1
|
Zhou Y, Bie C, van Zijl PC, Yadav NN. The relayed nuclear Overhauser effect in magnetization transfer and chemical exchange saturation transfer MRI. NMR IN BIOMEDICINE 2023; 36:e4778. [PMID: 35642102 PMCID: PMC9708952 DOI: 10.1002/nbm.4778] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/19/2022] [Accepted: 05/29/2022] [Indexed: 05/23/2023]
Abstract
Magnetic resonance (MR) is a powerful technique for noninvasively probing molecular species in vivo but suffers from low signal sensitivity. Saturation transfer (ST) MRI approaches, including chemical exchange saturation transfer (CEST) and conventional magnetization transfer contrast (MTC), allow imaging of low-concentration molecular components with enhanced sensitivity using indirect detection via the abundant water proton pool. Several recent studies have shown the utility of chemical exchange relayed nuclear Overhauser effect (rNOE) contrast originating from nonexchangeable carbon-bound protons in mobile macromolecules in solution. In this review, we describe the mechanisms leading to the occurrence of rNOE-based signals in the water saturation spectrum (Z-spectrum), including those from mobile and immobile molecular sources and from molecular binding. While it is becoming clear that MTC is mainly an rNOE-based signal, we continue to use the classical MTC nomenclature to separate it from the rNOE signals of mobile macromolecules, which we will refer to as rNOEs. Some emerging applications of the use of rNOEs for probing macromolecular solution components such as proteins and carbohydrates in vivo or studying the binding of small substrates are discussed.
Collapse
Affiliation(s)
- Yang Zhou
- Key Laboratory for Magnetic Resonance and Multimodality Imaging of Guangdong Province, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen University Town, Shenzhen, Guangdong 518055 (China)
| | - Chongxue Bie
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, 707 N. Broadway, Baltimore MD 21205 (USA)
- The Russell H. Morgan Department of Radiology, The Johns Hopkins University School of Medicine, 720 Rutland Ave, Baltimore, MD 21205 (USA)
- Department of Information Science and Technology, Northwest University, No.1 Xuefu Avenue, Xi’an, Shanxi 710127 (China)
| | - Peter C.M. van Zijl
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, 707 N. Broadway, Baltimore MD 21205 (USA)
- The Russell H. Morgan Department of Radiology, The Johns Hopkins University School of Medicine, 720 Rutland Ave, Baltimore, MD 21205 (USA)
| | - Nirbhay N. Yadav
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, 707 N. Broadway, Baltimore MD 21205 (USA)
- The Russell H. Morgan Department of Radiology, The Johns Hopkins University School of Medicine, 720 Rutland Ave, Baltimore, MD 21205 (USA)
| |
Collapse
|
2
|
Knutsson L, Xu J, Ahlgren A, van Zijl P. CEST, ASL, and magnetization transfer contrast: How similar pulse sequences detect different phenomena. Magn Reson Med 2018; 80:1320-1340. [PMID: 29845640 PMCID: PMC6097930 DOI: 10.1002/mrm.27341] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 04/10/2018] [Accepted: 04/11/2018] [Indexed: 12/28/2022]
Abstract
Chemical exchange saturation transfer (CEST), arterial spin labeling (ASL), and magnetization transfer contrast (MTC) methods generate different contrasts for MRI. However, they share many similarities in terms of pulse sequences and mechanistic principles. They all use RF pulse preparation schemes to label the longitudinal magnetization of certain proton pools and follow the delivery and transfer of this magnetic label to a water proton pool in a tissue region of interest, where it accumulates and can be detected using any imaging sequence. Due to the versatility of MRI, differences in spectral, spatial or motional selectivity of these schemes can be exploited to achieve pool specificity, such as for arterial water protons in ASL, protons on solute molecules in CEST, and protons on semi-solid cell structures in MTC. Timing of these sequences can be used to optimize for the rate of a particular delivery and/or exchange transfer process, for instance, between different tissue compartments (ASL) or between tissue molecules (CEST/MTC). In this review, magnetic labeling strategies for ASL and the corresponding CEST and MTC pulse sequences are compared, including continuous labeling, single-pulse labeling, and multi-pulse labeling. Insight into the similarities and differences among these techniques is important not only to comprehend the mechanisms and confounds of the contrasts they generate, but also to stimulate the development of new MRI techniques to improve these contrasts or to reduce their interference. This, in turn, should benefit many possible applications in the fields of physiological and molecular imaging and spectroscopy.
Collapse
Affiliation(s)
- L Knutsson
- Department of Medical Radiation Physics, Lund University, Lund, Sweden
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - J Xu
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
| | - A Ahlgren
- Department of Medical Radiation Physics, Lund University, Lund, Sweden
| | - P.C.M van Zijl
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
| |
Collapse
|
3
|
Yadav NN, Yang X, Li Y, Li W, Liu G, van Zijl PCM. Detection of dynamic substrate binding using MRI. Sci Rep 2017; 7:10138. [PMID: 28860625 PMCID: PMC5579242 DOI: 10.1038/s41598-017-10545-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 08/11/2017] [Indexed: 01/11/2023] Open
Abstract
Magnetic Resonance Imaging (MRI) is rarely used for molecular binding studies and never without synthetic metallic labels. We designed an MRI approach that can specifically detect the binding of natural substrates (i.e. no chemical labels). To accomplish such detection of substrate-target interaction only, we exploit (i) the narrow resonance of aliphatic protons in free substrate for selective radio-frequency (RF) labeling and, (ii) the process of immobilisation upon binding to a solid-like target for fast magnetic transfer of this label over protons in the target backbone. This cascade of events is ultimately detected with MRI using magnetic interaction between target and water protons. We prove this principle using caffeine as a substrate in vitro and then apply it in vivo in the mouse brain. The combined effects of continuous labeling (label pumping), dynamic reversible binding, and water detection was found to enhance the detection sensitivity by about two to three orders of magnitude.
Collapse
Affiliation(s)
- Nirbhay N Yadav
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.,F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Xing Yang
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Nuclear Medicine, Peking University First Hospital, Beijing, P.R. China
| | - Yuguo Li
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.,F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Wenbo Li
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.,F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Guanshu Liu
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.,F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Peter C M van Zijl
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA. .,F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA.
| |
Collapse
|
4
|
Smith AK, By S, Lyttle BD, Dortch RD, Box BA, Mckeithan LJ, Thukral S, Bagnato F, Pawate S, Smith SA. Evaluating single-point quantitative magnetization transfer in the cervical spinal cord: Application to multiple sclerosis. Neuroimage Clin 2017; 16:58-65. [PMID: 28761809 PMCID: PMC5521031 DOI: 10.1016/j.nicl.2017.07.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 07/03/2017] [Accepted: 07/12/2017] [Indexed: 11/19/2022]
Abstract
Spinal cord (SC) damage is linked to clinical deficits in patients with multiple sclerosis (MS), however, conventional MRI methods are not specific to the underlying macromolecular tissue changes that may precede overt lesion detection. Single-point quantitative magnetization transfer (qMT) is a method that can provide high-resolution indices sensitive to underlying macromolecular composition in a clinically feasible scan time by reducing the number of MT-weighted acquisitions and utilizing a two-pool model constrained by empirically determined constants. As the single-point qMT method relies on a priori constraints, it has not been employed extensively in patients, where these constraints may vary, and thus, the biases inherent in this model have not been evaluated in a patient cohort. We, therefore, addressed the potential biases in the single point qMT model by acquiring qMT measurements in the cervical SC in patient and control cohorts and evaluated the differences between the control and patient-derived qMT constraints (kmf, T2fR1f, and T2m) for the single point model. We determined that the macromolecular to free pool size ratio (PSR) differences between the control and patient-derived constraints are not significant (p > 0.149 in all cases). Additionally, the derived PSR for each cohort was compared, and we reported that the white matter PSR in healthy volunteers is significantly different from lesions (p < 0.005) and normal appearing white matter (p < 0.02) in all cases. The single point qMT method is thus a valuable method to quantitatively estimate white matter pathology in MS in a clinically feasible scan time.
Collapse
Affiliation(s)
- Alex K. Smith
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
- Vanderbilt University Institute of Imaging Sciences, Vanderbilt University, Nashville, TN, USA
- Functional MRI of the Brain Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Samantha By
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
- Vanderbilt University Institute of Imaging Sciences, Vanderbilt University, Nashville, TN, USA
| | - Bailey D. Lyttle
- Vanderbilt University Institute of Imaging Sciences, Vanderbilt University, Nashville, TN, USA
| | - Richard D. Dortch
- Vanderbilt University Institute of Imaging Sciences, Vanderbilt University, Nashville, TN, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Bailey A. Box
- Vanderbilt University Institute of Imaging Sciences, Vanderbilt University, Nashville, TN, USA
| | - Lydia J. Mckeithan
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
- Vanderbilt University Institute of Imaging Sciences, Vanderbilt University, Nashville, TN, USA
| | - Saakshi Thukral
- Vanderbilt University Institute of Imaging Sciences, Vanderbilt University, Nashville, TN, USA
- Merrol Hyde Magnet School, Hendersonville, TN, USA
| | - Francesca Bagnato
- Vanderbilt University Institute of Imaging Sciences, Vanderbilt University, Nashville, TN, USA
- Department of Neurology, Vanderbilt University, Nashville, TN, USA
| | - Siddharama Pawate
- Vanderbilt University Institute of Imaging Sciences, Vanderbilt University, Nashville, TN, USA
- Merrol Hyde Magnet School, Hendersonville, TN, USA
| | - Seth A. Smith
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
- Vanderbilt University Institute of Imaging Sciences, Vanderbilt University, Nashville, TN, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
5
|
Smith AK, Dortch RD, Dethrage LM, Lyttle BD, Kang H, Welch EB, Smith SA. Incorporating dixon multi-echo fat water separation for novel quantitative magnetization transfer of the human optic nerve in vivo. Magn Reson Med 2016; 77:707-716. [PMID: 27037720 DOI: 10.1002/mrm.26164] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 01/08/2016] [Accepted: 01/23/2016] [Indexed: 12/21/2022]
Abstract
PURPOSE The optic nerve (ON) represents the sole pathway between the eyes and brain; consequently, diseases of the ON can have dramatic effects on vision. However, quantitative magnetization transfer (qMT) applications in the ON have been limited to ex vivo studies, in part because of the fatty connective tissue that surrounds the ON, confounding the magnetization transfer (MT) experiment. Therefore, the aim of this study was to implement a multi-echo Dixon fat-water separation approach to remove the fat component from MT images. METHODS MT measurements were taken in a single slice of the ON and frontal lobe using a three-echo Dixon readout, and the water and out-of-phase images were applied to a two-pool model in ON tissue and brain white matter to evaluate the effectiveness of using Dixon fat-water separation to remove fatty tissue from MT images. RESULTS White matter data showed no significant differences between image types; however, there was a significant increase (p < 0.05) in variation in the out-of-phase images in the ON relative to the water images. CONCLUSIONS The results of this study demonstrate that Dixon fat-water separation can be robustly used for accurate MT quantification of anatomies susceptible to partial volume effects resulting from fat. Magn Reson Med 77:707-716, 2017. © 2016 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Alex K Smith
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA.,Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee, USA
| | - Richard D Dortch
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA.,Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee, USA.,Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, Tennessee, USA
| | - Lindsey M Dethrage
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee, USA
| | - Bailey D Lyttle
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee, USA
| | - Hakmook Kang
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee, USA.,Department of Biostatistics, Vanderbilt University, Nashville, Tennessee, USA.,Center for Quantitative Sciences, Vanderbilt University, Nashville, Tennessee, USA
| | - E Brian Welch
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA.,Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee, USA.,Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, Tennessee, USA
| | - Seth A Smith
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA.,Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee, USA.,Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, Tennessee, USA.,Department of Ophthalmology and Visual Sciences, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
6
|
Smith AK, Dortch RD, Dethrage LM, Smith SA. Rapid, high-resolution quantitative magnetization transfer MRI of the human spinal cord. Neuroimage 2014; 95:106-16. [PMID: 24632465 DOI: 10.1016/j.neuroimage.2014.03.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 02/05/2014] [Accepted: 03/07/2014] [Indexed: 11/27/2022] Open
Abstract
Quantitative magnetization transfer (qMT) imaging can provide indices describing the interactions between free water protons and immobile macromolecular protons. These indices include the macromolecular proton fraction (MPF), which has been shown to correlate with myelin content in white matter. Because of the long scan times required for high-resolution spinal cord imaging, qMT studies of the human spinal cord have not found wide-spread application. Herein, we investigated whether these limitations could be overcome by utilizing only a single MT-weighted acquisition and a reference measurement, as was recently proposed in the brain. High-resolution, in vivo qMT data were obtained at 3.0T in the spinal cords of healthy volunteers and patients with relapsing remitting multiple sclerosis (MS). Low- and high-resolution acquisitions (low/high resolution=1×1×5mm(3)/0.65×0.65×5mm(3)) with clinically acceptable scan times (12min/7min) were evaluated. We also evaluated the reliability over time and the sensitivity of the model to the assumptions made in the single-point method, both in disease and healthy tissues. Our findings suggest that the single point qMT technique can provide maps of the MPF in the spinal cord in vivo with excellent grey/white matter contrast, can be reliably obtained within reasonable scan times, and are sensitive to MS pathology. Consistent with previous qMT studies in the brain, the observed MPF values were higher in healthy white matter (0.16±0.01) than in grey matter (0.13±0.01) and in MS lesions (0.09±0.01). The single point qMT technique applied at high resolution provides an improved method for obtaining qMT in the human spinal cord and may offer a reliable outcome measure for evaluating spinal cord disease.
Collapse
Affiliation(s)
- Alex K Smith
- Department of Biomedical Engineering, Vanderbilt University, USA; Vanderbilt University Institute of Imaging Science, Vanderbilt University, USA
| | - Richard D Dortch
- Department of Biomedical Engineering, Vanderbilt University, USA; Vanderbilt University Institute of Imaging Science, Vanderbilt University, USA; Department of Radiology and Radiological Sciences, Vanderbilt University, USA
| | - Lindsey M Dethrage
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, USA
| | - Seth A Smith
- Department of Biomedical Engineering, Vanderbilt University, USA; Vanderbilt University Institute of Imaging Science, Vanderbilt University, USA; Department of Radiology and Radiological Sciences, Vanderbilt University, USA; Department of Physics and Astronomy, Vanderbilt University, USA.
| |
Collapse
|
7
|
Mougin O, Clemence M, Peters A, Pitiot A, Gowland P. High-resolution imaging of magnetisation transfer and nuclear Overhauser effect in the human visual cortex at 7 T. NMR IN BIOMEDICINE 2013; 26:1508-1517. [PMID: 23801569 DOI: 10.1002/nbm.2984] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 05/08/2013] [Accepted: 05/10/2013] [Indexed: 06/02/2023]
Abstract
The aim of this study was to optimise a pulse sequence for high-resolution imaging sensitive to the effects of conventional macromolecular magnetisation transfer (MT(m)) and nuclear Overhauser enhancement (NOE), and to use it to investigate variations in these parameters across the cerebral cortex. A high-spatial-resolution magnetisation transfer-prepared turbo field echo (MT-TFE) sequence was designed to have high sensitivity to MT(m) and NOE effects, whilst being robust to B0 and B1 inhomogeneities, and producing a good point spread function across the cortex. This was achieved by optimising the saturation and imaging components of the sequence using simulations based on the Bloch equations, including exchange and an image simulator. This was used to study variations in these parameters across the cortex. Using the sequence designed to be sensitive to NOE and MT(m), a variation in signals corresponding to a variation in MT(m) and NOE across the cortex, consistent with a reduction in myelination from the white matter surface to the pial surface of the cortex, was observed. In regions in which the stria was visible on T2*-weighted images, it could also be detected in signals sensitive to MT(m) and NOE. There was greater variation in signals sensitive to NOE, suggesting that the NOE signal is more sensitive to myelination. A sequence has been designed to image variations in MT(m) and NOE at high spatial resolution and has been used to investigate variations in contrast in these parameters across the cortex.
Collapse
Affiliation(s)
- Olivier Mougin
- Sir Peter Mansfield Magnetic Resonance Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
| | | | | | | | | |
Collapse
|
8
|
Saar G, Zhang B, Ling W, Regatte RR, Navon G, Jerschow A. Assessment of glycosaminoglycan concentration changes in the intervertebral disc via chemical exchange saturation transfer. NMR IN BIOMEDICINE 2012; 25:255-61. [PMID: 22253087 PMCID: PMC3261499 DOI: 10.1002/nbm.1741] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Revised: 03/30/2011] [Accepted: 04/21/2011] [Indexed: 05/11/2023]
Abstract
In this study, it is shown that the chemical exchange saturation transfer (CEST) method for hydroxyl protons can be used to detect changes in glycosaminoglycan (GAG) concentration in the intervertebral disc. The method, termed gagCEST, was demonstrated ex vivo by correlating the CEST effect with the fixed charge density (FCD) of the nucleus pulposus (NP), as well as by correlating tissue CEST images with their corresponding (23)Na images. Incubation of five NP samples with trypsin produced samples with varying GAG content (n = 19). A good correlation was found between the -OH CEST effect and FCD, as well as with the N-acetyl signal amplitude. gagCEST images in vitro further illustrated the amount of detail obtainable from this contrast mechanism when compared with conventional imaging. The large concentration of GAG and the relatively long T(1) of water in NP make the method sensitive, in particular, for the assessment of GAG depletion in this tissue. It is the loss of GAG in NP that indicates the early stage of disc degeneration.
Collapse
Affiliation(s)
- Galit Saar
- School of Chemistry, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
| | - Boyang Zhang
- Chemistry Department, New York University, New York, NY 10003
| | - Wen Ling
- School of Chemistry, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
- Chemistry Department, New York University, New York, NY 10003
| | - Ravinder R. Regatte
- Center for Biomedical Imaging, Radiology Department, New York University, New York, NY 10003
| | - Gil Navon
- School of Chemistry, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
| | - Alexej Jerschow
- Chemistry Department, New York University, New York, NY 10003
| |
Collapse
|
9
|
Goddard YA, Korb JP, Bryant RG. Water molecule contributions to proton spin-lattice relaxation in rotationally immobilized proteins. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2009; 199:68-74. [PMID: 19394883 PMCID: PMC2794799 DOI: 10.1016/j.jmr.2009.04.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2009] [Revised: 04/01/2009] [Accepted: 04/04/2009] [Indexed: 05/23/2023]
Abstract
Spin-lattice relaxation rates of protein and water protons in dry and hydrated immobilized bovine serum albumin were measured in the range of (1)H Larmor frequency from 10 kHz to 30 MHz at temperatures from 154 to 302 K. The water proton spin-lattice relaxation reports on that of protein protons, which causes the characteristic power law dependence on the magnetic field strength. Isotope substitution of deuterium for hydrogen in water and studies at different temperatures expose three classes of water molecule dynamics that contribute to the spin-lattice relaxation dispersion profile. At 185 K, a water (1)H relaxation contribution derives from reorientation of protein-bound molecules that are dynamically uncoupled from the protein backbone and is characterized by a Lorentzian function. Bound-water-molecule motions that can be dynamically uncoupled or coupled to the protein fluctuations make dominant contributions at higher temperatures as well. Surface water translational diffusion that is magnetically two-dimensional makes relaxation contributions at frequencies above 10 MHz. It is shown using isotope substitution that the exponent of the power law of the water signal in hydrated immobilized protein systems is the same as that for protons in lyophilized proteins over four orders of magnitude in the Larmor frequency, which implies that changes in the protein structure associated with hydration do not affect the (1)H spin relaxation.
Collapse
Affiliation(s)
- Yanina A. Goddard
- Chemistry Department, University of Virginia, Charlottesville, VA, USA 22904
| | - Jean-Pierre Korb
- Laboratoire de Physique de la Matière Condensée, Ecole Polytechnique, CNRS, 91128 Palaiseau, France
| | - Robert G. Bryant
- Chemistry Department, University of Virginia, Charlottesville, VA, USA 22904
| |
Collapse
|
10
|
Ling W, Regatte RR, Navon G, Jerschow A. Assessment of glycosaminoglycan concentration in vivo by chemical exchange-dependent saturation transfer (gagCEST). Proc Natl Acad Sci U S A 2008; 105:2266-70. [PMID: 18268341 PMCID: PMC2268124 DOI: 10.1073/pnas.0707666105] [Citation(s) in RCA: 430] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2007] [Indexed: 11/18/2022] Open
Abstract
Glycosaminogycans (GAGs) are involved in numerous vital functions in the human body. Mapping the GAG concentration in vivo is desirable for the diagnosis and monitoring of a number of diseases such as osteoarthritis, which affects millions of individuals. GAG loss in cartilage is typically an initiating event in osteoarthritis. Another widespread pathology related to GAG is intervertebral disk degeneration. Currently existing techniques for GAG monitoring, such as delayed gadolinium-enhanced MRI contrast (dGEMRIC), T(1)(rho), and (23)Na MRI, have some practical limitations. We show that by exploiting the exchangeable protons of GAG one may directly measure the localized GAG concentration in vivo with high sensitivity and therefore obtain a powerful diagnostic MRI method.
Collapse
Affiliation(s)
- Wen Ling
- *Chemistry Department, New York University, New York, NY 10003
- School of Chemistry, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
| | - Ravinder R. Regatte
- Center for Biomedical Imaging, Radiology Department, New York University School of Medicine, New York, NY 10003; and
| | - Gil Navon
- School of Chemistry, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
| | - Alexej Jerschow
- *Chemistry Department, New York University, New York, NY 10003
| |
Collapse
|
11
|
van Zijl PCM, Jones CK, Ren J, Malloy CR, Sherry AD. MRI detection of glycogen in vivo by using chemical exchange saturation transfer imaging (glycoCEST). Proc Natl Acad Sci U S A 2007; 104:4359-64. [PMID: 17360529 PMCID: PMC1838607 DOI: 10.1073/pnas.0700281104] [Citation(s) in RCA: 325] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Detection of glycogen in vivo would have utility in the study of normal physiology and many disorders. Presently, the only magnetic resonance (MR) method available to study glycogen metabolism in vivo is (13)C MR spectroscopy, but this technology is not routinely available on standard clinical scanners. Here, we show that glycogen can be detected indirectly through the water signal by using selective radio frequency (RF) saturation of the hydroxyl protons in the 0.5- to 1.5-ppm frequency range downfield from water. The resulting saturated spins are rapidly transferred to water protons via chemical exchange, leading to partial saturation of the water signal, a process now known as chemical exchange saturation transfer. This effect is demonstrated in glycogen phantoms at magnetic field strengths of 4.7 and 9.4 T, showing improved detection at higher field in adherence with MR exchange theory. Difference images obtained during RF irradiation at 1.0 ppm upfield and downfield of the water signal showed that glycogen metabolism could be followed in isolated, perfused mouse livers at 4.7 T before and after administration of glucagon. Glycogen breakdown was confirmed by measuring effluent glucose and, in separate experiments, by (13)C NMR spectroscopy. This approach opens the way to image the distribution of tissue glycogen in vivo and to monitor its metabolism rapidly and noninvasively with MRI.
Collapse
Affiliation(s)
- Peter C. M. van Zijl
- *Division of Magnetic Resonance Research, Neurology Section, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions, Baltimore, MD 21205
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD 21205
- To whom correspondence may be addressed. E-mail:
or
| | - Craig K. Jones
- *Division of Magnetic Resonance Research, Neurology Section, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions, Baltimore, MD 21205
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD 21205
| | - Jimin Ren
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390-8568; and
| | - Craig R. Malloy
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390-8568; and
- VA North Texas Health Care System, Dallas, TX 76216
| | - A. Dean Sherry
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390-8568; and
- To whom correspondence may be addressed. E-mail:
or
| |
Collapse
|
12
|
Goddard YA, Korb JP, Bryant RG. Structural and dynamical examination of the low-temperature glass transition in serum albumin. Biophys J 2006; 91:3841-7. [PMID: 16935952 PMCID: PMC1630461 DOI: 10.1529/biophysj.106.090126] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2006] [Accepted: 08/16/2006] [Indexed: 11/18/2022] Open
Abstract
The nuclear magnetic transverse decay and the proton second moment of bovine serum albumin samples dry and hydrated with different water isotope compositions show that at temperatures around 170 K, there is a dramatic change in the dynamics of the water associated with the protein interface. By comparison, observation of the protein protons when hydrated with deuterium oxide provides no evidence for significant dynamical changes near 170 K. The proton second moment of the hydrated protein shows that the protein structure becomes more open with increasing hydration from the lyophilized condition and that the side chains extend from the protein surface into the solvent in the hydrated but not the dry cases. The proton second moment of serum albumin hydrated with H(2)O increases dramatically with decreasing temperature near 170 K, demonstrating that the water forms a rigid solid around the protein which effectively fills the surface irregularities created by the protein fold. Solvation with dimethyl sulfoxide yields small effects compared with water.
Collapse
Affiliation(s)
- Yanina A Goddard
- Chemistry Department, University of Virginia, Charlottesville, Virginia, USA
| | | | | |
Collapse
|
13
|
Bryant RG, Korb JP. Nuclear magnetic resonance and spin relaxation in biological systems. Magn Reson Imaging 2005; 23:167-73. [PMID: 15833608 DOI: 10.1016/j.mri.2004.11.026] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2004] [Accepted: 11/10/2004] [Indexed: 10/25/2022]
Abstract
Proton nuclear spin-lattice relaxation in biological systems is generally distinguished from that in inorganic systems such as rocks by the presence of locally disordered macromolecular environments. Rapid exchange of readily observed labile small molecules among differently oriented macromolecular sites generally nearly averages the spectral anisotropies in the small molecule resonances. The biological tissue is generally distinguished from the inorganic matrix by the presence of a significant population of protons in the solid components that are well connected by dipolar spin couplings. Magnetic coupling between the solid and the liquid components generally dominates the magnetic field dependence of the spin-lattice relaxation rates observed in the small molecule components which is generally described by a power law in the Larmor frequency. Recent theory involving a modification of the spin-phonon class of relaxation mechanism provides a quantitative understanding of these data in terms of the dynamics of the chain molecules generally present in the solid spin systems, folded proteins for example.
Collapse
Affiliation(s)
- Robert G Bryant
- Chemistry Department, University of Virginia, PO Box 400319, Charlottesville, VA 22904-4319, USA.
| | | |
Collapse
|
14
|
van Zijl PCM, Zhou J, Mori N, Payen JF, Wilson D, Mori S. Mechanism of magnetization transfer during on-resonance water saturation. A new approach to detect mobile proteins, peptides, and lipids. Magn Reson Med 2003; 49:440-9. [PMID: 12594746 DOI: 10.1002/mrm.10398] [Citation(s) in RCA: 189] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The mechanism of magnetization transfer (MT) between water and components of the proton spectrum was studied ex vivo in a perfused cell system and in vivo in the rat brain (n = 5). Water was selectively labeled and spectral buildup consequential to transfer of longitudinal magnetization was followed as a function of time. At short mixing time (T(m)), nitrogen-bound solvent-exchangeable protons were observed, predominantly assigned to amide groups of proteins and peptides. At longer T(m), intramolecular nuclear Overhauser enhancement (NOE) was observed in the aliphatic proton region, leading to a mobile-macromolecule-weighted spectrum that resembles typical protein spectra described in the literature. This effect on the proton spectrum is distinct from that of classical off-resonance MT, which has been shown to be due to the immobile solid-like proton pool. When studying a solution of major brain metabolites under physiological concentrations and conditions (pH), no transfer effects were observed, in line with expectations based on reduced NOE effects in rapidly tumbling molecules and the fast proton exchange rates of amino, amine, SH, and OH groups. The spectral intensities of the amide protons may serve as indicators for pH and cellular levels of mobile proteins and peptides, while the aliphatic components are representative of several types of mobile macromolecules, including proteins, peptides, and lipids.
Collapse
Affiliation(s)
- Peter C M van Zijl
- Division of MRI Research, Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA.
| | | | | | | | | | | |
Collapse
|
15
|
Abstract
The magnetic field dependence of the water-proton spin-lattice relaxation rate (1/T(1)) in tissues results from magnetic coupling to the protons of the rotationally immobilized components of the tissue. As a consequence, the magnetic field dependence of the water-proton (1/T(1)) is a scaled report of the field dependence of the (1/T(1)) rate of the solid components of the tissue. The proton spin-lattice relaxation rate may be represented generally as a power law: 1/T(1)omega = A omega(-b), where b is usually found to be in the range of 0.5-0.8. We have shown that this power law may arise naturally from localized structural fluctuations along the backbone in biopolymers that modulate the proton dipole-dipole couplings. The protons in a protein form a spin communication network described by a fractal dimension that is less than the Euclidean dimension. The model proposed accounts quantitatively for the proton spin-lattice relaxation rates measured in immobilized protein systems at different water contents, and provides a fundamental basis for understanding the parametric dependence of proton spin-lattice relaxation rates in dynamically heterogeneous systems, such as tissues.
Collapse
Affiliation(s)
- Jean-Pierre Korb
- Laboratoire de Physique de la Matière Condensée, UMR 7643 du CNRS, Ecole Polytechnique, Palaiseau, France
| | | |
Collapse
|
16
|
Korb JP, Bryant RG. The physical basis for the magnetic field dependence of proton spin-lattice relaxation rates in proteins. J Chem Phys 2001. [DOI: 10.1063/1.1417509] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
17
|
Ceckler T, Maneval J, Melkowits B. Modeling magnetization transfer using a three-pool model and physically meaningful constraints on the fitting parameters. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2001; 151:9-27. [PMID: 11444932 DOI: 10.1006/jmre.2001.2326] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
A model for water-macromolecular magnetization transfer is presented which addresses the mechanism of coupling between the hydrogen populations and the extraction of physically meaningful parameters from experimental magnetization transfer data. Both physical exchange between bulk-solvent and site-specific hydration-layer hydrogens and intermolecular magnetic dipolar coupling between these specific hydration-layer-solvent and macromolecular hydrogens are explicitly included, leading to a three-pool model for magnetization transfer. It is shown that the three-pool model is well approximated by a two-pool model for coupling between the bulk-solvent and macromolecular hydrogens when the dipolar-coupled solvent hydrogens are a small fraction of the total solvent, and the solvent-macromolecular coupling constant includes both dipolar magnetic, kappa(dip), and physical exchange, kappa(ex), coupling rates. The model is also extended to multiple solvent systems. The model results in a set of coupled equations that predict magnetization transfer spectra as a function of temperature and composition. Physically meaningful constraints on the coupling and relaxation parameters are established for systems in which magnetization transfer has been observed including solvated cross-linked proteins and lipid bilayers. Using parameter estimates based on these constraints, empirical magnetization transfer spectra are well predicted by the model. It is found that the degree of magnetization transfer becomes independent of kappa(dip) and kappa(ex) when these parameters become greater than about 50 s(-1). In the semi-rigid cross-linked protein systems where the mobility of the macromolecular matrix is insensitive to temperature, the magnitude of the observed magnetization transfer is consistent with being limited by the intermolecular dipolar coupling and spin-lattice relaxation in the bulk-solvent phase.
Collapse
Affiliation(s)
- T Ceckler
- Department of Chemistry, Bucknell University, Lewisburg, Pennsylvania 17837, USA.
| | | | | |
Collapse
|
18
|
Swanson SD. Protein mediated magnetic coupling between lactate and water protons. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 1998; 135:248-255. [PMID: 9799702 DOI: 10.1006/jmre.1998.1535] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The magnetic coupling between methyl lactate protons and water protons in samples of cross-linked bovine serum albumin (BSA) is studied. Cross-relaxation spectroscopy shows efficient magnetization transfer from immobilized BSA to both water and methyl lactate protons. Transient and steady-state NOE experiments reveal a negative intermolecular NOE between methyl lactate and water protons. Lactate is indirectly detected by selectively saturating the methyl lactate protons and measuring the decrease in water proton magnetization. Indirect detection of methyl lactate protons is an order of magnitude more sensitive than direct detection in these model systems. Lactate was indirectly imaged, via the water proton resonance, with 1.1-microliter voxels in 2 min. Immobilized BSA reduces the intermolecular correlation time between water and lactate protons into the spin-diffusion limit where the NOE is negative. Possible molecular mechanisms for this coupling and applications to in vivo spectroscopy are discussed.
Collapse
Affiliation(s)
- S D Swanson
- Department of Radiology, The University of Michigan, Ann Arbor, Michigan, 48109-0553, USA.
| |
Collapse
|