolph TE, Roths M, Freestone AD, Rhoads RP, White-Springer SH, Baumgard LH, Selsby JT. The contribution of biological sex to heat stress-mediated outcomes in growing pigs. Animal 2024; 18:101168. [PMID: 38762992 DOI: 10.1016/j.animal.2024.101168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 04/10/2024] [Accepted: 04/12/2024] [Indexed: 05/21/2024] Open
Abstract
Heat stress (HS) negatively impacts a variety of production parameters in growing pigs; however, the impact of biological sex on the HS response is largely unknown. To address this, 48 crossbred barrows and gilts (36.8 ± 3.7 kg BW) were individually housed and assigned to one of three constant environmental conditions: (1) thermoneutral (TN) (20.8 ± 1.6 °C; 62.0 ± 4.7% relative humidity; n = 8/sex), (2) HS (39.4 ± 0.6 °C; 33.7 ± 6.3% relative humidity) for 1 d (HS1; n = 8/sex), or (3) or for 7 d (HS7; n = 8/sex). As expected, HS increased rectal temperature (Tr) following 1 d of HS (1.0 °C; P < 0.0001) and 7 d of HS (0.9 °C; P < 0.0001). By 7 d, heat-stressed gilts were cooler than barrows (0.4 °C; P = 0.016), despite identical heating conditions. There was a main effect of sex such that barrows had higher Tr than gilts (P = 0.031). Heat-stressed pigs on d 1 had marked reductions in feed intake and BW compared to TN (P < 0.0001). One day of HS resulted in negative gain to feed (G:F) in barrows and gilts and was reduced compared to TN (P < 0.0001). Notably, following 1 d of HS, the variability of G:F was greater in gilts than in barrows. Between 1 and 7 d of HS, G:F improved in barrows and gilts and were similar to TN pigs, even though HS barrows had higher Tr than gilts over this period. Heat stress for 1 and 7 d reduced empty gastrointestinal tract weight compared to TN (P < 0.0001). Interestingly, HS7 gilts had decreased gastrointestinal tract weight compared to HS1 gilts (2.43 vs 2.72 kg; P = 0.03), whereas it was similar between HS1 and HS7 barrows. Lastly, a greater proportion of gastrointestinal contents was in the stomach of HS1 pigs compared to TN and HS7 (P < 0.05), which is suggestive of decreased gastric emptying. Overall, HS barrows maintained an elevated Tr compared to HS gilts through the duration of the experiment but also maintained similar growth and production metrics compared to gilts, despite this higher temperature.
Collapse
Affiliation(s)
- T E Rudolph
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - M Roths
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - A D Freestone
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - R P Rhoads
- School of Animal Science, Virginia Tech, Blacksburg, VA 24061, USA
| | - S H White-Springer
- Department of Animal Science, Texas A&M University and Texas A&M AgriLife Research, College Station, TX 77843, USA; Department of Kinesiology and Sport Management, Texas A&M University, College Station, TX 77843, USA
| | - L H Baumgard
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - J T Selsby
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA. %
| |
Collapse
|
11
|
Lesiów T, Xiong YL. Heat/Cold Stress and Methods to Mitigate Its Detrimental Impact on Pork and Poultry Meat: A Review. Foods 2024; 13:1333. [PMID: 38731703 PMCID: PMC11083837 DOI: 10.3390/foods13091333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/16/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
This paper aims to provide an updated review and current understanding of the impact of extreme temperatures-focusing on heat stress (HS)-on the quality of pork and poultry meat, particularly amidst an unprecedented global rise in environmental temperatures. Acute or chronic HS can lead to the development of pale, soft, and exudative (PSE) meat during short transportation or of dark, firm, and dry (DFD) meat associated with long transportation and seasonal changes in pork and poultry meat. While HS is more likely to result in PSE meat, cold stress (CS) is more commonly linked to the development of DFD meat. Methods aimed at mitigating the effects of HS include showering (water sprinkling/misting) during transport, as well as control and adequate ventilation rates in the truck, which not only improve animal welfare but also reduce mortality and the incidence of PSE meat. To mitigate CS, bedding on trailers and closing the tracks' curtains (insulation) are viable strategies. Ongoing efforts to minimize meat quality deterioration due to HS or CS must prioritize the welfare of the livestock and focus on the scaleup of laboratory testing to commercial applications.
Collapse
Affiliation(s)
- Tomasz Lesiów
- Department of Agri-Engineering and Quality Analysis, Wroclaw University of Economics and Business, 53-345 Wroclaw, Poland
| | - Youling L. Xiong
- Department of Animal and Food Sciences, University of Kentucky, Lexington, KY 40546, USA;
| |
Collapse
|
12
|
Peng K, Cui K, Li P, Liu X, Du Y, Xu H, Yang X, Lu S, Liang X. Mogroside V alleviates the heat stress-induced disruption of the porcine oocyte in vitro maturation. Theriogenology 2024; 217:37-50. [PMID: 38244353 DOI: 10.1016/j.theriogenology.2024.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/05/2024] [Accepted: 01/06/2024] [Indexed: 01/22/2024]
Abstract
Heat stress (HS) is a stressor that negatively affect female reproduction. Specially, oocytes are very sensitive to HS. It has been demonstrated that some active compounds can protect oocyte from HS. We previously found that Mogroside V (MV), extracted from Siraitia grosvenorii (Luo Han Guo), can protect oocyte from many kinds of stresses. However, how MV alleviates HS-induced disruption of oocyte maturation remains unknown. In this study, we treated the HS-induced porcine oocytes with MV to examine their maturation and quality. Our findings demonstrate that MV can effectively alleviate HS-induced porcine oocyte abnormal cumulus cell expansion, decrease of first polar body extrusion rate, spindle assembly and chromosome separation abnormalities, indicating MV attenuates oocyte mature defects. We further observed that MV can effectively alleviate HS-induced cortical granule distribution abnormality and decrease of blastocyst formation rate after parthenogenesis activation. In addition, MV treatment reversed mitochondrial dysfunction and lipid droplet content decrease, reduced reactive oxygen species levels, early apoptosis and DNA damage in porcine oocytes after HS. Collectively, this study suggests that MV can effectively protect porcine oocytes from HS.
Collapse
Affiliation(s)
- Ke Peng
- College of Animal Science & Technology, Guangxi University, Nanning, Guangxi 530004, China; Guangxi Key Laboratory of Animal Breeding & Disease Control and Prevention, Guangxi University, Nanning, Guangxi 530004, China
| | - Kexin Cui
- College of Animal Science & Technology, Guangxi University, Nanning, Guangxi 530004, China; Guangxi Key Laboratory of Animal Breeding & Disease Control and Prevention, Guangxi University, Nanning, Guangxi 530004, China
| | - Pan Li
- College of Animal Science & Technology, Guangxi University, Nanning, Guangxi 530004, China; Guangxi Key Laboratory of Animal Breeding & Disease Control and Prevention, Guangxi University, Nanning, Guangxi 530004, China
| | - Xinxin Liu
- College of Animal Science & Technology, Guangxi University, Nanning, Guangxi 530004, China; Guangxi Key Laboratory of Animal Breeding & Disease Control and Prevention, Guangxi University, Nanning, Guangxi 530004, China
| | - Ya Du
- College of Animal Science & Technology, Guangxi University, Nanning, Guangxi 530004, China; Guangxi Key Laboratory of Animal Breeding & Disease Control and Prevention, Guangxi University, Nanning, Guangxi 530004, China
| | - Huiyan Xu
- College of Animal Science & Technology, Guangxi University, Nanning, Guangxi 530004, China; Guangxi Key Laboratory of Animal Breeding & Disease Control and Prevention, Guangxi University, Nanning, Guangxi 530004, China
| | - Xiaogan Yang
- College of Animal Science & Technology, Guangxi University, Nanning, Guangxi 530004, China; Guangxi Key Laboratory of Animal Breeding & Disease Control and Prevention, Guangxi University, Nanning, Guangxi 530004, China
| | - Shengsheng Lu
- College of Animal Science & Technology, Guangxi University, Nanning, Guangxi 530004, China; Guangxi Key Laboratory of Animal Breeding & Disease Control and Prevention, Guangxi University, Nanning, Guangxi 530004, China
| | - Xingwei Liang
- College of Animal Science & Technology, Guangxi University, Nanning, Guangxi 530004, China; Guangxi Key Laboratory of Animal Breeding & Disease Control and Prevention, Guangxi University, Nanning, Guangxi 530004, China.
| |
Collapse
|
13
|
Dos Santos GA, Gomes LVL, do Carmo de Oliveira M, da Silva FG, de Oliveira AMA, do Nascimento Rangel AH, de Araújo MS, Silva CM, Ferreira RA, Moreira RHR. Effects of evaporative cooling systems on the performance of lactating sows in a tropical climate. Trop Anim Health Prod 2024; 56:54. [PMID: 38261022 DOI: 10.1007/s11250-024-03891-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 01/05/2024] [Indexed: 01/24/2024]
Abstract
This study evaluated litter performance, behavioral and physiological parameters, and milk characteristics of sows submitted to different thermal environments. Fifty sows were distributed in a completely randomized design with two treatments: an evaporative cooling system (ECS) and a conventional system (CS). Sow and its litter were characterized as an experimental unit. The animals were weighed at equalization and weaning. Feed intake, milk production, and bromatological characteristics of milk were measured; the sows respiratory rate, rectal, and surface temperature were monitored. Litter uniformity was determined at equalization and weaning. Behaviors of the sows and litters were monitored for 24 h on the 7th and 15th day of lactation. Temperature and relative humidity inside the maternity was 25.00 to 28.00 °C and 26.00 to 32.55 °C and 30.00 to 70.00% and 70.00 to 88.00%, respectively, considering ECS and CS. Nutritional quality of the milk remained stable during lactation in both systems evaluated. ECS improved the average weight of the piglets, weaning weight, and daily milk production by 0.038, 0.699, and 2.31 kg/day, respectively. Sows housed in the ECS had a reduction in physiological parameters and, increase in inactive alert behavior (1.79 percentage points) and breastfeeding behavior. Piglets showed a decrease of 2.43% in the range of feedings at night and 0.15% during the day. ECS provided better comfort to the sows at the expense of the CS and, consequently, better litter performance.
Collapse
Affiliation(s)
- Gleyson Araújo Dos Santos
- Department of Animal Science, Universidade Federal Rural do Semi-Árido, Mossoró, Rio Grande do Norte, Brazil
| | - Lígia Vanessa Leandro Gomes
- Department of Animal Science, Universidade Federal Rural do Semi-Árido, Mossoró, Rio Grande do Norte, Brazil
| | - Maria do Carmo de Oliveira
- Department of Animal Science, Universidade Federal Rural do Semi-Árido, Mossoró, Rio Grande do Norte, Brazil
| | - Fernanda Gomes da Silva
- Department of Animal Science, Universidade Federal Rural do Semi-Árido, Mossoró, Rio Grande do Norte, Brazil
| | | | | | - Marcelle Santana de Araújo
- Department of Animal Science, Universidade Federal Rural do Semi-Árido, Mossoró, Rio Grande do Norte, Brazil
| | - Camilla Mendonça Silva
- Department of Animal Science, Universidade Federal Rural de Pernambuco, Recife, Pernambuco, Brazil
| | - Rony Antônio Ferreira
- Department of Animal Science, Universidade Federal de Lavras, Lavras, Minas Gerais, Brazil
| | | |
Collapse
|
14
|
Roach CM, Mayorga EJ, Baumgard LH, Ross JW, Keating AF. Heat stress alters the ovarian proteome in prepubertal gilts. J Anim Sci 2024; 102:skae053. [PMID: 38605681 PMCID: PMC11025630 DOI: 10.1093/jas/skae053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 03/27/2024] [Indexed: 04/13/2024] Open
Abstract
Heat stress (HS) occurs when exogenous and metabolic heat accumulation exceeds heat dissipation; a thermal imbalance that compromises female reproduction. This study investigated the hypothesis that HS alters the ovarian proteome and negatively impacts proteins engaged with insulin signaling, inflammation, and ovarian function. Prepubertal gilts (n = 19) were assigned to one of three environmental groups: thermal neutral with ad libitum feed intake (TN; n = 6), thermal neutral pair-fed (PF; n = 6), or HS (n = 7). For 7 d, HS gilts were exposed to 12-h cyclic temperatures of 35.0 ± 0.2 °C and 32.2 ± 0.1 °C, while TN and PF gilts were housed at 21.0 ± 0.1 °C. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) was performed on ovarian protein homogenates. Relative to TN gilts, 178 proteins were altered (P ≤ 0.05, log2foldchange ≥ 1) by HS, with 76 increased and 102 decreased. STRING gene ontology classified and identified 45 biological processes including those associated with chaperone protein refolding, cytoplasmic translational initiation, and immune activation; with a protein-protein interaction web network of 158 nodes and 563 edges connected based on protein function (FDR ≤ 0.05). Relative to PF, HS altered 330 proteins (P ≤ 0.05, log2foldchange ≥ 1), with 151 increased and 179 decreased. Fifty-seven biological pathways associated with protein function and assembly, RNA processing, and metabolic processes were identified, with a protein-protein interaction network of 303 nodes and 1,606 edges. Comparing HS with both the TN and PF treatments, 72 ovarian proteins were consistently altered by HS with 68 nodes and 104 edges, with biological pathways associated with translation and gene expression. This indicates that HS alters the ovarian proteome and multiple biological pathways and systems in prepubertal gilts; changes that potentially contribute to female infertility.
Collapse
Affiliation(s)
- Crystal M Roach
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Edith J Mayorga
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Lance H Baumgard
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Jason W Ross
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Aileen F Keating
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
15
|
Roach CM, Mayorga EJ, Baumgard LH, Ross JW, Keating AF. Zearalenone exposure differentially affects the ovarian proteome in pre-pubertal gilts during thermal neutral and heat stress conditions. J Anim Sci 2024; 102:skae115. [PMID: 38666409 PMCID: PMC11217906 DOI: 10.1093/jas/skae115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 04/23/2024] [Indexed: 07/04/2024] Open
Abstract
Zearalenone (ZEN), a nonsteroidal estrogenic mycotoxin, causes endocrine disruption and porcine reproductive dysfunction. Heat stress (HS) occurs when exogenous and metabolic heat accumulation exceeds heat dissipation. Independently, HS and ZEN both compromise swine reproduction; thus, the hypothesis investigated was two-pronged: that ZEN exposure would alter the ovarian proteome and that these effects would differ in thermal neutral (TN) and HS pigs. Pre-pubertal gilts (n = 38) were fed ad libitum and assigned to either (TN: 21.0 ± 0.1 °C) or HS (12 h cyclic temperatures of 35.0 ± 0.2 °C and 32.2 ± 0.1 °C). Within the TN group, a subset of pigs were pair-fed (PF) to the amount of feed that the HS gilts consumed to eliminate the confounding effects of dissimilar nutrient intake. All gilts orally received a vehicle control (CT) or ZEN (40 μg/kg/BW) resulting in six treatment groups: thermoneutral (TN) vehicle control (TC; n = 6); TN ZEN (TZ; n = 6); PF vehicle control (PC; n = 6); PF ZEN (PZ; n = 6); HS vehicle control (HC; n = 7); or HS ZEN (HZ; n = 7) for 7 d. When compared to the TC pigs, TZ pigs had 45 increased and 39 decreased proteins (P ≤ 0.05). In the HZ pigs, 47 proteins were increased and 61 were decreased (P ≤ 0.05). Exposure to ZEN during TN conditions altered sec61 translocon complex (40%), rough endoplasmic reticulum membrane (8.2%), and proteasome complex (5.4%), asparagine metabolic process (0.60%), aspartate family amino acid metabolic process (0.14%), and cellular amide metabolic process (0.02%) pathways. During HS, ZEN affected cellular pathways associated with proteasome core complex alpha subunit complex (0.23%), fibrillar collagen trimer (0.14%), proteasome complex (0.05%), and spliceosomal complex (0.03%). Thus, these data identify ovarian pathways altered by ZEN exposure and suggest that the molecular targets of ZEN differ in TN and HS pigs.
Collapse
Affiliation(s)
- Crystal M Roach
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Edith J Mayorga
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Lance H Baumgard
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Jason W Ross
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Aileen F Keating
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
16
|
Rudolph TE, Roths M, Freestone AD, White-Springer SH, Rhoads RP, Baumgard LH, Selsby JT. Heat stress alters hematological parameters in barrows and gilts. J Anim Sci 2024; 102:skae123. [PMID: 38706303 PMCID: PMC11141298 DOI: 10.1093/jas/skae123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 05/02/2024] [Indexed: 05/07/2024] Open
Abstract
The purpose of this investigation was to establish the role biological sex plays in circulating factors following heat stress (HS). Barrows and gilts (36.8 ± 3.7 kg body weight) were kept in either thermoneutral (TN; 20.8 ± 1.6 °C; 62.0% ± 4.7% relative humidity; n = 8/sex) conditions or exposed to HS (39.4 ± 0.6 °C; 33.7% ± 6.3% relative humidity) for either 1 (HS1; n = 8/sex) or 7 (HS7; n = 8/sex) d. Circulating glucose decreased as a main effect of the environment (P = 0.03). Circulating non-esterified fatty acid (NEFA) had an environment × sex interaction (P < 0.01) as HS1 barrows had increased NEFA compared to HS1 gilts (P = 0.01) and NEFA from HS7 gilts increased compared to HS1 gilts (P = 0.02) and HS7 barrows (P = 0.04). Cortisol, insulin, glucagon, T3, and T4 were reduced as a main effect of environment (P ≤ 0.01). Creatinine was increased in HS1 and HS7 animals compared to TN (P ≤ 0.01), indicative of decreased glomerular filtration rate. White blood cell populations exhibited differential patterns based on sex and time. Neutrophils and lymphocytes had an environment × sex interaction (P ≤ 0.05) as circulating neutrophils were increased in HS1 barrows compared to TN and HS7 barrows, and HS1 gilts (P ≤ 0.01) and HS7 barrows had less neutrophils compared to TN barrows (P = 0.01), whereas they remained similar in gilts. In contrast, barrow lymphocyte numbers were similar between groups, but in HS7 gilts they were decreased compared to TN and HS1 gilts (P ≤ 0.04). In total, these data demonstrate that HS alters a host of circulating factors and that biological sex mediates, at least in part, the physiological response to HS.
Collapse
Affiliation(s)
- Tori E Rudolph
- Department of Animal Science, Iowa State University, Ames, IA, 50010, USA
| | - Melissa Roths
- Department of Animal Science, Iowa State University, Ames, IA, 50010, USA
| | - Alyssa D Freestone
- Department of Animal Science, Iowa State University, Ames, IA, 50010, USA
| | - Sarah H White-Springer
- Department of Animal Science, Texas A&M University and Texas A&M AgriLife Research, College Station, TX, 77843, USA
- Department of Kinesiology and Sport Management, Texas A&M University, College Station, TX, 77843, USA
| | - Robert P Rhoads
- School of Animal Sciences, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Lance H Baumgard
- Department of Animal Science, Iowa State University, Ames, IA, 50010, USA
| | - Joshua T Selsby
- Department of Animal Science, Iowa State University, Ames, IA, 50010, USA
| |
Collapse
|
17
|
Roach CM, Mayorga EJ, Baumgard LH, Ross JW, Keating AF. Phenotypic, endocrinological, and metabolic effects of zearalenone exposure and additive effect of heat stress in prepubertal female pigs. J Therm Biol 2024; 119:103742. [PMID: 38056360 DOI: 10.1016/j.jtherbio.2023.103742] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 09/25/2023] [Accepted: 10/21/2023] [Indexed: 12/08/2023]
Abstract
Independently, both heat stress (HS) and zearalenone (ZEN) compromise female reproduction, thus the hypothesis that ZEN would affect phenotypic, endocrine, and metabolic parameters in pigs with a synergistic and/or additive impact of HS was investigated. Prepubertal gilts (n = 6-7) were assigned to: thermoneutral (TN) vehicle control (TC; n = 6); TN ZEN (40 μg/kg; TZ; n = 6); pair-fed (PF; n = 6) vehicle control (PC; n = 6); PF ZEN (40 μg/kg; PZ; n = 6); HS vehicle control (HC; n = 7); and HS ZEN (40 μg/kg; HZ; n = 7) and experienced either constant 21.0 ± 0.10 °C (TN and PF) or 35.0 ± 0.2 °C (12 h) and 32.2 ± 0.1 °C (12 h) to induce HS for 7 d. Elevated rectal temperature (P < 0.01) and respiration rate (P < 0.01) confirmed induction of HS. Rectal temperature was decreased (P = 0.03) by ZEN. Heat stress decreased (P < 0.01) feed intake, body weight, and average daily gain, with absence of a ZEN effect (P > 0.22). White blood cells, hematocrit, and lymphocytes decreased (P < 0.04) with HS. Prolactin increased (P < 0.01) in PC and PZ and increased in HZ females (P < 0.01). 17β-estradiol reduced (P < 0.01) in HC and increased in TZ females (P = 0.03). Serum metabolites were altered by both HS and ZEN. Neither HS nor ZEN impacted ovary weight, uterus weight, teat size or vulva area in TN and PF treatments, although ZEN increased vulva area (P = 0.02) in HS females. Thus, ZEN and HS, independently and additively, altered blood composition, impacted the serum endocrine and metabolic profile and increased vulva size in prepubertal females, potentially contributing to infertility.
Collapse
Affiliation(s)
- Crystal M Roach
- Department of Animal Science, Iowa State University, Ames, IA, 50011, USA
| | - Edith J Mayorga
- Department of Animal Science, Iowa State University, Ames, IA, 50011, USA
| | - Lance H Baumgard
- Department of Animal Science, Iowa State University, Ames, IA, 50011, USA
| | - Jason W Ross
- Department of Animal Science, Iowa State University, Ames, IA, 50011, USA
| | - Aileen F Keating
- Department of Animal Science, Iowa State University, Ames, IA, 50011, USA.
| |
Collapse
|
18
|
Sánchez-Villalba E, Corral-March EA, Valenzuela-Melendres M, Zamorano-García L, Celaya-Michel H, Ochoa-Meza A, González-Ríos H, Barrera-Silva MÁ. Chromium Methionine and Ractopamine Supplementation in Summer Diets for Grower-Finisher Pigs Reared under Heat Stress. Animals (Basel) 2023; 13:2671. [PMID: 37627462 PMCID: PMC10451215 DOI: 10.3390/ani13162671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/07/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
This study aimed to determine the effects of the dietary supplementation of chromium methionine (CrMet) and ractopamine (RAC) on pigs in the growing-finishing stage under heat stress. The parameters evaluated included productive behavior, blood components, carcass characteristics, organ weight, and meat quality. This study was conducted during the summer season in Sonora, Mexico. The treatments included: (1) control diet (CON), a base diet (BD) formulated to satisfy the nutritional requirements of pigs; (2) RAC, BD plus 10 ppm RAC supplemented during the last 34 days of the study; (3) CrMet-S, BD supplemented with 0.8 ppm of Cr from CrMet during the last 34 days; and (4) CrMet-L, BD supplemented with 0.8 ppm of Cr from CrMet for an 81 d period. RAC supplementation improved the productive behavior and main carcass characteristics of the pigs compared with CON. However, RAC and CrMet supplementation during the last 34 days showed similar results in terms of weight gain, carcass quality, blood components, organ weight, and meat quality. The addition of CrMet-S had a moderate (although not significant) increase in productive performance and carcass weight. These findings are encouraging, as they suggest that CrMet may be a potential alternative for growth promotion. However, more research is needed.
Collapse
Affiliation(s)
- Esther Sánchez-Villalba
- Departamento de Agricultura y Ganadería, Universidad de Sonora, Carretera a Bahía de Kino Km. 21, Hermosillo 83000, Mexico; (E.S.-V.); (H.C.-M.); (A.O.-M.)
| | - Eileen Aglahe Corral-March
- Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD, A.C.), Carretera a la Victoria Km. 0.6, Hermosillo 83304, Mexico; (E.A.C.-M.); (M.V.-M.); (L.Z.-G.)
| | - Martín Valenzuela-Melendres
- Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD, A.C.), Carretera a la Victoria Km. 0.6, Hermosillo 83304, Mexico; (E.A.C.-M.); (M.V.-M.); (L.Z.-G.)
| | - Libertad Zamorano-García
- Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD, A.C.), Carretera a la Victoria Km. 0.6, Hermosillo 83304, Mexico; (E.A.C.-M.); (M.V.-M.); (L.Z.-G.)
| | - Hernán Celaya-Michel
- Departamento de Agricultura y Ganadería, Universidad de Sonora, Carretera a Bahía de Kino Km. 21, Hermosillo 83000, Mexico; (E.S.-V.); (H.C.-M.); (A.O.-M.)
| | - Andrés Ochoa-Meza
- Departamento de Agricultura y Ganadería, Universidad de Sonora, Carretera a Bahía de Kino Km. 21, Hermosillo 83000, Mexico; (E.S.-V.); (H.C.-M.); (A.O.-M.)
| | - Humberto González-Ríos
- Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD, A.C.), Carretera a la Victoria Km. 0.6, Hermosillo 83304, Mexico; (E.A.C.-M.); (M.V.-M.); (L.Z.-G.)
| | - Miguel Ángel Barrera-Silva
- Departamento de Agricultura y Ganadería, Universidad de Sonora, Carretera a Bahía de Kino Km. 21, Hermosillo 83000, Mexico; (E.S.-V.); (H.C.-M.); (A.O.-M.)
| |
Collapse
|
19
|
Zhu X, Zhang J, Li M, Hou X, Liu A, Dong X, Wang W, Xing Q, Huang X, Wang S, Hu J, Bao Z. Cardiac performance and heart gene network provide dynamic responses of bay scallop Argopecten irradians irradians exposure to marine heatwaves. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 882:163594. [PMID: 37094688 DOI: 10.1016/j.scitotenv.2023.163594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/13/2023] [Accepted: 04/15/2023] [Indexed: 05/03/2023]
Abstract
The increased frequency of marine heat waves (MHWs) caused by global climate change is predicted to threaten the survival of economic bivalves, therefore having severely adverse effects on local ecological communities and aquaculture production. However, the study of scallops facing MHWs is still scarce, particularly in the scallop Argopecten irradians irradians, which has a significant share of "blue foods" in northern China. In the present study, bay scallop heart was selected to detect its cardiac performance, oxidative impairment and dynamic molecular responses, accompanied by assessing survival variations of individuals in the simulated scenario of MWHs (32 °C) with different time points (0 h, 6 h, 12 h, 24 h, 3 d, 6 d and 10 d). Notably, cardiac indices heart rate (HR), heart amplitude (HA), rate-amplitude product (RAP) and antioxidant enzyme activities superoxide dismutase (SOD) and catalase (CAT) all peaked at 24 h but sharply dropped on 3 d, coinciding with mortality. Transcriptome analysis revealed that the heart actively defended against heat stress at the acute stage (<24 h) via energy supply, misfolded proteins correction and enhanced signal transduction, whereas regulation of the defense response and apoptotic process combined with twice transcription initiation were the dominant responses at the chronic stage (3-10 d). In particular, HSP70 (heat shock protein 70), HSP90 and CALR (calreticulin) in the endoplasmic reticulum were identified as the hub genes (top 5 %) in the HR-associated module via WGCNA (weighted gene co-expression network analysis) trait-module analysis, followed by characterization of their family members and diverse expression patterns under heat exposure. Furthermore, RNAi-mediated knockdown of CALR expression (after 24 h) significantly weakened the thermotolerance of scallops, as evidenced by a drop of 1.31 °C in ABT (Arrhenius break temperature) between the siRNA-injected group and the control group. Our findings elucidated the dynamic molecular responses at the transcriptome level and verified the cardiac functions of CALR in bay scallops confronted with stimulated MHWs.
Collapse
Affiliation(s)
- Xinghai Zhu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Junhao Zhang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Moli Li
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Xiujiang Hou
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Ancheng Liu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Xuecheng Dong
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Wen Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Qiang Xing
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China.
| | - Xiaoting Huang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Shi Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China; Fang Zongxi Center for Marine Evo Devo, Ocean University of China, Qingdao, China
| | - Jingjie Hu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China; Laboratory of Tropical Marine Germplasm Resources and Breeding Engineering, Sanya Oceanographic Institution of the Ocean University of China (SOI-OUC), Sanya, China
| | - Zhenmin Bao
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| |
Collapse
|
20
|
McConn BR, Schinckel AP, Robbins L, Gaskill BN, Green-Miller AR, Lay DC, Johnson JS. A behavior and physiology-based decision support tool to predict thermal comfort and stress in non-pregnant, mid-gestation, and late-gestation sows. J Anim Sci Biotechnol 2022; 13:135. [PMID: 36496420 PMCID: PMC9737732 DOI: 10.1186/s40104-022-00789-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 10/03/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Although thermal indices have been proposed for swine, none to our knowledge differentiate by reproductive stage or predict thermal comfort using behavioral and physiological data. The study objective was to develop a behavior and physiology-based decision support tool to predict thermal comfort and stress in multiparous (3.28 ± 0.81) non-pregnant (n = 11), mid-gestation (n = 13), and late-gestation (n = 12) sows. RESULTS Regression analyses were performed using PROC MIXED in SAS 9.4 to determine the optimal environmental indicator [dry bulb temperature (TDB) and dew point] of heat stress (HS) in non-pregnant, mid-gestation, and late-gestation sows with respiration rate (RR) and body temperature (TB) successively used as the dependent variable in a cubic function. A linear relationship was observed for skin temperature (TS) indicating that TDB rather than the sow HS response impacted TS and so TS was excluded from further analyses. Reproductive stage was significant for all analyses (P < 0.05). Heat stress thresholds for each reproductive stage were calculated using the inflections points of RR for mild HS and TB for moderate and severe HS. Mild HS inflection points differed for non-pregnant, mid-gestation, and late gestation sows and occurred at 25.5, 25.1, and 24.0 °C, respectively. Moderate HS inflection points differed for non-pregnant, mid-gestation, and late gestation sows and occurred at 28.1, 27.8, and 25.5 °C, respectively. Severe HS inflection points were similar for non-pregnant and mid-gestation sows (32.9 °C) but differed for late-gestation sows (30.8 °C). These data were integrated with previously collected behavioral thermal preference data to estimate the TDB that non-pregnant, mid-gestation, and late-gestation sows found to be cool (TDB < TDB preference range), comfortable (TDB = TDB preference range), and warm (TDB preference range < TDB < mild HS). CONCLUSIONS The results of this study provide valuable information about thermal comfort and thermal stress thresholds in sows at three reproductive stages. The development of a behavior and physiology-based decision support tool to predict thermal comfort and stress in non-pregnant, mid-gestation, and late-gestation sows is expected to provide swine producers with a more accurate means of managing sow environments.
Collapse
Affiliation(s)
- Betty R. McConn
- Oak Ridge Institute for Science and Education, Oak Ridge, TN 37830 USA
| | - Allan P. Schinckel
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907 USA
| | - Lindsey Robbins
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907 USA
| | - Brianna N. Gaskill
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907 USA
| | - Angela R. Green-Miller
- Department of Agricultural and Biological Engineering, University of Illinois, Urbana, IL 61801 USA
| | - Donald C. Lay
- USDA-ARS Livestock Behavior Research Unit, West Lafayette, IN 47907 USA
| | - Jay S. Johnson
- USDA-ARS Livestock Behavior Research Unit, West Lafayette, IN 47907 USA
| |
Collapse
|
21
|
An JS, Wang GL, Wang DM, Yang YQ, Wu JS, Zhao YQ, Gong S, Tan JH. Hypothalamic-Pituitary-Adrenal Hormones Impair Pig Fertilization and Preimplantation Embryo Development via Inducing Oviductal Epithelial Apoptosis: An In Vitro Study. Cells 2022; 11:cells11233891. [PMID: 36497149 PMCID: PMC9740987 DOI: 10.3390/cells11233891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/27/2022] [Accepted: 11/30/2022] [Indexed: 12/03/2022] Open
Abstract
Previous studies show that stressful events after ovulation in sows significantly impaired the embryo cleavage with a significant elevation of blood cortisol. However, the effects of corticotropin-releasing hormone (CRH), adrenocorticotropic hormone (ACTH) and cortisol on fertilization and embryo development remain to be specified, and whether they damage pig embryos directly or indirectly is unclear. This study demonstrated that embryo development was unaffected when pig parthenotes were cultured with different concentrations of CRH/ACTH/cortisol. However, embryo development was significantly impaired when the embryos were cocultured with pig oviductal epithelial cells (OECs) in the presence of CRH/cortisol or cultured in medium that was conditioned with CRH/cortisol-pretreated OECs (CRH/cortisol-CM). Fertilization in CRH/cortisol-CM significantly increased the rates of polyspermy. CRH and cortisol induced apoptosis of OECs through FAS and TNFα signaling. The apoptotic OECs produced less growth factors but more FASL and TNFα, which induced apoptosis in embryos. Pig embryos were not sensitive to CRH because they expressed no CRH receptor but the CRH-binding protein, and they were tolerant to cortisol because they expressed more 11-beta hydroxysteroid dehydrogenase 2 (HSD11B2) than HSD11B1. When used at a stress-induced physiological concentration, while culture with either CRH or cortisol alone showed no effect, culture with both significantly increased apoptosis in OECs. In conclusion, CRH and cortisol impair pig fertilization and preimplantation embryo development indirectly by inducing OEC apoptosis via the activation of the FAS and TNFα systems. ACTH did not show any detrimental effect on pig embryos, nor OECs.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Shuai Gong
- Correspondence: (S.G.); (J.-H.T.); Tel.: +86-0538-8249616 (S.G. & J.-H.T.); Fax: +86-0538-8241419 (S.G. & J.-H.T.)
| | - Jing-He Tan
- Correspondence: (S.G.); (J.-H.T.); Tel.: +86-0538-8249616 (S.G. & J.-H.T.); Fax: +86-0538-8241419 (S.G. & J.-H.T.)
| |
Collapse
|
22
|
Brito AA, da Silva NAM, Alvarenga Dias ALN, Nascimento MRBDM. Heat wave exposure impairs reproductive performance in primiparous sows and gilts in a tropical environment. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2022; 66:2417-2424. [PMID: 36264504 DOI: 10.1007/s00484-022-02365-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 08/16/2022] [Accepted: 09/09/2022] [Indexed: 06/16/2023]
Abstract
We studied the effects of heat waves (HW), defined as three consecutive days with an ambient temperature ≥ 25 °C and a temperature and humidity index (THI) > 74, on the reproductive performance of sows. Meteorological data were obtained from the National Institute of Meteorology and reproductive data from a commercial farm with 51,578 inseminations and 49,103 pregnancies from September 5, 2013, to July 12, 2019. Sows were divided into the following groups according to the parity order: group 1 (sows that did not experience HW on the day of insemination) and group 2 (sows exposed to HW on the day of insemination). The percentage of days that pregnant sows were exposed to HW was calculated as 0 to 25% (1), 26 to 50% (2), 51 to 75% (3), and > 75% (4). Out of a total of 2137 days, there were 160 HW and more than 10 HW per month, except in May, June, and July. Gilts in group 2 showed a decrease in the percentage of gestation (98.21% and 98.78%, respectively, P = 0.0267) and the percentage of births compared with those in group 1 (95.53% and 96.61, respectively, P = 0.0065). Primiparous sows in group 2 had a higher percentage of abortions than gilts in group 1 (3.20% and 2.42%, respectively; P = 0.0334). Sows exposed to more than 50% HW during gestation produced more mummified piglets than sows exposed to less than 50% HW. The number of stillborn piglets was higher in sows exposed to temperatures above 25% HW during gestation. The occurrence of heat waves in gilts and primiparous sows impairs reproductive performance.
Collapse
Affiliation(s)
- Amanda Aparecida Brito
- Faculty of Veterinary Medicine (FAMEV), Federal University of Uberlândia (UFU), Uberlândia, Minas Gerais, Brazil
| | | | | | | |
Collapse
|
23
|
Heat stress in pigs and broilers: role of gut dysbiosis in the impairment of the gut-liver axis and restoration of these effects by probiotics, prebiotics and synbiotics. J Anim Sci Biotechnol 2022; 13:126. [PMCID: PMC9673442 DOI: 10.1186/s40104-022-00783-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 09/14/2022] [Indexed: 11/19/2022] Open
Abstract
AbstractHeat stress is one of the most challenging stressors for animal production due to high economic losses resulting from impaired animal’s productivity, health and welfare. Despite the fact that all farm animal species are susceptible to heat stress, birds and pigs are particularly sensitive to heat stress due to either lacking or non-functional sweat glands. Convincing evidence in the literature exists that gut dysbiosis, a term used to describe a perturbation of commensal gut microbiota, develops in broilers and pigs under heat stress. Owing to the protective role of commensal bacteria for the gut barrier, gut dysbiosis causes a disruption of the gut barrier leading to endotoxemia, which contributes to the typical characteristics of heat stressed broilers and growing and growing-finishing pigs, such as reduced feed intake, decreased growth and reduced lean carcass weight. A substantial number of studies have shown that feeding of probiotics, prebiotics and synbiotics is an efficacious strategy to protect broilers from heat stress-induced gut barrier disruption through altering the gut microbiota and promoting all decisive structural, biochemical, and immunological elements of the intestinal barrier. In most of the available studies in heat stressed broilers, the alterations of gut microbiota and improvements of gut barrier function induced by feeding of either probiotics, prebiotics or synbiotics were accompanied by an improved productivity, health and/or welfare when compared to non-supplemented broilers exposed to heat stress. These findings indicate that the restoration of gut homeostasis and function is a key target for dietary interventions aiming to provide at least partial protection of broilers from the detrimental impact of heat stress conditions. Despite the fact that the number of studies dealing with the same feeding strategy in heat stressed pigs is limited, the available few studies suggest that feeding of probiotics might also be a suitable approach to enhance productivity, health and welfare in pigs kept under heat stress conditions.
Collapse
|
24
|
‘Can They Take the Heat?’—The Egyptian Climate and Its Effects on Livestock. Animals (Basel) 2022; 12:ani12151937. [PMID: 35953926 PMCID: PMC9367484 DOI: 10.3390/ani12151937] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/23/2022] [Accepted: 07/26/2022] [Indexed: 11/17/2022] Open
Abstract
Egypt already has conditions in summer that cause heat stress for livestock, and predicted climate changes suggest that these will be exacerbated over the course of this century. As well, extreme climatic events make the mitigation of climate change difficult but important to understand. Apart from neonates, farm animals have upper critical temperatures in the region of 25–30 °C, whereas temperatures in summer regularly exceed 40 °C for prolonged periods. The temperature and humidity data were collected half hourly to calculate Temperature Humidity Indices and demonstrate that Egyptian livestock at two centers of livestock production in the country would experience heat stress in summer for extended periods of each day. The impact of rising temperatures on livestock in Egypt was reviewed, where extensive resources to mitigate the impact are not often available. It was found that, although there are some prospects to mitigate some heat stress, by using agroforestry systems of production for example, these are unlikely to have a major impact, and reduced food security may ensue over the course of this century.
Collapse
|
25
|
Adur MK, Seibert JT, Romoser MR, Bidne KL, Baumgard LH, Keating AF, Ross JW. Porcine endometrial heat shock proteins are differentially influenced by pregnancy status, heat stress, and altrenogest supplementation during the peri-implantation period. J Anim Sci 2022; 100:6620802. [PMID: 35772767 PMCID: PMC9246672 DOI: 10.1093/jas/skac129] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 04/08/2022] [Indexed: 12/11/2022] Open
Abstract
Heat stress (HS) deleteriously affects multiple components of porcine reproduction and is causal to seasonal infertility. Environment-induced hyperthermia causes a HS response (HSR) typically characterized by increased abundance of intracellular heat shock proteins (HSP). Gilts exposed to HS during the peri-implantation period have compromised embryo survival, however if (or how) HS disrupts the porcine endometrium is not understood. Study objectives were to evaluate the endometrial HSP abundance in response to HS during this period and assess the effect of oral progestin (altrenogest; ALT) supplementation. Postpubertal gilts (n = 42) were artificially inseminated during behavioral estrus (n = 28) or were kept cyclic (n = 14), and randomly assigned to thermal neutral (TN; 21 ± 1 °C) or diurnal HS (35 ± 1 °C for 12 h/31.6 ± 1 °C for 12 h) conditions from day 3 to 12 postestrus (dpe). Seven of the inseminated gilts from each thermal treatment group received ALT (15 mg/d) during this period. Using quantitative PCR, transcript abundance of HSP family A (Hsp70) member 1A (HSPA1A, P = 0.001) and member 6 (HSPA6, P < 0.001), and HSP family B (small) member 8 (HSB8, P = 0.001) were increased while HSP family D (Hsp60) member 1 (HSPD1, P = 0.01) was decreased in the endometrium of pregnant gilts compared to the cyclic gilts. Protein abundance of HSPA1A decreased (P = 0.03) in pregnant gilt endometrium due to HS, while HSP family B (small) member 1 (HSPB1) increased (P = 0.01) due to HS. Oral ALT supplementation during HS reduced the transcript abundance of HSP90α family class B member 1 (HSP90AB1, P = 0.04); but HS increased HSP90AB1 (P = 0.001), HSPA1A (P = 0.02), and HSPA6 (P = 0.04) transcript abundance irrespective of ALT. ALT supplementation decreased HSP90α family class A member 1 (HSP90AA1, P = 0.001) protein abundance, irrespective of thermal environment, whereas ALT only decreased HSPA6 (P = 0.02) protein abundance in TN gilts. These results indicate a notable shift of HSP in the porcine endometrium during the peri-implantation period in response to pregnancy status and heat stress.
Collapse
Affiliation(s)
- Malavika K Adur
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Jacob T Seibert
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Matthew R Romoser
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Katie L Bidne
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Lance H Baumgard
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Aileen F Keating
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Jason W Ross
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
26
|
Roach CM, Bidne KL, Romoser MR, Ross JW, Baumgard LH, Keating AF. Impact of heat stress on prolactin-mediated ovarian JAK-STAT signaling in postpubertal gilts. J Anim Sci 2022; 100:6620801. [PMID: 35772766 PMCID: PMC9246670 DOI: 10.1093/jas/skac118] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 04/08/2022] [Indexed: 12/20/2022] Open
Abstract
Heat stress (HS) compromises almost every aspect of animal agriculture including reproduction. In pigs, this infecundity is referred to as seasonal infertility (SI), a phenotype including ovarian dysfunction. In multiple species, HS-induced hyperprolactinemia has been described; hence, our study objectives were to characterize and compare HS effects on circulating prolactin (PRL) and ovarian Janus kinase/signal transducer and activator of transcription (JAK-STAT) signaling during the follicular (FOL) or luteal (LUT) phases of the estrous cycle in postpubertal gilts. Gilts were estrus synchronized using altrenogest and environmental treatments began immediately after altrenogest withdrawal. For the FOL study: postpubertal gilts were allocated to constant thermoneutral (TN; n = 6; 20 ± 1.2 °C) or cyclical HS (n = 6; 25 to 32 ± 1.2 °C) conditions for 5 d. In the LUT study: postpubertal gilts were assigned to either TN (n = 7; 20 ± 2.6 °C) or cyclical HS (n = 7; 32 to 35 ± 2.6 °C) conditions from 2 to 12 days postestrus (dpe). Blood was collected by jugular venipuncture for PRL quantification on day 5 in the FOL and on day 0 and day 12 in the LUT gilts. Ovaries and corpora lutea (CL) were obtained from euthanized FOL and LUT gilts on day 5 and day 12, respectively. Western blotting was performed to quantify prolactin receptor (PRLR) and JAK/STAT pathway protein abundance. In the FOL phase, no difference (P = 0.20) in circulating PRL between thermal groups was observed. There was no effect (P ≥ 0.34) of HS on PRLR, signal transducer and activator of transcription 3 (STAT3), signal transducer and activator of transcription 5α (STAT5α), and phosphorylated signal transducer and activator of transcription α/β tyrosine 694/699 (pSTAT5α/βTyr694/699) abundance and Janus kinase 2 (JAK2), phosphorylated janus kinase 2 tyrosine 1007/1008 (pJAK2Tyr1007/1008), STAT1, phosphorylated signal transducer and activator of transcription 1 tyrosine 701 (pSTAT1Tyr701), phosphorylated signal transducer and activator of transcription 1 serine 727 (pSTAT1Ser727), and phosphorylated signal transducer and activator of transcription 3 tyrosine 705 (pSTAT3Tyr705) were undetectable in FOL gilt ovaries. Ovarian pSTAT5α/βTyr694/699 abundance tended to moderately increase (4%; P = 0.07) in FOL gilts by HS. In the LUT phase, circulating PRL increased progressively from 2 to 12 dpe, but no thermal treatment-induced difference (P = 0.37) was noted. There was no effect (P ≥ 0.16) of HS on CL abundance of PRLR, pJAK2Tyr1007/1008, JAK2, STAT1, pSTAT1Tyr701, pSTAT1Ser727, pSTAT3Tyr705, STAT5α, or pSTAT5α/βTyr694/699. In LUT phase, CL STAT3 abundance was increased (11%; P < 0.03) by HS. There was no impact of HS (P ≥ 0.76) on levels of pJAK2Tyr1007/1008 and pSTAT5α/βTyr694/699 in LUT gilts; however, the CL pSTAT3Tyr705:STAT3 ratio tended to be decreased (P = 0.10) due to HS. These results indicate an HS-induced estrous cycle-stage-dependent effect on the ovarian JAK/STAT pathway, establishing a potential role for this signaling pathway as a potential contributor to SI.
Collapse
Affiliation(s)
- Crystal M Roach
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Katie L Bidne
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Matthew R Romoser
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Jason W Ross
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Lance H Baumgard
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Aileen F Keating
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
27
|
Chen L, Wu H, Li Y, Feng X, Zhu S, Xie K, Wu X, Sun Z, Shu G, Wang S, Gao P, Zhu X, Zhu C, Jiang Q, Wang L. Corticotropin-releasing factor receptor type 2 in the midbrain critically contributes to the hedonic feeding behavior of mice under heat stress. Biochem Biophys Res Commun 2022; 602:77-83. [DOI: 10.1016/j.bbrc.2022.02.109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 01/23/2022] [Accepted: 02/26/2022] [Indexed: 11/26/2022]
|
28
|
Risha MA, Ali A, Siengdee P, Trakooljul N, Dannenberger D, Wimmers K, Ponsuksili S. Insights into molecular pathways and fatty acid membrane composition during the temperature stress response in the murine C2C12 cell model. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:151019. [PMID: 34662617 DOI: 10.1016/j.scitotenv.2021.151019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 06/13/2023]
Abstract
Daily and seasonal temperature fluctuations are inevitable due to climate change, which highlights the importance of studying the detrimental effects of temperature fluctuations on the health, productivity, and product quality of farm animals. Muscle membrane composition and the molecular signals are vital for muscle cell differentiation and muscle growth, but their response to temperature stress is not well characterized. Temperature changes can lead to modification of membrane components of the cell, which may affect its surroundings and intracellular signaling pathways. Using C2C12 myoblast cells as a model of skeletal muscle development, this study was designed to investigate the effects of high temperature (39 °C and 41 °C) and low temperature (35 °C) on molecular pathways in the cells as well as the cell membrane fatty acid composition. Our results show that several genes were differentially expressed in C2C12 cells cultured under heat or cold stress, and these genes were enriched important KEGG pathways including PI3K-Akt signaling pathway, lysosome and HIF- signaling pathway, Wnt signaling pathway and AMPK signaling pathway. Our analysis further reveals that several membrane transporters and genes involved in lipid metabolism and fatty acid elongation were also differentially expressed in C2C12 cells cultured under high or low temperature. Additionally, temperature stress shifts the fatty acid composition in the cell membranes, including the proportion of saturated, monounsaturated and polyunsaturated fatty acids. This study revealed an interference between fatty acid composition in the membranes and changing molecular pathways including lipid metabolism and fatty acids elongation mediated under thermal stress. These findings will reinforce a better understanding of the adaptive mechanisms in skeletal muscle under temperature stress.
Collapse
Affiliation(s)
- Marua Abu Risha
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Genome Biology, Functional Genome Analysis Research Unit, Wilhelm-Stahl-Allee 2, D-18196 Dummerstorf, Germany
| | - Asghar Ali
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Genome Biology, Functional Genome Analysis Research Unit, Wilhelm-Stahl-Allee 2, D-18196 Dummerstorf, Germany
| | - Puntita Siengdee
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Genome Biology, Functional Genome Analysis Research Unit, Wilhelm-Stahl-Allee 2, D-18196 Dummerstorf, Germany
| | - Nares Trakooljul
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Genome Biology, Genomics Research Unit, Wilhelm-Stahl-Allee 2, D-18196 Dummerstorf, Germany
| | - Dirk Dannenberger
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Muscle Biology and Growth, Lipid metabolism and muscular adaptation workgroup, Wilhelm-Stahl-Allee 2, D-18196 Dummerstorf, Germany
| | - Klaus Wimmers
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Genome Biology, Genomics Research Unit, Wilhelm-Stahl-Allee 2, D-18196 Dummerstorf, Germany; Faculty of Agricultural and Environmental Sciences, University Rostock, 18059 Rostock, Germany
| | - Siriluck Ponsuksili
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Genome Biology, Functional Genome Analysis Research Unit, Wilhelm-Stahl-Allee 2, D-18196 Dummerstorf, Germany.
| |
Collapse
|
29
|
Abstract
Globally, the climate is changing, and this has implications for livestock. Climate affects livestock growth rates, milk and egg production, reproductive performance, morbidity, and mortality, along with feed supply. Simultaneously, livestock is a climate change driver, generating 14.5% of total anthropogenic Greenhouse Gas (GHG) emissions. Herein, we review the literature addressing climate change and livestock, covering impacts, emissions, adaptation possibilities, and mitigation strategies. While the existing literature principally focuses on ruminants, we extended the scope to include non-ruminants. We found that livestock are affected by climate change and do enhance climate change through emissions but that there are adaptation and mitigation actions that can limit the effects of climate change. We also suggest some research directions and especially find the need for work in developing country settings. In the context of climate change, adaptation measures are pivotal to sustaining the growing demand for livestock products, but often their relevance depends on local conditions. Furthermore, mitigation is key to limiting the future extent of climate change and there are a number of possible strategies.
Collapse
|
30
|
Byrd CJ, McConn BR, Gaskill BN, Schinckel AP, Green-Miller AR, Lay DC, Johnson JS. Characterizing the effect of incrementally increasing dry bulb temperature on linear and nonlinear measures of heart rate variability in nonpregnant, mid-gestation, and late-gestation sows. J Anim Sci 2022; 100:6502463. [PMID: 35020904 PMCID: PMC8827002 DOI: 10.1093/jas/skac004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 01/07/2022] [Indexed: 01/12/2023] Open
Abstract
Characterizing the sow physiological response to an increased heat load is essential for effective heat stress mitigation. The study objective was to characterize the effects of a 400-min heating episode on sow heart rate variability (HRV) at different reproductive stages. HRV is a commonly used noninvasive proxy measure of autonomic function. Twenty-seven sows were enrolled in the study according to their gestation stage at time of selection: 1) nonpregnant (NP; n = 7), 2) mid-gestation (MID; 57.3 ± 11.8 d gestation; n = 11), and 3) late-gestation (LATE; 98.8 ± 4.9 d gestation; n = 8). The HRV data utilized in the study were collected from each pig as the dry bulb temperature in the room increased incrementally from 19.84 ± 2.15 °C to 35.54 ± 0.43 °C (range: 17.1-37.5 °C) over a 400-min period. After data collection, one 5-min set of continuous heart rate data were identified per pig for each of nine temperature intervals (19-20.99, 21-22.99, 23-24.99, 25-26.99, 27-28.99, 29-30.99, 31-32.99, 33-34.99, and 35-36.99 °C). Mean inter-beat interval length (RR), standard deviation of r-r intervals (SDNN), root mean square of successive differences (RMSSD), high frequency spectral power (HF), sample entropy (SampEn), short-term detrended fluctuation analysis (DFAα1), and three measures (%REC, DET, LMEAN) derived from recurrence quantification analysis were calculated for each data set. All data were analyzed using the PROC GLIMMIX procedure in SAS 9.4. Overall, LATE sows exhibited lower RR than NP sows (P < 0.01). The standard deviation of r-r intervals and RMSSD differed between each group (P < 0.01), with LATE sows exhibiting the lowest SDNN and RMSSD and NP sows exhibiting the greatest SDNN and RMSSD. Late-gestation sows exhibited lower HF than both MID and NP sows (P < 0.0001), greater DFA values than NP sows (P = 0.05), and greater DET compared to MID sows (P = 0.001). Late-gestation also sows exhibited greater %REC and LMEAN compared to MID (P < 0.01) and NP sows (all P < 0.01). In conclusion, LATE sows exhibited indicators of greater autonomic stress throughout the heating period compared to MID and NP sows. However, temperature by treatment interactions were not detected as dry bulb increased. Future studies are needed to fully elucidate the effect of gestational stage and increasing dry bulb temperature on sow HRV.
Collapse
Affiliation(s)
- Christopher J Byrd
- Department of Animal Sciences, North Dakota State University, Fargo, ND 58103, USA,Corresponding author:
| | - Betty R McConn
- Oak Ridge Institute for Science and Education, Oak Ridge, TN 37830, USA
| | - Brianna N Gaskill
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Allan P Schinckel
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Angela R Green-Miller
- Department of Agricultural and Biological Engineering, University of Illinois, Urbana, IL 61801, USA
| | - Donald C Lay
- USDA-ARS Livestock Behavior Research Unit, West Lafayette, IN 47907, USA
| | - Jay S Johnson
- USDA-ARS Livestock Behavior Research Unit, West Lafayette, IN 47907, USA
| |
Collapse
|
31
|
Studer JM, Schweer WP, Gabler NK, Ross JW. Functions of manganese in reproduction. Anim Reprod Sci 2022; 238:106924. [DOI: 10.1016/j.anireprosci.2022.106924] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 01/07/2022] [Accepted: 01/16/2022] [Indexed: 01/08/2023]
|
32
|
Cantet JM, Yu Z, Ríus AG. Heat Stress-Mediated Activation of Immune-Inflammatory Pathways. Antibiotics (Basel) 2021; 10:antibiotics10111285. [PMID: 34827223 PMCID: PMC8615052 DOI: 10.3390/antibiotics10111285] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/09/2021] [Accepted: 10/12/2021] [Indexed: 12/23/2022] Open
Abstract
Physiological changes in animals exposed to elevated ambient temperature are characterized by the redistribution of blood toward the periphery to dissipate heat, with a consequent decline in blood flow and oxygen and nutrient supply to splanchnic tissues. Metabolic adaptations and gut dysfunction lead to oxidative stress, translocation of lumen contents, and release of proinflammatory mediators, activating a systemic inflammatory response. This review discusses the activation and development of the inflammatory response in heat-stressed models.
Collapse
|
33
|
Jeong Y, Choi Y, Kim D, Min Y, Cho E, Kim J. Effects of cooling systems on physiological responses and intestinal microflora in early gestating sows exposed to high-temperature stress. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2021; 63:904-918. [PMID: 34447966 PMCID: PMC8367400 DOI: 10.5187/jast.2021.e79] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/08/2021] [Accepted: 05/24/2021] [Indexed: 12/12/2022]
Abstract
This study was conducted to investigate the effect of cooling systems on reproductive performance, body temperature, blood metabolites, and the intestinal microbiome in early gestating sows exposed to high ambient temperature. In total, 39 pregnant sows (Landrace × Yorkshire; 2 parities) were randomly assigned to and maintained in the following three treatment groups (13 sows per group) over days 0 to 35 of pregnancy: (i) air cooling (AC; 26.87 ± 1.23°C), (ii) water-drip cooling (WC; 28.81 ± 0.91°C), and (iii) a lack of cooling with heat stress (HS; 30.72 ± 0.70°C). Backfat thickness was measured before and after HS. Feces were collected on day 0 and 35 d of the trial for microbiome analysis, whereas blood was taken at day 35 of pregnancy and analyzed. Reproductive performance and physiological responses were identified at day 35. Respiration rate along with rectal and skin temperatures were lower (p < 0.05) in the AC group than in the HS and WC groups. Serum blood urea nitrogen values were increased (p < 0.05) in the WC group compared with those measured in the AC and HS groups. Triiodothyronine was found at greater levels (p < 0.05) in the AC than in the HS group. Reproductive performance was not affected by the cooling systems. At the phylum level, fecal pathogenic Spirochaete and Euryarchaeota were found in higher numbers (p < 0.05) in all groups after HS. Similarly, at the genus level, the amount of Treponema was greater (p < 0.05) in all groups after HS. In conclusion, our results suggest that AC or WC can ameliorate or mitigate the adverse effects of HS on the physiological parameters of pregnant sows reared under high temperatures.
Collapse
Affiliation(s)
- Yongdae Jeong
- Swine Science Division, National Institute of Animal Science, Rural Development Administration, Cheonan 31000, Korea
| | - Yohan Choi
- Swine Science Division, National Institute of Animal Science, Rural Development Administration, Cheonan 31000, Korea
| | - Doowan Kim
- Swine Science Division, National Institute of Animal Science, Rural Development Administration, Cheonan 31000, Korea
| | - Yejin Min
- Swine Science Division, National Institute of Animal Science, Rural Development Administration, Cheonan 31000, Korea
| | - Eunsuk Cho
- Swine Science Division, National Institute of Animal Science, Rural Development Administration, Cheonan 31000, Korea
| | - Joeun Kim
- Swine Science Division, National Institute of Animal Science, Rural Development Administration, Cheonan 31000, Korea
| |
Collapse
|
34
|
Chen S, Yong Y, Ju X. Effect of heat stress on growth and production performance of livestock and poultry: Mechanism to prevention. J Therm Biol 2021; 99:103019. [PMID: 34420644 DOI: 10.1016/j.jtherbio.2021.103019] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 04/12/2021] [Accepted: 05/30/2021] [Indexed: 01/01/2023]
Abstract
Heat stress is a widespread phenomenon in domestic animal feeding in tropical and sub-tropical areas that are subjected to a growing negative effect in livestock and poultry due to global warming. It leads to reduced food intake, retarded growth, intestinal disequilibrium, lower reproductive performance, immunity and endocrine disorders in livestock and poultry. Many studies show that the pathogenesis of heat stress is mainly related to oxidative stress, hormone secretion disorder, cytokine imbalance, cell apoptosis, cell autophagy, and abnormal cell function. Its mechanism refers to activation of mitogen-activated protein kinase (MAPK) signaling pathway and nuclear factor kappa B (NF-κB) signaling pathway, the fluctuation of tight junction protein and heat shock protein expression, and protein epigenetic modification. This manuscript reviews the mechanism of heat stress through an insight into the digestive, reproductive, immune, and endocrine system. Lastly, the progress in prevention and control techniques of heat stress has been summarized.
Collapse
Affiliation(s)
- Shengwei Chen
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518018, China; Department of Veterinary Medicine, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Yanhong Yong
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518018, China; Department of Veterinary Medicine, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Xianghong Ju
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518018, China; Department of Veterinary Medicine, Guangdong Ocean University, Zhanjiang, 524088, China.
| |
Collapse
|
35
|
Mayorga EJ, Horst EA, Goetz BM, Rodríguez-Jiménez S, Abeyta MA, Al-Qaisi M, Lei S, Rhoads RP, Selsby JT, Baumgard LH. Rapamycin administration during an acute heat stress challenge in growing pigs. J Anim Sci 2021; 99:6265784. [PMID: 33950189 DOI: 10.1093/jas/skab145] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 04/30/2021] [Indexed: 12/16/2022] Open
Abstract
Study objectives were to determine the effects of rapamycin (Rapa) on biomarkers of metabolism and inflammation during acute heat stress (HS) in growing pigs. Crossbred barrows (n = 32; 63.5 ± 7.2 kg body weight [BW]) were blocked by initial BW and randomly assigned to 1 of 4 environmental-therapeutic treatments: 1) thermoneutral (TN) control (n = 8; TNCon), 2) TN and Rapa (n = 8; TNRapa), 3) HS control (n = 8; HSCon), or 4) HS and Rapa (n = 8; HSRapa). Following 6 d of acclimation to individual pens, pigs were enrolled in two experimental periods (P). During P1 (10 d), pigs were fed ad libitum and housed in TN conditions (21.3 ± 0.2°C). During P2 (24 h), HSCon and HSRapa pigs were exposed to constant HS (35.5 ± 0.4°C), while TNCon and TNRapa pigs remained in TN conditions. Rapamycin (0.15 mg/kg BW) was orally administered twice daily (0700 and 1800 hours) during both P1 and P2. HS increased rectal temperature and respiration rate compared to TN treatments (1.3°C and 87 breaths/min, respectively; P < 0.01). Feed intake (FI) markedly decreased in HS relative to TN treatments (64%; P < 0.01). Additionally, pigs exposed to HS lost BW (4 kg; P < 0.01), while TN pigs gained BW (0.7 kg; P < 0.01). Despite marked changes in phenotypic parameters caused by HS, circulating glucose and blood urea nitrogen did not differ among treatments (P > 0.10). However, the insulin:FI increased in HS relative to TN treatments (P = 0.04). Plasma nonesterified fatty acids (NEFA) increased in HS relative to TN treatments; although this difference was driven by increased NEFA in HSCon compared to TN and HSRapa pigs (P < 0.01). Overall, circulating white blood cells, lymphocytes, and monocytes decreased in HS compared to TN pigs (19%, 23%, and 33%, respectively; P ≤ 0.05). However, circulating neutrophils were similar across treatments (P > 0.31). The neutrophil-to-lymphocyte ratio (NLR) was increased in HS relative to TN pigs (P = 0.02); however, a tendency for reduced NLR was observed in HSRapa compared to HSCon pigs (21%; P = 0.06). Plasma C-reactive protein tended to differ across treatments (P = 0.06) and was increased in HSRapa relative to HSCon pigs (46%; P = 0.03). Circulating haptoglobin was similar between groups. In summary, pigs exposed to HS had altered phenotypic, metabolic, and leukocyte responses; however, Rapa administration had limited impact on outcomes measured herein.
Collapse
Affiliation(s)
- Edith J Mayorga
- Department of Animal Science, Iowa State University, Ames, IA 50011
| | - Erin A Horst
- Department of Animal Science, Iowa State University, Ames, IA 50011
| | - Brady M Goetz
- Department of Animal Science, Iowa State University, Ames, IA 50011
| | | | - Megan A Abeyta
- Department of Animal Science, Iowa State University, Ames, IA 50011
| | - Mohmmad Al-Qaisi
- Department of Animal Science, Iowa State University, Ames, IA 50011
| | - Samantha Lei
- Department of Animal Science, Iowa State University, Ames, IA 50011
| | - Robert P Rhoads
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Joshua T Selsby
- Department of Animal Science, Iowa State University, Ames, IA 50011
| | - Lance H Baumgard
- Department of Animal Science, Iowa State University, Ames, IA 50011
| |
Collapse
|
36
|
Cao M, Zong C, Wang X, Teng G, Zhuang Y, Lei K. Modeling of Heat Stress in Sows-Part 1: Establishment of the Prediction Model for the Equivalent Temperature Index of the Sows. Animals (Basel) 2021; 11:1472. [PMID: 34065539 PMCID: PMC8161218 DOI: 10.3390/ani11051472] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 05/14/2021] [Accepted: 05/17/2021] [Indexed: 01/31/2023] Open
Abstract
Heat stress affects the estrus time and conception rate of sows. Compared with other life stages of pigs, sows are more susceptible to heat stress because of their increased heat production. Various indicators can be found in the literature assessing the level of heat stress in pigs. However, none of them is specific to assess the sows' thermal condition. Moreover, thermal indices are mainly developed by considering partial environment parameters, and there is no interaction between the index and the animal's physiological response. Therefore, this study aims to develop a thermal index specified for sows, called equivalent temperature index for sows (ETIS), which includes parameters of air temperature, relative humidity and air velocity. Based on the heat transfer characteristics of sows, multiple regression analysis is used to combine air temperature, relative humidity and air velocity. Environmental data are used as independent variables, and physiological parameters are used as dependent variables. In 1029 sets of data, 70% of the data is used as the training set, and 30% of the data is used as the test set to create and develop a new thermal index. According to the correlation equation between ETIS and temperature-humidity index (THI), combined with the threshold of THI, ETIS was divided into thresholds. The results show that the ETIS heat stress threshold is classified as follows: suitable temperature ETIS < 33.1 °C, mild temperature 33.1 °C ≤ ETIS < 34.5 °C, moderate stress temperature 34.5 °C ≤ ETIS < 35.9 °C, and severe temperature ETIS ≥ 35.9 °C. The ETIS model can predict the sows' physiological response in a good manner. The correlation coefficients R of skin temperature was 0.82. Compared to early developed thermal indices, ETIS has the best predictive effect on skin temperature. This index could be a useful tool for assessing the thermal environment to ensure thermal comfort for sows.
Collapse
Affiliation(s)
- Mengbing Cao
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China; (M.C.); (G.T.); (Y.Z.); (K.L.)
- Key Laboratory of Agricultural Engineering in Structure and Environment, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Chao Zong
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China; (M.C.); (G.T.); (Y.Z.); (K.L.)
- Key Laboratory of Agricultural Engineering in Structure and Environment, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Xiaoshuai Wang
- College of Biosystems Engineering and Food Science, Zhejiang University, No. 866 Yuhangtang Road, Hangzhou 310058, China;
| | - Guanghui Teng
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China; (M.C.); (G.T.); (Y.Z.); (K.L.)
- Key Laboratory of Agricultural Engineering in Structure and Environment, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Yanrong Zhuang
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China; (M.C.); (G.T.); (Y.Z.); (K.L.)
- Key Laboratory of Agricultural Engineering in Structure and Environment, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Kaidong Lei
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China; (M.C.); (G.T.); (Y.Z.); (K.L.)
- Key Laboratory of Agricultural Engineering in Structure and Environment, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| |
Collapse
|
37
|
Studer JM, Kiefer ZE, Goetz BM, Keating AF, Baumgard LH, Rambo ZJ, Schweer WP, Wilson ME, Rapp C, Ross JW. Impact of manganese amino acid complex on tissue-specific trace mineral distribution and corpus luteum function in gilts. J Anim Sci 2021; 99:6274863. [PMID: 33982089 DOI: 10.1093/jas/skab155] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 05/07/2021] [Indexed: 11/14/2022] Open
Abstract
Functional corpora lutea (CL) are required for pregnancy establishment and gestational maintenance in swine, and CL function is susceptible to environmental influences. Manganese (Mn) could be critical in regulating CL function since it is a component of the antioxidant enzyme Mn superoxide dismutase (MnSOD) as well as enzymes involved in cholesterol and steroid hormone synthesis. We hypothesized that a more bioavailable dietary Mn source would increase Mn content in the CL thereby influencing luteal function during the mid-luteal phase of the estrous cycle. Postpubertal gilts (n = 32) were assigned to one of four gestation diets. The control diet (CON) met or exceeded National Research Council (2012) requirements and was formulated to contain 20 parts per million (ppm) of added Mn in the form of Mn sulfate. Three additional diets included 20 (treatment [TRT]1), 40 (TRT2), or 60 (TRT3) ppm of added Mn from a Mn-amino acid complex (Availa-Mn; Zinpro Corporation) instead of Mn sulfate. Dietary treatment began at estrus synchronization onset and continued through 12 days post estrus (dpe) of the ensuing estrous cycle. Blood samples were collected at estrus onset, which was assigned as 0 dpe, as well as 4, 8, and 12 dpe. Gilts were euthanized and tissues were collected at 12 dpe. Serum progesterone (P4) increased (P < 0.01) from 0 to 12 dpe but was unaffected by dietary treatment (P = 0.15) and there was no effect of the interaction between day and treatment (P = 0.85). Luteal Mn content increased (P ≤ 0.05) by 19%, 21%, and 24% in gilts fed TRT1, TRT2, and TRT3, respectively, compared to CON. Luteal P4 concentrations decreased (P = 0.03) 25%, 26%, and 32% in gilts fed TRT1, TRT2, and TRT3, respectively, compared to CON. Relative to CON gilts, CL calcium content decreased (P = 0.02) by 36%, 24%, and 34% for TRT1, TRT2, and TRT3 gilts, respectively. Collectively, these data support the hypothesis that feeding a more bioavailable Mn source increases Mn accumulation in CL tissue. If and how this influences CL function may be related to altered luteal P4 concentrations.
Collapse
Affiliation(s)
- Jamie M Studer
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Zoe E Kiefer
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Brady M Goetz
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Aileen F Keating
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Lance H Baumgard
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | | | | | | | | | - Jason W Ross
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
38
|
Xiong Y, Jin E, Yin Q, Che C, He S. Boron Attenuates Heat Stress-Induced Apoptosis by Inhibiting Endoplasmic Reticulum Stress in Mouse Granulosa Cells. Biol Trace Elem Res 2021; 199:611-621. [PMID: 32385716 DOI: 10.1007/s12011-020-02180-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 04/28/2020] [Indexed: 01/25/2023]
Abstract
Heat stress-induced apoptosis in granulosa cells is mediated by multiple apoptotic signaling pathways, including endoplasmic reticulum (ER) stress. Boron is a naturally occurring trace element with several cytoprotective properties. Nonetheless, the molecular mechanisms involved in the protective functions of boron in granulosa cells undergoing apoptosis caused by heat stress (HS) remain unclear. In this study, we investigated the role of boric acid, a predominant chemical form of boron, in HS-induced apoptotic damage in mouse granulosa cells (mGCs) and explored the underlying mechanisms. We found that HS treatment suppressed cell viability; increased the apoptotic rate of cells; potentiated the activity of caspase-3, a key player in the caspase-mediated apoptotic signaling pathway; and activated ER stress markers, including glucose-regulated protein 78 (GRP78) and CCAAT/enhancer-binding protein (C/EBP) homologous protein (CHOP) in mGCs. However, boric acid treatment effectively alleviated the effects of both HS-induced and thapsigargin (an ER stress agonist)-induced apoptosis, such as the enhanced activity of caspase-3 and increase in GRP78 and CHOP expression. Moreover, treatment with 4-phenylbutyrate (4-PBA), an ER stress antagonist, significantly attenuated these HS-induced adverse effects in mGCs. In addition, boric acid supplementation in the culture medium significantly restored the decreased estradiol levels in heat-treated mGCs. The administration of boric acid to female mice previously exposed to hyperthermal conditions effectively restored the levels of serum estradiol in vivo. Collectively, these findings suggest that HS induces apoptosis in mGCs via ER stress pathways and that boron has a protective effect against these adverse effects. This study provides novel insights into the benefits of using boron against heat-induced apoptosis.
Collapse
Affiliation(s)
- Yongjie Xiong
- College of Animal Science, Anhui Science and Technology University, Fengyang, 233100, Anhui, China
- Key Laboratory of the Quality and Safety Control for Pork of the Ministry of Agriculture, Anhui Science and Technology University, Fengyang, 233100, Anhui, China
| | - Erhui Jin
- College of Animal Science, Anhui Science and Technology University, Fengyang, 233100, Anhui, China
- Key Laboratory of the Quality and Safety Control for Pork of the Ministry of Agriculture, Anhui Science and Technology University, Fengyang, 233100, Anhui, China
| | - Qirun Yin
- College of Animal Science, Anhui Science and Technology University, Fengyang, 233100, Anhui, China
- Key Laboratory of the Quality and Safety Control for Pork of the Ministry of Agriculture, Anhui Science and Technology University, Fengyang, 233100, Anhui, China
| | - Chuanyan Che
- College of Animal Science, Anhui Science and Technology University, Fengyang, 233100, Anhui, China
- Key Laboratory of the Quality and Safety Control for Pork of the Ministry of Agriculture, Anhui Science and Technology University, Fengyang, 233100, Anhui, China
| | - Shaojun He
- College of Animal Science, Anhui Science and Technology University, Fengyang, 233100, Anhui, China.
- Key Laboratory of the Quality and Safety Control for Pork of the Ministry of Agriculture, Anhui Science and Technology University, Fengyang, 233100, Anhui, China.
| |
Collapse
|
39
|
Bushby EV, Dye L, Collins LM. Is Magnesium Supplementation an Effective Nutritional Method to Reduce Stress in Domestic Pigs? A Systematic Review. Front Vet Sci 2021; 7:596205. [PMID: 33511164 PMCID: PMC7835408 DOI: 10.3389/fvets.2020.596205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 11/25/2020] [Indexed: 11/23/2022] Open
Abstract
In commercial pig production, stressful events are common and can have detrimental impacts on the pig's health and welfare, as well as on the performance of the farm. Supplementary magnesium may reduce stress, and subsequent harmful and aggressive behaviors, that occur during stressful events, such as regrouping. However, reports on the efficacy of this treatment are mixed. We aimed to systematically review the studies in which magnesium was given to pigs to examine the effects on measures of stress. Of the 16 studies included in the final corpus, 10 reported at least one statistically significant beneficial effect of supplementary magnesium on reducing stress. However, two studies found that magnesium significantly increased stress suggesting supplementary dietary magnesium may be harmful in some cases. Overall, there are a limited number of studies investigating the possible effect of magnesium on reducing stress in pigs, and although results were varied, the majority found beneficial effects of supplementary magnesium.
Collapse
Affiliation(s)
- Emily V Bushby
- Faculty of Biological Sciences, School of Biology, University of Leeds, Leeds, United Kingdom
| | - Louise Dye
- School of Psychology, University of Leeds, Leeds, United Kingdom
| | - Lisa M Collins
- Faculty of Biological Sciences, School of Biology, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
40
|
Serviento AM, Labussière E, Castex M, Renaudeau D. Effect of heat stress and feeding management on growth performance and physiological responses of finishing pigs. J Anim Sci 2020; 98:skaa387. [PMID: 33277651 PMCID: PMC7772945 DOI: 10.1093/jas/skaa387] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 12/02/2020] [Indexed: 01/24/2023] Open
Abstract
This study aimed to determine whether pig responses to heat stress (HS) were directly due to heat exposure (regardless of feeding level and pattern) or were indirectly due to the reduction of feed intake (FI) and to determine if increasing feeding frequency (splitting heat increments) can improve pig response to HS. A total of 48 pigs (66.1 ± 1.7 kg) were allocated to four groups in three replicates. After 7 d in thermoneutral (TN) conditions (22 °C; period 1 [P1; day -7 to -1]), pigs were placed in either TN or HS (32 °C) conditions for 20 d (period 2 [P2; day 0 to 19]). The diet was provided either ad libitum (AL; 2 distributions/d) or pair-fed (PF8; 8 distributions/d) using HS-AL pigs as the reference group. Thus, the four experimental groups were TN-AL, HS-AL, TN-PF8, and HS-PF8. The daily ration of PF8 pigs was distributed at every 90-min intervals from 0900 to 1930 hours. Data were analyzed using the PROC MIXED procedure with replicate (n = 3), experimental group (n = 4), and their interactions as fixed effects, and the REPEATED statement was used for repeated measures data. Pigs had a similar average daily feed intake (ADFI) during P1 (P > 0.05). In P2, HS-AL and PF8 pigs had lower ADFI (-19%), average daily gain (-25%), and final body weight (-6.1 kg) than TN-AL pigs (P < 0.01). TN-AL pigs had thicker backfat than TN-PF8 pigs (P < 0.05), while the HS pigs had intermediate results. HS pigs had a higher perirenal fat percentage based on the contrast analysis between PF8 pigs (P < 0.05). Thermoregulatory responses of pigs increased with HS exposure but did not differ between HS or between TN groups (P > 0.05). For TN pigs, variation in muscle temperature (Tmuscle) depended on feeding and physical activity, while for HS pigs, Tmuscle gradually increased throughout the day. The Tmuscle of PF8 pigs increased with each additional meal but plateaued earlier for HS-PF8 than TN-PF8 pigs; an increase in Tmuscle per meal was also lower in HS-PF8 than TN-PF8 (P < 0.05). Exposure to HS decreased plasma T3 and T4 (P < 0.05) and increased plasma creatinine (P < 0.05). Between the PF8 groups, HS pigs also had a transient increase in plasma insulin on day 8 (P < 0.05). The effect of HS on FI decreased the growth rate of pigs but there are heat-induced effects, such as altered physiological responses, which might explain the direct HS effects seen in other literature especially in terms of increased adiposity. The increased feed provision frequency in the present study did not improve the HS response of pigs.
Collapse
Affiliation(s)
- Aira Maye Serviento
- PEGASE, INRAE, Institut Agro, Saint-Gilles, France
- Lallemand Animal Nutrition, Lallemand SAS Blagnac, France
| | | | - Mathieu Castex
- Lallemand Animal Nutrition, Lallemand SAS Blagnac, France
| | | |
Collapse
|
41
|
Zhao W, Liu F, Bell AW, Le HH, Cottrell JJ, Leury BJ, Green MP, Dunshea FR. Controlled elevated temperatures during early-mid gestation cause placental insufficiency and implications for fetal growth in pregnant pigs. Sci Rep 2020; 10:20677. [PMID: 33244103 PMCID: PMC7691357 DOI: 10.1038/s41598-020-77647-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 11/10/2020] [Indexed: 01/03/2023] Open
Abstract
It is known that pig offspring born from pregnant pigs exposed to elevated ambient temperatures during gestation have altered phenotypes, possibly due to placental insufficiency and impaired fetal growth. Therefore, the objective of this study was to quantify the effect of maternal heat exposure during early-mid gestation, when pig placentae grow heavily, on placental and fetal development. Fifteen pregnant pigs were allocated to thermoneutral (TN; 20 °C; n = 7) or cyclic elevated temperature conditions (ET; 28 to 33 °C; n = 8) from d40 to d60 of gestation. Following euthanasia of the pigs on d60, placental and fetal morphometry and biochemistry were measured. Compared to TN fetuses, ET fetuses had increased (P = 0.041) placental weights and a lower (P = 0.013) placental efficiency (fetal/placental weight), although fetal weights were not significantly different. Fetuses from ET pigs had reduced (P = 0.032) M. longissimus fibre number density and a thicker (P = 0.017) placental epithelial layer compared to their TN counterparts. Elevated temperatures decreased (P = 0.026) placental mRNA expression of a glucose transporter (GLUT-3) and increased (P = 0.037) placental IGF-2 mRNA expression. In conclusion, controlled elevated temperatures between d40 to d60 of gestation reduced pig placental efficiency, resulting in compensatory growth of the placentae to maintain fetal development. Placental insufficiency during early-mid gestation may have implications for fetal development, possibly causing a long-term phenotypic change of the progeny.
Collapse
Affiliation(s)
- Weicheng Zhao
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, 3010, Australia
| | - Fan Liu
- Rivalea Australia Pty Ltd, Corowa, 2646, Australia
| | - Alan W Bell
- Department of Animal Science, Cornell University, Ithaca, 14853-4801, USA
| | - Hieu H Le
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, 3010, Australia
| | - Jeremy J Cottrell
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, 3010, Australia
| | - Brian J Leury
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, 3010, Australia
| | - Mark P Green
- School of BioSciences, University of Melbourne, Parkville, 3010, Australia
| | - Frank R Dunshea
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, 3010, Australia. .,Faculty of Biological Sciences, The University of Leeds, Leeds, LS2 9JT, United Kingdom.
| |
Collapse
|
42
|
Guo W, Liu J, Yang Y, Ma H, Gong Q, Kan X, Ran X, Cao Y, Wang J, Fu S, Hu G. Rumen-bypassed tributyrin alleviates heat stress by reducing the inflammatory responses of immune cells. Poult Sci 2020; 100:348-356. [PMID: 33357699 PMCID: PMC7772712 DOI: 10.1016/j.psj.2020.10.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 09/06/2020] [Accepted: 10/06/2020] [Indexed: 12/12/2022] Open
Abstract
Heat stress (HS) in summer will seriously affect the health and performance of dairy cows. To alleviate the injury to dairy cows caused by HS, we added the rumen-bypassed tributyrin to the feed. We determined whether cows were in a heat-stressed environment by testing the temperature humidity index in the morning, at noon, and in the evening. The detection of anal temperature and respiratory frequency further proved the HS state of the dairy cows. The quantificational real time PCR results showed that tributyrin could significantly reduce the relative expression of tumor necrosis factor α, interleukin 1β, and Interleukin 6. Western blot results showed that tributyrin could alleviate the lymphocyte inflammatory response by inhibiting the mitogen-activated protein kinase and nuclear factor-кB signaling pathways. To further detect the effect of tributyrin on HS in dairy cows, routine biochemical and blood tests were carried out. The results showed that the contents of aspartate aminotransferase, total bilirubin, creatinine, albumin, and globulin were significantly reduced by tributyrin. The results showed that tributyrin could significantly alleviate the liver and kidney injury induced by heat stress in dairy cows. Moreover, tributyrin could also significantly reduce the numbers of intermediate cells and increase the level of hemoglobin. Tributyrin could also improve the performance of dairy cows. These results suggested that tributylglycerol may have a positive effect on breast health of dairy cows. In conclusion, these results indicated that tributyrin could relieve HS and increase the production performance of dairy cows by reducing the inflammatory responses of lymphocytes.
Collapse
Affiliation(s)
- Wenjin Guo
- College of Animal Science and Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Juxiong Liu
- College of Animal Science and Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Yuanxi Yang
- College of Animal Science and Veterinary Medicine, Jilin University, Changchun 130062, China
| | - He Ma
- College of Animal Science and Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Qian Gong
- College of Animal Science and Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Xingchi Kan
- College of Animal Science and Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Xin Ran
- College of Animal Science and Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Yu Cao
- College of Animal Science and Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Jianfa Wang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163000, China
| | - Shoupeng Fu
- College of Animal Science and Veterinary Medicine, Jilin University, Changchun 130062, China.
| | - Guiqiu Hu
- College of Animal Science and Veterinary Medicine, Jilin University, Changchun 130062, China
| |
Collapse
|
43
|
Godyń D, Herbut P, Angrecka S, Corrêa Vieira FM. Use of Different Cooling Methods in Pig Facilities to Alleviate the Effects of Heat Stress-A Review. Animals (Basel) 2020; 10:ani10091459. [PMID: 32825297 PMCID: PMC7552673 DOI: 10.3390/ani10091459] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/17/2020] [Accepted: 08/19/2020] [Indexed: 12/20/2022] Open
Abstract
An increase in the frequency of hot periods, which has been observed over the past decades, determines the novel approach to livestock facilities improvement. The effects of heat stress are revealed in disorders in physiological processes, impaired immunity, changes in behaviour and decreases in animal production, thus implementation of cooling technologies is a key factor for alleviating these negative consequences. In pig facilities, various cooling methods have been implemented. Air temperature may be decreased by using adiabatic cooling technology such as a high-pressure fogging system or evaporative pads. In modern-type buildings large-surface evaporative pads may support a tunnel ventilation system. Currently a lot of attention has also been paid to developing energy- and water-saving cooling methods, using for example an earth-air or earth-to-water heat exchanger. The pigs' skin surface may be cooled by using sprinkling nozzles, high-velocity air stream or conductive cooling pads. The effectiveness of these technologies is discussed in this article, taking into consideration the indicators of animal welfare such as respiratory rate, skin surface and body core temperature, performance parameters and behavioural changes.
Collapse
Affiliation(s)
- Dorota Godyń
- Department of Cattle Breeding, National Research Institute of Animal Production, Balice n Kraków, 31-047 Kraków, Poland
- Correspondence:
| | - Piotr Herbut
- Department of Rural Building, Faculty of Environmental Engineering and Land Surveying, University of Agriculture in Krakow, 31-120 Kraków, Poland; (P.H.); (S.A.)
| | - Sabina Angrecka
- Department of Rural Building, Faculty of Environmental Engineering and Land Surveying, University of Agriculture in Krakow, 31-120 Kraków, Poland; (P.H.); (S.A.)
| | - Frederico Márcio Corrêa Vieira
- Biometeorology Study Group (GEBIOMET), Universida de Tecnológica Federal do Paraná (UTFPR), Estrada para Boa Esperança, km 04, Comunidade São Cristóvão, Dois Vizinhos PR 85660-000, Brazil;
| |
Collapse
|
44
|
Mayorga EJ, Ross JW, Keating AF, Rhoads RP, Baumgard LH. Biology of heat stress; the nexus between intestinal hyperpermeability and swine reproduction. Theriogenology 2020; 154:73-83. [PMID: 32531658 DOI: 10.1016/j.theriogenology.2020.05.023] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 05/15/2020] [Accepted: 05/17/2020] [Indexed: 02/06/2023]
Abstract
Unfavorable weather conditions are one of the largest constraints to maximizing farm animal productivity. Heat stress (HS), in particular, compromises almost every metric of profitability and this is especially apparent in the grow-finish and reproductive aspects of the swine industry. Suboptimal production during HS was traditionally thought to result from hypophagia. However, independent of inadequate nutrient consumption, HS affects a plethora of endocrine, physiological, metabolic, circulatory, and immunological variables. Whether these changes are homeorhetic strategies to survive the heat load or are pathological remains unclear, nor is it understood if they temporally occur by coincidence or if they are chronologically causal. However, mounting evidence suggest that the origin of the aforementioned changes lie at the gastrointestinal tract. Heat stress compromises intestinal barrier integrity, and increased appearance of luminal contents in circulation causes local and systemic inflammatory responses. The resulting immune activation is seemingly the epicenter to many, if not most of the negative consequences HS has on reproduction, growth, and lactation. Interestingly, thermoregulatory and production responses to HS are only marginally related. In other words, increased body temperature indices poorly predict decreases in productivity. Further, HS induced malnutrition is also a surprisingly inaccurate predictor of productivity. Thus, selecting animals with a "heat tolerant" phenotype based solely or separately on thermoregulatory capacity or production may not ultimately increase resilience. Describing the physiology and mechanisms that underpin how HS jeopardizes animal performance is critical for developing approaches to ameliorate current production issues and requisite for generating future strategies (genetic, managerial, nutritional, and pharmaceutical) aimed at optimizing animal well-being, and improving the sustainable production of high-quality protein for human consumption.
Collapse
Affiliation(s)
- E J Mayorga
- Department of Animal Science, Iowa State University, Ames, IA, 50011, USA
| | - J W Ross
- Department of Animal Science, Iowa State University, Ames, IA, 50011, USA
| | - A F Keating
- Department of Animal Science, Iowa State University, Ames, IA, 50011, USA
| | - R P Rhoads
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - L H Baumgard
- Department of Animal Science, Iowa State University, Ames, IA, 50011, USA.
| |
Collapse
|
45
|
Srikanth K, Park JE, Ji SY, Kim KH, Lee YK, Kumar H, Kim M, Baek YC, Kim H, Jang GW, Choi BH, Lee SD. Genome-Wide Transcriptome and Metabolome Analyses Provide Novel Insights and Suggest a Sex-Specific Response to Heat Stress in Pigs. Genes (Basel) 2020; 11:genes11050540. [PMID: 32403423 PMCID: PMC7291089 DOI: 10.3390/genes11050540] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/06/2020] [Accepted: 05/06/2020] [Indexed: 12/16/2022] Open
Abstract
Heat stress (HS) negatively impacts pig production and swine health. Therefore, to understand the genetic and metabolic responses of pigs to HS, we used RNA-Seq and high resolution magic angle spinning (HR-MAS) NMR analyses to compare the transcriptomes and metabolomes of Duroc pigs (n = 6, 3 barrows and 3 gilts) exposed to heat stress (33 °C and 60% RH) with a control group (25 °C and 60% RH). HS resulted in the differential expression of 552 (236 up, 316 down) and 879 (540 up, 339 down) genes and significant enrichment of 30 and 31 plasma metabolites in female and male pigs, respectively. Apoptosis, response to heat, Toll-like receptor signaling and oxidative stress were enriched among the up-regulated genes, while negative regulation of the immune response, ATP synthesis and the ribosomal pathway were enriched among down-regulated genes. Twelve and ten metabolic pathways were found to be enriched (among them, four metabolic pathways, including arginine and proline metabolism, and three metabolic pathways, including pantothenate and CoA biosynthesis), overlapping between the transcriptome and metabolome analyses in the female and male group respectively. The limited overlap between pathways enriched with differentially expressed genes and enriched plasma metabolites between the sexes suggests a sex-specific response to HS in pigs.
Collapse
Affiliation(s)
- Krishnamoorthy Srikanth
- Amimal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA, Wanju 55365, Korea; (K.S.); (J.-E.P.); (H.K.); (H.K.); (G.-W.J.); (B.-H.C.)
| | - Jong-Eun Park
- Amimal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA, Wanju 55365, Korea; (K.S.); (J.-E.P.); (H.K.); (H.K.); (G.-W.J.); (B.-H.C.)
| | - Sang Yun Ji
- Animal Nutrition and Physiology Team, National Institute of Animal Science, RDA, Wanju 55365, Korea; (S.Y.J.); (K.H.K.); (Y.K.L.); (M.K.); (Y.C.B.)
| | - Ki Hyun Kim
- Animal Nutrition and Physiology Team, National Institute of Animal Science, RDA, Wanju 55365, Korea; (S.Y.J.); (K.H.K.); (Y.K.L.); (M.K.); (Y.C.B.)
| | - Yoo Kyung Lee
- Animal Nutrition and Physiology Team, National Institute of Animal Science, RDA, Wanju 55365, Korea; (S.Y.J.); (K.H.K.); (Y.K.L.); (M.K.); (Y.C.B.)
| | - Himansu Kumar
- Amimal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA, Wanju 55365, Korea; (K.S.); (J.-E.P.); (H.K.); (H.K.); (G.-W.J.); (B.-H.C.)
| | - Minji Kim
- Animal Nutrition and Physiology Team, National Institute of Animal Science, RDA, Wanju 55365, Korea; (S.Y.J.); (K.H.K.); (Y.K.L.); (M.K.); (Y.C.B.)
| | - Youl Chang Baek
- Animal Nutrition and Physiology Team, National Institute of Animal Science, RDA, Wanju 55365, Korea; (S.Y.J.); (K.H.K.); (Y.K.L.); (M.K.); (Y.C.B.)
| | - Hana Kim
- Amimal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA, Wanju 55365, Korea; (K.S.); (J.-E.P.); (H.K.); (H.K.); (G.-W.J.); (B.-H.C.)
| | - Gul-Won Jang
- Amimal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA, Wanju 55365, Korea; (K.S.); (J.-E.P.); (H.K.); (H.K.); (G.-W.J.); (B.-H.C.)
| | - Bong-Hwan Choi
- Amimal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA, Wanju 55365, Korea; (K.S.); (J.-E.P.); (H.K.); (H.K.); (G.-W.J.); (B.-H.C.)
| | - Sung Dae Lee
- Animal Nutrition and Physiology Team, National Institute of Animal Science, RDA, Wanju 55365, Korea; (S.Y.J.); (K.H.K.); (Y.K.L.); (M.K.); (Y.C.B.)
- Correspondence: ; Tel.: +82-63-238-7454; Fax: +82-63-238-7497
| |
Collapse
|
46
|
He Y, Maltecca C, Tiezzi F, Soto EL, Flowers WL. Transcriptome analysis identifies genes and co-expression networks underlying heat tolerance in pigs. BMC Genet 2020; 21:44. [PMID: 32316933 PMCID: PMC7171765 DOI: 10.1186/s12863-020-00852-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 04/06/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Heat stress adversely affects pig growth and reproduction performance by reducing feed intake, weight gain, farrowing rate, and litter size. Heat tolerance is an important characteristic in pigs, allowing them to mitigate the negative effects of heat stress on their physiological activities. Yet, genetic variation and signaling pathways associated with the biological processes of heat-tolerant pigs are currently not fully understood. This study examined differentially expressed genes and constructed gene co-expression networks on mRNAs of pigs under different heat-stress conditions using whole transcriptomic RNA-seq analyses. Semen parameters, including total sperm number per ejaculate, motility, normal morphology rate, droplets, and rejected ejaculate rate, were measured weekly on 12 boars for two time periods: thermoneutral (January to May), and heat stress (July to October). Boars were classified into heat-tolerant (n = 6) and heat-susceptible (n = 6) groups based on the variation of their ejaculate parameters across the two periods. RNA was isolated from the blood samples collected from the thermoneutral and heat stress periods for gene expression analysis. RESULTS Under heat stress, a total of 66 differentially expressed genes (25 down-regulated, 41 up-regulated) were identified in heat-tolerant pigs compared to themselves during the thermoneutral period. A total of 1041 differentially expressed genes (282 down-regulated, 759 up-regulated) were identified in the comparison between heat-tolerant pigs and heat-susceptible pigs under heat stress. Weighted gene co-expression network analysis detected 4 and 7 modules with genes highly associated (r > 0.50, p < 0.05) with semen quality parameters in heat-tolerant and heat-susceptible pigs under the effects of heat stress, respectively. CONCLUSION This study utilized the sensitivity of semen to heat stress to discriminate the heat-tolerance ability of pigs. The gene expression profiles under the thermoneutral and heat stress conditions were documented in heat-tolerant and heat-susceptible boars. Findings contribute to the understanding of genes and biological mechanisms related to heat stress response in pigs and provide potential biomarkers for future investigations on the reproductive performance of pigs.
Collapse
Affiliation(s)
- Yuqing He
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695-7621 USA
| | - Christian Maltecca
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695-7621 USA
| | - Francesco Tiezzi
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695-7621 USA
| | - Emmanuel Lozada Soto
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695-7621 USA
| | - William L. Flowers
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695-7621 USA
| |
Collapse
|
47
|
Impact of environmental temperature on production traits in pigs. Sci Rep 2020; 10:2106. [PMID: 32034216 PMCID: PMC7005870 DOI: 10.1038/s41598-020-58981-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 01/22/2020] [Indexed: 12/02/2022] Open
Abstract
There is an urgent need to identify the effects of temperature on production traits. This study aimed to determine the impact of pig production in three environments (T°Cgrowing-°Cfattening-°Cfinishing = T24-24-21, T19-19-19, and T23-17-15) on growth curve parameters, body weight gain (DBWG), feed intake (DFI), and feed efficiency during the growing, fattening and finishing stages, and on carcass yield of primal cuts (ham, shoulder, and loin) in 158 Duroc × Iberian pigs. Maturation rate was higher in T23-17-15 than in T19-19-19 (P < 0.001). Pigs in T23-17-15 reached a lower mature body weight (P < 0.05). During the growing stage, pigs in T23-17-15 had higher DFI than those in T24-24-21 and T19-19-19 (P < 0.05); during the fattening stage, DFI was lowest in T24-24-21 (P < 0.001). In the growing stage, pigs had highest DBWG in the warmest environments (T24-24-21 and T23-17-15) and lowest in the coldest environment (T19-19-19; P < 0.001). Feed efficiency was highest in warmer environments (P < 0.01). Temperature T24-24-21 favored loin yield, T19-19-19 favored ham yield, and T23-17-15 favored shoulder yield (P < 0.01). The results imply a favorable effect of temperature on feed efficiency, however, possible negative implications for animal health and welfare should be considered.
Collapse
|
48
|
Arend LS, Knox RV, Greiner LL, Graham AB, Connor JF. Effects of feeding melatonin during proestrus and early gestation to gilts and parity 1 sows to minimize effects of seasonal infertility1. J Anim Sci 2020; 97:4635-4646. [PMID: 31563944 DOI: 10.1093/jas/skz307] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 09/25/2019] [Indexed: 11/14/2022] Open
Abstract
This study tested whether supplemental melatonin given to mimic the extended nighttime melatonin pattern observed in the higher fertility winter season could minimize infertility during summer and fall in swine. Exogenous melatonin was fed during periods coinciding with follicle selection, corpus luteum formation, pregnancy recognition, and early embryo survival. Experiments were conducted at a commercial farm in 12 sequential replicates. In Exp. 1a, mature gilts (n = 420) that had expressed a second estrus were assigned by weight to receive once daily oral Melatonin (MEL, 3 mg) or Control (CON, placebo) at 1400 h for 3 wk starting before insemination at third estrus. In Exp. 1b, parity 1 sows (n = 470) were randomly assigned by lactation length to receive MEL or CON for 3 wk, starting 2 d before weaning. Follicles, estrus, pregnancy, and farrowing data were analyzed for the main effects of treatment, season (4-wk periods), and their interaction. Environmental measures were also analyzed for reproductive responses. In Exp. 1a, there was no effect (P > 0.10) of MEL on age at third estrus (203 d), follicle size after 7 d of treatment (5.0 mm), estrous cycle length (22.6 d), return to service (9.2%), farrowing rate (FR, 80.0%), or total born pigs (TB, 13.6). However, there was an effect of season (P = 0.03) on number of follicles and on gilts expressing estrus within 23 d of the previous estrus (P < 0.005). In Exp. 1b, there was no effect of MEL (P > 0.10) on follicle measures, wean to estrous interval, FR (84.0%), or TB (13.0). But MEL (73.5%) reduced (P = 0.03) estrous expression within 7 d of weaning compared with CON (82.0%) and season (P = 0.001) decreased FR by ~14.0% during mid summer. Also, gilts and parity 1 sows exposed to low light intensity (<45 lx) during breeding had reduced conception (-8%) and farrowing (-15%) rates, compared with higher light intensity. Similarly, high temperatures (>25 °C) during breeding also reduced gilt conception rates by 7%. Although there was clear evidence of seasonal fertility failures in gilts and sows, MEL treatment did not improve fertility in gilts and reduced estrus in parity 1 sows. It is possible that differences in lighting and thermal environments before breeding could explain the differential response to MEL in sows and gilts.
Collapse
Affiliation(s)
- Lidia S Arend
- Department of Animal Sciences, University of Illinois, Champaign-Urbana, IL
| | - Robert V Knox
- Department of Animal Sciences, University of Illinois, Champaign-Urbana, IL
| | | | | | | |
Collapse
|
49
|
Moreira RHR, Pérez Palencia JY, Moita VHC, Caputo LSS, Saraiva A, Andretta I, Ferreira RA, Abreu MLT. Variability of piglet birth weights: A systematic review and meta‐analysis. J Anim Physiol Anim Nutr (Berl) 2019; 104:657-666. [DOI: 10.1111/jpn.13264] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 10/22/2019] [Accepted: 11/08/2019] [Indexed: 01/22/2023]
Affiliation(s)
| | | | | | | | - Alysson Saraiva
- Department of Animal Science Universidade Federal de Viçosa Viçosa Brazil
| | - Inês Andretta
- Department of Animal Science Universidade Federal do Rio Grande do Sul Porto Alegre Brazil
| | | | | |
Collapse
|
50
|
Seibert JT, Adur MK, Schultz RB, Thomas PQ, Kiefer ZE, Keating AF, Baumgard LH, Ross JW. Differentiating between the effects of heat stress and lipopolysaccharide on the porcine ovarian heat shock protein response1. J Anim Sci 2019; 97:4965-4973. [PMID: 31782954 PMCID: PMC6915215 DOI: 10.1093/jas/skz343] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 11/27/2019] [Indexed: 11/14/2022] Open
Abstract
Heat stress (HS) negatively affects both human and farm-animal health and undermines efficiency in a variety of economically important agricultural variables, including reproduction. HS impairs the intestinal barrier, allowing for translocation of the resident microflora and endotoxins, such as lipopolysaccharide (LPS), from the gastrointestinal lumen into systemic circulation. While much is known about the cellular function of heat shock proteins (HSPs) in most tissues, the in vivo ovarian HSP response to stressful stimuli remains ill-defined. The purpose of this study was to compare the effects of HS or LPS on ovarian HSP expression in pigs. We hypothesized that ovarian HSPs are responsive to both HS and LPS. Altrenogest (15 mg/d) was administered per os for estrus synchronization (14 d) prior to treatment and three animal paradigms were used: (i) gilts were exposed to cyclical HS (31 ± 1.4 °C) or thermoneutral (TN; 20 ± 0.5 °C) conditions immediately following altrenogest withdrawal for 5 d during follicular development; (ii) gilts were subjected to repeated (4×/d) saline (CON) or LPS (0.1 μg/kg BW) i.v. infusion immediately following altrenogest withdrawal for 5 d; and (iii) gilts were subjected to TN (20 ± 1 °C) or cyclical HS (31 to 35 °C) conditions 2 d post estrus (dpe) until 12 dpe during the luteal phase. While no differences were detected for transcript abundances of the assessed ovarian HSP, the protein abundance of specific HSP was influenced by stressors during the follicular and luteal phases. HS during the follicular phase tended (P < 0.1) to increase ovarian protein abundance of HSP90AA1 and HSPA1A, and increased (P ≤ 0.05) HSF1, HSPD1, and HSPB1 compared with TN controls, while HS decreased HSP90AB1 (P = 0.01). Exposure to LPS increased (P < 0.05) HSP90AA1 and HSPA1A and tended (P < 0.1) to increase HSF1 and HSPB1 compared with CON gilts, while HSP90AB1 and HSPD1 were not affected by LPS. HS during the luteal phase increased (P < 0.05) abundance of HSPB1 in corpora lutea (CL), decreased (P < 0.05) CL HSP90AB1, but did not impact HSF1, HSPD1, HSP90AA1, or HSPA1A abundance. Thus, these data support that HS and LPS similarly regulate expression of specific ovarian HSP, which suggest that HS effects on the ovary are in part mediated by LPS.
Collapse
Affiliation(s)
- Jacob T Seibert
- Department of Animal Science, Iowa State University, Ames, IA
| | - Malavika K Adur
- Department of Animal Science, Iowa State University, Ames, IA
| | | | - Porsha Q Thomas
- Department of Animal Science, Iowa State University, Ames, IA
| | - Zoe E Kiefer
- Department of Animal Science, Iowa State University, Ames, IA
| | | | | | - Jason W Ross
- Department of Animal Science, Iowa State University, Ames, IA
| |
Collapse
|