1
|
Lam MH, Novoselova M, Yung A, Prevost VH, Manning AP, Liu J, Tetzlaff W, Kozlowski P. Interpretation of inhomogeneous magnetization transfer in myelin water using a four-pool model with dipolar reservoirs. Magn Reson Med 2025; 94:278-292. [PMID: 39963772 PMCID: PMC12021340 DOI: 10.1002/mrm.30465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 01/25/2025] [Accepted: 01/26/2025] [Indexed: 04/26/2025]
Abstract
PURPOSE To confirm ihMT's specificity to myelin, an ihMT presaturation module was combined with a Poon-Henkelman multi-echo spin-echo readout to separate the ihMT signal in myelin water from intra-/extra-cellular water. This study explored the relationship between two quantitative myelin imaging techniques and measured the ihMT signal of myelin water. METHODS Six rats were injured; three were sacrificed three weeks post-injury, and three were sacrificed eight weeks post-injury, and three healthy control rats were also sacrificed. The nine formalin-fixed rat spinal cords were imaged using a Poon-Henkelman multi-echo spin-echo readout with an ihMT prepulse at different strengths ofT 1 D $$ {T}_{1D} $$ filtering at 7T. RESULTS The proposed model was able to characterize the ihMT decay signal in myelin water and intra-/extra-cellular water pool. From this proposed four-pool model with dipolar order reservoirs, we see a drop in theT 1 D ( myelin ) $$ {T}_{1D}\left(\mathrm{myelin}\right) $$ fit parameter in the fasciculus gracilis white matter region of the three-week post-injury cord.T 1 D ( myelin ) $$ {T}_{1D}\left(\mathrm{myelin}\right) $$ andT 1 D $$ {T}_{1D} $$ (non-myelin) were estimated to be approx. 8 and 1.5 ms, respectively. CONCLUSION The drop inT 1 D ( myelin ) $$ {T}_{1D}\left(\mathrm{myelin}\right) $$ in the three-week post-injury cords suggests thatT 1 D ( myelin ) $$ {T}_{1D}\left(\mathrm{myelin}\right) $$ could potentially distinguish between functional myelin and myelin debris; however, more studies are needed to confirm this.
Collapse
Affiliation(s)
- Michelle H. Lam
- Physics and AstronomyUniversity of British ColumbiaBritish ColumbiaVancouverCanada
- UBC MRI Research CentreUniversity of British ColumbiaBritish ColumbiaVancouverCanada
- Biomedical EngineeringMcGill UniversityQuebecMontrealCanada
| | - Masha Novoselova
- Physics and AstronomyUniversity of British ColumbiaBritish ColumbiaVancouverCanada
- UBC MRI Research CentreUniversity of British ColumbiaBritish ColumbiaVancouverCanada
- Clinical NeurosciencesUniversity of CambridgeCambridgeUK
| | - Andrew Yung
- UBC MRI Research CentreUniversity of British ColumbiaBritish ColumbiaVancouverCanada
| | - Valentin H. Prevost
- UBC MRI Research CentreUniversity of British ColumbiaBritish ColumbiaVancouverCanada
| | - Alan P. Manning
- Physics and AstronomyUniversity of British ColumbiaBritish ColumbiaVancouverCanada
| | - Jie Liu
- International Collaboration on Repair DiscoveriesUniversity of British ColumbiaBritish ColumbiaVancouverCanada
| | - Wolfram Tetzlaff
- International Collaboration on Repair DiscoveriesUniversity of British ColumbiaBritish ColumbiaVancouverCanada
| | - Piotr Kozlowski
- Physics and AstronomyUniversity of British ColumbiaBritish ColumbiaVancouverCanada
- UBC MRI Research CentreUniversity of British ColumbiaBritish ColumbiaVancouverCanada
- International Collaboration on Repair DiscoveriesUniversity of British ColumbiaBritish ColumbiaVancouverCanada
- RadiologyUniversity of British ColumbiaBritish ColumbiaVancouverCanada
| |
Collapse
|
2
|
Assländer J, Flassbeck S. Magnetization transfer explains most of the T 1 variability in the MRI literature. Magn Reson Med 2025; 94:293-301. [PMID: 40096551 PMCID: PMC12021565 DOI: 10.1002/mrm.30451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 01/05/2025] [Accepted: 01/15/2025] [Indexed: 03/19/2025]
Abstract
PURPOSE To identify the predominant source of theT 1 $$ {T}_1 $$ variability described in the literature, which ranges from 0.6-1.1 s for brain white matter at 3 T. METHODS 25T 1 $$ {T}_1 $$ -mapping methods from the literature were simulated with a mono-exponential and various magnetization-transfer (MT) models, each followed by mono-exponential fitting. A single set of model parameters was assumed for the simulation of all methods, and these parameters were estimated by fitting the simulation-based to the corresponding literatureT 1 $$ {T}_1 $$ values of white matter at 3 T. We acquired in vivo data with a quantitative magnetization transfer and threeT 1 $$ {T}_1 $$ -mapping techniques. The former was used to synthesize MR images that correspond to the threeT 1 $$ {T}_1 $$ -mapping methods. A mono-exponential model was fitted to the experimental and corresponding synthesized MR images. RESULTS Mono-exponential simulations suggest good inter-method reproducibility and fail to explain the highly variableT 1 $$ {T}_1 $$ estimates in the literature. In contrast, MT simulations suggest that a mono-exponential fit results in a variableT 1 $$ {T}_1 $$ and explain up to 62% of the literature's variability. In our own in vivo experiments, MT explains 70% of the observed variability. CONCLUSION The results suggest that a mono-exponential model does not adequately describe longitudinal relaxation in biological tissue. Therefore,T 1 $$ {T}_1 $$ in biological tissue should be considered only a semi-quantitative metric that is inherently contingent upon the imaging methodology, and comparisons between differentT 1 $$ {T}_1 $$ -mapping methods and the use of simplistic spin systems-such as doped-water phantoms-for validation should be viewed with caution.
Collapse
Affiliation(s)
- Jakob Assländer
- Center for Biomedical Imaging, Dept. of Radiology, NYU
School of Medicine, NY, USA
- Center for Advanced Imaging Innovation and Research
(CAI2R), Dept. of Radiology, NYU School of Medicine, NY, USA
| | - Sebastian Flassbeck
- Center for Biomedical Imaging, Dept. of Radiology, NYU
School of Medicine, NY, USA
- Center for Advanced Imaging Innovation and Research
(CAI2R), Dept. of Radiology, NYU School of Medicine, NY, USA
| |
Collapse
|
3
|
Jang A, Chan KS, Mareyam A, Stockmann J, Huang SY, Wang N, Jang H, Lee HH, Liu F. Simultaneous 3D quantitative magnetization transfer imaging and susceptibility mapping. Magn Reson Med 2025. [PMID: 40096542 DOI: 10.1002/mrm.30493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 02/13/2025] [Accepted: 02/19/2025] [Indexed: 03/19/2025]
Abstract
PURPOSE Introduce a unified acquisition and modeling strategy to simultaneously quantify magnetization transfer (MT), tissue susceptibility (χ $$ \chi $$ ) andT 2 * $$ {T}_2^{\ast } $$ . THEORY AND METHODS Magnetization transfer is induced through the application of off-resonance irradiation between excitation and acquisition of an RF-spoiled gradient-echo scheme, where free pool spin-lattice relaxation (T 1 F $$ {T}_1^{\mathrm{F}} $$ ), macromolecular proton fraction (f $$ f $$ ) and magnetization exchange rate (k F $$ {k}_{\mathrm{F}} $$ ) were calculated by modeling the magnitude of the MR signal using a binary spin-bath MT model withB 1 + $$ {B}_1^{+} $$ inhomogeneity correction via Bloch-Siegert shift. Simultaneously, a multi-echo acquisition is incorporated into this framework to measure the time evolution of both signal magnitude and phase, which was further modeled for estimatingT 2 * $$ {T}_2^{\ast } $$ and tissue susceptibility. In this work, we demonstrate the feasibility of this new acquisition and modeling strategy in vivo on the brain tissue. RESULTS In vivo brain experiments were conducted on five healthy subjects to validate our method. Utilizing an analytically derived signal model, we simultaneously obtained 3DT 1 F $$ {T}_1^{\mathrm{F}} $$ ,f $$ f $$ ,k F $$ {k}_{\mathrm{F}} $$ ,χ $$ \chi $$ andT 2 * $$ {T}_2^{\ast } $$ maps of the whole brain. Our results from the brain regional analysis show good agreement with those previously reported in the literature, which used separate MT and QSM methods. CONCLUSION A unified acquisition and modeling strategy based on an analytical signal model that fully leverages both the magnitude and phase of the acquired signals was demonstrated and validated for simultaneous MT, susceptibility andT 2 * $$ {T}_2^{\ast } $$ quantification that are free fromB 1 + $$ {B}_1^{+} $$ bias.
Collapse
Affiliation(s)
- Albert Jang
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Radiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Kwok-Shing Chan
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Radiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Azma Mareyam
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Radiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Jason Stockmann
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Radiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Susie Yi Huang
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Radiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Nian Wang
- Biomedical Engineering, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Hyungseok Jang
- Radiology, University of California, Davis, Davis, California, USA
| | - Hong-Hsi Lee
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Radiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Fang Liu
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Radiology, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
4
|
Afshari R, Santini F, Heule R, Meyer CH, Pfeuffer J, Bieri O. Rapid whole-brain quantitative MT imaging. Z Med Phys 2025; 35:69-77. [PMID: 37019739 PMCID: PMC11910261 DOI: 10.1016/j.zemedi.2023.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/09/2023] [Accepted: 02/11/2023] [Indexed: 04/05/2023]
Abstract
PURPOSE To provide a robust whole-brain quantitative magnetization transfer (MT) imaging method that is not limited by long acquisition times. METHODS Two variants of a spiral 2D interleaved multi-slice spoiled gradient echo (SPGR) sequence are used for rapid quantitative MT imaging of the brain at 3 T. A dual flip angle, steady-state prepared, double-contrast method is used for combined B1 and-T1 mapping in combination with a single-contrast MT-prepared acquisition over a range of different saturation flip angles (50 deg to 850 deg) and offset frequencies (1 kHz and 10 kHz). Five sets (containing minimum 6 to maximum 18 scans) with different MT-weightings were acquired. In addition, main magnetic field inhomogeneities (ΔB0) were measured from two Cartesian low-resolution 2D SPGR scans with different echo times. Quantitative MT model parameters were derived from all sets using a two-pool continuous-wave model analysis, yielding the pool-size ratio, F, their exchange rate, kf, and their transverse relaxation time, T2r. RESULTS Whole-brain quantitative MT imaging was feasible for all sets with total acquisition times ranging from 7:15 min down to 3:15 min. For accurate modeling, B1-correction was essential for all investigated sets, whereas ΔB0-correction showed limited bias for the observed maximum off-resonances at 3 T. CONCLUSION The combination of rapid B1-T1 mapping and MT-weighted imaging using a 2D multi-slice spiral SPGR research sequence offers excellent prospects for rapid whole-brain quantitative MT imaging in the clinical setting.
Collapse
Affiliation(s)
- Roya Afshari
- Division of Radiological Physics, Department of Radiology, University Hospital Basel, Basel, Switzerland; Department of Biomedical Engineering, University of Basel, Basel, Switzerland.
| | - Francesco Santini
- Division of Radiological Physics, Department of Radiology, University Hospital Basel, Basel, Switzerland; BAMM group, Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Rahel Heule
- High Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Tübingen, Germany; Department of Biomedical Magnetic Resonance, University of Tübingen, Tübingen, Germany
| | - Craig H Meyer
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - Josef Pfeuffer
- Siemens Healthcare, Application Development, Erlangen, Germany
| | - Oliver Bieri
- Division of Radiological Physics, Department of Radiology, University Hospital Basel, Basel, Switzerland; Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| |
Collapse
|
5
|
Gao Z, Yu Z, Zhou Z, Hou J, Jiang B, Ong M, Chen W. Orientation-independent quantification of macromolecular proton fraction in tissues with suppression of residual dipolar coupling. NMR IN BIOMEDICINE 2025; 38:e5293. [PMID: 39535330 PMCID: PMC11602536 DOI: 10.1002/nbm.5293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/08/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
Quantitative magnetization transfer (MT) imaging enables noninvasive characterization of the macromolecular environment of tissues. However, recent work has highlighted that the quantification of MT parameters using saturation radiofrequency (RF) pulses exhibits orientation dependence in ordered tissue structures, potentially confounding its clinical applications. Notably, in tissues with ordered structures, such as articular cartilage and myelin, the residual dipolar coupling (RDC) effect can arise owing to incomplete averaging of dipolar-dipolar interactions of water protons. In this study, we demonstrated the confounding effect of RDC on quantitative MT imaging in ordered tissues can be suppressed by using an emerging technique known as macromolecular proton fraction mapping based on spin-lock (MPF-SL). The off-resonance spin-lock RF pulse in MPF-SL could be designed to generate a strong effective spin-lock field to suppress RDC without violating the specific absorption rate and hardware limitations in clinical scans. Furthermore, suppressing the water pool contribution in MPF-SL enabled the application of a strong effective spin-lock field without confounding effects from direct water saturation. Our findings were experimentally validated using human knee specimens and healthy human cartilage. The results demonstrated that MPF-SL exhibits lower sensitivity to tissue orientation compared withR 2 $$ {R}_2 $$ ,R 1 ρ $$ {R}_{1\rho } $$ , and saturation-pulse-based MT imaging. Consequently, MPF-SL could serve as a valuable orientation-independent technique for the quantification of MPF.
Collapse
Affiliation(s)
- Zijian Gao
- Department of Imaging and Interventional RadiologyThe Chinese University of Hong KongHong Kong
| | - Ziqiang Yu
- Department of Imaging and Interventional RadiologyThe Chinese University of Hong KongHong Kong
| | - Ziqin Zhou
- Department of Imaging and Interventional RadiologyThe Chinese University of Hong KongHong Kong
- MR Research CollaborationSiemens Healthineers LimitedHong Kong
| | - Jian Hou
- Department of Imaging and Interventional RadiologyThe Chinese University of Hong KongHong Kong
| | - Baiyan Jiang
- Department of Imaging and Interventional RadiologyThe Chinese University of Hong KongHong Kong
- Illuminatio Medical Technology LimitedHong Kong
| | - Michael Ong
- Department of Orthopaedics and TraumatologyThe Chinese University of Hong KongHong Kong
| | - Weitian Chen
- Department of Imaging and Interventional RadiologyThe Chinese University of Hong KongHong Kong
| |
Collapse
|
6
|
Khodanovich MY, Svetlik MV, Naumova AV, Usova AV, Pashkevich VY, Moshkina MV, Shadrina MM, Kamaeva DA, Obukhovskaya VB, Kataeva NG, Levina AY, Tumentceva YA, Yarnykh VL. Global and Regional Sex-Related Differences, Asymmetry, and Peak Age of Brain Myelination in Healthy Adults. J Clin Med 2024; 13:7065. [PMID: 39685523 DOI: 10.3390/jcm13237065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/16/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024] Open
Abstract
Background: The fundamental question of normal brain myelination in human is still poorly understood. Methods: Age-dependent global, regional, and interhemispheric sex-related differences in brain myelination of 42 (19 men, 23 women) healthy adults (19-67 years) were explored using the MRI method of fast macromolecular fraction (MPF) mapping. Results: Higher brain myelination in males compared to females was found in global white matter (WM), most WM tracts, juxtacortical WM regions, and putamen. The largest differences between men and women, exceeding 4%, were observed bilaterally in the frontal juxtacortical WM; angular, inferior occipital, and cuneus WM; external capsule; and inferior and superior fronto-orbital fasciculi. The majority of hemispheric differences in MPF were common to men and women. Sex-specific interhemispheric differences were found in juxtacortical WM; men more often had left-sided asymmetry, while women had right-sided asymmetry. Most regions of deep gray matter (GM), juxtacortical WM, and WM tracts (except for projection pathways) showed a later peak age of myelination in women compared to men, with a difference of 3.5 years on average. Body mass index (BMI) was associated with higher MPF and later peak age of myelination independent of age and sex. Conclusions: MPF mapping showed high sensitivity to assess sex-related differences in normal brain myelination, providing the basis for using this method in clinics.
Collapse
Affiliation(s)
- Marina Y Khodanovich
- Laboratory of Neurobiology, Research Institute of Biology and Biophysics, Tomsk State University, 36 Lenina Ave., Tomsk 634050, Russia
| | - Mikhail V Svetlik
- Laboratory of Neurobiology, Research Institute of Biology and Biophysics, Tomsk State University, 36 Lenina Ave., Tomsk 634050, Russia
| | - Anna V Naumova
- Laboratory of Neurobiology, Research Institute of Biology and Biophysics, Tomsk State University, 36 Lenina Ave., Tomsk 634050, Russia
- Department of Radiology, School of Medicine, South Lake Union Campus, University of Washington, 850 Republican St., Seattle, WA 98109, USA
| | - Anna V Usova
- Cancer Research Institute, Branch of the Tomsk National Research Medical Center of the Russian Academy of Sciences, 5 Kooperativny St., Tomsk 634009, Russia
| | - Valentina Y Pashkevich
- Laboratory of Neurobiology, Research Institute of Biology and Biophysics, Tomsk State University, 36 Lenina Ave., Tomsk 634050, Russia
| | - Marina V Moshkina
- Laboratory of Neurobiology, Research Institute of Biology and Biophysics, Tomsk State University, 36 Lenina Ave., Tomsk 634050, Russia
| | - Maria M Shadrina
- Laboratory of Neurobiology, Research Institute of Biology and Biophysics, Tomsk State University, 36 Lenina Ave., Tomsk 634050, Russia
| | - Daria A Kamaeva
- Laboratory of Molecular Genetics and Biochemistry, Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, 4 Aleutskaya St., Tomsk 634014, Russia
| | - Victoria B Obukhovskaya
- Laboratory of Neurobiology, Research Institute of Biology and Biophysics, Tomsk State University, 36 Lenina Ave., Tomsk 634050, Russia
- Department of Fundamental Psychology and Behavioral Medicine, Siberian State Medical University, 2 Moskovskiy Trakt, Tomsk 634050, Russia
| | - Nadezhda G Kataeva
- Laboratory of Neurobiology, Research Institute of Biology and Biophysics, Tomsk State University, 36 Lenina Ave., Tomsk 634050, Russia
- Department of Neurology and Neurosurgery, Siberian State Medical University, 2 Moskovskiy Trakt, Tomsk 634050, Russia
| | - Anastasia Y Levina
- Laboratory of Neurobiology, Research Institute of Biology and Biophysics, Tomsk State University, 36 Lenina Ave., Tomsk 634050, Russia
- Medica Diagnostic and Treatment Center, 86 Sovetskaya St., Tomsk 634510, Russia
| | - Yana A Tumentceva
- Laboratory of Neurobiology, Research Institute of Biology and Biophysics, Tomsk State University, 36 Lenina Ave., Tomsk 634050, Russia
| | - Vasily L Yarnykh
- Department of Radiology, School of Medicine, South Lake Union Campus, University of Washington, 850 Republican St., Seattle, WA 98109, USA
| |
Collapse
|
7
|
Shtangel O, Mezer AA. Testing quantitative magnetization transfer models with membrane lipids. Magn Reson Med 2024; 92:2149-2162. [PMID: 38873709 DOI: 10.1002/mrm.30192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 04/21/2024] [Accepted: 05/22/2024] [Indexed: 06/15/2024]
Abstract
PURPOSE Quantitative magnetization transfer (qMT) models aim to quantify the contributions of lipids and macromolecules to the MRI signal. Hence, a model system that relates qMT parameters and their molecular sources may improve the interpretation of the qMT parameters. Here we used membrane lipid phantoms as a meaningful tool to study qMT models. By controlling the fraction and type of membrane lipids, we could test the accuracy, reliability, and interpretability of different qMT models. METHODS We formulated liposomes with various lipid types and water-to-lipids fractions and measured their signals with spoiled gradient-echo MT. We fitted three known qMT models and estimated six parameters for every model. We tested the accuracy and reproducibility of the models and compared the dependency among the qMT parameters. We compared the samples' qMT parameters with their water-to-lipid fractions and with a simple MTnorm (= MTon/MToff) calculation. RESULTS We found that the three qMT models fit the membrane lipids signals well. We also found that the estimated qMT parameters are highly interdependent. Interestingly, the estimated qMT parameters are a function of the membrane lipid type and also highly related to the water-to-lipid fraction. Finally, we find that most of the lipid sample's information can be captured using the common and easy to estimate MTnorm analysis. CONCLUSION qMT parameters are sensitive to both the water-to-lipid fraction and to the lipid type. Estimating the water-to-lipid fraction can improve the characterization of membrane lipids' contributions to qMT parameters. Similar characterizations can be obtained using the MTnorm analysis.
Collapse
Affiliation(s)
- Oshrat Shtangel
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Brain & Behavior, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Aviv A Mezer
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
8
|
Takami Y, Norikane T, Kimura N, Mitamura K, Yamamoto Y, Miyake K, Miyoshi M, Nishiyama Y. Relationship between multi-pool model-based chemical exchange saturation transfer imaging, intravoxel incoherent motion MRI, and 11C-methionine uptake on PET/CT in patients with gliomas. Magn Reson Imaging 2024; 111:148-156. [PMID: 38729226 DOI: 10.1016/j.mri.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/01/2024] [Accepted: 05/07/2024] [Indexed: 05/12/2024]
Abstract
PURPOSE Magnetization transfer ratio asymmetry (MTRasym) analysis is used for chemical exchange saturation transfer (CEST) in patients with gliomas; however, this approach has limitations. CEST imaging using a multi-pool model (MPM) may allow a more detailed assessment of gliomas; however, its mechanism remains unknown. This study aimed to assess the relationship between CEST imaging by MPM, intravoxel incoherent motion (IVIM), and 11C-methionine (11C-MET) uptake on positron emission tomography/computed tomography (PET/CT) to clarify the clinical significance of CEST imaging using MPM in gliomas. METHODS This retrospective study included 17 patients with gliomas who underwent 11C-MET PET/CT at our institution between January 2020 and January 2022. Two-dimensional axial CEST imaging was conducted using single-shot fast-spin echo acquisition at 3 T. The apparent diffusion coefficient (ADC), true diffusion coefficient (D), pseudo-diffusion coefficient (D*), f, MTRasym (3.5 ppm), parameters of MPM-based CEST imaging, and tumor-to-contralateral normal brain tissue (T/N) ratio were calculated using a region-of-interest analysis. Shapiro-Wilk test, weighted kappa coefficient, and Spearman's rank correlation coefficients were used for statistical analysis. RESULTS Significant correlations were found between APT_T1 and T/N ratio (ρ = 0.87, p < 0.001), APT_T2 and T/N ratio (ρ = 0.47, p < 0.05), MTRasym and T/N ratio (ρ = 0.55, p < 0.01), and T2/T1 and T/N ratio (ρ = -0.36, p < 0.05). Furthermore, significant correlations were observed between APT_T1 and ADC (ρ = -0.67, p < 0.001), APT_T1 and D (ρ = -0.70, p < 0.001), APT_T2 and D* (ρ = -0.45, p < 0.05), and T2/T1 and D (ρ = 0.39, p < 0.05). CONCLUSION These preliminary findings indicate that MPM-based CEST imaging parameters correlate with IVIM and 11C-MET uptake on PET/CT in patients with gliomas. In particular, the new parameter APT_T1 correlated more strongly with 11C-MET uptake compared to the traditional CEST parameter MTRasym.
Collapse
Affiliation(s)
- Yasukage Takami
- Department of Radiology, Faculty of Medicine, Kagawa University, Kagawa, Japan.
| | - Takashi Norikane
- Department of Radiology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Naruhide Kimura
- Department of Radiology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Katsuya Mitamura
- Department of Radiology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Yuka Yamamoto
- Department of Radiology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Keisuke Miyake
- Department of Neurological Surgery, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Mitsuharu Miyoshi
- Global MR Clinical Solution and Research Collaboration, GE HealthCare, Tokyo, Japan
| | - Yoshihiro Nishiyama
- Department of Radiology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| |
Collapse
|
9
|
Hou J, Cai Z, Chen W, So TY. Spin-lock based fast whole-brain 3D macromolecular proton fraction mapping of relapsing-remitting multiple sclerosis. Sci Rep 2024; 14:17943. [PMID: 39095418 PMCID: PMC11297137 DOI: 10.1038/s41598-024-67445-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 07/11/2024] [Indexed: 08/04/2024] Open
Abstract
A sensitive and efficient imaging technique is required to assess the subtle abnormalities occurring in the normal-appearing white matter (NAWM) and normal-appearing grey matter (NAGM) in patients with relapsing-remitting multiple sclerosis (RRMS). In this study, a fast 3D macromolecular proton fraction (MPF) quantification based on spin-lock (fast MPF-SL) sequence was proposed for brain MPF mapping. Thirty-four participants, including 17 healthy controls and 17 RRMS patients were prospectively recruited. We conducted group comparison and correlation between conventional MPF-SL, fast MPF-SL, and DWI, and compared differences in quantified parameters within MS lesions and the regional NAWM, NAGM, and normal-appearing deep grey matter (NADGN). MPF of MS lesions was significantly reduced (7.17% ± 1.15%, P < 0.01) compared to all corresponding normal-appearing regions. MS patients also showed significantly reduced mean MPF values compared with controls in NAGM (4.87% ± 0.38% vs 5.21% ± 0.32%, P = 0.01), NAWM (9.49% ± 0.69% vs 10.32% ± 0.59%, P < 0.01) and NADGM (thalamus 5.59% ± 0.67% vs 6.00% ± 0.41%, P = 0.04; caudate 5.10% ± 0.55% vs 5.53% ± 0.58%, P = 0.03). MPF and ADC showed abnormalities in otherwise normal appearing close to lesion areas (P < 0.01). In conclusion, time-efficient MPF mapping of the whole brain can be acquired efficiently (< 3 min) using fast MPF-SL. It offers a promising alternative way to detect white matter abnormalities in MS.
Collapse
Affiliation(s)
- Jian Hou
- Department of Imaging and Interventional Radiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Zongyou Cai
- Department of Imaging and Interventional Radiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Weitian Chen
- Department of Imaging and Interventional Radiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China.
| | - Tiffany Y So
- Department of Imaging and Interventional Radiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
10
|
Luu HM, Park SH. SIMPLEX: Multiple phase-cycled bSSFP quantitative magnetization transfer imaging with physic-guided simulation learning of neural network. Neuroimage 2023; 284:120449. [PMID: 37951485 DOI: 10.1016/j.neuroimage.2023.120449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 09/21/2023] [Accepted: 11/07/2023] [Indexed: 11/14/2023] Open
Abstract
Most quantitative magnetization transfer (qMT) imaging methods require acquiring additional quantitative maps (such as T1) for data fitting. A method based on multiple phase-cycled bSSFP was recently proposed to enable high-resolution 3D qMT imaging based on least square fitting without any extra acquisition, and thus has high potential for simplifying the qMT procedure. However, the quantification of qMT parameters with this method was suboptimal, limiting its potential for clinical application despite its simpler protocol and higher spatial resolution. To improve the fitting of qMT data obtained with multiple phase-cycled bSSFP, we propose SIMulation-based Physics-guided Learning of neural network for qMT parameters EXtraction, or SIMPLEX. In contrast to previous deep learning supervised approaches for quantitative MR that require the acquisition of input data and corresponding ground truth for training, we leveraged the MR signal model to generate training samples without expensive data curation. The network was trained exclusively with simulation data by predicting the simulation parameters. The same network was applied directly to in-vivo data without additional training. The approach was verified with both simulation and in-vivo data. SIMPLEX showed a decrease in fitting mean squared error for all simulation data compared to the existing least-square fitting method. The in-vivo experiment revealed that the network performed well with the real in vivo data unseen during training. For all experiments, we observed that SIMPLEX consistently improved the quantification quality of the qMT parameters whilst being more robust to noise compared to the prior technique. The proposed SIMPLEX will expedite the routine clinical application of qMT by providing qMT parameters (exchange rate, pool fraction) as well as T1, T2, and ΔB0 maps simultaneously with high spatial resolution, better reliability, and reduced processing time.
Collapse
Affiliation(s)
- Huan Minh Luu
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Rm 1002, CMS (E16) Building, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, South Korea
| | - Sung-Hong Park
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Rm 1002, CMS (E16) Building, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, South Korea.
| |
Collapse
|
11
|
Jang A, Han PK, Ma C, El Fakhri G, Wang N, Samsonov A, Liu F. B 1 inhomogeneity-corrected T 1 mapping and quantitative magnetization transfer imaging via simultaneously estimating Bloch-Siegert shift and magnetization transfer effects. Magn Reson Med 2023; 90:1859-1873. [PMID: 37427533 PMCID: PMC10528411 DOI: 10.1002/mrm.29778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/10/2023] [Accepted: 06/06/2023] [Indexed: 07/11/2023]
Abstract
PURPOSE To introduce a method of inducing Bloch-Siegert shift and magnetization Transfer Simultaneously (BTS) and demonstrate its utilization for measuring binary spin-bath model parameters free pool spin-lattice relaxation (T 1 F $$ {T}_1^{\mathrm{F}} $$ ), macromolecular fraction (f $$ f $$ ), magnetization exchange rate (k F $$ {k}_{\mathrm{F}} $$ ) and local transmit field (B 1 + $$ {B}_1^{+} $$ ). THEORY AND METHODS Bloch-Siegert shift and magnetization transfer is simultaneously induced through the application of off-resonance irradiation in between excitation and acquisition of an RF-spoiled gradient-echo scheme. Applying the binary spin-bath model, an analytical signal equation is derived and verified through Bloch simulations. Monte Carlo simulations were performed to analyze the method's performance. The estimation of the binary spin-bath parameters withB 1 + $$ {B}_1^{+} $$ compensation was further investigated through experiments, both ex vivo and in vivo. RESULTS Comparing BTS with existing methods, simulations showed that existing methods can significantly biasT 1 $$ {T}_1 $$ estimation when not accounting for transmitB 1 $$ {B}_1 $$ heterogeneity and MT effects that are present. Phantom experiments further showed that the degree of this bias increases with increasing macromolecular proton fraction. Multi-parameter fit results from an in vivo brain study generated values in agreement with previous literature. Based on these studies, we confirmed that BTS is a robust method for estimating the binary spin-bath parameters in macromolecule-rich environments, even in the presence ofB 1 + $$ {B}_1^{+} $$ inhomogeneity. CONCLUSION A method of estimating Bloch-Siegert shift and magnetization transfer effect has been developed and validated. Both simulations and experiments confirmed that BTS can estimate spin-bath parameters (T 1 F $$ {T}_1^{\mathrm{F}} $$ ,f $$ f $$ ,k F $$ {k}_{\mathrm{F}} $$ ) that are free fromB 1 + $$ {B}_1^{+} $$ bias.
Collapse
Affiliation(s)
- Albert Jang
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, United States
- Harvard Medical School, Boston, Massachusetts, United States
| | - Paul K Han
- Gordon Center for Medical Imaging, Massachusetts General Hospital, Boston, Massachusetts, United States
- Harvard Medical School, Boston, Massachusetts, United States
| | - Chao Ma
- Gordon Center for Medical Imaging, Massachusetts General Hospital, Boston, Massachusetts, United States
- Harvard Medical School, Boston, Massachusetts, United States
| | - Georges El Fakhri
- Gordon Center for Medical Imaging, Massachusetts General Hospital, Boston, Massachusetts, United States
- Harvard Medical School, Boston, Massachusetts, United States
| | - Nian Wang
- Indiana University, Indianapolis, Indiana, United States
| | | | - Fang Liu
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, United States
- Harvard Medical School, Boston, Massachusetts, United States
| |
Collapse
|
12
|
Lawless RD, McKnight CD, O’Grady KP, Combes AJE, Rogers BP. Detecting macromolecular differences of the CSF in low disability multiple sclerosis using quantitative MT MRI at 3T. Mult Scler J Exp Transl Clin 2023; 9:20552173231211396. [PMID: 38021451 PMCID: PMC10644741 DOI: 10.1177/20552173231211396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
Background Imaging investigation of cerebrospinal fluid (CSF) in multiple sclerosis (MS) is understudied. Development of noninvasive methods to detect pathological CSF changes would have a profound effect on MS diagnosis and would offer insight into MS pathophysiology and mechanisms of neurological impairment. Objective We propose magnetization transfer (MT) MRI as a tool to detect macromolecular changes in spinal CSF. Methods MT and quantitative MT (qMT) data were acquired in the cervical region in 27 people with relapsing-remitting multiple sclerosis (pwRRMS) and 38 age and sex-matched healthy controls (HCs). MT ratio (MTR), the B1, B0, and R1 corrected qMT-derived pool size ratio (PSR) were quantified in the spinal cord and CSF of each group. Results Both CSF MTR and CSF qMT-derived PSR were significantly increased in pwRRMS compared to HC (p = 0.027 and p = 0.020, respectively). CSF PSR of pwRRMS was correlated to Expanded Disability Status Scale Scores (p = 0.045, R = 0.352). Conclusion Our findings demonstrate increased CSF macromolecular content in pwRRMS and link CSF macromolecular content with clinical impairment. This highlights the potential role of CSF in processing products of demyelination.
Collapse
Affiliation(s)
- Richard D Lawless
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Colin D McKnight
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Kristin P O’Grady
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA
Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Anna JE Combes
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Baxter P Rogers
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
13
|
Inhomogeneous Magnetization Transfer (ihMT) imaging in the acute cuprizone mouse model of demyelination/remyelination. Neuroimage 2023; 265:119785. [PMID: 36464096 DOI: 10.1016/j.neuroimage.2022.119785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 10/31/2022] [Accepted: 12/01/2022] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND To investigate the association of ihMT (inhom signals with the demyelination and remyelination phases of the acute cuprizone mouse model in comparison with histology, and to assess the extent of tissue damage and repair from MRI data. METHODS Acute demyelination by feeding 0.2% cuprizone for five weeks, followed by a four-week remyelination period was applied on genetically modified plp-GFP mice. Animals were scanned at different time points of the demyelination and remyelination phases of the cuprizone model using a multimodal MRI protocol, including ihMT T1D-filters, MPF (Macromolecular Proton Fraction) and R1 (longitudinal relaxation rate). For histology, plp-GFP (proteolipid protein - Green Fluorescent Protein) microscopy and LFB (Luxol Fast Blue) staining were employed as references for the myelin content. Comparison of MRI with histology was performed in the medial corpus callosum (mCC) and cerebral cortex (CTX) at two brain levels whereas ROI-wise and voxel-based analyses of the MRI metrics allowed investigating in vivo the spatial extent of myelin alterations. RESULTS IhMT high-pass T1D-filters, targeted toward long T1D components, showed significant temporal variations in the mCC consistent with the effects induced by the cuprizone toxin. In addition, the corresponding signals correlated strongly and significantly with the myelin content assessed by GFP fluorescence and LFB staining over the demyelination and the remyelination phases. The signal of the band-pass T1D-filter, which isolates short T1D components, showed changes over time that were poorly correlated with histology, hence suggesting a sensitivity to pathological processes possibly not related to myelin. Although MPF was also highly correlated to histology, ihMT high-pass T1D-filters showed better capability to characterize the spatial-temporal patterns during the demyelination and remyelination phases of the acute cuprizone model (e.g., rostro-caudal gradient of demyelination in the mCC previously described in the literature). CONCLUSIONS IhMT sequences selective for long T1D components are specific and sensitive in vivo markers of demyelination and remyelination and have successfully captured the spatially heterogeneous pattern of the demyelination and remyelination mechanisms in the cuprizone model. Interestingly, differences in signal variations between the ihMT high-pass and band-pass T1D-filter, suggest a sensitivity of the ihMT sequences targeted to short T1Ds to alterations other than those of myelin. Future studies will need to further address these differences by examining more closely the origin of the short T1D components and the variation of each T1D component in pathology.
Collapse
|
14
|
A macroscopic link between interhemispheric tract myelination and cortico-cortical interactions during action reprogramming. Nat Commun 2022; 13:4253. [PMID: 35869067 PMCID: PMC9307658 DOI: 10.1038/s41467-022-31687-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 06/16/2022] [Indexed: 11/15/2022] Open
Abstract
Myelination has been increasingly implicated in the function and dysfunction of the adult human brain. Although it is known that axon myelination shapes axon physiology in animal models, it is unclear whether a similar principle applies in the living human brain, and at the level of whole axon bundles in white matter tracts. Here, we hypothesised that in humans, cortico-cortical interactions between two brain areas may be shaped by the amount of myelin in the white matter tract connecting them. As a test bed for this hypothesis, we use a well-defined interhemispheric premotor-to-motor circuit. We combined TMS-derived physiological measures of cortico-cortical interactions during action reprogramming with multimodal myelin markers (MT, R1, R2* and FA), in a large cohort of healthy subjects. We found that physiological metrics of premotor-to-motor interaction are broadly associated with multiple myelin markers, suggesting interindividual differences in tract myelination may play a role in motor network physiology. Moreover, we also demonstrate that myelination metrics link indirectly to action switching by influencing local primary motor cortex dynamics. These findings suggest that myelination levels in white matter tracts may influence millisecond-level cortico-cortical interactions during tasks. They also unveil a link between the physiology of the motor network and the myelination of tracts connecting its components, and provide a putative mechanism mediating the relationship between brain myelination and human behaviour. Myelination is a key regulator of brain function. Here the authors use MR-based myelin measures to examine if cortico-cortical interactions, as assessed by paired pulse transcranial magnetic stimulation, are affected by variations in myelin in the human brain.
Collapse
|
15
|
Kisel AA, Naumova AV, Yarnykh VL. Macromolecular Proton Fraction as a Myelin Biomarker: Principles, Validation, and Applications. Front Neurosci 2022; 16:819912. [PMID: 35221905 PMCID: PMC8863973 DOI: 10.3389/fnins.2022.819912] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 01/17/2022] [Indexed: 12/16/2022] Open
Abstract
Macromolecular proton fraction (MPF) is a quantitative MRI parameter describing the magnetization transfer (MT) effect and defined as a relative amount of protons bound to biological macromolecules with restricted molecular motion, which participate in magnetic cross-relaxation with water protons. MPF attracted significant interest during past decade as a biomarker of myelin. The purpose of this mini review is to provide a brief but comprehensive summary of MPF mapping methods, histological validation studies, and MPF applications in neuroscience. Technically, MPF maps can be obtained using a variety of quantitative MT methods. Some of them enable clinically reasonable scan time and resolution. Recent studies demonstrated the feasibility of MPF mapping using standard clinical MRI pulse sequences, thus substantially enhancing the method availability. A number of studies in animal models demonstrated strong correlations between MPF and histological markers of myelin with a minor influence of potential confounders. Histological studies validated the capability of MPF to monitor both demyelination and re-myelination. Clinical applications of MPF have been mainly focused on multiple sclerosis where this method provided new insights into both white and gray matter pathology. Besides, several studies used MPF to investigate myelin role in other neurological and psychiatric conditions. Another promising area of MPF applications is the brain development studies. MPF demonstrated the capabilities to quantitatively characterize the earliest stage of myelination during prenatal brain maturation and protracted myelin development in adolescence. In summary, MPF mapping provides a technically mature and comprehensively validated myelin imaging technology for various preclinical and clinical neuroscience applications.
Collapse
Affiliation(s)
- Alena A. Kisel
- Department of Radiology, University of Washington, Seattle, WA, United States
- Laboratory of Neurobiology, Tomsk State University, Tomsk, Russia
| | - Anna V. Naumova
- Department of Radiology, University of Washington, Seattle, WA, United States
| | - Vasily L. Yarnykh
- Department of Radiology, University of Washington, Seattle, WA, United States
- Laboratory of Neurobiology, Tomsk State University, Tomsk, Russia
- *Correspondence: Vasily L. Yarnykh,
| |
Collapse
|
16
|
Yarnykh VL, Korostyshevskaya AM, Savelov AA, Isaeva YO, Gornostaeva AM, Tulupov AA, Sagdeev RZ. Macromolecular proton fraction mapping in magnetic resonance imaging: physicochemical principles and biomedical applications. Russ Chem Bull 2022. [DOI: 10.1007/s11172-021-3343-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
17
|
Hertanu A, Soustelle L, Buron J, Le Priellec J, Cayre M, Le Troter A, Varma G, Alsop DC, Durbec P, Girard OM, Duhamel G. T 1D -weighted ihMT imaging - Part II. Investigating the long- and short-T 1D components correlation with myelin content. Comparison with R 1 and the macromolecular proton fraction. Magn Reson Med 2022; 87:2329-2346. [PMID: 35001427 DOI: 10.1002/mrm.29140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 10/29/2021] [Accepted: 12/12/2021] [Indexed: 12/22/2022]
Abstract
PURPOSE To investigate the long- and short-T1D components correlation with myelin content using inhomogeneous magnetization transfer (ihMT) high-pass and band-pass T1D -filters and to compare ihMT, R1 , and the macromolecular proton fraction (MPF) for myelin specific imaging. METHODS The 3D ihMT rapid gradient echo (ihMTRAGE) sequences with increasing switching times (Δt) were used to derive ihMT high-pass T1D -filters with increasing T1D cutoff values and an ihMT band-pass T1D -filter for components in the 100 µs to 1 ms range. 3D spoiled gradient echo quantitative MT (SPGR-qMT) protocols were used to derive R1 and MPF maps. The specificity of R1 , MPF, and ihMT T1D -filters was evaluated by comparison with two histological reference techniques for myelin imaging. RESULTS The higher contribution of long-T1D s as compared to the short components as Δt got longer led to an increase in the specificity to myelination. In contrast, focusing on the signal originating from a narrow range of short-T1D s (< 1 ms) as isolated by the band-pass T1D -filter led to lower specificity. In addition, the significantly lower r2 correlation coefficient of the band-pass T1D -filter suggests that the origin of short-T1D components is mostly associated with non-myelin protons. Also, the important contribution of short-T1D s to the estimated MPF, explains its low specificity to myelination as compared to the ihMT high-pass T1D -filters. CONCLUSION Long-T1D components imaging by means of ihMT high-pass T1D -filters is proposed as an MRI biomarker for myelin content. Future studies should enable the investigation of the sensitivity of ihMT T1D -filters for demyelinating processes.
Collapse
Affiliation(s)
- Andreea Hertanu
- Aix Marseille Univ, CNRS, CRMBM, Marseille, France.,APHM, Hôpital Universitaire Timone, CEMEREM, Marseille, France
| | - Lucas Soustelle
- Aix Marseille Univ, CNRS, CRMBM, Marseille, France.,APHM, Hôpital Universitaire Timone, CEMEREM, Marseille, France
| | - Julie Buron
- Aix Marseille Univ, CNRS, CRMBM, Marseille, France.,APHM, Hôpital Universitaire Timone, CEMEREM, Marseille, France.,Aix Marseille Univ, CNRS, IBDM, Marseille, France
| | | | - Myriam Cayre
- Aix Marseille Univ, CNRS, IBDM, Marseille, France
| | - Arnaud Le Troter
- Aix Marseille Univ, CNRS, CRMBM, Marseille, France.,APHM, Hôpital Universitaire Timone, CEMEREM, Marseille, France
| | - Gopal Varma
- Division of MR Research, Radiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - David C Alsop
- Division of MR Research, Radiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Olivier M Girard
- Aix Marseille Univ, CNRS, CRMBM, Marseille, France.,APHM, Hôpital Universitaire Timone, CEMEREM, Marseille, France
| | - Guillaume Duhamel
- Aix Marseille Univ, CNRS, CRMBM, Marseille, France.,APHM, Hôpital Universitaire Timone, CEMEREM, Marseille, France
| |
Collapse
|
18
|
Duan W, Sehrawat P, Zhou TD, Becker JT, Lopez OL, Gach HM, Dai W. Pattern of Altered Magnetization Transfer Rate in Alzheimer's Disease. J Alzheimers Dis 2022; 88:693-705. [PMID: 35694929 PMCID: PMC9382719 DOI: 10.3233/jad-220335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Biomarkers for Alzheimer's disease (AD) are crucial for early diagnosis and treatment monitoring once disease modifying therapies become available. OBJECTIVE This study aims to quantify the forward magnetization transfer rate (kfor) map from brain tissue water to macromolecular protons and use it to identify the brain regions with abnormal kfor in AD and AD progression. METHODS From the Cardiovascular Health Study (CHS) cognition study, magnetization transfer imaging (MTI) was acquired at baseline from 63 participants, including 20 normal controls (NC), 18 with mild cognitive impairment (MCI), and 25 AD subjects. Of those, 53 participants completed a follow-up MRI scan and were divided into four groups: 15 stable NC, 12 NC-to-MCI, 12 stable MCI, and 14 MCI/AD-to-AD subjects. kfor maps were compared across NC, MCI, and AD groups at baseline for the cross-sectional study and across four longitudinal groups for the longitudinal study. RESULTS We found a lower kfor in the frontal gray matter (GM), parietal GM, frontal corona radiata (CR) white matter (WM) tracts, frontal and parietal superior longitudinal fasciculus (SLF) WM tracts in AD relative to both NC and MCI. Further, we observed progressive decreases of kfor in the frontal GM, parietal GM, frontal and parietal CR WM tracts, and parietal SLF WM tracts in stable MCI. In the parietal GM, parietal CR WM tracts, and parietal SLF WM tracts, we found trend differences between MCI/AD-to-AD and stable NC. CONCLUSION Forward magnetization transfer rate is a promising biomarker for AD diagnosis and progression.
Collapse
Affiliation(s)
- Wenna Duan
- Department of Computer Science, State University of New York at Binghamton, Binghamton, NY
| | - Parshant Sehrawat
- Department of Computer Science, State University of New York at Binghamton, Binghamton, NY
| | - Tony D. Zhou
- Departments of Radiation Oncology, Radiology, and Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO
| | - James T. Becker
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA
- Department of Psychiatry and Neurology, University of Pittsburgh, Pittsburgh, PA
| | - Oscar L. Lopez
- Department of Psychiatry and Neurology, University of Pittsburgh, Pittsburgh, PA
| | - H. Michael Gach
- Departments of Radiation Oncology, Radiology, and Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO
| | - Weiying Dai
- Department of Computer Science, State University of New York at Binghamton, Binghamton, NY
| |
Collapse
|
19
|
Orzyłowska A, Oakden W. Saturation Transfer MRI for Detection of Metabolic and Microstructural Impairments Underlying Neurodegeneration in Alzheimer's Disease. Brain Sci 2021; 12:53. [PMID: 35053797 PMCID: PMC8773856 DOI: 10.3390/brainsci12010053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 12/21/2021] [Accepted: 12/25/2021] [Indexed: 01/08/2023] Open
Abstract
Alzheimer's disease (AD) is one of the most common causes of dementia and difficult to study as the pool of subjects is highly heterogeneous. Saturation transfer (ST) magnetic resonance imaging (MRI) methods are quantitative modalities with potential for non-invasive identification and tracking of various aspects of AD pathology. In this review we cover ST-MRI studies in both humans and animal models of AD over the past 20 years. A number of magnetization transfer (MT) studies have shown promising results in human brain. Increased computing power enables more quantitative MT studies, while access to higher magnetic fields improves the specificity of chemical exchange saturation transfer (CEST) techniques. While much work remains to be done, results so far are very encouraging. MT is sensitive to patterns of AD-related pathological changes, improving differential diagnosis, and CEST is sensitive to particular pathological processes which could greatly assist in the development and monitoring of therapeutic treatments of this currently incurable disease.
Collapse
Affiliation(s)
- Anna Orzyłowska
- Department of Neurosurgery and Paediatric Neurosurgery, Medical University of Lublin, Jaczewskiego 8 (SPSK 4), 20-090 Lublin, Poland
| | - Wendy Oakden
- Physical Sciences, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada;
| |
Collapse
|
20
|
Yarnykh VL. Data-Driven Retrospective Correction of B 1 Field Inhomogeneity in Fast Macromolecular Proton Fraction and R 1 Mapping. IEEE TRANSACTIONS ON MEDICAL IMAGING 2021; 40:3473-3484. [PMID: 34110989 PMCID: PMC8711232 DOI: 10.1109/tmi.2021.3088258] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Correction of B1 field non-uniformity is critical for many quantitative MRI methods including variable flip angle (VFA) T1 mapping and single-point macromolecular proton fraction (MPF) mapping. The latter method showed promising results as a fast and robust quantitative myelin imaging approach and involves VFA-based R1=1/T1 map reconstruction as an intermediate processing step. The need for B1 correction restricts applications of the above methods, since B1 mapping sequences increase the examination time and are not commonly available in clinics. A new algorithm was developed to enable retrospective data-driven simultaneous B1 correction in VFA R1 and single-point MPF mapping. The principle of the algorithm is based on different mathematical dependences of B1 -related errors in R1 and MPF allowing extraction of a surrogate B1 field map from uncorrected R1 and MPF maps. To validate the method, whole-brain R1 and MPF maps with isotropic 1.25 mm3 resolution were obtained on a 3 T MRI scanner from 11 volunteers. Mean parameter values in segmented brain tissues were compared between three reconstruction options including the absence of correction, actual B1 correction, and surrogate B1 correction. Surrogate B1 maps closely reproduced actual patterns of B1 inhomogeneity. Without correction, B1 non-uniformity caused highly significant biases in R1 and MPF ( ). Surrogate B1 field correction reduced the biases in both R1 and MPF to a non-significant level ( 0.1 ≤ P ≤ 0.8 ). The described algorithm obviates the use of dedicated B1 mapping sequences in fast single-point MPF mapping and provides an alternative solution for correction of B1 non-uniformities in VFA R1 mapping.
Collapse
|
21
|
Buyanova IS, Arsalidou M. Cerebral White Matter Myelination and Relations to Age, Gender, and Cognition: A Selective Review. Front Hum Neurosci 2021; 15:662031. [PMID: 34295229 PMCID: PMC8290169 DOI: 10.3389/fnhum.2021.662031] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 06/02/2021] [Indexed: 12/22/2022] Open
Abstract
White matter makes up about fifty percent of the human brain. Maturation of white matter accompanies biological development and undergoes the most dramatic changes during childhood and adolescence. Despite the advances in neuroimaging techniques, controversy concerning spatial, and temporal patterns of myelination, as well as the degree to which the microstructural characteristics of white matter can vary in a healthy brain as a function of age, gender and cognitive abilities still exists. In a selective review we describe methods of assessing myelination and evaluate effects of age and gender in nine major fiber tracts, highlighting their role in higher-order cognitive functions. Our findings suggests that myelination indices vary by age, fiber tract, and hemisphere. Effects of gender were also identified, although some attribute differences to methodological factors or social and learning opportunities. Findings point to further directions of research that will improve our understanding of the complex myelination-behavior relation across development that may have implications for educational and clinical practice.
Collapse
Affiliation(s)
- Irina S. Buyanova
- Neuropsy Lab, HSE University, Moscow, Russia
- Center for Language and Brain, HSE University, Moscow, Russia
| | - Marie Arsalidou
- Neuropsy Lab, HSE University, Moscow, Russia
- Cognitive Centre, Sirius University of Science and Technology, Sochi, Russia
- Department of Psychology, York University, Toronto, ON, Canada
| |
Collapse
|
22
|
Rowley CD, Campbell JSW, Wu Z, Leppert IR, Rudko DA, Pike GB, Tardif CL. A model-based framework for correcting B 1 + inhomogeneity effects in magnetization transfer saturation and inhomogeneous magnetization transfer saturation maps. Magn Reson Med 2021; 86:2192-2207. [PMID: 33956348 DOI: 10.1002/mrm.28831] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 03/08/2021] [Accepted: 04/16/2021] [Indexed: 01/03/2023]
Abstract
PURPOSE In this work, we propose that Δ B 1 + -induced errors in magnetization transfer (MT) saturation (MTsat ) maps can be corrected with use of an R1 and B 1 + map and through numerical simulations of the sequence. THEORY AND METHODS One healthy subject was scanned at 3.0T using a partial quantitative MT protocol to estimate the relationship between observed R1 (R1,obs ) and apparent bound pool size ( M 0 , a p p B ) in the brain. MTsat values were simulated for a range of B 1 + , R1,obs , and M 0 , a p p B . An equation was fit to the simulated MTsat , then a linear relationship between R1,obs and M 0 , a p p B was generated. These results were used to generate correction factor maps for the MTsat acquired from single-point data. The proposed correction was compared to an empirical correction factor with different MT-preparation schemes. RESULTS M 0 , a p p B was highly correlated with R1,obs (r > 0.96), permitting the use of R1,obs to estimate M 0 , a p p B for B 1 + correction. All B 1 + corrected MTsat maps displayed a decreased correlation with B 1 + compared to uncorrected MTsat and MTsat corrected with an empirical factor in the corpus callosum. There was good agreement between the proposed approach and the empirical correction with radiofrequency saturation at 2 kHz, with larger deviations seen when using saturation pulses further off-resonance and in inhomogeneous (ih) MTsat maps. CONCLUSION The proposed correction decreases the dependence of MTsat on B 1 + inhomogeneities. Furthermore, this flexible framework permits the use of different saturation protocols, making it useful for correcting B 1 + inhomogeneities in ihMT.
Collapse
Affiliation(s)
- Christopher D Rowley
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada.,Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Jennifer S W Campbell
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Zhe Wu
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada.,Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada.,Techna Institute, University Health Network, Toronto, Ontario, Canada
| | - Ilana R Leppert
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - David A Rudko
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada.,Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada.,Department of Biomedical Engineering, McGill University, Montreal, Quebec, Canada
| | - Gilbert Bruce Pike
- Hotchkiss Brain Institute and Departments of Radiology and Clinical Neuroscience, University of Calgary, Calgary, Canada
| | - Christine L Tardif
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada.,Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada.,Department of Biomedical Engineering, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
23
|
Kim H, Krishnamurthy LC, Sun PZ. Brain pH Imaging and its Applications. Neuroscience 2021; 474:51-62. [PMID: 33493621 DOI: 10.1016/j.neuroscience.2021.01.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 12/14/2022]
Abstract
Acid-base homeostasis and pH regulation are critical for normal tissue metabolism and physiology, and brain tissue pH alters in many diseased states. Several noninvasive tissue pH Magnetic Resonance (MR) techniques have been developed over the past few decades to shed light on pH change during tissue function and dysfunction. Nevertheless, there are still challenges for mapping brain pH noninvasively at high spatiotemporal resolution. To address this unmet biomedical need, chemical exchange saturation transfer (CEST) MR techniques have been developed as a sensitive means for non-invasive pH mapping. This article briefly reviews the basic principles of different pH measurement techniques with a focus on CEST imaging of pH. Emerging pH imaging applications in the tumor are provided as examples throughout the narrative, and CEST pH imaging in acute stroke is discussed in the final section.
Collapse
Affiliation(s)
- Hahnsung Kim
- Yerkes Imaging Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States; Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA, United States
| | - Lisa C Krishnamurthy
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VA, Decatur, GA, United States; Department of Physics & Astronomy, Georgia State University, Atlanta, GA, United States
| | - Phillip Zhe Sun
- Yerkes Imaging Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States; Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA, United States.
| |
Collapse
|
24
|
Piredda GF, Hilbert T, Thiran JP, Kober T. Probing myelin content of the human brain with MRI: A review. Magn Reson Med 2020; 85:627-652. [PMID: 32936494 DOI: 10.1002/mrm.28509] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 08/12/2020] [Accepted: 08/17/2020] [Indexed: 12/11/2022]
Abstract
Rapid and efficient transmission of electric signals among neurons of vertebrates is ensured by myelin-insulating sheaths surrounding axons. Human cognition, sensation, and motor functions rely on the integrity of these layers, and demyelinating diseases often entail serious cognitive and physical impairments. Magnetic resonance imaging radically transformed the way these disorders are monitored, offering an irreplaceable tool to noninvasively examine the brain structure. Several advanced techniques based on MRI have been developed to provide myelin-specific contrasts and a quantitative estimation of myelin density in vivo. Here, the vast offer of acquisition strategies developed to date for this task is reviewed. Advantages and pitfalls of the different approaches are compared and discussed.
Collapse
Affiliation(s)
- Gian Franco Piredda
- Advanced Clinical Imaging Technology, Siemens Healthcare AG, Lausanne, Switzerland.,Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.,LTS5, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Tom Hilbert
- Advanced Clinical Imaging Technology, Siemens Healthcare AG, Lausanne, Switzerland.,Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.,LTS5, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Jean-Philippe Thiran
- Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.,LTS5, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Tobias Kober
- Advanced Clinical Imaging Technology, Siemens Healthcare AG, Lausanne, Switzerland.,Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.,LTS5, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
25
|
Hou J, Wong VWS, Jiang B, Wang YX, Wong GLH, Chan AWH, Chu WCW, Chen W. Macromolecular proton fraction mapping based on spin-lock magnetic resonance imaging. Magn Reson Med 2020; 84:3157-3171. [PMID: 32627861 DOI: 10.1002/mrm.28362] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 04/23/2020] [Accepted: 05/20/2020] [Indexed: 11/11/2022]
Abstract
PURPOSE In MRI, the macromolecular proton fraction (MPF) is a key parameter of magnetization transfer (MT). It represents the relative amount of immobile protons associated with semi-solid macromolecules involved in MT with free water protons. We aim to quantify MPF based on spin-lock MRI and explore its advantages over the existing MPF-mapping methods. METHODS In the proposed method, termed MPF quantification based on spin-lock (MPF-SL), off-resonance spin-lock is used to sensitively measure the MT effect. MPF-SL is designed to measure a relaxation rate (Rmpfsl ) that is specific to the MT effect by removing the R1ρ relaxation due to the mobile water and chemical exchange pools. A theory is derived to quantify MPF from the measured Rmpfsl . No prior knowledge of tissue relaxation parameters, including T1 or T2 , is needed to quantify MPF using MPF-SL. The proposed approach is validated with Bloch-McConnell simulations, phantom, and in vivo liver studies at 3.0T. RESULTS Both Bloch-McConnell simulations and phantom experiments show that MPF-SL is insensitive to variations of the mobile water pool and the chemical exchange pool. MPF-SL is specific to the MT effect and can measure MPF reliably. In vivo liver studies show that MPF-SL can be used to detect collagen deposition in patients with liver fibrosis. CONCLUSION A novel MPF imaging method based on spin-lock MRI is proposed. The confounding factors are removed, and the measurement is specific to the MT effect. It holds promise for MPF-sensitive diagnostic imaging in clinical settings.
Collapse
Affiliation(s)
- Jian Hou
- Department of Imaging and Interventional Radiology, the Chinese University of Hong Kong, Hong Kong SAR, China
| | - Vincent Wai-Sun Wong
- Department of Medicine & Therapeutics, the Chinese University of Hong Kong, Hong Kong SAR, China
| | - Baiyan Jiang
- Department of Imaging and Interventional Radiology, the Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yi-Xiang Wang
- Department of Imaging and Interventional Radiology, the Chinese University of Hong Kong, Hong Kong SAR, China
| | - Grace Lai-Hung Wong
- Department of Medicine & Therapeutics, the Chinese University of Hong Kong, Hong Kong SAR, China
| | - Anthony Wing-Hung Chan
- Department of Anatomical and Cellular Pathology, the Chinese University of Hong Kong, Hong Kong SAR, China
| | - Winnie Chiu-Wing Chu
- Department of Imaging and Interventional Radiology, the Chinese University of Hong Kong, Hong Kong SAR, China
| | - Weitian Chen
- Department of Imaging and Interventional Radiology, the Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
26
|
Anisimov NV, Pavlova OS, Pirogov YA, Yarnykh VL. Three-dimensional fast single-point macromolecular proton fraction mapping of the human brain at 0.5 Tesla. Quant Imaging Med Surg 2020; 10:1441-1449. [PMID: 32676363 DOI: 10.21037/qims-19-1057] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Fast single-point macromolecular proton fraction (MPF) mapping is a recent magnetic resonance imaging (MRI) method enabling quantitative assessment of myelin content in neural tissues. To date, the reported technical implementations of MPF mapping utilized high-field MRI equipment (1.5 T or higher), while low-field applications might pose challenges due to signal-to-noise ratio (SNR) limitations and short T1 . This study aimed to evaluate the feasibility of MPF mapping of the human brain at 0.5 T. The three-dimensional MPF mapping protocol was implemented according to the single-point synthetic-reference method, which includes three spoiled gradient-echo sequences providing proton density, T1 , and magnetization transfer contrast weightings. Whole-brain MPF maps were obtained from three healthy volunteers with spatial resolution of 1.5×1.5×2 mm3 and the total scan time of 19 minutes. MPF values were measured in a series of white and gray matter structures and compared with literature data for 3 T magnetic field. MPF maps enabled high contrast between white and gray matter with notable insensitivity to paramagnetic effects in iron-rich structures, such as globus pallidus, substantia nigra, and dentate nucleus. MPF values at 0.5 T appeared in close agreement with those at 3 T. This study demonstrates the feasibility of fast MPF mapping with low-field MRI equipment and the independence of brain MPF values of magnetic field. The presented results confirm the utility of MPF as an absolute scale for MRI-based myelin content measurements across a wide range of magnetic field strengths and extend the applicability of fast MPF mapping to inexpensive low-field MRI hardware.
Collapse
Affiliation(s)
- Nikolay V Anisimov
- Faculty of Fundamental Medicine, Lomonosov Moscow State University, 117192, Moscow, Lomonosovsky Prospekt, 31-5, Russian Federation
| | - Olga S Pavlova
- Faculty of Fundamental Medicine, Lomonosov Moscow State University, 117192, Moscow, Lomonosovsky Prospekt, 31-5, Russian Federation.,Faculty of Physics, Lomonosov Moscow State University, 119991, Moscow, GSP-1, Leninskie Gory, 1-2, Russian Federation
| | - Yury A Pirogov
- Faculty of Physics, Lomonosov Moscow State University, 119991, Moscow, GSP-1, Leninskie Gory, 1-2, Russian Federation.,Institute for Physical and Chemical Fundamentals of Artificial Intelligence, Lomonosov Moscow State University, 119991, Moscow, GSP-1, Leninskie Gory, 1-11, Russian Federation
| | - Vasily L Yarnykh
- Department of Radiology, University of Washington, Seattle, WA 98109, USA.,Research Institute of Biology and Biophysics, Tomsk State University, 634050, Tomsk, Russian Federation
| |
Collapse
|
27
|
Wang Y, van Gelderen P, de Zwart JA, Duyn JH. B 0-field dependence of MRI T 1 relaxation in human brain. Neuroimage 2020; 213:116700. [PMID: 32145438 PMCID: PMC7165058 DOI: 10.1016/j.neuroimage.2020.116700] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 02/27/2020] [Accepted: 02/29/2020] [Indexed: 12/31/2022] Open
Abstract
Tissue longitudinal relaxation characterized by recovery time T1 or rate R1 is a fundamental MRI contrast mechanism that is increasingly being used to study the brain's myelination patterns in both health and disease. Nevertheless, the quantitative relationship between T1 and myelination, and its dependence on B0 field strength, is still not well known. It has been theorized that in much of brain tissue, T1 field-dependence is driven by that of macromolecular protons (MP) through a mechanism called magnetization transfer (MT). Despite the explanatory power of this theory and substantial support from in-vitro experiments at low fields (<3 T), in-vivo evidence across clinically relevant field strengths is lacking. In this study, T1-weighted MRI was acquired in a group of eight healthy volunteers at four clinically relevant field strengths (0.55, 1.5, 3 and 7 T) using the same pulse sequence at a single site, and jointly analyzed based on the two-pool model of MT. MP fraction and free-water pool T1 were obtained in several brain structures at 3 and 7 T, which allowed distinguishing between contributions from macromolecular content and iron to tissue T1. Based on this, the T1 of MP in white matter, indirectly determined by assuming a field independent T1 of free water, was shown to increase approximately linearly with B0. This study advances our understanding of the T1 contrast mechanism and its relation to brain myelin content across the wide range of currently available MRI strengths, and it has the potential to inform design of T1 mapping methods for improved reproducibility in the human brain.
Collapse
Affiliation(s)
- Yicun Wang
- Advanced MRI Section, Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Peter van Gelderen
- Advanced MRI Section, Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jacco A de Zwart
- Advanced MRI Section, Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jeff H Duyn
- Advanced MRI Section, Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
28
|
Smith AK, Ray KJ, Larkin JR, Craig M, Smith SA, Chappell MA. Does the magnetization transfer effect bias chemical exchange saturation transfer effects? Quantifying chemical exchange saturation transfer in the presence of magnetization transfer. Magn Reson Med 2020; 84:1359-1375. [PMID: 32072677 PMCID: PMC7317383 DOI: 10.1002/mrm.28212] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 01/16/2020] [Accepted: 01/20/2020] [Indexed: 12/13/2022]
Abstract
Purpose Chemical exchange saturation transfer (CEST) is an MRI technique sensitive to the presence of low‐concentration solute protons exchanging with water. However, magnetization transfer (MT) effects also arise when large semisolid molecules interact with water, which biases CEST parameter estimates if quantitative models do not account for macromolecular effects. This study establishes under what conditions this bias is significant and demonstrates how using an appropriate model provides more accurate quantitative CEST measurements. Methods CEST and MT data were acquired in phantoms containing bovine serum albumin and agarose. Several quantitative CEST and MT models were used with the phantom data to demonstrate how underfitting can influence estimates of the CEST effect. CEST and MT data were acquired in healthy volunteers, and a two‐pool model was fit in vivo and in vitro, whereas removing increasing amounts of CEST data to show biases in the CEST analysis also corrupts MT parameter estimates. Results When all significant CEST/MT effects were included, the derived parameter estimates for each CEST/MT pool significantly correlated (P < .05) with bovine serum albumin/agarose concentration; minimal or negative correlations were found with underfitted data. Additionally, a bootstrap analysis demonstrated that significant biases occur in MT parameter estimates (P < .001) when unmodeled CEST data are included in the analysis. Conclusions These results indicate that current practices of simultaneously fitting both CEST and MT effects in model‐based analyses can lead to significant bias in all parameter estimates unless a sufficiently detailed model is utilized. Therefore, care must be taken when quantifying CEST and MT effects in vivo by properly modeling data to minimize these biases.
Collapse
Affiliation(s)
- Alex K Smith
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, United Kingdom
| | - Kevin J Ray
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, United Kingdom
| | - James R Larkin
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Martin Craig
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, United Kingdom
| | - Seth A Smith
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee, USA.,Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Michael A Chappell
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, United Kingdom.,Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
29
|
Boudreau M. Editorial for "Scan-Rescan Repeatability and Impact of B 0 and B 1 Field Nonuniformity Corrections in Single-Point Whole-Brain Macromolecular Proton Fraction Mapping". J Magn Reson Imaging 2020; 52:954-955. [PMID: 32045068 DOI: 10.1002/jmri.27088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Accepted: 01/27/2020] [Indexed: 11/07/2022] Open
Affiliation(s)
- Mathieu Boudreau
- Montreal Heart Institute, Université de Montreal, Montreal, Quebec, Canada.,NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, Quebec, Canada
| |
Collapse
|
30
|
Yarnykh VL, Kisel AA, Khodanovich MY. Scan-Rescan Repeatability and Impact of B 0 and B 1 Field Nonuniformity Corrections in Single-Point Whole-Brain Macromolecular Proton Fraction Mapping. J Magn Reson Imaging 2019; 51:1789-1798. [PMID: 31737961 DOI: 10.1002/jmri.26998] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 10/26/2019] [Accepted: 10/26/2019] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Single-point macromolecular proton fraction (MPF) mapping is a recent quantitative MRI method for fast assessment of brain myelination. Information about reproducibility and sensitivity of MPF mapping to magnetic field nonuniformity is important for clinical applications. PURPOSE To assess scan-rescan repeatability and a value of B0 and B1 field inhomogeneity corrections in single-point synthetic-reference MPF mapping. STUDY TYPE Prospective. POPULATION Eight healthy adult volunteers underwent two scans with 11.5 ± 2.3 months interval. FIELD STRENGTH/SEQUENCE 3T; whole-brain 3D MPF mapping protocol included three spoiled gradient-echo sequences providing T1 , proton density, and magnetization transfer contrasts with 1.25 × 1.25 × 1.25 mm3 resolution and B0 and B1 mapping sequences. ASSESSMENT MPF maps were reconstructed with B0 and B1 field nonuniformity correction, B0 - and B1 -only corrections, and without corrections. Mean MPF values were measured in automatically segmented white matter (WM) and gray matter (GM). STATISTICAL TESTS Within-subject coefficient of variation (CV), intraclass correlation coefficient (ICC), Bland-Altman plots, and paired t-tests to assess scan-rescan repeatability. Repeated-measures analysis of variance (ANOVA) to compare field corrections. RESULTS Maximal relative local MPF errors without correction in the areas of largest field nonuniformities were about 5% and 27% for B0 and B1 , respectively. The effect of B0 correction was insignificant for whole-brain WM (P > 0.25) and GM (P > 0.98) MPF. The absence of B1 correction caused a positive relative bias of 4-5% (P < 0.001) in both tissues. Scan-rescan agreement was similar for all field correction options with ICCs 0.80-0.81 for WM and 0.89-0.92 for GM. CVs were 1.6-1.7% for WM and 0.7-1.0% for GM. DATA CONCLUSION The single-point method enables high repeatability of MPF maps obtained with the same equipment. Correction of B0 inhomogeneity may be disregarded to shorten the examination time. B1 nonuniformity correction improves accuracy of MPF measurements at 3T. Reliability of whole-brain MPF measurements in WM and GM is not affected by B0 and B1 field corrections. LEVEL OF EVIDENCE 2 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2020;51:1789-1798.
Collapse
Affiliation(s)
- Vasily L Yarnykh
- Department of Radiology, University of Washington, Seattle, Washington, USA.,Research Institute of Biology and Biophysics, Tomsk State University, Tomsk, Russian Federation
| | - Alena A Kisel
- Research Institute of Biology and Biophysics, Tomsk State University, Tomsk, Russian Federation
| | - Marina Y Khodanovich
- Research Institute of Biology and Biophysics, Tomsk State University, Tomsk, Russian Federation
| |
Collapse
|
31
|
Chan RW, Myrehaug S, Stanisz GJ, Sahgal A, Lau AZ. Quantification of pulsed saturation transfer at 1.5T and 3T. Magn Reson Med 2019; 82:1684-1699. [DOI: 10.1002/mrm.27856] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 05/12/2019] [Accepted: 05/21/2019] [Indexed: 12/22/2022]
Affiliation(s)
- Rachel W. Chan
- Department of Physical Sciences Sunnybrook Research Institute Toronto Canada
| | - Sten Myrehaug
- Department of Radiation Oncology Sunnybrook Health Sciences Centre Toronto Canada
- Department of Radiation Oncology University of Toronto Toronto Canada
| | - Greg J. Stanisz
- Department of Physical Sciences Sunnybrook Research Institute Toronto Canada
- Department of Medical Biophysics University of Toronto Toronto Canada
- Department of Neurosurgery and Pediatric Neurosurgery Medical University Lublin Poland
| | - Arjun Sahgal
- Department of Physical Sciences Sunnybrook Research Institute Toronto Canada
- Department of Radiation Oncology Sunnybrook Health Sciences Centre Toronto Canada
- Department of Radiation Oncology University of Toronto Toronto Canada
| | - Angus Z. Lau
- Department of Physical Sciences Sunnybrook Research Institute Toronto Canada
- Department of Medical Biophysics University of Toronto Toronto Canada
| |
Collapse
|
32
|
Battiston M, Schneider T, Grussu F, Yiannakas MC, Prados F, De Angelis F, Gandini Wheeler-Kingshott CAM, Samson RS. Fast bound pool fraction mapping via steady-state magnetization transfer saturation using single-shot EPI. Magn Reson Med 2019; 82:1025-1040. [PMID: 31081239 DOI: 10.1002/mrm.27792] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 03/15/2019] [Accepted: 04/10/2019] [Indexed: 11/10/2022]
Abstract
PURPOSE To enable clinical applications of quantitative magnetization transfer (qMT) imaging by developing a fast method to map one of its fundamental model parameters, the bound pool fraction (BPF), in the human brain. THEORY AND METHODS The theory of steady-state MT in the fast-exchange approximation is used to provide measurements of BPF, and bound pool transverse relaxation time ( T 2 B ). A sequence that allows sampling of the signal during steady-state MT saturation is used to perform BPF mapping with a 10-min-long fully echo planar imaging-based MRI protocol, including inversion recovery T1 mapping and B1 error mapping. The approach is applied in 6 healthy subjects and 1 multiple sclerosis patient, and validated against a single-slice full qMT reference acquisition. RESULTS BPF measurements are in agreement with literature values using off-resonance MT, with average BPF of 0.114(0.100-0.128) in white matter and 0.068(0.054-0.085) in gray matter. Median voxel-wise percentage error compared with standard single slice qMT is 4.6%. Slope and intercept of linear regression between new and reference BPF are 0.83(0.81-0.85) and 0.013(0.11-0.16). Bland-Altman plot mean bias is 0.005. In the multiple sclerosis case, the BPF is sensitive to pathological changes in lesions. CONCLUSION The method developed provides accurate BPF estimates and enables shorter scan time compared with currently available approaches, demonstrating the potential of bringing myelin sensitive measurement closer to the clinic.
Collapse
Affiliation(s)
- Marco Battiston
- Queen Square MS Centre, Department of Neuroinflammation, UCL Institute of Neurology, Faculty of Brain Sciences, University College London, London, United Kingdom
| | | | - Francesco Grussu
- Queen Square MS Centre, Department of Neuroinflammation, UCL Institute of Neurology, Faculty of Brain Sciences, University College London, London, United Kingdom.,Centre for Medical Image Computing, Department of Computer Science, University College London, London, United Kingdom
| | - Marios C Yiannakas
- Queen Square MS Centre, Department of Neuroinflammation, UCL Institute of Neurology, Faculty of Brain Sciences, University College London, London, United Kingdom
| | - Ferran Prados
- Queen Square MS Centre, Department of Neuroinflammation, UCL Institute of Neurology, Faculty of Brain Sciences, University College London, London, United Kingdom.,Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom.,Universitat Oberta de Catalunya, Barcelona, Spain
| | - Floriana De Angelis
- Queen Square MS Centre, Department of Neuroinflammation, UCL Institute of Neurology, Faculty of Brain Sciences, University College London, London, United Kingdom
| | - Claudia A M Gandini Wheeler-Kingshott
- Queen Square MS Centre, Department of Neuroinflammation, UCL Institute of Neurology, Faculty of Brain Sciences, University College London, London, United Kingdom.,Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy.,Brain MRI 3T Research Centre, IRCCS Mondino Foundation, Pavia, Italy
| | - Rebecca S Samson
- Queen Square MS Centre, Department of Neuroinflammation, UCL Institute of Neurology, Faculty of Brain Sciences, University College London, London, United Kingdom
| |
Collapse
|
33
|
Field AS, Samsonov A, Alexander AL, Mossahebi P, Duncan ID. Conventional and quantitative MRI in a novel feline model of demyelination and endogenous remyelination. J Magn Reson Imaging 2019; 49:1304-1311. [PMID: 30302903 PMCID: PMC6519168 DOI: 10.1002/jmri.26300] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 07/30/2018] [Accepted: 07/31/2018] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The feeding of irradiated food to healthy adult cats results in widespread, noninflammatory demyelination of the central nervous system (CNS); a return to a normal diet results in endogenous remyelination with functional recovery. This recently discovered, reversible disease might provide a compelling clinical neuroimaging model system for the development and testing of myelin-directed MRI methods as well as future remyelination therapies. PURPOSE Identify the noninvasive imaging characteristics of this new disease model and determine whether it features measurable changes on conventional and quantitative MRI. STUDY TYPE Pilot study. ANIMAL MODEL Ten adult cats at various stages of demyelinating disease induced by an irradiated diet (35-55 kGy), and during recovery following a return to a normal diet. FIELD STRENGTH/SEQUENCE Conventional (T2 -weighted) and quantitative (diffusion tensor, magnetization transfer) at 3T. ASSESSMENT MRI of the brain, optic nerves, and cervical spinal cord; a subset of diseased cats was euthanized for comparative histopathology. STATISTICAL TESTS Descriptive statistics. RESULTS Disease produced T2 prolongation, progressing from patchy to diffuse throughout most of the cerebral white matter (eventually involving U-fibers) and spinal cord (primarily dorsal columns, reminiscent of subacute combined degeneration but without evidence of B12 deficiency). Magnetization transfer parameters decreased by 50-53% in cerebral white matter and by 25-30% in optic nerves and spinal cord dorsal columns. Fractional diffusion anisotropy decreased by up to 20% in pyramidal tracts, primarily driven by increased radial diffusivity consistent with axon preservation. Histopathology showed scattered myelin vacuolation of major white matter tracts as well as many thin myelin sheaths consistent with remyelination in the recovery phase, which was detectable on magnetization transfer imaging. DATA CONCLUSION Feline irradiated diet-induced demyelination features noninvasively imageable and quantifiable demyelination and remyelination of the CNS. It is therefore a compelling clinical neuroimaging model system. LEVEL OF EVIDENCE 4 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2019;49:1304-1311.
Collapse
Affiliation(s)
- Aaron S. Field
- Department of RadiologyUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
| | - Alexey Samsonov
- Department of RadiologyUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
| | - Andrew L. Alexander
- Department of Medical PhysicsUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
| | - Pouria Mossahebi
- Department of RadiologyUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
| | - Ian D. Duncan
- Department of Medical SciencesUniversity of Wisconsin School of Veterinary MedicineMadisonWisconsinUSA
| |
Collapse
|
34
|
Knutsson L, Xu J, Ahlgren A, van Zijl P. CEST, ASL, and magnetization transfer contrast: How similar pulse sequences detect different phenomena. Magn Reson Med 2018; 80:1320-1340. [PMID: 29845640 PMCID: PMC6097930 DOI: 10.1002/mrm.27341] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 04/10/2018] [Accepted: 04/11/2018] [Indexed: 12/28/2022]
Abstract
Chemical exchange saturation transfer (CEST), arterial spin labeling (ASL), and magnetization transfer contrast (MTC) methods generate different contrasts for MRI. However, they share many similarities in terms of pulse sequences and mechanistic principles. They all use RF pulse preparation schemes to label the longitudinal magnetization of certain proton pools and follow the delivery and transfer of this magnetic label to a water proton pool in a tissue region of interest, where it accumulates and can be detected using any imaging sequence. Due to the versatility of MRI, differences in spectral, spatial or motional selectivity of these schemes can be exploited to achieve pool specificity, such as for arterial water protons in ASL, protons on solute molecules in CEST, and protons on semi-solid cell structures in MTC. Timing of these sequences can be used to optimize for the rate of a particular delivery and/or exchange transfer process, for instance, between different tissue compartments (ASL) or between tissue molecules (CEST/MTC). In this review, magnetic labeling strategies for ASL and the corresponding CEST and MTC pulse sequences are compared, including continuous labeling, single-pulse labeling, and multi-pulse labeling. Insight into the similarities and differences among these techniques is important not only to comprehend the mechanisms and confounds of the contrasts they generate, but also to stimulate the development of new MRI techniques to improve these contrasts or to reduce their interference. This, in turn, should benefit many possible applications in the fields of physiological and molecular imaging and spectroscopy.
Collapse
Affiliation(s)
- L Knutsson
- Department of Medical Radiation Physics, Lund University, Lund, Sweden
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - J Xu
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
| | - A Ahlgren
- Department of Medical Radiation Physics, Lund University, Lund, Sweden
| | - P.C.M van Zijl
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
| |
Collapse
|
35
|
Boudreau M, Pike GB. Sensitivity regularization of the Cramér-Rao lower bound to minimize B 1 nonuniformity effects in quantitative magnetization transfer imaging. Magn Reson Med 2018; 80:2560-2572. [PMID: 29733460 DOI: 10.1002/mrm.27337] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 04/02/2018] [Accepted: 04/07/2018] [Indexed: 11/09/2022]
Abstract
PURPOSE To develop and validate a regularization approach of optimizing B1 insensitivity of the quantitative magnetization transfer (qMT) pool-size ratio (F). METHODS An expression describing the impact of B1 inaccuracies on qMT fitting parameters was derived using a sensitivity analysis. To simultaneously optimize for robustness against noise and B1 inaccuracies, the optimization condition was defined as the Cramér-Rao lower bound (CRLB) regularized by the B1 -sensitivity expression for the parameter of interest (F). The qMT protocols were iteratively optimized from an initial search space, with and without B1 regularization. Three 10-point qMT protocols (Uniform, CRLB, CRLB+B1 regularization) were compared using Monte Carlo simulations for a wide range of conditions (e.g., SNR, B1 inaccuracies, tissues). RESULTS The B1 -regularized CRLB optimization protocol resulted in the best robustness of F against B1 errors, for a wide range of SNR and for both white matter and gray matter tissues. For SNR = 100, this protocol resulted in errors of less than 1% in mean F values for B1 errors ranging between -10 and 20%, the range of B1 values typically observed in vivo in the human head at field strengths of 3 T and less. Both CRLB-optimized protocols resulted in the lowest σF values for all SNRs and did not increase in the presence of B1 inaccuracies. CONCLUSION This work demonstrates a regularized optimization approach for improving the robustness of auxiliary measurements (e.g., B1 ) sensitivity of qMT parameters, particularly the pool-size ratio (F). Predicting substantially less B1 sensitivity using protocols optimized with this method, B1 mapping could even be omitted for qMT studies primarily interested in F.
Collapse
Affiliation(s)
- Mathieu Boudreau
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - G Bruce Pike
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada.,Hotchkiss Brain Institute and Department of Radiology, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
36
|
Khodanovich MY, Kisel AA, Akulov AE, Atochin DN, Kudabaeva MS, Glazacheva VY, Svetlik MV, Medvednikova YA, Mustafina LR, Yarnykh VL. Quantitative assessment of demyelination in ischemic stroke in vivo using macromolecular proton fraction mapping. J Cereb Blood Flow Metab 2018; 38:919-931. [PMID: 29372644 PMCID: PMC5987939 DOI: 10.1177/0271678x18755203] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A recent MRI method, fast macromolecular proton fraction (MPF) mapping, was used to quantify demyelination in the transient middle cerebral artery occlusion (MCAO) rat stroke model. MPF and other quantitative MRI parameters (T1, T2, proton density, and apparent diffusion coefficient) were compared with histological and immunohistochemical markers of demyelination (Luxol Fast Blue stain, (LFB)), neuronal loss (NeuN immunofluorescence), axonal loss (Bielschowsky stain), and inflammation (Iba1 immunofluorescence) in three animal groups ( n = 5 per group) on the 1st, 3rd, and 10th day after MCAO. MPF and LFB optical density (OD) were significantly reduced in the ischemic lesion on all days after MCAO relative to the symmetrical regions of the contralateral hemisphere. Percentage changes in MPF and LFB OD in the ischemic lesion relative to the contralateral hemisphere significantly differed on the first day only. Percentage changes in LFB OD and MPF were strongly correlated (R = 0.81, P < 0.001) and did not correlate with other MRI parameters. MPF also did not correlate with other histological variables. Addition of T2 into multivariate regression further improved agreement between MPF and LFB OD (R = 0.89, P < 0.001) due to correction of the edema effect. This study provides histological validation of MPF as an imaging biomarker of demyelination in ischemic stroke.
Collapse
Affiliation(s)
| | - Alena A Kisel
- 1 Laboratory of Neurobiology, Tomsk State University, Tomsk, Russian Federation
| | - Andrey E Akulov
- 1 Laboratory of Neurobiology, Tomsk State University, Tomsk, Russian Federation.,2 Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russian Federation
| | - Dmitriy N Atochin
- 1 Laboratory of Neurobiology, Tomsk State University, Tomsk, Russian Federation.,3 Cardiovascular Research Center, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA.,4 RASA Center in Tomsk, Tomsk Polytechnic University, Tomsk, Russian Federation
| | - Marina S Kudabaeva
- 1 Laboratory of Neurobiology, Tomsk State University, Tomsk, Russian Federation
| | | | - Michael V Svetlik
- 1 Laboratory of Neurobiology, Tomsk State University, Tomsk, Russian Federation
| | - Yana A Medvednikova
- 1 Laboratory of Neurobiology, Tomsk State University, Tomsk, Russian Federation
| | - Lilia R Mustafina
- 5 Department of Histology, Embryology and Cytology, Siberian State Medical University, Tomsk, Russian Federation
| | - Vasily L Yarnykh
- 1 Laboratory of Neurobiology, Tomsk State University, Tomsk, Russian Federation.,6 Department of Radiology, University of Washington, Seattle, WA, USA
| |
Collapse
|
37
|
Yarnykh VL, Krutenkova EP, Aitmagambetova G, Repovic P, Mayadev A, Qian P, Jung Henson LK, Gangadharan B, Bowen JD. Iron-Insensitive Quantitative Assessment of Subcortical Gray Matter Demyelination in Multiple Sclerosis Using the Macromolecular Proton Fraction. AJNR Am J Neuroradiol 2018; 39:618-625. [PMID: 29439122 DOI: 10.3174/ajnr.a5542] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 11/28/2017] [Indexed: 12/20/2022]
Abstract
BACKGROUND AND PURPOSE Fast macromolecular proton fraction mapping is a recent quantitative MR imaging method for myelin assessment. The objectives of this study were to evaluate the macromolecular proton fraction as a measure of demyelination in subcortical GM structures in multiple sclerosis and assess a potential relationship between demyelination and excess iron deposition using the macromolecular proton fraction and T2* mapping. MATERIALS AND METHODS Macromolecular proton fraction and T2* maps were obtained from 12 healthy controls, 18 patients with relapsing-remitting MS, and 12 patients with secondary-progressive MS using 3T MR imaging. Parameter values in the caudate nucleus, globus pallidus, putamen, substantia nigra, and thalamus were compared between groups and correlated to clinical data. RESULTS The macromolecular proton fraction in all subcortical structures and T2* in the globus pallidus, putamen, and caudate nucleus demonstrated a significant monotonic decrease from controls to patients with relapsing-remitting MS and from those with relapsing-remitting MS to patients with secondary-progressive MS. The macromolecular proton fraction in all subcortical structures significantly correlated with the Expanded Disability Status Scale and MS Functional Composite scores with absolute Pearson correlation coefficient (r) values in a range of 0.4-0.6. Significant correlations (r = -0.4 to -0.6) were also identified between the macromolecular proton fraction and the 9-Hole Peg Test, indicating a potential relationship with nigrostriatal pathway damage. Among T2* values, weak significant correlations with clinical variables were found only in the putamen. The macromolecular proton fraction did not correlate with T2* in any of the studied anatomic structures. CONCLUSIONS The macromolecular proton fraction provides an iron-insensitive measure of demyelination. Myelin loss in subcortical GM structures in MS is unrelated to excess iron deposition. Subcortical GM demyelination is more closely associated with the disease phenotype and disability than iron overload.
Collapse
Affiliation(s)
- V L Yarnykh
- From the Department of Radiology (V.L.Y.), University of Washington, Seattle, Washington .,Research Institute of Biology and Biophysics (E.P.K., G.A., V.L.Y.), Tomsk State University, Tomsk, Russian Federation
| | - E P Krutenkova
- Research Institute of Biology and Biophysics (E.P.K., G.A., V.L.Y.), Tomsk State University, Tomsk, Russian Federation
| | - G Aitmagambetova
- Research Institute of Biology and Biophysics (E.P.K., G.A., V.L.Y.), Tomsk State University, Tomsk, Russian Federation
| | - P Repovic
- Multiple Sclerosis Center (P.R., A.M., P.Q., L.K.J.H., B.G., J.D.B.), Swedish Neuroscience Institute, Seattle, Washington
| | - A Mayadev
- Multiple Sclerosis Center (P.R., A.M., P.Q., L.K.J.H., B.G., J.D.B.), Swedish Neuroscience Institute, Seattle, Washington
| | - P Qian
- Multiple Sclerosis Center (P.R., A.M., P.Q., L.K.J.H., B.G., J.D.B.), Swedish Neuroscience Institute, Seattle, Washington
| | - L K Jung Henson
- Multiple Sclerosis Center (P.R., A.M., P.Q., L.K.J.H., B.G., J.D.B.), Swedish Neuroscience Institute, Seattle, Washington.,Piedmont Henry Hospital (L.K.J.H.), Stockbridge, Georgia
| | - B Gangadharan
- Multiple Sclerosis Center (P.R., A.M., P.Q., L.K.J.H., B.G., J.D.B.), Swedish Neuroscience Institute, Seattle, Washington
| | - J D Bowen
- Multiple Sclerosis Center (P.R., A.M., P.Q., L.K.J.H., B.G., J.D.B.), Swedish Neuroscience Institute, Seattle, Washington
| |
Collapse
|
38
|
Sled JG. Modelling and interpretation of magnetization transfer imaging in the brain. Neuroimage 2017; 182:128-135. [PMID: 29208570 DOI: 10.1016/j.neuroimage.2017.11.065] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 11/19/2017] [Accepted: 11/29/2017] [Indexed: 01/09/2023] Open
Abstract
Magnetization transfer contrast has yielded insight into brain tissue microstructure changes across the lifespan and in a range of disorders. This progress has been aided by the development of quantitative magnetization transfer imaging techniques able to extract intrinsic properties of the tissue that are independent of the specifics of the data acquisition. While the tissue properties extracted by these techniques do not map directly onto specific cellular structures or pathological processes, a growing body of work from animal models and histopathological correlations aids the in vivo interpretation of magnetization transfer properties of tissue. This review examines the biophysical models that have been developed to describe magnetization transfer contrast in tissue as well as the experimental evidence for the biological interpretation of magnetization transfer data in health and disease.
Collapse
Affiliation(s)
- John G Sled
- Hospital for Sick Children, Mouse Imaging Centre, Toronto, Ontario, Canada; Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
39
|
Heath F, Hurley SA, Johansen-Berg H, Sampaio-Baptista C. Advances in noninvasive myelin imaging. Dev Neurobiol 2017; 78:136-151. [PMID: 29082667 PMCID: PMC5813152 DOI: 10.1002/dneu.22552] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 09/18/2017] [Accepted: 10/24/2017] [Indexed: 12/11/2022]
Abstract
Myelin is important for the normal development and healthy function of the nervous system. Recent developments in MRI acquisition and tissue modeling aim to provide a better characterization and more specific markers for myelin. This allows for specific monitoring of myelination longitudinally and noninvasively in the healthy brain as well as assessment of treatment and intervention efficacy. Here, we offer a nontechnical review of MRI techniques developed to specifically monitor myelin such as magnetization transfer (MT) and myelin water imaging (MWI). We further summarize recent studies that employ these methods to measure myelin in relation to development and aging, learning and experience, and neuropathology and psychiatric disorders. © 2017 The Authors. Developmental Neurobiology Published by Wiley Periodicals, Inc. Develop Neurobiol 78: 136–151, 2018
Collapse
Affiliation(s)
- Florence Heath
- Oxford Centre for Functional MRI of the Brain, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, United Kingdom
| | - Samuel A Hurley
- Oxford Centre for Functional MRI of the Brain, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, United Kingdom.,Departments of Neuroscience and Radiology, 1111 Highland Ave, University of Wisconsin - Madison, Madison, Wisconsin, 53705
| | - Heidi Johansen-Berg
- Oxford Centre for Functional MRI of the Brain, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, United Kingdom
| | - Cassandra Sampaio-Baptista
- Oxford Centre for Functional MRI of the Brain, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, United Kingdom
| |
Collapse
|
40
|
Jiang X, van Gelderen P, Duyn JH. Spectral characteristics of semisolid protons in human brain white matter at 7 T. Magn Reson Med 2017; 78:1950-1958. [PMID: 28150877 PMCID: PMC5555815 DOI: 10.1002/mrm.26594] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 10/31/2016] [Accepted: 12/09/2016] [Indexed: 12/27/2022]
Abstract
PURPOSE To inform the quantification of MRI magnetization transfer contrast at high field by measuring the spectral characteristics of 1 H protons in semisolids in human brain at 7 T, while avoiding prohibitive radiofrequency (RF) tissue heating and confounding effects from chemical exchange. METHODS Saturation-recovery type experiments were performed using brief, frequency-specific RF pulses that saturate semisolid proton magnetization. Analysis of the subsequent recovery of water proton magnetization with a two-pool model of exchange allowed the study of spectral characteristics of semisolid protons. RESULTS We show that in white matter, the semisolid proton spectrum can be approximated with a symmetric, super-Lorentzian line at -2.58 ± 0.05 ppm from the water resonance and an average transverse relaxation time constant (T2 ) of 9.6 ± 0.6 μs. CONCLUSIONS These results are consistent with studies at lower field that have indicated a major contribution from methylene protons to magnetization transfer contrast, and will facilitate the design and quantification of magnetization transfer studies at 7 T. Magn Reson Med 78:1950-1958, 2017. © 2017 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Xu Jiang
- Advanced MRI Section, Laboratory of Functional and Molecular Imaging, National Institutes of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Peter van Gelderen
- Advanced MRI Section, Laboratory of Functional and Molecular Imaging, National Institutes of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Jeff H. Duyn
- Advanced MRI Section, Laboratory of Functional and Molecular Imaging, National Institutes of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
41
|
Battiston M, Grussu F, Ianus A, Schneider T, Prados F, Fairney J, Ourselin S, Alexander DC, Cercignani M, Gandini Wheeler-Kingshott CAM, Samson RS. An optimized framework for quantitative magnetization transfer imaging of the cervical spinal cord in vivo. Magn Reson Med 2017; 79:2576-2588. [PMID: 28921614 PMCID: PMC5836910 DOI: 10.1002/mrm.26909] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 08/15/2017] [Accepted: 08/16/2017] [Indexed: 11/06/2022]
Abstract
PURPOSE To develop a framework to fully characterize quantitative magnetization transfer indices in the human cervical cord in vivo within a clinically feasible time. METHODS A dedicated spinal cord imaging protocol for quantitative magnetization transfer was developed using a reduced field-of-view approach with echo planar imaging (EPI) readout. Sequence parameters were optimized based in the Cramer-Rao-lower bound. Quantitative model parameters (i.e., bound pool fraction, free and bound pool transverse relaxation times [ T2F, T2B], and forward exchange rate [kFB ]) were estimated implementing a numerical model capable of dealing with the novelties of the sequence adopted. The framework was tested on five healthy subjects. RESULTS Cramer-Rao-lower bound minimization produces optimal sampling schemes without requiring the establishment of a steady-state MT effect. The proposed framework allows quantitative voxel-wise estimation of model parameters at the resolution typically used for spinal cord imaging (i.e. 0.75 × 0.75 × 5 mm3 ), with a protocol duration of ∼35 min. Quantitative magnetization transfer parametric maps agree with literature values. Whole-cord mean values are: bound pool fraction = 0.11(±0.01), T2F = 46.5(±1.6) ms, T2B = 11.0(±0.2) µs, and kFB = 1.95(±0.06) Hz. Protocol optimization has a beneficial effect on reproducibility, especially for T2B and kFB . CONCLUSION The framework developed enables robust characterization of spinal cord microstructure in vivo using qMT. Magn Reson Med 79:2576-2588, 2018. © 2017 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Collapse
Affiliation(s)
- Marco Battiston
- Queen Square MS Centre, UCL Institute of Neurology, University College London, London, United Kingdom
| | - Francesco Grussu
- Queen Square MS Centre, UCL Institute of Neurology, University College London, London, United Kingdom
| | - Andrada Ianus
- Centre for Medical Image Computing, Department of Computer Science, University College London, London, United Kingdom.,Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | | | - Ferran Prados
- Queen Square MS Centre, UCL Institute of Neurology, University College London, London, United Kingdom.,Translational Imaging Group, Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - James Fairney
- Queen Square MS Centre, UCL Institute of Neurology, University College London, London, United Kingdom.,UCL Department of Medical Physics and Bioengineering, University College London, London, United Kingdom
| | - Sebastien Ourselin
- Translational Imaging Group, Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - Daniel C Alexander
- Centre for Medical Image Computing, Department of Computer Science, University College London, London, United Kingdom
| | - Mara Cercignani
- CISC, Department of Neuroscience, Brighton & Sussex Medical School, Brighton, Sussex, United Kingdom
| | - Claudia A M Gandini Wheeler-Kingshott
- Queen Square MS Centre, UCL Institute of Neurology, University College London, London, United Kingdom.,Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy.,Brain MRI 3T Mondino Research Center, C. Mondino National Neurological Institute, Pavia, Italy
| | - Rebecca S Samson
- Queen Square MS Centre, UCL Institute of Neurology, University College London, London, United Kingdom
| |
Collapse
|
42
|
Yarnykh V, Korostyshevskaya A. Implementation of fast macromolecular proton fraction mapping on 1.5 and 3 Tesla clinical MRI scanners: preliminary experience. ACTA ACUST UNITED AC 2017. [DOI: 10.1088/1742-6596/886/1/012010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
43
|
Campbell JSW, Leppert IR, Narayanan S, Boudreau M, Duval T, Cohen-Adad J, Pike GB, Stikov N. Promise and pitfalls of g-ratio estimation with MRI. Neuroimage 2017; 182:80-96. [PMID: 28822750 DOI: 10.1016/j.neuroimage.2017.08.038] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 07/28/2017] [Accepted: 08/12/2017] [Indexed: 12/13/2022] Open
Abstract
The fiber g-ratio is the ratio of the inner to the outer diameter of the myelin sheath of a myelinated axon. It has a limited dynamic range in healthy white matter, as it is optimized for speed of signal conduction, cellular energetics, and spatial constraints. In vivo imaging of the g-ratio in health and disease would greatly increase our knowledge of the nervous system and our ability to diagnose, monitor, and treat disease. MRI based g-ratio imaging was first conceived in 2011, and expanded to be feasible in full brain white matter with preliminary results in 2013. This manuscript reviews the growing g-ratio imaging literature and speculates on future applications. It details the methodology for imaging the g-ratio with MRI, and describes the known pitfalls and challenges in doing so.
Collapse
Affiliation(s)
- Jennifer S W Campbell
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada; NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montréal, Montréal, QC, Canada.
| | - Ilana R Leppert
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Sridar Narayanan
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Mathieu Boudreau
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Tanguy Duval
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montréal, Montréal, QC, Canada
| | - Julien Cohen-Adad
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montréal, Montréal, QC, Canada; Functional Neuroimaging Unit, CRIUGM, Université de Montréal, Montréal, QC, Canada
| | | | - Nikola Stikov
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montréal, Montréal, QC, Canada; Montreal Heart Institute, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
44
|
Smith AK, By S, Lyttle BD, Dortch RD, Box BA, Mckeithan LJ, Thukral S, Bagnato F, Pawate S, Smith SA. Evaluating single-point quantitative magnetization transfer in the cervical spinal cord: Application to multiple sclerosis. Neuroimage Clin 2017; 16:58-65. [PMID: 28761809 PMCID: PMC5521031 DOI: 10.1016/j.nicl.2017.07.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 07/03/2017] [Accepted: 07/12/2017] [Indexed: 11/19/2022]
Abstract
Spinal cord (SC) damage is linked to clinical deficits in patients with multiple sclerosis (MS), however, conventional MRI methods are not specific to the underlying macromolecular tissue changes that may precede overt lesion detection. Single-point quantitative magnetization transfer (qMT) is a method that can provide high-resolution indices sensitive to underlying macromolecular composition in a clinically feasible scan time by reducing the number of MT-weighted acquisitions and utilizing a two-pool model constrained by empirically determined constants. As the single-point qMT method relies on a priori constraints, it has not been employed extensively in patients, where these constraints may vary, and thus, the biases inherent in this model have not been evaluated in a patient cohort. We, therefore, addressed the potential biases in the single point qMT model by acquiring qMT measurements in the cervical SC in patient and control cohorts and evaluated the differences between the control and patient-derived qMT constraints (kmf, T2fR1f, and T2m) for the single point model. We determined that the macromolecular to free pool size ratio (PSR) differences between the control and patient-derived constraints are not significant (p > 0.149 in all cases). Additionally, the derived PSR for each cohort was compared, and we reported that the white matter PSR in healthy volunteers is significantly different from lesions (p < 0.005) and normal appearing white matter (p < 0.02) in all cases. The single point qMT method is thus a valuable method to quantitatively estimate white matter pathology in MS in a clinically feasible scan time.
Collapse
Affiliation(s)
- Alex K. Smith
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
- Vanderbilt University Institute of Imaging Sciences, Vanderbilt University, Nashville, TN, USA
- Functional MRI of the Brain Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Samantha By
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
- Vanderbilt University Institute of Imaging Sciences, Vanderbilt University, Nashville, TN, USA
| | - Bailey D. Lyttle
- Vanderbilt University Institute of Imaging Sciences, Vanderbilt University, Nashville, TN, USA
| | - Richard D. Dortch
- Vanderbilt University Institute of Imaging Sciences, Vanderbilt University, Nashville, TN, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Bailey A. Box
- Vanderbilt University Institute of Imaging Sciences, Vanderbilt University, Nashville, TN, USA
| | - Lydia J. Mckeithan
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
- Vanderbilt University Institute of Imaging Sciences, Vanderbilt University, Nashville, TN, USA
| | - Saakshi Thukral
- Vanderbilt University Institute of Imaging Sciences, Vanderbilt University, Nashville, TN, USA
- Merrol Hyde Magnet School, Hendersonville, TN, USA
| | - Francesca Bagnato
- Vanderbilt University Institute of Imaging Sciences, Vanderbilt University, Nashville, TN, USA
- Department of Neurology, Vanderbilt University, Nashville, TN, USA
| | - Siddharama Pawate
- Vanderbilt University Institute of Imaging Sciences, Vanderbilt University, Nashville, TN, USA
- Merrol Hyde Magnet School, Hendersonville, TN, USA
| | - Seth A. Smith
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
- Vanderbilt University Institute of Imaging Sciences, Vanderbilt University, Nashville, TN, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
45
|
Ma YJ, Chang EY, Carl M, Du J. Quantitative magnetization transfer ultrashort echo time imaging using a time-efficient 3D multispoke Cones sequence. Magn Reson Med 2017; 79:692-700. [PMID: 28470838 DOI: 10.1002/mrm.26716] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 02/19/2017] [Accepted: 03/23/2017] [Indexed: 12/21/2022]
Abstract
PURPOSE To accelerate the quantitative ultrashort echo time imaging using a time-efficient 3D multispoke Cones sequence with magnetization transfer (3D UTE-Cones-MT) and signal modeling. THEORY AND METHODS A 3D UTE-Cones-MT acquisition scheme with multispoke per MT preparation and a modified rectangular pulse (RP) approximation was developed for two-pool MT modeling of macromolecular and water components including their relative fractions, relaxation times and exchange rates. Numerical simulation and cadaveric specimens, including human Achilles tendon and bovine cortical bone, were investigated using a clinical 3T scanner. RESULTS Numerical simulation showed that the modified RP model provided accurate estimation of MT parameters when multispokes were acquired per MT preparation. For the experiment with the Achilles tendon and cortical bone samples, the macromolecular fractions were 20.4 ± 2.0% and 59.4 ± 5.3%, respectively. CONCLUSION The 3D multispoke UTE-Cones-MT sequence can be used for fast volumetric assessment of macromolecular and water components in short T2 tissues. Magn Reson Med 79:692-700, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Ya-Jun Ma
- Department of Radiology, University of California, San Diego, California, USA
| | - Eric Y Chang
- Department of Radiology, University of California, San Diego, California, USA.,Radiology Service, VA San Diego Healthcare System, San Diego, California, USA
| | | | - Jiang Du
- Department of Radiology, University of California, San Diego, California, USA
| |
Collapse
|
46
|
Khodanovich MY, Sorokina IV, Glazacheva VY, Akulov AE, Nemirovich-Danchenko NM, Romashchenko AV, Tolstikova TG, Mustafina LR, Yarnykh VL. Histological validation of fast macromolecular proton fraction mapping as a quantitative myelin imaging method in the cuprizone demyelination model. Sci Rep 2017; 7:46686. [PMID: 28436460 PMCID: PMC5402392 DOI: 10.1038/srep46686] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 03/24/2017] [Indexed: 12/18/2022] Open
Abstract
Cuprizone-induced demyelination in mice is a frequently used model in preclinical multiple sclerosis research. A recent quantitative clinically-targeted MRI method, fast macromolecular proton fraction (MPF) mapping demonstrated a promise as a myelin biomarker in human and animal studies with a particular advantage of sensitivity to both white matter (WM) and gray matter (GM) demyelination. This study aimed to histologically validate the capability of MPF mapping to quantify myelin loss in brain tissues using the cuprizone demyelination model. Whole-brain MPF maps were obtained in vivo on an 11.7T animal MRI scanner from 7 cuprizone-treated and 7 control С57BL/6 mice using the fast single-point synthetic-reference method. Brain sections were histologically stained with Luxol Fast Blue (LFB) for myelin quantification. Significant (p < 0.05) demyelination in cuprizone-treated animals was found according to both LFB staining and MPF in all anatomical structures (corpus callosum, anterior commissure, internal capsule, thalamus, caudoputamen, and cortex). MPF strongly correlated with quantitative histology in all animals (r = 0.95, p < 0.001) as well as in treatment and control groups taken separately (r = 0.96, p = 0.002 and r = 0.93, p = 0.007, respectively). Close agreement between histological myelin staining and MPF suggests that fast MPF mapping enables robust and accurate quantitative assessment of demyelination in both WM and GM.
Collapse
Affiliation(s)
- Marina Yu Khodanovich
- Research Institute of Biology and Biophysics, Tomsk State University, Tomsk, Russian Federation
| | - Irina V. Sorokina
- Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russian Federation
| | - Valentina Yu Glazacheva
- Research Institute of Biology and Biophysics, Tomsk State University, Tomsk, Russian Federation
| | - Andrey E. Akulov
- Research Institute of Biology and Biophysics, Tomsk State University, Tomsk, Russian Federation
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russian Federation
| | | | - Alexander V. Romashchenko
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russian Federation
| | - Tatyana G. Tolstikova
- Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russian Federation
| | | | - Vasily L. Yarnykh
- Research Institute of Biology and Biophysics, Tomsk State University, Tomsk, Russian Federation
- Department of Radiology, University of Washington, Seattle, WA, United States
| |
Collapse
|
47
|
Boudreau M, Stikov N, Pike GB. B1
-sensitivity analysis of quantitative magnetization transfer imaging. Magn Reson Med 2017; 79:276-285. [DOI: 10.1002/mrm.26673] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 02/02/2017] [Accepted: 02/17/2017] [Indexed: 01/14/2023]
Affiliation(s)
- Mathieu Boudreau
- McConnell Brain Imaging Centre; Montreal Neurological Institute, McGill University; Montreal Quebec Canada
| | - Nikola Stikov
- Département du Génie Biomédical; École Polytechnique de Montreal; Montreal Quebec Canada
- Montreal Heart Institute; Montreal Quebec Canada
| | - G. Bruce Pike
- McConnell Brain Imaging Centre; Montreal Neurological Institute, McGill University; Montreal Quebec Canada
- Hotchkiss Brain Institute and Department of Radiology; University of Calgary; Calgary Alberta Canada
| |
Collapse
|
48
|
Liu F, Velikina JV, Block WF, Kijowski R, Samsonov AA. Fast Realistic MRI Simulations Based on Generalized Multi-Pool Exchange Tissue Model. IEEE TRANSACTIONS ON MEDICAL IMAGING 2017; 36:527-537. [PMID: 28113746 PMCID: PMC5322984 DOI: 10.1109/tmi.2016.2620961] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
We present MRiLab, a new comprehensive simulator for large-scale realistic MRI simulations on a regular PC equipped with a modern graphical processing unit (GPU). MRiLab combines realistic tissue modeling with numerical virtualization of an MRI system and scanning experiment to enable assessment of a broad range of MRI approaches including advanced quantitative MRI methods inferring microstructure on a sub-voxel level. A flexible representation of tissue microstructure is achieved in MRiLab by employing the generalized tissue model with multiple exchanging water and macromolecular proton pools rather than a system of independent proton isochromats typically used in previous simulators. The computational power needed for simulation of the biologically relevant tissue models in large 3D objects is gained using parallelized execution on GPU. Three simulated and one actual MRI experiments were performed to demonstrate the ability of the new simulator to accommodate a wide variety of voxel composition scenarios and demonstrate detrimental effects of simplified treatment of tissue micro-organization adapted in previous simulators. GPU execution allowed ∼ 200× improvement in computational speed over standard CPU. As a cross-platform, open-source, extensible environment for customizing virtual MRI experiments, MRiLab streamlines the development of new MRI methods, especially those aiming to infer quantitatively tissue composition and microstructure.
Collapse
|
49
|
Lehto LJ, Sierra A, Gröhn O. Magnetization transfer SWIFT MRI consistently detects histologically verified myelin loss in the thalamocortical pathway after a traumatic brain injury in rat. NMR IN BIOMEDICINE 2017; 30:e3678. [PMID: 27982487 DOI: 10.1002/nbm.3678] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 10/24/2016] [Accepted: 11/06/2016] [Indexed: 06/06/2023]
Abstract
Traumatic brain injury (TBI) is associated with various neurocognitive deficits, and rapid assessment of the damage is potentially important for the prevention and treatment of these deficits. Imaging assessment of mild or moderate damage outside the primary lesion area after TBI, however, remains challenging. Magnetization transfer (MT) has clearly been underutilized in imaging the damage caused by TBI. Here, we applied the MT ratio (MTR) using sweep imaging with Fourier transformation (SWIFT) to study microstructural tissue damage in the thalamocortical pathway outside the primary lesion in a lateral fluid percussion injury rat model of TBI, 5 months after injury. MTR was decreased in layers VIb-IV of the barrel cortex and related subcortical areas, mainly indicating demyelination, which was verified by histology. The largest MTR change in the cortex was in layer VIb (-8.2%, pFDR = 0.01), and the largest MTR change in the subcortical areas was in the caudal-most portion of the internal capsule (-11.0%, pFDR < 0.005). These areas exhibited the greatest demyelination and substantial cellularity attributed to gliosis. Correlation analysis of group-averaged results from the subcortical areas revealed an excellent correlation of MTR with myelin (r2 = 0.94, p < 0.001), but no correlation with increased cellularity as detected by Nissl staining. Thus, MTR using SWIFT can be a valuable tool for the assessment of subtle changes after TBI in both cortical and subcortical areas.
Collapse
Affiliation(s)
- Lauri Juhani Lehto
- A. I. Virtanen Institute for Molecular Sciences, Department of Neurobiology, University of Eastern Finland, Kuopio, Finland
| | - Alejandra Sierra
- A. I. Virtanen Institute for Molecular Sciences, Department of Neurobiology, University of Eastern Finland, Kuopio, Finland
| | - Olli Gröhn
- A. I. Virtanen Institute for Molecular Sciences, Department of Neurobiology, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
50
|
Trujillo P, Summers PE, Ferrari E, Zucca FA, Sturini M, Mainardi LT, Cerutti S, Smith AK, Smith SA, Zecca L, Costa A. Contrast mechanisms associated with neuromelanin-MRI. Magn Reson Med 2016; 78:1790-1800. [DOI: 10.1002/mrm.26584] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 10/28/2016] [Accepted: 11/23/2016] [Indexed: 01/03/2023]
Affiliation(s)
- Paula Trujillo
- Department of Neuroradiology; Fondazione IRCCS Ca' Granda - Ospedale Maggiore Policlinico; Milan Italy
- Department of Electronics; Information and Bioengineering, Politecnico di Milano; Milan Italy
| | - Paul E. Summers
- Department of Neuroradiology; Fondazione IRCCS Ca' Granda - Ospedale Maggiore Policlinico; Milan Italy
| | - Emanuele Ferrari
- Institute of Biomedical Technologies; National Research Council of Italy; Segrate Italy
| | - Fabio A. Zucca
- Institute of Biomedical Technologies; National Research Council of Italy; Segrate Italy
| | | | - Luca T. Mainardi
- Department of Electronics; Information and Bioengineering, Politecnico di Milano; Milan Italy
| | - Sergio Cerutti
- Department of Electronics; Information and Bioengineering, Politecnico di Milano; Milan Italy
| | - Alex K. Smith
- Vanderbilt University Institute of Imaging Science; Vanderbilt University; Nashville Tennessee USA
- Department of Biomedical Engineering; Vanderbilt University; Nashville Tennessee USA
| | - Seth A. Smith
- Vanderbilt University Institute of Imaging Science; Vanderbilt University; Nashville Tennessee USA
- Department of Biomedical Engineering; Vanderbilt University; Nashville Tennessee USA
- Department of Radiology and Radiological Sciences; Vanderbilt University; Nashville Tennessee USA
| | - Luigi Zecca
- Institute of Biomedical Technologies; National Research Council of Italy; Segrate Italy
| | - Antonella Costa
- Department of Neuroradiology; Fondazione IRCCS Ca' Granda - Ospedale Maggiore Policlinico; Milan Italy
| |
Collapse
|