1
|
Leopold J, Schiller J. (Chemical) Roles of HOCl in Rheumatic Diseases. Antioxidants (Basel) 2024; 13:921. [PMID: 39199167 PMCID: PMC11351306 DOI: 10.3390/antiox13080921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/16/2024] [Accepted: 07/26/2024] [Indexed: 09/01/2024] Open
Abstract
Chronic rheumatic diseases such as rheumatoid arthritis (RA) are characterized by a dysregulated immune response and persistent inflammation. The large number of neutrophilic granulocytes in the synovial fluid (SF) from RA patients leads to elevated enzyme activities, for example, from myeloperoxidase (MPO) and elastase. Hypochlorous acid (HOCl), as the most important MPO-derived product, is a strong reactive oxygen species (ROS) and known to be involved in the processes of cartilage destruction (particularly regarding the glycosaminoglycans). This review will discuss open questions about the contribution of HOCl in RA in order to improve the understanding of oxidative tissue damaging. First, the (chemical) composition of articular cartilage and SF and the mechanisms of cartilage degradation will be discussed. Afterwards, the products released by neutrophils during inflammation will be summarized and their effects towards the individual, most abundant cartilage compounds (collagen, proteoglycans) and selected cellular components (lipids, DNA) discussed. New developments about neutrophil extracellular traps (NETs) and the use of antioxidants as drugs will be outlined, too. Finally, we will try to estimate the effects induced by these different agents and their contributions in RA.
Collapse
Affiliation(s)
- Jenny Leopold
- Institute for Medical Physics and Biophysics, Medical Faculty, Leipzig University, 04103 Leipzig, Germany;
| | | |
Collapse
|
2
|
Damyanovich AZ, Avery L, Staples JR, Marshall KW. 1H NMR Metabolic Profiling of Synovial Fluid from Patients with Anterior Cruciate Ligament Tears and Hemarthrosis. Osteoarthritis Cartilage 2023:S1063-4584(23)00757-4. [PMID: 37146959 DOI: 10.1016/j.joca.2023.03.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 03/22/2023] [Accepted: 03/29/2023] [Indexed: 05/07/2023]
Abstract
OBJECTIVE To compare the metabolic profiles of synovial fluid (SF) from patients with anterior cruciate ligament tears and hemarthrosis (HA) with that of normal controls, using 1H NMR spectroscopy (NMRS). METHODS Synovial fluid was collected from eleven patients undergoing arthroscopic debridement within fourteen days following an anterior cruciate ligament (ACL) tear and hemarthrosis. Ten additional SF samples were obtained from the knees of osteoarthritis-free volunteers to serve as normal controls. The relative concentrations of twenty-eight endogenous SF metabolites (hydroxybutyrate, acetate, acetoacetate, acetone, alanine, arginine, choline, citrate, creatine, creatinine, formate, glucose, glutamate, glutamine, glycerol, glycine, histidine, isoleucine, lactate, leucine, lysine, phenylalanine, proline, pyruvate, threonine, tyrosine, valine, and the mobile components of glycoproteins and lipids) were evaluated using NMRS and quantified using CHENOMX metabolomics analysis software. Mean differences between groups were evaluated with t-tests controlling for multiple comparisons at an overall error rate of 0.10. RESULTS Statistically significant increases in the levels of glucose, choline, the branched-chain amino acids leucine, isoleucine, and valine, and the mobile components of N-acetyl glycoproteins and lipids were observed in ACL/HA SF as compared with normal controls; lactate levels were reduced. CONCLUSIONS Marked changes occur in the metabolic profiles of human knee fluid following ACL injury and hemarthrosis, suggestive of increased demand and accompanying inflammatory response; potentially increased lipid and glucose metabolism; and possible hyaluronan degradation within the joint following trauma.
Collapse
Affiliation(s)
- Andrei Z Damyanovich
- Department of Medical Physics, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada; Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada; Techna Institute, Toronto, Ontario, Canada.
| | - Lisa Avery
- Department of Biostatistics, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada; Department of Biostatistics, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - James R Staples
- Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - K Wayne Marshall
- Schroeder Arthritis Institute, Division of Orthopaedic Surgery, University Health Network, Toronto, Ontario, Canada; Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
3
|
Jaggard MKJ, Boulangé CL, Graça G, Akhbari P, Vaghela U, Bhattacharya R, Williams HRT, Lindon JC, Gupte CM. The effect of liquid-liquid extraction on metabolite detection and analysis using NMR spectroscopy in human synovial fluid. J Pharm Biomed Anal 2023; 226:115254. [PMID: 36701879 DOI: 10.1016/j.jpba.2023.115254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/09/2023] [Accepted: 01/13/2023] [Indexed: 01/15/2023]
Abstract
The evaluation of joint disease using synovial fluid is an emerging field of metabolic profiling. The analysis is challenged by multiple macromolecules which can obscure the small molecule chemistry. The use of protein precipitation and extraction has been evaluated previously, but not in synovial fluid. We systematically review the published NMR spectroscopy methods of synovial fluid analysis and investigated the efficacy of three different protein precipitation techniques: methanol, acetonitrile and trichloroacetic acid. The trichloroacetic wash removed the most protein. However, metabolite recoveries were universally very poor. Acetonitrile liquid/liquid extraction gave metabolite gains from four unknown compounds with spectral peaks at δ = 1.91 ppm, 3.64 ppm, 3.95 ppm & 4.05 ppm. The metabolite recoveries for acetonitrile were between 1.5 and 7 times higher than the methanol method, across all classes of metabolite. The methanol method was more effective in removing protein as reported by the free GAG undefined peak (44 % vs 125 %). However, qualitative evaluation showed that acetonitrile and methanol provided good restoration of the spectra to baseline. The methanol extraction has issues of a gelatinous substrate in the samples. All metabolite recoveries had a CV of > 15 %. A recommendation of acetonitrile liquid/liquid extraction was made for human synovial fluid (HSF) analysis. This is due to consistency, effective protein precipitation, recovery of metabolites and additional compounds not previously visible.
Collapse
Affiliation(s)
- Matthew K J Jaggard
- Department of Orthopaedics & Trauma, Imperial College Healthcare NHS Trust, Mary's Hospital, Praed Street, Paddington, London W2 1NY, UK; Department of Surgery and Cancer, Imperial College London, South Kensington, London SW7 2AZ, UK.
| | - Claire L Boulangé
- Department of Metabolism, Digestion and Reproduction, Imperial College London, South Kensington, London SW7 2AZ, UK; Department of Surgery and Cancer, Imperial College London, South Kensington, London SW7 2AZ, UK
| | - Gonçalo Graça
- Department of Metabolism, Digestion and Reproduction, Imperial College London, South Kensington, London SW7 2AZ, UK
| | - Pouya Akhbari
- Department of Orthopaedics & Trauma, Imperial College Healthcare NHS Trust, Mary's Hospital, Praed Street, Paddington, London W2 1NY, UK; Department of Surgery and Cancer, Imperial College London, South Kensington, London SW7 2AZ, UK
| | - Uddhav Vaghela
- School of Medicine, Imperial College London, South Kensington, London SW7 2AZ, UK
| | - Rajarshi Bhattacharya
- Department of Orthopaedics & Trauma, Imperial College Healthcare NHS Trust, Mary's Hospital, Praed Street, Paddington, London W2 1NY, UK
| | - Horace R T Williams
- Department of Metabolism, Digestion and Reproduction, Imperial College London, South Kensington, London SW7 2AZ, UK; Department of Gastroenterology, Imperial College NHS Trust, Mary's Hospital, Praed Street, Paddington, London W2 1NY, UK
| | - John C Lindon
- Department of Surgery and Cancer, Imperial College London, South Kensington, London SW7 2AZ, UK
| | - Chinmay M Gupte
- Department of Orthopaedics & Trauma, Imperial College Healthcare NHS Trust, Mary's Hospital, Praed Street, Paddington, London W2 1NY, UK; Department of Surgery and Cancer, Imperial College London, South Kensington, London SW7 2AZ, UK
| |
Collapse
|
4
|
The influence of sample collection, handling and low temperature storage upon NMR metabolic profiling analysis in human synovial fluid. J Pharm Biomed Anal 2021; 197:113942. [PMID: 33607503 DOI: 10.1016/j.jpba.2021.113942] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/25/2021] [Accepted: 01/29/2021] [Indexed: 12/12/2022]
Abstract
The impact of metabolism upon the altered pathology of joint disease is rapidly becoming recognized as an important area of study. Synovial joint fluid is an attractive and representative biofluid of joint disease. A systemic review revealed little evidence of the metabolic stability of synovial joint fluid collection, handling or storage, despite recent reports characterizing the metabolic phenotype in joint disease. We aim to report the changes in small molecule detection within human synovial fluid (HSF) using nuclear magnetic resonance (NMR) spectroscopy at varying storage temperatures, durations and conditions. HSF was harvested by arthrocentesis from patients with isolated monoarthropathy or undergoing joint replacement (n = 30). Short-term storage (0-12 h, 4°C & 18°C) and the effect of repeated freeze-thaw cycles (-80°C to 18°C) was assessed. Long-term storage was evaluated by early (-80°C, <21days) and late analysis (-80°C, 10-12 months). 1D NMR spectroscopy experiments, NOESYGPPR1D and CPMG identified metabolites and semi-quantification was performed. Samples demonstrated broad stability to freeze-thaw cycling and refrigeration of <4 h. Short-term room temperature or refrigerated storage showed significant variation in 2-ketoisovalerate, valine, dimethylamine, succinate, 2-hydroxybutyrate, and acetaminophen glucuronide. Lipid and macromolecule detection was variable. Long-term storage demonstrated significant changes in: acetate, acetoacetate, creatine, N,N-dimethylglycine, dimethylsulfone, 3-hydroxybutyrate and succinate. Changeable metabolites during short-term storage appeared to be energy-synthesis intermediates. Most metabolites were stable for the first four hours at room temperature or refrigeration, with notable exceptions. We therefore recommend that HSF samples should be kept refrigerated for no more than 4 hours prior to freezing at -80°C. Furthermore, storage of HSF samples for 10-12 months before analysis can affect the detection of selected metabolites.
Collapse
|
5
|
Bilong M, Bayat P, Bourderioux M, Jérôme M, Giuliani A, Daniel R. Mammal Hyaluronidase Activity on Chondroitin Sulfate and Dermatan Sulfate: Mass Spectrometry Analysis of Oligosaccharide Products. Glycobiology 2021; 31:751-761. [PMID: 33442722 DOI: 10.1093/glycob/cwab004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/28/2020] [Accepted: 12/28/2020] [Indexed: 11/13/2022] Open
Abstract
Mammalian hyaluronidases are endo-N-acetyl-D-hexosaminidases involved in the catabolism of hyaluronic acid (HA) but their role in the catabolism of chondroitin sulfate (CS) is also examined. HA and CS are glycosaminoglycans (GAGs) implicated in several physiological and pathological processes, and understanding their metabolism is of significant importance. Data have been previously reported on the degradation of CS under the action of hyaluronidase, yet a detailed structural investigation of CS depolymerization products remains necessary to improve our knowledge of the CS depolymerizyng activity of hyaluronidase. For that purpose, the fine structural characterization of CS oligosaccharides formed upon the enzymatic depolymerization of various CS sub-types by hyaluronidase has been carried out by high resolution Orbitrap mass spectrometry and extreme UV (XUV) photodissociation tandem mass spectrometry. The exact mass measurements show the formation of wide size range of even oligosaccharides upon digestion of CS-A and CS-C comprising hexa- and octa-saccharides among the main digestion products, as well as formation of small quantities of odd-numbered oligosaccharides, while no hyaluronidase activity was detected on CS-B. In addition, slight differences have been observed in the distribution of oligosaccharides in the digestion mixture of CS-A and CS-C, the contribution of longer oligosaccharides being significantly higher for CS-C. The sequence of CS oligosaccharide products determined XUV photodissociation experiments verifies the selective β(1 → 4) glycosidic bond cleavage catalyzed by mammal hyaluronidase. The ability of the mammal hyaluronidase to produce hexa- and higher oligosaccharides supports its role in the catabolism of CS anchored to membrane proteoglycans and in extra-cellular matrix.
Collapse
Affiliation(s)
- Mélanie Bilong
- Université Paris-Saclay, Univ Evry, CNRS, LAMBE, 91025 Evry-Courcouronnes, France
| | - Parisa Bayat
- Université Paris-Saclay, Univ Evry, CNRS, LAMBE, 91025 Evry-Courcouronnes, France
| | - Matthieu Bourderioux
- Université Paris-Saclay, Univ Evry, CNRS, LAMBE, 91025 Evry-Courcouronnes, France
| | - Murielle Jérôme
- Université Paris-Saclay, Univ Evry, CNRS, LAMBE, 91025 Evry-Courcouronnes, France
| | - Alexandre Giuliani
- SOLEIL, l'Orme des Merisiers, St Aubin, BP48, 91192 Gif sur Yvette Cedex, France.,UAR1008, Transform, INRAe, Rue de la Géraudière, 44316 Nantes, France
| | - Régis Daniel
- Université Paris-Saclay, Univ Evry, CNRS, LAMBE, 91025 Evry-Courcouronnes, France
| |
Collapse
|
6
|
Adler DMT, Serteyn D, Franck T, Jørgensen E, Christophersen MT, Denwood M, Verwilghen DR. Effects of intra-articular administration of lidocaine, mepivacaine, and the preservative methyl parahydroxybenzoate on synovial fluid biomarkers of horses. Am J Vet Res 2020; 81:479-487. [PMID: 32436793 DOI: 10.2460/ajvr.81.6.479] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To compare the extent of inflammation and catabolic collagen response in the middle carpal joints (MCJs) of healthy horses following intra-articular injection of 2% lidocaine, 2% mepivacaine, lactated Ringer solution (LRS), or 0.1% methyl parahydroxybenzoate. ANIMALS 17 adult horses. PROCEDURES In the first of 2 experiments, the left middle carpal joint (MCJ) of each of 12 horses was injected with 10 mL of 2% lidocaine (n = 3), 2% mepivacaine (3), or LRS (control; 6). After a 4-week washout period, the right MCJ of the horses that received lidocaine or mepivacaine was injected with 10 mL of LRS, and the right MCJ of horses that received LRS was injected with 10 mL of 2% lidocaine (n = 3) or 2% mepivacaine (3). In experiment 2, the left MCJ of each of 5 horses was injected with 10 mL of 0.1% methyl parahydroxybenzoate. After a 48-hour washout period, the right MCJ of each horse was injected with 10 mL of LRS. Synovial fluid (SF) samples were aseptically collected before and at predetermined times after each injection. Synovial fluid WBC count, neutrophil percentage, and total protein, neutrophil myeloperoxidase, neutrophil elastase, and Coll2-1 concentrations were compared among treatments. RESULTS Both lidocaine and mepivacaine induced SF changes indicative of inflammation and a catabolic collagen response, but the magnitude of those changes was more pronounced for lidocaine. Methyl parahydroxybenzoate did not cause any SF changes indicative of inflammation. CONCLUSIONS AND CLINICAL RELEVANCE Results suggested that mepivacaine was safer than lidocaine for intra-articular injection in horses.
Collapse
|
7
|
Setúbal SDS, Pontes AS, Nery NM, Rego CMA, Santana HM, de Lima AM, Boeno CN, Paloschi MV, Soares AM, Zuliani JP. Human neutrophils functionality under effect of an Asp49 phospholipase A 2 isolated from Bothrops atrox venom. Toxicon X 2020; 6:100032. [PMID: 32550587 DOI: 10.1016/j.toxcx.2020.100032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/10/2020] [Accepted: 03/12/2020] [Indexed: 12/23/2022] Open
Abstract
Bothrops envenomation is associated with a cellular inflammatory response, characterized by pronounced neutrophil infiltration at the site of injury. Neutrophils act as the first line of defence, owing to their ability to migrate to the infected tissue, promoting an acute inflammatory response. At the site of inflammation, neutrophils perform defence functions such as phagocytosis, release of proteolytic enzymes, generation of reactive oxygen species (ROS), and synthesis of inflammatory mediators such as cytokines and lipid mediators. Neutrophils can also form neutrophil extracellular nets (NETs), webs composed of chromatin and granule proteins. This occurs after neutrophil activation and delivers high concentrations of anti-microbial molecules to the site of injury. This study evaluated the impact of BaTX-II, an Asp49 phospholipase A2 (PLA2) isolated from Bothrops atrox snake venom on human neutrophils in vitro. At non-toxic concentrations, BaTX-II induced hydrogen peroxide production by neutrophils, and this was reduced by wortmannin, a PI3K inhibitor. BaTX-II stimulated IL-1β, IL-8, LTB4, myeloperoxidase (MPO), and DNA content release, consistent with NET formation. This is the first study to show the triggering of relevant pro-inflammatory events by PLA2 Asp49 isolated from secretory venom.
Collapse
Affiliation(s)
- Sulamita da S Setúbal
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz (FIOCRUZ) Rondônia, Porto Velho, RO, Brazil
| | - Adriana S Pontes
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz (FIOCRUZ) Rondônia, Porto Velho, RO, Brazil
| | - Neriane M Nery
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz (FIOCRUZ) Rondônia, Porto Velho, RO, Brazil
| | - Cristina M A Rego
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz (FIOCRUZ) Rondônia, Porto Velho, RO, Brazil
| | - Hallison M Santana
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz (FIOCRUZ) Rondônia, Porto Velho, RO, Brazil
| | - Anderson M de Lima
- Centro de Estudos de Biomoléculas Aplicadas à Saúde (CEBio), Fundação Oswaldo Cruz, (FIOCRUZ) Rondônia e Departamento de Medicina, Universidade Federal de Rondônia (UNIR), Porto Velho, RO, Brazil
| | - Charles N Boeno
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz (FIOCRUZ) Rondônia, Porto Velho, RO, Brazil
| | - Mauro V Paloschi
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz (FIOCRUZ) Rondônia, Porto Velho, RO, Brazil
| | - Andreimar M Soares
- Centro de Estudos de Biomoléculas Aplicadas à Saúde (CEBio), Fundação Oswaldo Cruz, (FIOCRUZ) Rondônia e Departamento de Medicina, Universidade Federal de Rondônia (UNIR), Porto Velho, RO, Brazil
- Universidade São Lucas (UniSL), Porto Velho, RO, Brazil
| | - Juliana P Zuliani
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz (FIOCRUZ) Rondônia, Porto Velho, RO, Brazil
- Centro de Estudos de Biomoléculas Aplicadas à Saúde (CEBio), Fundação Oswaldo Cruz, (FIOCRUZ) Rondônia e Departamento de Medicina, Universidade Federal de Rondônia (UNIR), Porto Velho, RO, Brazil
| |
Collapse
|
8
|
Ahmad P, Tantry IQ, Ali A, Siddiqui SA, Rehman SU, Waris S, Jairajpuri MA. Structural alteration in hypochlorous acid modified antithrombin indicates generation of neo-epitopes. Arch Biochem Biophys 2020; 685:108332. [PMID: 32194043 DOI: 10.1016/j.abb.2020.108332] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 03/03/2020] [Accepted: 03/10/2020] [Indexed: 01/25/2023]
Abstract
Increased tendency of cancer patients to develop venous thromboembolism (VTE) is associated with high rates of mortality. Elevation of procoagulant proteins and down regulation of naturally occurring coagulation inhibitors appears to form the basis of high risk of VTE in malignancy. A reduced level of anticoagulant protein like antithrombin (AT) will influence both coagulation and angiogenesis, as its cleaved and latent conformations show potent antiangiogenic activity. We show a concentration dependent perturbation in the secondary and tertiary structures of AT conformers exposed to hypochlorous acid (HOCl). Modulated under a very narrow concentration range of HOCl, native AT undergoes oligomerization, aggregation and fragmentation based on spectroscopic, SDS and native-PAGE studies. Factor Xa inhibition assay demonstrated a progressive decrease in inhibition activity of AT on modification by HOCl. Bis-ANS result showed that hydrophobic patches were more exposed in the case of HOCl-modified AT when assessed fluorometrically. Dosage of HOCl-modified AT in experimental animals induced high titer antibodies showing more specificity towards modified forms in comparison to unmodified forms. Auto-antibodies isolated from cancer patients also showed enhanced binding with HOCl-modified AT in comparison to native counterpart. Compared to normal AT, structurally and functionally altered conformation of HOCl-modified AT showed increased immunogenic sensitivity. HOCl modified AT can contribute to prothrombotic and angiogenic environment during cancer progression/development.
Collapse
Affiliation(s)
- Parvez Ahmad
- Protein Conformation and Enzymology Lab, Department of Biosciences, Jamia Millia Islamia (A Central University), New Delhi, 110025, India.
| | - Irfan Qadir Tantry
- Department of Biochemistry, Faculty of Medicine, Aligarh Muslim University, Aligarh, 202002, India.
| | - Asif Ali
- Department of Biochemistry, Faculty of Medicine, Aligarh Muslim University, Aligarh, 202002, India.
| | - Shahid Ali Siddiqui
- Department of Radiotherapy, Faculty of Medicine, Aligarh Muslim University, Aligarh, 202002, India.
| | - Sayeed Ur Rehman
- Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062, India.
| | - Sana Waris
- Department of Biochemistry, Faculty of Medicine, Aligarh Muslim University, Aligarh, 202002, India.
| | - Mohamad Aman Jairajpuri
- Protein Conformation and Enzymology Lab, Department of Biosciences, Jamia Millia Islamia (A Central University), New Delhi, 110025, India.
| |
Collapse
|
9
|
Anderson JR, Chokesuwattanaskul S, Phelan MM, Welting TJM, Lian LY, Peffers MJ, Wright HL. 1H NMR Metabolomics Identifies Underlying Inflammatory Pathology in Osteoarthritis and Rheumatoid Arthritis Synovial Joints. J Proteome Res 2018; 17:3780-3790. [PMID: 30229649 PMCID: PMC6220363 DOI: 10.1021/acs.jproteome.8b00455] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
![]()
Despite
osteoarthritis (OA) and rheumatoid arthritis (RA) being typically
age-related, their underlying etiologies are markedly different. We
used 1H nuclear magnetic resonance (NMR) spectroscopy to
identify differences in metabolite profiles in low volumes of OA and
RA synovial fluid (SF). SF was aspirated from knee joints of 10 OA
and 14 RA patients. 100 μL SF was analyzed using a 700 MHz Avance
IIIHD Bruker NMR spectrometer with a TCI cryoprobe. Spectra were analyzed
by Chenomx, Bruker TopSpin and AMIX software. Statistical analysis
was undertaken using Metaboanalyst. 50 metabolites were annotated,
including amino acids, saccharides, nucleotides and soluble lipids.
Discriminant analysis identified group separation between OA and RA
cohorts, with 32 metabolites significantly different between OA and
RA SF (false discovery rate (FDR) < 0.05). Metabolites of glycolysis
and the tricarboxylic acid cycle were lower in RA compared to OA;
these results concur with higher levels of inflammation, synovial
proliferation and hypoxia found in RA compared to OA. Elevated taurine
in OA may indicate increased subchondral bone sclerosis. We demonstrate
that quantifiable differences in metabolite abundance can be measured
in low volumes of SF by 1H NMR spectroscopy, which may
be clinically useful to aid diagnosis and improve understanding of
disease pathogenesis.
Collapse
Affiliation(s)
- James R Anderson
- Institute of Ageing and Chronic Disease , University of Liverpool , Liverpool L7 8TX , U.K
| | - Susama Chokesuwattanaskul
- Institute of Integrative Biology , University of Liverpool , Liverpool L69 7ZB , U.K.,Chulalongkorn University , Bangkok 10330 , Thailand
| | - Marie M Phelan
- Institute of Integrative Biology , University of Liverpool , Liverpool L69 7ZB , U.K.,HLS Technology Directorate , University of Liverpool , Liverpool L7 8TX , U.K
| | - Tim J M Welting
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery , Maastricht University Medical Centre , 6229 HX Maastricht , The Netherlands
| | - Lu-Yun Lian
- Institute of Integrative Biology , University of Liverpool , Liverpool L69 7ZB , U.K
| | - Mandy J Peffers
- Institute of Ageing and Chronic Disease , University of Liverpool , Liverpool L7 8TX , U.K
| | - Helen L Wright
- Institute of Ageing and Chronic Disease , University of Liverpool , Liverpool L7 8TX , U.K
| |
Collapse
|
10
|
Mailhiot SE, Codd SL, Brown JR, Seymour JD, June RK. Pulsed gradient stimulated echo (PGStE) NMR shows spatial dependence of fluid diffusion in human stage IV osteoarthritic cartilage. Magn Reson Med 2018; 80:1170-1177. [PMID: 29393539 DOI: 10.1002/mrm.27093] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 12/01/2017] [Accepted: 12/27/2017] [Indexed: 11/11/2022]
Affiliation(s)
- Sarah E Mailhiot
- Molecular Biosciences Program, Montana State University, Bozeman, Montana, USA.,Mechanical & Industrial Engineering, Montana State University, Bozeman, Montana, USA
| | - Sarah L Codd
- Mechanical & Industrial Engineering, Montana State University, Bozeman, Montana, USA
| | - Jennifer R Brown
- Chemical and Biological Engineering, Montana State University, Bozeman, Montana, USA
| | - Joseph D Seymour
- Chemical and Biological Engineering, Montana State University, Bozeman, Montana, USA
| | - Ronald K June
- Molecular Biosciences Program, Montana State University, Bozeman, Montana, USA.,Cell Biology and Neurosciences, Montana State University, Bozeman, Montana, USA.,Orthopaedics and Sports Medicine, University of Washington, Seattle, Washington, USA
| |
Collapse
|
11
|
Ozdamar SM, Alev B, Yarat A. The impact of arthrocentesis with and without hyaluronic acid injection in the prognosis and synovial fluid myeloperoxidase levels of patients with painful symptomatic internal derangement of temporomandibular joint: a randomised controlled clinical trial. J Oral Rehabil 2017; 44:73-80. [PMID: 27973684 DOI: 10.1111/joor.12467] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/04/2016] [Indexed: 11/28/2022]
Abstract
We aimed to assess the relationship between myeloperoxidase (MPO) and internal derangement (ID) of temporomandibular joint (TMJ) and effects of arthrocentesis procedure, either alone or in combination with hyaluronic acid (HA) injection on the prognosis of ID of TMJ. A prospective randomised controlled trial has been conducted through patients, who underwent arthrocentesis for the treatment of ID of TMJ, were randomly divided into two groups. Group SS (n = 10) and Group HA (n = 14) patients were assigned 0·9% NaCl solution and sodium hyaluronate intra-articularly, respectively. Synovial fluid samples were assayed for MPO at the time of arthrocentesis and pain visual analogue scale (VAS) and maximum mouth opening (MMO) scores were recorded at pre- and post-operative periods as well as first-week, first-month and third-month intervals. There was a statistically significant decrease in MPO levels between the first to second arthrocenteses only in Group 2 (P = 0·001). Both VAS scores and MMO measurements decreased in the course of time following arthrocentesis and do not differ between the patients administered HA or SS. Similarly MPO levels do not change significantly between the two groups at either first or second arthrocenteses. In HA group, MPO levels significantly decreased from first to second sessions. In HA group, MPO levels decreased significantly only in patients with clinical success. Arthrocentesis procedure improves both pain VAS and MMO scores in the course of time, but these parameters do not differ between patients receiving either HA or SS. HA significantly reduces levels of MPO in synovial fluid, but SS does not. HA appears to alleviate inflammation inside the TMJ in patients with TMJ-ID.
Collapse
Affiliation(s)
- S M Ozdamar
- Department of Oral and Dental Surgery, Faculty of Dentistry, Marmara University, Basibuyuk, Maltepe, Istanbul, Turkey
| | - B Alev
- Basic Medical Sciences, Biochemistry, Faculty of Dentistry, Marmara University, Basibuyuk, Maltepe, Istanbul, Turkey
| | - A Yarat
- Basic Medical Sciences, Biochemistry, Faculty of Dentistry, Marmara University, Basibuyuk, Maltepe, Istanbul, Turkey
| |
Collapse
|
12
|
Chlorinated Phospholipids and Fatty Acids: (Patho)physiological Relevance, Potential Toxicity, and Analysis of Lipid Chlorohydrins. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:8386362. [PMID: 28090245 PMCID: PMC5206476 DOI: 10.1155/2016/8386362] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 10/24/2016] [Accepted: 11/06/2016] [Indexed: 12/17/2022]
Abstract
Chlorinated phospholipids are formed by the reaction of hypochlorous acid (HOCl), generated by the enzyme myeloperoxidase under inflammatory conditions, and the unsaturated fatty acyl residues or the head group. In the first case the generated chlorohydrins are both proinflammatory and cytotoxic, thus having a significant impact on the structures of biomembranes. The latter case leads to chloramines, the properties of which are by far less well understood. Since HOCl is also widely used as a disinfecting and antibacterial agent in medicinal, industrial, and domestic applications, it may represent an additional source of danger in the case of abuse or mishandling. This review discusses the reaction behavior of in vivo generated HOCl and biomolecules like DNA, proteins, and carbohydrates but will focus on phospholipids. Not only the beneficial and pathological (toxic) effects of chlorinated lipids but also the importance of these chlorinated species is discussed. Some selected cleavage products of (chlorinated) phospholipids and plasmalogens such as lysophospholipids, (chlorinated) free fatty acids and α-chloro fatty aldehydes, which are all well known to massively contribute to inflammatory diseases associated with oxidative stress, will be also discussed. Finally, common analytical methods to study these compounds will be reviewed with focus on mass spectrometric techniques.
Collapse
|
13
|
Jin W, Woo DC, Jahng GH. In vivo H1 MR spectroscopy using 3 Tesla to investigate the metabolic profiles of joint fluids in different types of knee diseases. J Appl Clin Med Phys 2016; 17:561-572. [PMID: 27074491 PMCID: PMC5874966 DOI: 10.1120/jacmp.v17i2.6144] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Revised: 12/13/2015] [Accepted: 12/10/2015] [Indexed: 12/03/2022] Open
Abstract
In vivo proton (H1) magnetic resonance spectroscopy (MRS) has not yet been systematically used to study joint fluids in human knees. The objective of this study, therefore, was to assess the ability of proton MRS to identify the apparent heterogeneous characteristics of metabolic spectra in the joint fluid regions in human knees using a high‐field MRI system. Eighty‐four patients with effusion lesions who were referred for routine knee MR imaging underwent proton MRS with point‐resolved, single‐voxel MR spectroscopy using a clinical 3.0 Tesla MRI system. Thirty‐eight patients were confirmed to have the following: degenerative osteoarthritis, 21 patients (Group 1); traumatic diseases, 12 patients (Group 2); infectious diseases, 4 patients and an inflammatory disease, 1 patient (Group 3). Spectroscopy data were analyzed using the public jMRUI freeware software to obtain lipid metabolites. Nonparametric statistical comparisons were performed to investigate any differences in metabolites among the three disease groups. The major metabolites were vinylic CH=CH lipids around 5.1−5.5 ppm, CH2 lipids around 1.1−1.5 ppm, and CH3 lipids around 0.7−1.0 ppm. Each patient had either a CH=CH lipid peak, CH2 and CH3 lipid peaks, or all three peaks. There were no significant differences among the three groups for the CH3 (p=0.9019), CH2 (p=0.6406), and CH=CH lipids (p=0.5467) and water (p=0.2853); none of the metabolites could differentiate between any of the three types of diseases. The CH2 lipids in the 38 patients who had confirmed fluid characteristics were significantly correlated with CH3 lipids (rho=0.835, p<0.0001). The ratio of CH3 to CH2 was highest in the degenerative disease. In both the degenerative and traumatic diseases, metabolite peaks of the vinylic CH=CH lipids around 5.1−5.5 ppm and of the sum of the CH2 and CH3 lipids around 0.7−1.5 ppm were observed, but in the infectious disease, only a metabolite peak of the sum of the CH2 and CH3 lipids was detected. Although none of the metabolites could statistically significantly differentiate between the three types of diseases, the different lipid metabolite peaks and their ratios in the three disease groups may give us a hint at the different mechanisms of joint fluids in the infectious, degenerative, and traumatic diseases. PACS number(s): 87.61.Ff, 33.25.+k, 87.14.Cc
Collapse
Affiliation(s)
- Wook Jin
- Kyung Hee University Hospital at Gangdong, College of Medicine, Kyung Hee University.
| | | | | |
Collapse
|
14
|
Dickerhof N, Schindler L, Bernhagen J, Kettle AJ, Hampton MB. Macrophage migration inhibitory factor (MIF) is rendered enzymatically inactive by myeloperoxidase-derived oxidants but retains its immunomodulatory function. Free Radic Biol Med 2015; 89:498-511. [PMID: 26453918 DOI: 10.1016/j.freeradbiomed.2015.09.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 09/23/2015] [Accepted: 09/24/2015] [Indexed: 11/24/2022]
Abstract
Macrophage migration inhibitory factor (MIF) is an important player in the regulation of the inflammatory response. Elevated plasma MIF is found in sepsis, arthritis, cystic fibrosis and atherosclerosis. Immunomodulatory activities of MIF include the ability to promote survival and recruitment of inflammatory cells and to amplify pro-inflammatory cytokine production. MIF has an unusual nucleophilic N-terminal proline with catalytic tautomerase activity. It remains unclear whether tautomerase activity is required for MIF function, but small molecules that inhibit tautomerase activity also inhibit the pro-inflammatory activities of MIF. A prominent feature of the acute inflammatory response is neutrophil activation and production of reactive oxygen species, including myeloperoxidase (MPO)-derived hypochlorous acid and hypothiocyanous acid. We hypothesized that MPO-derived oxidants would oxidize the N-terminal proline of MIF and alter its biological activity. MIF was exposed to hypochlorous acid and hypothiocyanous acid and the oxidative modifications on MIF were examined by LC-MS/MS. Imine formation and carbamylation was observed on the N-terminal proline in response to MPO-dependent generation of hypochlorous and hypothiocyanous acid, respectively. These modifications led to a complete loss of tautomerase activity. However, modified MIF still increased CXCL-8/IL-8 production by peripheral blood mononuclear cells (PBMCs) and blocked neutrophil apoptosis, indicating that tautomerase activity is not essential for these biological functions. Pre-treatment of MIF with hypochlorous acid protected the protein from covalent modification by the MIF inhibitor 4-iodo-6-phenylpyrimidine (4-IPP). Therefore, oxidant generation at inflammatory sites may protect MIF from inactivation by more disruptive electrophiles, including drugs designed to target the tautomerase activity of MIF.
Collapse
Affiliation(s)
- Nina Dickerhof
- Centre for Free Radical Research, Department of Pathology, University of Otago Christchurch, Christchurch, New Zealand.
| | - Lisa Schindler
- Institute of Biochemistry and Molecular Cell Biology, RWTH Aachen University, Aachen, Germany
| | - Jürgen Bernhagen
- Institute of Biochemistry and Molecular Cell Biology, RWTH Aachen University, Aachen, Germany
| | - Anthony J Kettle
- Centre for Free Radical Research, Department of Pathology, University of Otago Christchurch, Christchurch, New Zealand
| | - Mark B Hampton
- Centre for Free Radical Research, Department of Pathology, University of Otago Christchurch, Christchurch, New Zealand
| |
Collapse
|
15
|
Howell SC, Richards DH, Mitch WA, Wilson CJ. Leveraging the Mechanism of Oxidative Decay for Adenylate Kinase to Design Structural and Functional Resistances. ACS Chem Biol 2015; 10:2393-404. [PMID: 26266833 DOI: 10.1021/acschembio.5b00431] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Characterization of the mechanisms underlying hypohalous acid (i.e., hypochlorous acid or hypobromous acid) degradation of proteins is important for understanding how the immune system deactivates pathogens during infections and damages human tissues during inflammatory diseases. Proteins are particularly important hypohalous acid reaction targets in pathogens and in host tissues, as evidenced by the detection of chlorinated and brominated oxidizable residues. While a significant amount of work has been conducted for reactions of hypohalous acids with a range of individual amino acids and small peptides, the assessment of oxidative decay in full-length proteins has lagged in comparison. The most rigorous test of our understanding of oxidative decay of proteins is the rational redesign of proteins with conferred resistances to the decay of structure and function. Toward this end, in this study, we experimentally determined a putative mechanism of oxidative decay using adenylate kinase as the model system. In turn, we leveraged this mechanism to rationally design new proteins and experimentally test each system for oxidative resistance to loss of structure and function. From our extensive assessment of secondary structure, protein hydrodynamics, and enzyme activity upon hypochlorous acid or hypobromous acid challenge, we have identified two key strategies for conferring structural and functional resistance, namely, the design of proteins (adenylate kinase enzymes) that are resistant to oxidation requires complementary consideration of protein stability and the modification (elimination) of certain oxidizable residues proximal to catalytic sites.
Collapse
Affiliation(s)
| | | | - William A. Mitch
- Department
of Civil and Environmental Engineering, Stanford University, Stanford, California 94305, United States
| | | |
Collapse
|
16
|
Panasenko OM, Gorudko IV, Sokolov AV. Hypochlorous acid as a precursor of free radicals in living systems. BIOCHEMISTRY (MOSCOW) 2014; 78:1466-89. [PMID: 24490735 DOI: 10.1134/s0006297913130075] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hypochlorous acid (HOCl) is produced in the human body by the family of mammalian heme peroxidases, mainly by myeloperoxidase, which is secreted by neutrophils and monocytes at sites of inflammation. This review discusses the reactions that occur between HOCl and the major classes of biologically important molecules (amino acids, proteins, nucleotides, nucleic acids, carbohydrates, lipids, and inorganic substances) to form free radicals. The generation of such free radical intermediates by HOCl and other reactive halogen species is accompanied by the development of halogenative stress, which causes a number of socially important diseases, such as cardiovascular, neurodegenerative, infectious, and other diseases usually associated with inflammatory response and characterized by the appearance of biomarkers of myeloperoxidase and halogenative stress. Investigations aimed at elucidating the mechanisms regulating the activity of enzyme systems that are responsible for the production of reactive halogen species are a crucial step in opening possibilities for control of the development of the body's inflammatory response.
Collapse
Affiliation(s)
- O M Panasenko
- Research Institute of Physico-Chemical Medicine, Moscow, 119435, Russia.
| | | | | |
Collapse
|
17
|
Abstract
SIGNIFICANCE Inflammatory diseases (such as arthritis) of the extracellular matrix (ECM) are of considerable socioeconomic significance. There is clear evidence that reactive oxygen species (ROS) and nitrogen species released by, for instance, neutrophils contribute to the degradation of the ECM. Here we will focus on the ROS-induced degradation of the glycosaminoglycans, one important component of the ECM. RECENT ADVANCES The recently developed "anti-TNF-α" therapy is primarily directed against neutrophilic granulocytes that are powerful sources of ROS. Therefore, a more detailed look into the mechanisms of the reactions of these ROS is reasonable. CRITICAL ISSUES Since both enzymes and ROS contribute to the pathogenesis of inflammatory diseases, it is very difficult to estimate the contributions of the individual species in a complex biological environment. This particularly applies as many products are not stable but only transient products that decompose in a time-dependent manner. Thus, the development of suitable analytical methods as well as the establishment of useful biomarkers is a challenging aspect. FUTURE DIRECTIONS If the mechanisms of ECM destruction are understood in more detail, then the development of suitable drugs to treat inflammatory diseases will be hopefully much more successful.
Collapse
Affiliation(s)
- Beate Fuchs
- Medical Department, Institute of Medical Physics and Biophysics, University of Leipzig , Leipzig, Germany
| | | |
Collapse
|
18
|
Evaluation of biomarkers for osteoarthritis caused by fragmented medial coronoid process in dogs. Res Vet Sci 2014; 96:429-35. [DOI: 10.1016/j.rvsc.2014.02.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 12/20/2013] [Accepted: 02/15/2014] [Indexed: 12/18/2022]
|
19
|
Gorudko IV, Grigorieva DV, Shamova EV, Kostevich VA, Sokolov AV, Mikhalchik EV, Cherenkevich SN, Arnhold J, Panasenko OM. Hypohalous acid-modified human serum albumin induces neutrophil NADPH oxidase activation, degranulation, and shape change. Free Radic Biol Med 2014; 68:326-34. [PMID: 24384524 DOI: 10.1016/j.freeradbiomed.2013.12.023] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 12/18/2013] [Accepted: 12/20/2013] [Indexed: 12/14/2022]
Abstract
Halogenated lipids, proteins, and lipoproteins formed in reactions with myeloperoxidase (MPO)-derived hypochlorous acid (HOCl) and hypobromous acid (HOBr) can contribute to the regulation of functional activity of cells and serve as mediators of inflammation. Human serum albumin (HSA) is the major plasma protein target of hypohalous acids. This study was performed to assess the potency of HSA modified by HOCl (HSA-Cl) and HOBr (HSA-Br) to elicit selected neutrophil responses. HSA-Cl/Br were found to induce neutrophil degranulation, generation of reactive oxygen intermediates, shape change, and actin cytoskeleton reorganization. Thus HSA-Cl/Br can initially act as a switch and then as a feeder of the "inflammatory loop" under oxidative stress. In HSA-Cl/Br-treated neutrophils, monoclonal antibodies against CD18, the β subunit of β2 integrins, reduced the production of superoxide anion radicals and hydrogen peroxide as well as MPO exocytosis, suggesting that CD18 contributed to neutrophil activation. HSA-Cl/Br-induced neutrophil responses were also inhibited by genistein, a broad-specificity tyrosine kinase inhibitor, and wortmannin, a phosphoinositide 3-kinase (PI3K) inhibitor, supporting the notion that activation of both tyrosine kinase and PI3K may play a role in neutrophil activation by HSA modified in MPO-dependent reactions. These results confirm the hypothesis that halogenated molecules formed in vivo via MPO-dependent reactions can be considered as a new class of biologically active substances potentially able to contribute to activation of myeloid cells in sites of inflammation and serve as inflammatory response modulators.
Collapse
Affiliation(s)
- Irina V Gorudko
- Department of Biophysics, Belarusian State University, Minsk 220050, Belarus.
| | - Daria V Grigorieva
- Department of Biophysics, Belarusian State University, Minsk 220050, Belarus
| | - Ekaterina V Shamova
- Department of Biophysics, Belarusian State University, Minsk 220050, Belarus
| | - Valeria A Kostevich
- Institute of Experimental Medicine, Saint-Petersburg 197376, Russia; Research Institute of Physico-Chemical Medicine, Moscow 119435, Russia
| | - Alexey V Sokolov
- Institute of Experimental Medicine, Saint-Petersburg 197376, Russia; Research Institute of Physico-Chemical Medicine, Moscow 119435, Russia; State University of Saint Petersburg, Saint Petersburg 199000, Russia
| | | | | | - Jürgen Arnhold
- Institute for Medical Physics and Biophysics, Medical Faculty, University of Leipzig, 04107 Leipzig, Germany
| | - Oleg M Panasenko
- Research Institute of Physico-Chemical Medicine, Moscow 119435, Russia
| |
Collapse
|
20
|
Neergheen-Bhujun VS, Munogee N, Coolen V. Antioxidant and anti-inflammatory efficacies of polyherbal formulations and elixirs traditionally used in Mauritius for the treatment of rheumatoid arthritis. J Herb Med 2014. [DOI: 10.1016/j.hermed.2013.11.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
21
|
Zhang H, Jing X, Shi Y, Xu H, Du J, Guan T, Weihrauch D, Jones DW, Wang W, Gourlay D, Oldham KT, Hillery CA, Pritchard KA. N-acetyl lysyltyrosylcysteine amide inhibits myeloperoxidase, a novel tripeptide inhibitor. J Lipid Res 2013; 54:3016-29. [PMID: 23883583 DOI: 10.1194/jlr.m038273] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Myeloperoxidase (MPO) plays important roles in disease by increasing oxidative and nitrosative stress and oxidizing lipoproteins. Here we report N-acetyl lysyltyrosylcysteine amide (KYC) is an effective inhibitor of MPO activity. We show KYC inhibits MPO-mediated hypochlorous acid (HOCl) formation and nitration/oxidation of LDL. Disulfide is the major product of MPO-mediated KYC oxidation. KYC (≤4,000 μM) does not induce cytotoxicity in bovine aortic endothelial cells (BAECs). KYC inhibits HOCl generation by phorbol myristate acetate (PMA)-stimulated neutrophils and human promyelocytic leukemia (HL-60) cells but not superoxide generation by PMA-stimulated HL-60 cells. KYC inhibits MPO-mediated HOCl formation in BAEC culture and protects BAECs from MPO-induced injury. KYC inhibits MPO-mediated lipid peroxidation of LDL whereas tyrosine (Tyr) and tryptophan (Trp) enhance oxidation. KYC is unique as its isomers do not inhibit MPO activity, or are much less effective. Ultraviolet-visible spectral studies indicate KYC binds to the active site of MPO and reacts with compounds I and II. Docking studies show the Tyr of KYC rests just above the heme of MPO. Interestingly, KYC increases MPO-dependent H₂O₂ consumption. These data indicate KYC is a novel and specific inhibitor of MPO activity that is nontoxic to endothelial cell cultures. Accordingly, KYC may be useful for treating MPO-mediated vascular disease.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Surgery, Division of Pediatric Surgery, Medical College of Wisconsin, Milwaukee, WI
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
|
23
|
Verwilghen DR, Martens A, Busschers E, Franck T, Deberg M, Henrotin Y, Vanderheyden L, Serteyn D. Coll2-1, Coll2-1NO2 and myeloperoxidase concentrations in the synovial fluid of equine tarsocrural joints affected with osteochondrosis. Vet Res Commun 2011; 35:401-8. [PMID: 21681550 DOI: 10.1007/s11259-011-9487-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/06/2011] [Indexed: 10/18/2022]
Abstract
The measurement of biomarkers that reflect cartilage breakdown is a powerful tool for investigating joint damage caused by disease or injury. Particularly in cases of osteochondrosis, synovial concentrations of these biomarkers may reveal the presence of osteoarthritic changes. Coll2-1, Coll2-1 NO2 and myeloperoxidase have recently been introduced in equine osteoarticular research but comparison between the concentrations of these markers in OCD affected and healthy joints has not been made. Therefore, this study aimed at reporting the synovial concentrations of these biomarkers in joints affected with osteochondral fragments in the tarsocrural joint compared to unaffected joints. Myeloperoxidase and Coll2-1NO2 revealed to have similar levels between affected joints and controls. However, in contrast to previous studies using C2C the present study demonstrated that synovial levels of Coll2-1 were significantly elevated in tarsocrural joints affected with osteochondrosis. Thus, Coll2-1 may be an earlier marker of cartilage degeneration than other cartilage degradation markers that have been previously used in equine medicine.
Collapse
Affiliation(s)
- Denis R Verwilghen
- Equine Clinic, Department of Companion Animals and Equids, Faculty of Veterinary Medicine of Liege, Sart-Tilman B41, 4000, Liege, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Human myeloperoxidase in innate and acquired immunity. Arch Biochem Biophys 2010; 500:92-106. [DOI: 10.1016/j.abb.2010.04.008] [Citation(s) in RCA: 187] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2010] [Revised: 04/07/2010] [Accepted: 04/12/2010] [Indexed: 12/12/2022]
|
25
|
Characterization of synovial tissue from arthritis patients: a proton magnetic resonance spectroscopic investigation. Rheumatol Int 2009; 29:1205-11. [PMID: 19184029 DOI: 10.1007/s00296-009-0865-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2008] [Accepted: 01/09/2009] [Indexed: 01/09/2023]
Abstract
Hypoxia may contribute to the pathogenesis of synovitis in rheumatoid arthritis (RA). Magnetic resonance spectroscopy (MRS) is a technique that uses radiofrequency waves to generate a signal which allows a qualitative and quantitative assessment of the biochemical composition of tissue. MRS was used to evaluate RA synovial tissue for evidence of hypoxia and anaerobic metabolism. Synovial tissue samples obtained from eighteen RA patients and four osteoarthritis control patients undergoing total knee replacement were analyzed using proton MRS, processed for histopathology and scored for inflammation and vascularity. Spectra from severely and mildly inflamed tissue differed in peak intensity at regions 1.3 ppm (representing lactic acid and lipid), 3.0 ppm (representing creatine), 3.2 ppm (representing choline containing metabolites), and 3.8 ppm (representing carbohydrates, possibly glucose). With increasing inflammation, the intensities of the peak resonance at 1.3 ppm increased and that at 3.8 ppm decreased. The intensities of the 3.8 and 3.0 ppm peaks were reduced in highly vascular tissue. Specific MR spectral features reflect the anaerobic metabolism that is evident with progressively increasing degrees of RA synovial inflammation and vascularity. These features correlate partially with synovial histopathology.
Collapse
|
26
|
Rees MD, Kennett EC, Whitelock JM, Davies MJ. Oxidative damage to extracellular matrix and its role in human pathologies. Free Radic Biol Med 2008; 44:1973-2001. [PMID: 18423414 DOI: 10.1016/j.freeradbiomed.2008.03.016] [Citation(s) in RCA: 145] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2007] [Revised: 03/16/2008] [Accepted: 03/20/2008] [Indexed: 02/08/2023]
Abstract
The extracellular compartments of most biological tissues are significantly less well protected against oxidative damage than intracellular sites and there is considerable evidence for such compartments being subject to a greater oxidative stress and an altered redox balance. However, with some notable exceptions (e.g., plasma and lung lining fluid) oxidative damage within these compartments has been relatively neglected and is poorly understood. In particular information on the nature and consequences of damage to extracellular matrix is lacking despite the growing realization that changes in matrix structure can play a key role in the regulation of cellular adhesion, proliferation, migration, and cell signaling. Furthermore, the extracellular matrix is widely recognized as being a key site of cytokine and growth factor binding, and modification of matrix structure might be expected to alter such behavior. In this paper we review the potential sources of oxidative matrix damage, the changes that occur in matrix structure, and how this may affect cellular behavior. The role of such damage in the development and progression of inflammatory diseases is discussed.
Collapse
Affiliation(s)
- Martin D Rees
- The Heart Research Institute, 114 Pyrmont Bridge Rd, Camperdown, NSW 2050, Australia
| | | | | | | |
Collapse
|
27
|
Fietz S, Bondzio A, Moschos A, Hertsch B, Einspanier R. Measurement of equine myeloperoxidase (MPO) activity in synovial fluid by a modified MPO assay and evaluation of joint diseases – An initial case study. Res Vet Sci 2008; 84:347-53. [PMID: 17675122 DOI: 10.1016/j.rvsc.2007.06.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2006] [Revised: 06/12/2007] [Accepted: 06/14/2007] [Indexed: 10/23/2022]
Abstract
The aim of this study was to develop a specific myeloperoxidase (MPO) activity assay in the synovial fluid of horses and investigate whether MPO activity is increased in different forms of joint diseases. Synovial fluid samples were taken from affected joints from horses with osteoarthritis, chronic non-septic arthritis and septic arthritis, and from healthy control horses. MPO activity was measured using a specific modified o-dianisidine-assay containing 4-aminobenzoic acid hydrazide as a potent and specific inhibitor of the MPO. This assay is characterized by high reproducibility. The results reveal only a slight elevation of MPO activity in the synovial fluid of horses with osteoarthritis and chronic non-septic arthritis. However, in the cases of septic arthritis a significant increase in MPO activity was found when compared to the controls. In conclusion the first field study suggests that synovial fluid MPO may be used as a marker for septic arthritis in horses.
Collapse
Affiliation(s)
- S Fietz
- Institute of Veterinary Biochemistry, Freie Universität Berlin, Oertzenweg 19b, D-14163 Berlin, Germany
| | | | | | | | | |
Collapse
|
28
|
Hyaluronic Acid: Its Function and Degradation in in vivo Systems. BIOACTIVE NATURAL PRODUCTS (PART N) 2008. [DOI: 10.1016/s1572-5995(08)80035-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
29
|
In vitro screening of the action of non-steroidal anti-inflammatory drugs on hypochlorous acid-induced hyaluronan degradation. Polym Degrad Stab 2007. [DOI: 10.1016/j.polymdegradstab.2007.01.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
30
|
Soltés L, Stankovská M, Brezová V, Schiller J, Arnhold J, Kogan G, Gemeiner P. Hyaluronan degradation by copper(II) chloride and ascorbate: rotational viscometric, EPR spin-trapping, and MALDI–TOF mass spectrometric investigations. Carbohydr Res 2006; 341:2826-34. [PMID: 17049501 DOI: 10.1016/j.carres.2006.09.019] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2006] [Revised: 09/19/2006] [Accepted: 09/25/2006] [Indexed: 11/20/2022]
Abstract
The degradation of high-molar-mass hyaluronan (HA) by copper(II) chloride and ascorbate was studied by means of rotational viscometry. It was found that even small amounts of CuCl(2) present in the oxidative system led to the pronounced degradation of HA, reflected in a rapid decrease of the dynamic viscosity of the biopolymer solution. Such degradation was induced by free radicals generated in elevated amounts in the presence of copper ions. Electron paramagnetic resonance investigations performed on a model oxidative system containing Cu(II) and ascorbic acid proved the formation of relatively stable ascorbate anion radicals resulting from the reaction of ascorbic acid with hydroxyl radicals. In this way, by scavenging the hydroxyl radicals, ascorbic acid protected HA from their degradative action. Matrix-assisted laser desorption ionization-time-of-flight (MALDI-TOF) mass spectrometry was applied to analyze the degraded HA. The results showed that only regular fragmentation of hyaluronan occurred using the mentioned oxidative system that led to the formation of HA oligomers with unaffected primary chemical structure.
Collapse
Affiliation(s)
- Ladislav Soltés
- Institute of Experimental Pharmacology, Slovak Academy of Sciences, SK-84104 Bratislava, Slovakia.
| | | | | | | | | | | | | |
Collapse
|
31
|
Whiteman M, Rose P, Siau JL, Halliwell B. Nitrite-mediated protection against hypochlorous acid-induced chondrocyte toxicity: a novel cytoprotective role of nitric oxide in the inflamed joint? ACTA ACUST UNITED AC 2003; 48:3140-50. [PMID: 14613276 DOI: 10.1002/art.11284] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVE To examine the potential consequences of overproduction of nitric oxide (NO) and nitrite (NO(2) (-)) in the inflamed rheumatoid joint. METHODS Human articular chondrocytes in culture were exposed to HOCl (hypochlorous acid, a physiologic oxidant formed in increased amounts at sites of chronic inflammation), and assays of cell viability, intracellular ATP and glutathione (GSH), and lactate dehydrogenase (LDH) were performed. HOCl-induced lipid peroxidation and activation of the MAP kinases ERK-1/2, JNK-1/2, and p38 were also measured. The modulatory effects of NO-derived nitrite (NO(2) (-)) and nitrate (NO(3) (-)) on HOCl-mediated chondrocyte toxicity were investigated. RESULTS Exposure of human articular chondrocytes to HOCl resulted in a concentration- and time-dependent loss of viability, decrease in ATP and GSH levels, LDH leakage, and cell death. HOCl induced significant lipid peroxidation as well as activation of the MAP kinases ERK-1/2 and p38 but not JNK-1/2. However, the presence of NO(2) (-) but not NO(3) (-) substantially decreased HOCl-dependent cellular toxicity even when NO(2) (-) was added at low (microM) concentrations. In sharp contrast, NO(2) (-) (1 mM) did not inhibit superoxide-, hydroxyl radical-, H(2)O(2)-, or peroxynitrite-mediated cytotoxicity. Furthermore, culture media from cells treated with interleukin-1beta (to generate NO and NO(2) (-)) offered significantly more protection against HOCl-mediated cytotoxicity than culture media from untreated cells. CONCLUSION These data suggest that NO(2) (-) accumulation at chronically inflamed sites where both HOCl and NO are overproduced may be cytoprotective against damage induced by HOCl. Accumulation of NO(2) (-) could represent a novel cytoprotective role of NO in inflamed joints. A mechanism for this is suggested.
Collapse
|
32
|
Sommerburg O, Langhans CD, Arnhold J, Leichsenring M, Salerno C, Crifò C, Hoffmann GF, Debatin KM, Siems WG. Beta-carotene cleavage products after oxidation mediated by hypochlorous acid--a model for neutrophil-derived degradation. Free Radic Biol Med 2003; 35:1480-90. [PMID: 14642396 DOI: 10.1016/j.freeradbiomed.2003.08.020] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
After beta-carotene failed in certain clinical efficacy trials, there is evidence that the carotenoid might even be harmful, especially to smokers, when given in high dosages. These negative effects might be mediated in part also by carotenoid cleavage products (CPs) having a high reactivity towards biomolecules. The authors postulate that in certain tissues oxidative, nonenzymatic cleavage of carotenoids is carried out primarily by oxidants liberated by polymorphonuclear leukocytes (PML). In this study, we show that beta-carotene is degraded by stimulated PML in vitro. This gives the pathophysiological meaning to our further experiments in which beta-carotene degradation by hypochlorous acid and consecutive CP formation were investigated. While formation of apo-carotenals under these conditions has been studied before, this was not the case for short chain products. Performing gas chromatography mass spectrometry, we were able to identify for the first time 5,6-epoxi-beta-ionone, ionene, beta-cyclocitral, beta-ionone, dihydroactinidiolide, and 4-oxo-beta-ionone as CPs formed after degradation of beta-carotene mediated by hypochlorous acid. Our findings may be of biological relevance because beta-carotene CPs are highly reactive and, therefore, potentially toxic.
Collapse
|
33
|
Arnhold J, Osipov AN, Spalteholz H, Panasenko OM, Schiller J. Formation of lysophospholipids from unsaturated phosphatidylcholines under the influence of hypochlorous acid. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1572:91-100. [PMID: 12204337 DOI: 10.1016/s0304-4165(02)00271-4] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The formation of lysophosphatidylcholines from unsaturated phosphatidylcholines upon treatment with hypochlorous acid was evaluated by means of MALDI-TOF mass spectrometry and 31P NMR spectroscopy. With an increasing number of double bonds in a fatty acid residue, the yield of lysophosphatidylcholines with a saturated fatty acid residue increased considerably in comparison to the total amount of higher molecular weight products like chlorohydrins and glycols. High amounts of lysophosphatidylcholines were formed from phospholipids containing arachidonic or docosahexaenoic acid residues. In phospholipids with monounsaturated fatty acid residues, the position of the double bond did not influence the yield of lyso-products. Besides the exclusive formation of chlorohydrin and glycol, hypochlorous acid caused the cleavage of the unsaturated fatty acid residue independent of its location at the first or second position of the glycerol backbone. In contrast, strong alkaline conditions, i.e. saponification led also to a hydrolysis of the saturated fatty acid residue from phosphatidylcholines. It is concluded that both MALDI-TOF mass spectrometry and 31P NMR spectroscopy are able to detect the formation of lysophosphatidylcholines. We conclude also that the formation of lysophospholipids from unsaturated phosphatidylcholines by hypochlorous acid can be relevant in vivo under acute inflammatory conditions.
Collapse
Affiliation(s)
- J Arnhold
- Institute of Medical Physics and Biophysics, Medical Department, University of Leipzig, Liebigstr. 27, D-04103 Leipzig, Germany.
| | | | | | | | | |
Collapse
|
34
|
Hilbert N, Schiller J, Arnhold J, Arnold K. Cartilage degradation by stimulated human neutrophils: elastase is mainly responsible for cartilage damage. Bioorg Chem 2002; 30:119-32. [PMID: 12020136 DOI: 10.1006/bioo.2002.1242] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Although neutrophilic granulocytes are assumed to contribute to cartilage degradation during rheumatic diseases, there is still a discussion whether reactive oxygen species (ROS) or proteolytic enzymes that are both released by the neutrophils are most relevant to cartilage degradation. To gain further insight into these processes, an in vitro approach to study the interaction between the products of stimulated neutrophilic granulocytes and cartilage was used: Neutrophils from the blood of healthy volunteers were treated with different stimulators (e.g., Ca(2+) ionophores) in order to induce degranulation. Supernatants of neutrophils were afterward incubated with thin slices of pig articular cartilage. Some experiments were also performed in the presence of selected enzyme inhibitors. Supernatants of cartilage were subsequently assayed by one- and two-dimensional high-resolution proton NMR spectroscopy, and the content of soluble carbohydrates in the supernatant was additionally determined by biochemical methods. The selective inhibition of elastase decreased most significantly the extent of cartilage degradation, whereas all other inhibitors had much smaller effects. These results were additionally confirmed by measuring the effect of isolated elastase on articular cartilage in the absence and presence of different inhibitors. It is concluded that elastase released [EC 3.4.21.37] by neutrophils is the most relevant enzyme for cartilage degradation.
Collapse
Affiliation(s)
- Nicole Hilbert
- Medical Faculty, Institute of Medical Physics and Biophysics, University of Leipzig, Liebigstrasse 27, 04103 Leipzig, Germany
| | | | | | | |
Collapse
|
35
|
Investigations of the lysophospholipid composition of human neutrophils under different stimulation conditions by matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry. JOURNAL OF THE SERBIAN CHEMICAL SOCIETY 2002. [DOI: 10.2298/jsc0203149p] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Matrix-assisted laser desorption / ionization time-of-flight mass spectrometry (MALDI-TOF MS) is usually used for the analyses of proteins carbohydrates and oligonucleotides. In spite of the number of advantages that MALDI-TOF MS exhibits for lipid analysis, this method has not often been applied in this field. In this paper we have extended our previous studies on the suitability of MALDI-TOF MS for the investigation of changes in the content of lipid-derived second messengers in organic extracts of human neutrophils. Qualitative differences in the lysophospholipid composition in organic extracts of the human neutrophils under different stimulation conditions could be easily observed by MALDI-TOF MS. Although there are still some methodological problems to be solved before this method can be routinely applied for the quantification of different lipid classes in complex biological mixtures (such as organic extracts of human neutrophils) it is shown here that MALDI-TOF MS possesses the capability to be used as a simple screening method for the investigation of the content of lipid-derived second messengers and of signalling pathways in cells.
Collapse
|
36
|
Schiller J, Naji L, Huster D, Kaufmann J, Arnold K. 1H and 13C HR-MAS NMR investigations on native and enzymatically digested bovine nasal cartilage. MAGMA (NEW YORK, N.Y.) 2001; 13:19-27. [PMID: 11410393 DOI: 10.1007/bf02668647] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Rheumatic diseases are accompanied by a progressive destruction of the cartilage layer of the joints. Despite the frequency of the disease, degradation mechanisms are not yet understood and methods for early diagnosis are not available. Although some information on pathogenesis could be obtained from the analysis of degradation products of cartilage supernatants, the most direct information on degradation processes would come from the native cartilage as such. We have used 1H as well as 13C HR-MAS (high resolution magic angle spinning) NMR spectroscopy to obtain suitable line-widths of NMR resonances of native cartilage. 1D and 2D NMR spectra of native cartilage were compared with those of enzymatically-treated (collagenase and papain) samples. In the 1H NMR spectra of native cartilage, resonances of polysaccharides, lipids and a few amino acids of collagen were detectable, whereas the 13C NMR spectra primarily indicated the presence of chondroitin sulfate. Treatment with papain resulted only in small changes in the 1H NMR spectrum, whereas a clear diminution of all resonances was detectable in the 13C NMR spectra. On the other hand, treatment with collagenase caused the formation of peptides with an amino acid composition typical for collagen (glycine, proline, hydroxyproline and lysine). It is concluded that the HR-MAS NMR spectra of cartilage may be of significance for the investigation of cartilage degradation since they allow the fast evaluation of cartilage composition and only very small amounts of sample are required.
Collapse
Affiliation(s)
- J Schiller
- Institute of Medical Physics and Biophysics, Medical Department, University of Leipzig, Liebigstr. 27, 04103, Leipzig, Germany.
| | | | | | | | | |
Collapse
|
37
|
Staib A, Dolenko B, Fink DJ, Früh J, Nikulin AE, Otto M, Pessin-Minsley MS, Quarder O, Somorjai R, Thienel U, Werner G, Petrich W. Disease pattern recognition testing for rheumatoid arthritis using infrared spectra of human serum. Clin Chim Acta 2001; 308:79-89. [PMID: 11412819 DOI: 10.1016/s0009-8981(01)00475-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND In view of the importance of the diagnosis of rheumatoid arthritis, a novel diagnostic method based on spectroscopic pattern recognition in combination with laboratory parameters such as the rheumatoid factor is described in the paper. Results of a diagnostic study of rheumatoid arthritis employing this method are presented. METHOD The method uses classification of infrared (IR) spectra of serum samples by means of discriminant analysis. The spectroscopic pattern yielding the highest discriminatory power is found through a complex optimization procedure. In the study, IR spectra of 384 serum samples have been analyzed in this fashion with the objective of differentiating between rheumatoid arthritis and healthy subjects. In addition, the method integrates results from the classification with levels of the rheumatoid factor in the sample by optimized classifier weighting, in order to enhance classification accuracy, i.e. sensitivity and specificity. RESULTS In independent validation, sensitivity and specificity of 84% and 88%, respectively, have been obtained purely on the basis of spectra classification employing a classifier designed specifically to provide robustness. Sensitivity and specificity are improved by 1% and 6%, respectively, upon inclusion of rheumatoid factor levels. Results for less robust methods are also presented and compared to the above numbers. CONCLUSION The discrimination between RA and healthy by means of the pattern recognition approach presented here is feasible for IR spectra of serum samples. The method is sufficiently robust to be used in a clinical setting. A particular advantage of the method is its potential use in RA diagnosis at early stages of the disease.
Collapse
Affiliation(s)
- A Staib
- Roche Diagnostics GmbH, Sandhofer Strasse 116, 68305 Mannheim, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Grippa E, Pavone F, Gatto MT, Petrucci R, Marrosu G, Silvestrini B, Saso L. In vitro evaluation of antioxidant activity by electrophoresis and high performance liquid chromatography. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1524:171-7. [PMID: 11113564 DOI: 10.1016/s0304-4165(00)00154-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Two methods for the analysis of antioxidants, based on polyacrylamide gel electrophoresis (PAGE) and gel permeation high performance liquid chromatography (HPLC) were developed. Both of them exploit the variations of the signal (band or peak) given by human serum albumin (0.2% w/v in 100 mM sodium phosphate pH 7) upon oxidation with hypochlorite (1% of a solution containing 4% active Cl), quantitatively determined by densitometric analysis or peak integration. Based on such changes, two formulas were defined which allowed the determination of the antioxidant activity of ascorbic acid (EC(50,PAGE)=4.8x10(-4) M, EC(50,HPLC)=3.6x10(-4) M), glutathione (EC(50,PAGE)=1.5x10(-4) M, EC(50,HPLC)=2.0x10(-4) M) and melatonin (EC(50,PAGE)=5.2x10(-4) M, EC(50,HPLC)=3.2x10(-4) M), chosen as reference compounds. A good correlation was found between the activities of these substances in the two assays, which are also in good agreement with literature data, indicating that the two methods are essentially equivalent. These assays could be useful for the screening of new antioxidant drugs for pathological conditions such as cataract, rheumatic diseases, atherosclerosis and Alzheimer's disease.
Collapse
Affiliation(s)
- E Grippa
- Dipartimento di Farmacologia della Sostanze Naturali e Fisiologia Generale, Università di Roma 'La Sapienza', Rome, Italy
| | | | | | | | | | | | | |
Collapse
|
39
|
Naji L, Kaufmann J, Huster D, Schiller J, Arnold K. 13C NMR relaxation studies on cartilage and cartilage components. Carbohydr Res 2000; 327:439-46. [PMID: 10990029 DOI: 10.1016/s0008-6215(00)00064-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We have investigated the molecular motions of polysaccharides of bovine nasal and pig articular cartilage by measuring the 13C NMR relaxation times (T1 and T2). Both types of cartilage differ significantly towards their collagen/glycosaminoglycan ratio, leading to different NMR spectra. As chondroitin sulfate is the main constituent of cartilage, aqueous solutions of related poly- and monosaccharides (N-acetylglucosamine and glucuronic acid) were also investigated. Although there are only slight differences in T1 relaxation of the mono- and the polysaccharides, T2 decreases about one order of magnitude, when glucuronic acid or N-acetylglucosamine and chondroitin sulfate are compared. It is concluded that the ring carbons are motion-restricted primarily by the embedment in the rigid pyranose structure and, thus, additional limitations of mobility do not more show a major effect. Significant differences were observed between bovine nasal and pig articular cartilage, resulting in a considerable line-broadening and a lower signal to noise ratio in the spectra of pig articular cartilage. This is most likely caused by the higher collagen content of articular cartilage in comparison to the polysaccharide-rich bovine nasal cartilage.
Collapse
Affiliation(s)
- L Naji
- Institute of Medical Physics and Biophysics, Medical Faculty, University of Leipzig, Germany
| | | | | | | | | |
Collapse
|
40
|
Schiller J, Benard S, Reichl S, Arnhold J, Arnold K. Cartilage degradation by stimulated human neutrophils: reactive oxygen species decrease markedly the activity of proteolytic enzymes. CHEMISTRY & BIOLOGY 2000; 7:557-68. [PMID: 11048947 DOI: 10.1016/s1074-5521(00)00013-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
BACKGROUND Although neutrophilic granulocytes clearly contribute to cartilage degradation in rheumatic diseases, it is unclear if reactive oxygen species (ROS) or proteolytic enzymes are the most important components in cartilage degradation and how they interact. RESULTS Neutrophils were stimulated by chemicals conferring a different degree of ROS formation and enzyme release. Supernatants of neutrophils were incubated with thin slices of pig articular cartilage. Supernatants of cartilage were assayed by NMR spectroscopy, MALDI-TOF mass spectrometry and relevant biochemical methods. Stimulation conditions of neutrophils correlated well with the extent of cartilage degradation. Due to the release of different enzymes, cartilage degradation could be best monitored by NMR since mainly low-mass degradation products were formed. Astonishingly, the suppression of the formation of ROS resulted in decreased cartilage degradation. CONCLUSION ROS formed by neutrophils are not directly involved in cartilage degradation but influence the activity of proteolytic enzymes, which are the main effectors of cartilage degradation.
Collapse
Affiliation(s)
- J Schiller
- Institute of Medical Physics and Biophysics, Medical Department, University of Leipzig, Germany.
| | | | | | | | | |
Collapse
|
41
|
Pathogenese der Rheumatoiden Arthritis und Knorpelabbau – Untersuchungen mit in vitro 1H-NMR-Spektroskopie. Z Med Phys 2000. [DOI: 10.1016/s0939-3889(15)70112-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
42
|
Pullar JM, Winterbourn CC, Vissers MC. Loss of GSH and thiol enzymes in endothelial cells exposed to sublethal concentrations of hypochlorous acid. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 277:H1505-12. [PMID: 10516189 DOI: 10.1152/ajpheart.1999.277.4.h1505] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We investigated the effect of sublethal concentrations of hypochlorous acid (HOCl) on intracellular thiol groups. Exposure of human umbilical vein endothelial cells to HOCl caused a decrease in cell viability, with concentrations of </=25 microM HOCl being sublethal. At these concentrations, we saw a loss of glutathione and total protein thiol groups. Of the thiol enzymes we investigated, glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was particularly susceptible to inactivation, creatine kinase was moderately susceptible, and lactate dehydrogenase was unaffected by HOCl at the concentrations used. Similar results were obtained with HOCl generated over 30 min by myeloperoxidase. GAPDH activity could be regenerated on reincubation of cells in Hanks' balanced salt solution or reduction with dithiothreitol. In contrast, glutathione loss was not reversible, and further decreased with time. Cellular ATP levels decreased with sublethal HOCl concentrations and this appeared to be unrelated to the inactivation of GAPDH. Our results demonstrate that intracellular thiol groups differ in their reactivity with HOCl and suggest that HOCl may be able to regulate specific cellular functions.
Collapse
Affiliation(s)
- J M Pullar
- Free Radical Research Group, Department of Pathology, Christchurch School of Medicine, Christchurch, New Zealand.
| | | | | |
Collapse
|
43
|
Schiller J, Arnhold J, Benard S, Reichl S, Arnold K. Cartilage degradation by hyaluronate lyase and chondroitin ABC lyase: a MALDI-TOF mass spectrometric study. Carbohydr Res 1999; 318:116-22. [PMID: 10576924 DOI: 10.1016/s0008-6215(99)00063-4] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Matrix-assisted laser desorption ionization and time-of-flight mass spectrometry (MALDI-TOF MS) has been used to investigate degradation products of two selected polysaccharides of cartilage (chondroitin sulfate and hyaluronic acid). Testicular hyaluronate lyase and chondroitin ABC lyase were used for enzymic digestion of both polysaccharides as well as of cartilage specimens. Polysaccharide solutions and cartilage supernatants were assayed by positive and negative MALDI-TOF MS. Especially chondroitin ABC lyase produced high amounts of digestion products (unsaturated di- and tetrasaccharides) from polysaccharides as well as from cartilage, clearly monitored by MALDI-TOF MS. It is concluded that MALDI-TOF MS provides a precise and fast tool for the determination of oligosaccharides since no previous derivatization is required.
Collapse
Affiliation(s)
- J Schiller
- Institute of Medical Physics and Biophysics, University of Leipzig, Germany.
| | | | | | | | | |
Collapse
|
44
|
Arnhold J, Benard S, Kilian U, Reichl S, Schiller J, Arnold K. Modulation of luminol chemiluminescence of fMet-Leu-Phe-stimulated neutrophils by affecting dephosphorylation and the metabolism of phosphatidic acid. LUMINESCENCE 1999; 14:129-37. [PMID: 10423573 DOI: 10.1002/(sici)1522-7243(199905/06)14:3<129::aid-bio526>3.0.co;2-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
This paper is addressed to study how PKC-mediated effects and phosphatidic acid interact together in activation of NADPH-oxidase in formyl-methionyl-leucyl-phenylalanine (fMet-Leu-Phe) stimulated neutrophils as detected by luminol chemiluminescence. The early luminescence response in fMet-Leu-Phe-stimulated cells (up to 5 min after stimulation) depends mainly on reactive oxygen species generated extracellularly, whereas all later events are caused by oxidation of luminol inside the cells. The two protein phosphatase inhibitors, okadaic acid and calyculin A, dramatically increased the late luminescence of cells. This enhancement was totally inhibited by the phospholipase D modulator butanol, while the protein kinase C (PKC) inhibitor bisindolylmaleimide I was insensitive. The early luminescence response of the cells was slightly inhibited by both protein phosphatase inhibitors and depended on protein kinase C as well as on phospholipase D activities. Propranolol, an inhibitor of phosphatidate phosphohydrolase, enhanced all parts of luminescence response of fMet-Leu-Phe-stimulated neutrophils at concentrations up to 2.5 x 10(-5) mol/L. While the late luminescence response of propranolol-treated cells was not inhibited by the PKC inhibitor bisindolylmaleimide I, the first response depended on protein kinase C. The inhibitor of diacylglycerol kinase R59949 enhanced the luminescence signal only during the first 4 min in fMet-Leu-Phe-stimulated cells. Only diacylglycerols derived from phospholipase C, such as 1-stearoyl-2-arachidonoyl-sn-glycerol, were able to initiate an oxidative burst in cells. Saturated diacylglycerols (e.g. 1,2-dipalmitoyl-sn-glycerol or 1,2-distearoyl-sn-glycerol) did not yield any luminol chemiluminescence, although they were incorporated into the plasma membrane, as evidenced by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry. Our results demonstrate that phosphatidic acid produced by phospholipase D is responsible for NADPH-oxidase activity in fMet-Leu-Phe-stimulated neutrophils over the entire measuring time, whereas PKC-mediated processes are only involved during the first 5 min.
Collapse
Affiliation(s)
- J Arnhold
- Institute of Medical Physics and Biophysics, Medical Faculty, University of Leipzig, Liebigstrasse 27, D-04103 Leipzig, Germany
| | | | | | | | | | | |
Collapse
|
45
|
Meshitsuka S, Yamazaki E, Inoue M, Hagino H, Teshima R, Yamamoto K. Nuclear magnetic resonance studies of synovial fluids from patients with rheumatoid arthritis and osteoarthritis. Clin Chim Acta 1999; 281:163-7. [PMID: 10217637 DOI: 10.1016/s0009-8981(98)00200-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- S Meshitsuka
- Department Health Systems and Informatics, Tottori University Faculty of Medicine, Yonago, Japan.
| | | | | | | | | | | |
Collapse
|
46
|
Damyanovich AZ, Staples JR, Chan AD, Marshall KW. Comparative study of normal and osteoarthritic canine synovial fluid using 500 MHz 1H magnetic resonance spectroscopy. J Orthop Res 1999; 17:223-31. [PMID: 10221839 DOI: 10.1002/jor.1100170211] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
High resolution 1H nuclear magnetic resonance spectroscopy has been used to investigate and compare the metabolic profiles of normal and osteoarthritic synovial fluids in a canine model of osteoarthritis. The spectra of osteoarthritic synovial fluid showed (a) increased concentrations of lactate, pyruvate, lipoprotein-associated fatty acids, and glycerol as well as the ketones hydroxybutyrate and hydroxyisobutyrate, (b) reduced levels of glucose, and (c) elevated levels of N-acetylglycoproteins, acetate, and acetamide compared with healthy normal canine synovial fluid. An increase was also observed in the concentrations of the amino acids alanine and isoleucine. These results suggest that (a) the intraarticular environment in canine osteoarthritis is more hypoxic and acidotic than in a normal joint, (b) lipolysis may play an increasingly important role as a source of energy in osteoarthritis, and (c) the N-acetylglycoprotein polymer component of synovial fluid (mostly hyaluronan) seems to be increasingly fragmented and degraded into acetate by way of an acetamide intermediate with progressive osteoarthritis. The observed changes in the biochemical profile of canine osteoarthritic synovial fluid may be useful in understanding alterations in joint metabolism consequent to arthritic diseases and helpful in identifying potential markers of osteoarthritis.
Collapse
Affiliation(s)
- A Z Damyanovich
- Department of Medical Imaging, University of Toronto, Ontario, Canada.
| | | | | | | |
Collapse
|
47
|
IR and NMR Studies on the Action of Hypochlorous Acid on Chondroitin Sulfate and Taurine. Bioorg Chem 1998. [DOI: 10.1006/bioo.1998.1085] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
48
|
Schiller J, Arnhold J, Schwinn J, Sprinz H, Brede O, Arnold K. Reactivity of cartilage and selected carbohydrates with hydroxyl radicals: an NMR study to detect degradation products. Free Radic Res 1998; 28:215-28. [PMID: 9645397 DOI: 10.3109/10715769809065806] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
It was investigated to what extent isolated, monomeric and polymeric carbohydrates as well as cartilage specimens are affected by hydroxyl radicals generated by gamma-irradiation or Fenton reaction and what products can be detected by means of NMR spectroscopy. Resonances of all protons in glucose and other monosaccharides as well as carbon resonances in 13C-enriched glucose were continuously diminished upon gamma-irradiation. Formate and malondialdehyde were found as NMR detectable products in irradiated glucose solutions under physiologically relevant (aerated) conditions. In polysaccharide solutions (e.g. hyaluronic acid) gamma-irradiation and also treatment with the Fenton reagent caused first an enhancement of resonances according to mobile N-acetyl groups at 2.02 ppm. This indicates a breakdown of glycosidic bonds in polysaccharides. Using higher radiation doses or higher concentrations of the Fenton reagent formate was also detected. The same sequence of events was observed upon treatment of bovine nasal cartilage with the Fenton reagent. First, glycosidic linkages in cartilage polysaccharides were cleaved and subsequently formate was formed. In contrast, collagen of cartilage was affected only to a very low extent. Thus, HO-radicals caused the same action on cartilage as on isolated polymer solutions, inducing a fragmentation of polysaccharides and the formation of formate.
Collapse
Affiliation(s)
- J Schiller
- Institute of Medical Physics and Biophysics, Medical Department, University of Leipzig, Germany.
| | | | | | | | | | | |
Collapse
|
49
|
Reglinski J, Paterson DE, Latimer S, Campbell JM, Wilson R, Porter D, Sturrock RD, Smith WE. Myocrisin-mediated oxidative stress. Clin Chim Acta 1997; 268:85-99. [PMID: 9495573 DOI: 10.1016/s0009-8981(97)00170-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This study reports on the ability of myocrisin to mediate in the production and detoxification of oxidants (principally hydrogen peroxide) in the monocyte in-vivo and in-vitro. The hydrogen peroxide produced by the monocyte derived from rheumatoid arthritis patients being treated with myocrisin was found to be 14.9 +/- 1.6 nmoles/10(6) cells and is elevated above levels found in monocytes obtained from patients either being treated with non-steroidal anti-inflammatory drugs (NSAIDs) (11.3 +/- 0.4 nmoles/10(6) cells; P < 0.01) or normal healthy volunteers (11.2 +/- 1.2 nmoles/10(6) cells; P < 0.01). A comparative study on glutathione (GSH) oxidation indicated that levels of monocyte GSH were elevated in myocrisin-treated patients (2.4 +/- 0.49 mmol/l) over normal healthy volunteers (0.83 +/- 0.18 mM; P < 0.01) and that levels of monocyte diglutathione (GSSG) were depressed (myocrisin, 0.97 +/- 0.41 micromol/l; normal, 5.71 +/- 0.73 micromol/l; P < 0.01). The non-inhibition of glutathione reductase and the inhibition of glutathione peroxidase by gold provides the link between these two observations. Thus, gold therapy would seem to elevate monocyte hydrogen peroxide, increase monocyte reduced glutathione and decrease plasma glutathione peroxidase activity. Subsequently, the data from this small group of patients (n = 10) provides an indication that, in-vivo, myocrisin contributes to an increase in oxidative stress.
Collapse
Affiliation(s)
- J Reglinski
- Department of Pure and Applied Chemistry, Strathclyde University, Glasgow, UK.
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Abstracts. Clin Chem Lab Med 1997. [DOI: 10.1515/cclm.1997.35.9.737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|