1
|
Tiwari YV, Muir ER, Jiang Z, Duong TQ. Diffusion-weighted arterial spin labeling MRI to investigate mannitol-induced blood brain barrier disruption. Magn Reson Imaging 2025; 117:110335. [PMID: 39864601 DOI: 10.1016/j.mri.2025.110335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 12/27/2024] [Accepted: 01/23/2025] [Indexed: 01/28/2025]
Abstract
PURPOSE Diffusion-weighted arterial spin labeling (DW-ASL) MRI has been proposed to determine the rate of water exchange (Kw) across the blood brain barrier (BBB). This study aims to further evaluate Kw MRI by comparing it with standard dynamic contrast-enhanced (DCE) MRI and histology in association with mannitol-induced disruption of the BBB. METHODS DW-ASL was measured using a multiple b-value MRI protocol in normal rats at three post-labeling delays (N = 19), before and after intra-carotid injection of mannitol to disrupt BBB in one hemisphere (N = 13). An approach using only two b-values to detect mannitol-induced changes was also tested. DCE MRI and Evans blue histology were performed on the same animals. Quantitative analysis and pixel-by-pixel correlation were performed amongst Kw, DCE MRI and Evans blue histology. RESULTS Kw in the grey matter in the normal rat brain was 252 ± 38 min-1 (±standard error of the mean). The two b-value approach provided reasonable approximation of multiple-b DW-ASL parameters, reducing acquisition time. Kw is sensitive to mannitol-induced changes in BBB permeability and was reduced to 89 ± 17 min-1 in the affected hemisphere compared to 191 ± 22 min-1 in the unaffected hemisphere (P < 0.05). Regions with abnormality in Kw maps were in general agreement with DCE and Evans blue maps, although there are some distinct differences in location and the change in values. CONCLUSION Kw is sensitive to mannitol-induced changes in the BBB, with BBB disruption confirmed by DCE MRI and Evans blue histology.
Collapse
Affiliation(s)
- Yash Vardhan Tiwari
- Department of Radiology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, USA
| | - Eric R Muir
- Department of Radiology, University of North Carolina, Chapel Hill, NC, USA
| | - Zhao Jiang
- Department of Radiology, Stony Brook University, Stony Brook, NY, USA
| | - Tim Q Duong
- Department of Radiology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, USA.
| |
Collapse
|
2
|
Abdennadher M, Jacobellis S, Václavů L, Juttukonda M, Inati S, Goldstein L, van Osch MJP, Rosen B, Hua N, Theodore W. Water exchange across the blood-brain barrier and epilepsy: Review on pathophysiology and neuroimaging. Epilepsia Open 2024; 9:1123-1135. [PMID: 38884502 PMCID: PMC11296120 DOI: 10.1002/epi4.12994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 04/30/2024] [Accepted: 05/23/2024] [Indexed: 06/18/2024] Open
Abstract
The blood-brain barrier (BBB) is a barrier protecting the brain and a milieu of continuous exchanges between blood and brain. There is emerging evidence that the BBB plays a major role in epileptogenesis and drug-resistant epilepsy, through several mechanisms, such as water homeostasis dysregulation, overexpression of drug transporters, and inflammation. Studies have shown abnormal water homeostasis in epileptic tissue and altered aquaporin-4 water channel expression in animal epilepsy models. This review focuses on abnormal water exchange in epilepsy and describes recent non-invasive MRI methods of quantifying water exchange. PLAIN LANGUAGE SUMMARY: Abnormal exchange between blood and brain contribute to seizures and epilepsy. The authors describe why correct water balance is necessary for healthy brain functioning and how it is impacted in epilepsy. This review also presents recent MRI methods to measure water exchange in human brain. These measures would improve our understanding of factors leading to seizures.
Collapse
Affiliation(s)
- Myriam Abdennadher
- Neurology Department, Boston Medical CenterBoston University Chobanian & Avedisian School of MedicineBostonMassachusettsUSA
| | - Sara Jacobellis
- Boston University Chobanian & Avedisian School of MedicineBostonMassachusettsUSA
| | - Lena Václavů
- C.J. Gorter MRI Center, Department of RadiologyLeiden University Medical CenterLeidenThe Netherlands
| | - Meher Juttukonda
- Athinoula A. Martinos Center of Biomedical Imaging, Department of Radiology, Massachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Sara Inati
- National Institute of Neurological Disorders and Stroke, NIHBethesdaMarylandUSA
| | - Lee Goldstein
- Psychiatry and Neurology DepartmentBoston University Chobanian & Avedisian School of MedicineBostonMassachusettsUSA
| | - Matthias J. P. van Osch
- C.J. Gorter MRI Center, Department of RadiologyLeiden University Medical CenterLeidenThe Netherlands
| | - Bruce Rosen
- Athinoula A. Martinos Center of Biomedical Imaging, Department of Radiology, Massachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Ning Hua
- Radiology Department, Boston Medical CenterBoston University Chobanian & Avedisian School of MedicineBostonMassachusettsUSA
| | - William Theodore
- National Institute of Neurological Disorders and Stroke, NIHBethesdaMarylandUSA
| |
Collapse
|
3
|
Gu C, Li Y, Cao D, Miao X, Paez AG, Sun Y, Cai J, Li W, Li X, Pillai JJ, Earley CJ, van Zijl PC, Hua J. On the optimization of 3D inflow-based vascular-space-occupancy (iVASO) MRI for the quantification of arterial cerebral blood volume (CBVa). Magn Reson Med 2024; 91:1893-1907. [PMID: 38115573 PMCID: PMC10950541 DOI: 10.1002/mrm.29971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/20/2023] [Accepted: 11/25/2023] [Indexed: 12/21/2023]
Abstract
PURPOSE The inflow-based vascular-space-occupancy (iVASO) MRI was originally developed in a single-slice mode to measure arterial cerebral blood volume (CBVa). When vascular crushers are applied in iVASO, the signals can be sensitized predominantly to small pial arteries and arterioles. The purpose of this study is to perform a systematic optimization and evaluation of a 3D iVASO sequence on both 3 T and 7 T for the quantification of CBVa values in the human brain. METHODS Three sets of experiments were performed in three separate cohorts. (1) 3D iVASO MRI protocols were compared to single-slice iVASO, and the reproducibility of whole-brain 3D iVASO MRI was evaluated. (2) The effects from different vascular crushers in iVASO were assessed. (3) 3D iVASO MRI results were evaluated in arterial and venous blood vessels identified using ultrasmall-superparamagnetic-iron-oxides-enhanced MRI to validate its arterial origin. RESULTS 3D iVASO scans showed signal-to-noise ratio (SNR) and CBVa measures consistent with single-slice iVASO with reasonable intrasubject reproducibility. Among the iVASO scans performed with different vascular crushers, the whole-brain 3D iVASO scan with a motion-sensitized-driven-equilibrium preparation with two binomial refocusing pulses and an effective TE of 50 ms showed the best suppression of macrovascular signals, with a relatively low specific absorption rate. When no vascular crusher was applied, the CBVa maps from 3D iVASO scans showed large CBVa values in arterial vessels but well-suppressed signals in venous vessels. CONCLUSION A whole-brain 3D iVASO MRI scan was optimized for CBVa measurement in the human brain. When only microvascular signals are desired, a motion-sensitized-driven-equilibrium-based vascular crusher with binomial refocusing pulses can be applied in 3D iVASO.
Collapse
Affiliation(s)
- Chunming Gu
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States
- Neurosection, Division of MRI Research, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
| | - Yinghao Li
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States
- Neurosection, Division of MRI Research, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
| | - Di Cao
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States
- Neurosection, Division of MRI Research, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
| | - Xinyuan Miao
- Neurosection, Division of MRI Research, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
| | - Adrian G. Paez
- Neurosection, Division of MRI Research, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
| | - Yuanqi Sun
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States
- Neurosection, Division of MRI Research, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
| | - Jitong Cai
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States
| | - Wenbo Li
- Neurosection, Division of MRI Research, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
| | - Xu Li
- Neurosection, Division of MRI Research, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
| | - Jay J. Pillai
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Division of Neuroradiology, Mayo Clinic College of Medicine and Science, Rochester, MN, United States
| | - Christopher J. Earley
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Peter C.M. van Zijl
- Neurosection, Division of MRI Research, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
| | - Jun Hua
- Neurosection, Division of MRI Research, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
| |
Collapse
|
4
|
Zachariou V, Pappas C, Bauer CE, Shao X, Liu P, Lu H, Wang DJJ, Gold BT. Regional differences in the link between water exchange rate across the blood-brain barrier and cognitive performance in normal aging. GeroScience 2024; 46:265-282. [PMID: 37713089 PMCID: PMC10828276 DOI: 10.1007/s11357-023-00930-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 09/04/2023] [Indexed: 09/16/2023] Open
Abstract
The blood-brain barrier (BBB) undergoes functional changes with aging which may contribute to cognitive decline. A novel, diffusion prepared arterial spin labeling-based MRI technique can measure the rate of water exchange across the BBB (kw) and may thus be sensitive to age-related alterations in water exchange at the BBB. However, studies investigating relationships between kw and cognition have reported different directions of association. Here, we begin to investigate the direction of associations between kw and cognition in different brain regions, and their possible underpinnings, by evaluating links between kw, cognitive performance, and MRI markers of cerebrovascular dysfunction and/or damage. Forty-seven healthy older adults (age range 61-84) underwent neuroimaging to obtain whole-brain measures of kw, cerebrovascular reactivity (CVR), and white matter hyperintensity (WMH) volumes. Additionally, participants completed uniform data set (Version 3) neuropsychological tests of executive function (EF) and episodic memory (MEM). Voxel-wise linear regressions were conducted to test associations between kw and cognitive performance, CVR, and WMH volumes. We found that kw in the frontoparietal brain regions was positively associated with cognitive performance but not with CVR or WMH volumes. Conversely, kw in the basal ganglia was negatively associated with cognitive performance and CVR and positively associated with regional, periventricular WMH volume. These regionally dependent associations may relate to different physiological underpinnings in the relationships between kw and cognition in neocortical versus subcortical brain regions in older adults.
Collapse
Affiliation(s)
- Valentinos Zachariou
- Department of Neuroscience, College of Medicine, University of Kentucky, Lexington, KY, USA.
| | - Colleen Pappas
- Department of Neuroscience, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Christopher E Bauer
- Department of Neuroscience, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Xingfeng Shao
- Laboratory of FMRI Technology (LOFT), Mark & Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Peiying Liu
- Department of Diagnostic Radiology & Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Hanzhang Lu
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Danny J J Wang
- Laboratory of FMRI Technology (LOFT), Mark & Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Brian T Gold
- Department of Neuroscience, College of Medicine, University of Kentucky, Lexington, KY, USA
- Sanders-Brown Center On Aging, University of Kentucky, Lexington, KY, USA
- Magnetic Resonance Imaging and Spectroscopy Center, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
5
|
Powell E, Dickie BR, Ohene Y, Maskery M, Parker GJM, Parkes LM. Blood-brain barrier water exchange measurements using contrast-enhanced ASL. NMR IN BIOMEDICINE 2023; 36:e5009. [PMID: 37666494 PMCID: PMC10909569 DOI: 10.1002/nbm.5009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 05/17/2023] [Accepted: 06/30/2023] [Indexed: 09/06/2023]
Abstract
A technique for quantifying regional blood-brain barrier (BBB) water exchange rates using contrast-enhanced arterial spin labelling (CE-ASL) is presented and evaluated in simulations and in vivo. The two-compartment ASL model describes the water exchange rate from blood to tissue,k b , but to estimatek b in practice it is necessary to separate the intra- and extravascular signals. This is challenging in standard ASL data owing to the small difference inT 1 values. Here, a gadolinium-based contrast agent is used to increase thisT 1 difference and enable the signal components to be disentangled. The optimal post-contrast bloodT 1 (T 1 , b post ) at 3 T was determined in a sensitivity analysis, and the accuracy and precision of the method quantified using Monte Carlo simulations. Proof-of-concept data were acquired in six healthy volunteers (five female, age range 24-46 years). The sensitivity analysis identified the optimalT 1 , b post at 3 T as 0.8 s. Simulations showed thatk b could be estimated in individual cortical regions with a relative error ϵ < 1 % and coefficient of variation CoV = 30 %; however, a high dependence on bloodT 1 was also observed. In volunteer data, mean parameter values in grey matter were: arterial transit timet A = 1 . 15 ± 0 . 49 s, cerebral blood flow f = 58 . 0 ± 14 . 3 mL blood/min/100 mL tissue and water exchange ratek b = 2 . 32 ± 2 . 49 s-1 . CE-ASL can provide regional BBB water exchange rate estimates; however, the clinical utility of the technique is dependent on the achievable accuracy of measuredT 1 values.
Collapse
Affiliation(s)
- Elizabeth Powell
- Centre for Medical Image Computing, Department of Medical Physics and Biomedical EngineeringUniversity College LondonLondonUK
| | - Ben R. Dickie
- Division of Informatics, Imaging and Data Sciences, School of Health Sciences, Faculty of Biology, Medicine and HealthUniversity of ManchesterManchesterUK
- Geoffrey Jefferson Brain Research CentreUniversity of Manchester, Manchester Academic Health Science CentreManchesterUK
| | - Yolanda Ohene
- Geoffrey Jefferson Brain Research CentreUniversity of Manchester, Manchester Academic Health Science CentreManchesterUK
- Division of Psychology, Communication and Human Neuroscience, School of Health Sciences, Faculty of Biology, Medicine and HealthUniversity of ManchesterManchesterUK
| | - Mark Maskery
- Department of NeurologyLancashire Teaching Hospitals NHS Foundation TrustPrestonUK
| | - Geoff J. M. Parker
- Centre for Medical Image Computing, Department of Medical Physics and Biomedical EngineeringUniversity College LondonLondonUK
- Queen Square MS Centre, Institute of NeurologyUniversity College LondonLondonUK
- Bioxydyn LimitedManchesterUnited Kingdom
| | - Laura M. Parkes
- Geoffrey Jefferson Brain Research CentreUniversity of Manchester, Manchester Academic Health Science CentreManchesterUK
- Division of Psychology, Communication and Human Neuroscience, School of Health Sciences, Faculty of Biology, Medicine and HealthUniversity of ManchesterManchesterUK
| |
Collapse
|
6
|
Harris WJ, Asselin MC, Hinz R, Parkes LM, Allan S, Schiessl I, Boutin H, Dickie BR. In vivo methods for imaging blood-brain barrier function and dysfunction. Eur J Nucl Med Mol Imaging 2023; 50:1051-1083. [PMID: 36437425 PMCID: PMC9931809 DOI: 10.1007/s00259-022-05997-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 10/09/2022] [Indexed: 11/29/2022]
Abstract
The blood-brain barrier (BBB) is the interface between the central nervous system and systemic circulation. It tightly regulates what enters and is removed from the brain parenchyma and is fundamental in maintaining brain homeostasis. Increasingly, the BBB is recognised as having a significant role in numerous neurological disorders, ranging from acute disorders (traumatic brain injury, stroke, seizures) to chronic neurodegeneration (Alzheimer's disease, vascular dementia, small vessel disease). Numerous approaches have been developed to study the BBB in vitro, in vivo, and ex vivo. The complex multicellular structure and effects of disease are difficult to recreate accurately in vitro, and functional aspects of the BBB cannot be easily studied ex vivo. As such, the value of in vivo methods to study the intact BBB cannot be overstated. This review discusses the structure and function of the BBB and how these are affected in diseases. It then discusses in depth several established and novel methods for imaging the BBB in vivo, with a focus on MRI, nuclear imaging, and high-resolution intravital fluorescence microscopy.
Collapse
Affiliation(s)
- William James Harris
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance & University of Manchester, Manchester, UK
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, M13 9PL, Manchester, UK
| | - Marie-Claude Asselin
- Division of Informatics, Imaging and Data Sciences, School of Health Sciences, University of Manchester, Manchester, UK
| | - Rainer Hinz
- Wolfson Molecular Imaging Centre, University of Manchester, Manchester, UK
| | - Laura Michelle Parkes
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance & University of Manchester, Manchester, UK
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, M13 9PL, Manchester, UK
| | - Stuart Allan
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance & University of Manchester, Manchester, UK
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, M13 9PL, Manchester, UK
| | - Ingo Schiessl
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance & University of Manchester, Manchester, UK
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, M13 9PL, Manchester, UK
| | - Herve Boutin
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance & University of Manchester, Manchester, UK.
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, M13 9PL, Manchester, UK.
- Wolfson Molecular Imaging Centre, University of Manchester, Manchester, UK.
| | - Ben Robert Dickie
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance & University of Manchester, Manchester, UK
- Division of Informatics, Imaging and Data Sciences, School of Health Sciences, University of Manchester, Manchester, UK
| |
Collapse
|
7
|
van der Thiel MM, Backes WH, Ramakers IHGB, Jansen JFA. Novel developments in non-contrast enhanced MRI of the perivascular clearance system: What are the possibilities for Alzheimer's disease research? Neurosci Biobehav Rev 2023; 144:104999. [PMID: 36529311 DOI: 10.1016/j.neubiorev.2022.104999] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 11/21/2022] [Accepted: 12/10/2022] [Indexed: 12/23/2022]
Abstract
The cerebral waste clearance system (i.e, glymphatic or intramural periarterial drainage) works through a network of perivascular spaces (PVS). Dysfunction of this system likely contributes to aggregation of Amyloid-β and subsequent toxic plaques in Alzheimer's disease (AD). A promising, non-invasive technique to study this system is MRI, though applications in dementia are still scarce. This review focusses on recent non-contrast enhanced (non-CE) MRI techniques which determine and visualise physiological aspects of the clearance system at multiple levels, i.e., cerebrospinal fluid flow, PVS-flow and interstitial fluid movement. Furthermore, various MRI studies focussing on aspects of the clearance system which are relevant to AD are discussed, such as studies on ageing, sleep alterations, and cognitive decline. Additionally, the complementary function of non-CE to CE methods is elaborated upon. We conclude that non-CE studies have great potential to determine which parts of the waste clearance system are affected by AD and in which stages of cognitive impairment dysfunction of this system occurs, which could allow future clinical trials to target these specific mechanisms.
Collapse
Affiliation(s)
- Merel M van der Thiel
- Department of Radiology & Nuclear Medicine, Maastricht University Medical Center, Maastricht, the Netherlands; Department of Psychiatry &Neuropsychology, Maastricht University, Maastricht, the Netherlands; School for Mental Health & Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Walter H Backes
- Department of Radiology & Nuclear Medicine, Maastricht University Medical Center, Maastricht, the Netherlands; School for Mental Health & Neuroscience, Maastricht University, Maastricht, the Netherlands; School for Cardiovascular Disease, Maastricht University, Maastricht, the Netherlands
| | - Inez H G B Ramakers
- Department of Psychiatry &Neuropsychology, Maastricht University, Maastricht, the Netherlands; School for Mental Health & Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Jacobus F A Jansen
- Department of Radiology & Nuclear Medicine, Maastricht University Medical Center, Maastricht, the Netherlands; School for Mental Health & Neuroscience, Maastricht University, Maastricht, the Netherlands; Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands.
| |
Collapse
|
8
|
Li Y, Sadiq A, Wang Z. Arterial Spin Labelling-Based Blood-Brain Barrier Assessment and Its Applications. INVESTIGATIVE MAGNETIC RESONANCE IMAGING 2022; 26:229-236. [PMID: 36687769 PMCID: PMC9851084 DOI: 10.13104/imri.2022.26.4.229] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/14/2022] [Accepted: 11/21/2022] [Indexed: 01/12/2023]
Abstract
The brain relies on the blood-brain barrier (BBB) for the selective absorption of nutrients and the exclusion of other big molecules from the circulating blood. Therefore, the integrity of BBB is critical to brain health, and assessing BBB condition is of great clinical importance. BBB is often examined using exogenous tracers that can travel across the BBB, but the tracers might cause severe side effects. To avoid the use of external tracers, researchers have used magnetically labeled arterial blood as the endogenous tracer to assess the water permeability of BBB as a surrogate index of BBB. This paper reviews the three major types of Arterial Spin Labelling (ASL) based BBB water permeability assessment techniques and their applications in brain diseases such as Alzheimer's Disease.
Collapse
Affiliation(s)
- Yiran Li
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Alishba Sadiq
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Ze Wang
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
9
|
Ahn HS, Jung Y, Park SH. Measuring glomerular blood transfer rate in kidney using diffusion-weighted arterial spin labeling. Magn Reson Med 2022; 88:2408-2418. [PMID: 35877788 DOI: 10.1002/mrm.29401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 07/05/2022] [Accepted: 07/08/2022] [Indexed: 11/07/2022]
Abstract
PURPOSE To propose a two-compartment renal perfusion model for calculating glomerular blood transfer rate ( k G $$ {k}_G $$ ) as a new measure of renal function. THEORY The renal perfusion signal was divided into preglomerular and postglomerular flows according to flow velocity. By analyzing perfusion signals acquired with and without diffusion gradients, we estimated k G $$ {k}_G $$ , the blood transfer rate from the afferent arterioles into the glomerulus. METHODS A multislice multidelay diffusion-weighted arterial spin labeling sequence was applied to subjects with no history of renal dysfunctions. In the multiple b-value experiment, images were acquired with seven b-values to validate the bi-exponential decays of the renal perfusion signal and to determine the appropriate b-value for suppressing preglomerular flow. In the caffeine challenge, six subjects were scanned twice on the caffeine day and the control day. The k G $$ {k}_G $$ values of the two dates were compared. RESULTS The perfusion signal showed a bi-exponential decay with b-values. There was no significant difference in renal blood flow and arterial transit time between caffeine and control days. In contrast, cortical k G $$ {k}_G $$ was significantly higher on the caffeine day (caffeine day: 106 . 0 ± 20 . 3 $$ 106.0\pm 20.3 $$ min - 1 $$ {}^{-1} $$ control day: 78 . 8 ± 22 . 9 $$ 78.8\pm 22.9 $$ min - 1 $$ {}^{-1} $$ ). These results were consistent with those from the literature. CONCLUSION We showed that the perfusion signal consists of two compartments of preglomerular flow and postglomerular flow. The proposed diffusion-weighted arterial spin labeling could measure the glomerular blood transfer rate ( k G $$ {k}_G $$ ), which was sensitive enough to noninvasively monitor the caffeine-induced vasodilation of afferent arterioles.
Collapse
Affiliation(s)
- Hyun-Seo Ahn
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - Yujin Jung
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - Sung-Hong Park
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| |
Collapse
|
10
|
Neumann K, Günther M, Düzel E, Schreiber S. Microvascular Impairment in Patients With Cerebral Small Vessel Disease Assessed With Arterial Spin Labeling Magnetic Resonance Imaging: A Pilot Study. Front Aging Neurosci 2022; 14:871612. [PMID: 35663571 PMCID: PMC9161030 DOI: 10.3389/fnagi.2022.871612] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 04/11/2022] [Indexed: 11/13/2022] Open
Abstract
In this pilot study, we investigated microvascular impairment in patients with cerebral small vessel disease (CSVD) using non-invasive arterial spin labeling (ASL) magnetic resonance imaging (MRI). This method enabled us to measure the perfusion parameters, cerebral blood flow (CBF), and arterial transit time (ATT), and the effective T1-relaxation time (T1eff) to research a novel approach of assessing perivascular clearance. CSVD severity was characterized using the Standards for Reporting Vascular Changes on Neuroimaging (STRIVE) and included a rating of white matter hyperintensities (WMHs), lacunes, enlarged perivascular spaces (EPVSs), and cerebral microbleeds (CMBs). Here, we found that CBF decreases and ATT increases with increasing CSVD severity in patients, most prominent for a white matter (WM) region-of-interest, whereas this relation was almost equally driven by WMHs, lacunes, EPVSs, and CMBs. Additionally, we observed a longer mean T1eff of gray matter and WM in patients with CSVD compared to elderly controls, providing an indication of impaired clearance in patients. Mainly T1eff of WM was associated with CSVD burden, whereas lobar lacunes and CMBs contributed primary to this relation compared to EPVSs of the centrum semiovale. Our results complement previous findings of CSVD-related hypoperfusion by the observation of retarded arterial blood arrival times in brain tissue and by an increased T1eff as potential indication of impaired clearance rates using ASL.
Collapse
Affiliation(s)
- Katja Neumann
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- *Correspondence: Katja Neumann
| | - Matthias Günther
- Fraunhofer Institute for Digital Medicine MEVIS, Bremen, Germany
- MR-Imaging and Spectroscopy, University of Bremen, Bremen, Germany
- mediri GmbH, Heidelberg, Germany
| | - Emrah Düzel
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Institute of Cognitive Neuroscience, University College London, London, United Kingdom
- Center for Behavioral Brain Science, Magdeburg, Germany
| | - Stefanie Schreiber
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- Center for Behavioral Brain Science, Magdeburg, Germany
- Department of Neurology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| |
Collapse
|
11
|
Li AM, Xu J. Cerebrospinal fluid-tissue exchange revealed by phase alternate labeling with null recovery MRI. Magn Reson Med 2022; 87:1207-1217. [PMID: 34799860 PMCID: PMC8794537 DOI: 10.1002/mrm.29092] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 10/09/2021] [Accepted: 11/01/2021] [Indexed: 01/10/2023]
Abstract
PURPOSE To develop phase alternate labeling with null recovery (PALAN) MRI methods for the quantification of the water exchange between cerebrospinal fluid (CSF) and other surrounding tissues in the brain. METHOD In both T1 -PALAN and apparent diffusion coefficient (ADC)-PALAN MRI methods, the cerebrospinal fluid signal was nulled, whereas the partial recovery of other tissues with shorter T1 (T1 -PALAN) or lower ADC values (ADC-PALAN) was labeled by alternating the phase of pulses. The water exchange was extracted from the difference between the recovery curves of CSF with and without labeling. RESULTS Both T1 -PALAN and ADC-PALAN observed a rapid occurrence of CSF water exchange with the surrounding tissues at 67 ± 56 ms and 13 ± 2 ms transit times, respectively. The T1 and ADC-PALAN signal peaked at 1.5 s. The CSF water exchange was 1153 ± 270 mL/100 mL/min with T1 -PALAN in the third and lateral ventricles, which was higher than 891 ± 60 mL/100 mL/min obtained by ADC-PALAN. T1 -PALAN ∆S values for the rostral and caudal ventricles are 0.015 ± 0.013 and 0.034 ± 0.01 (p = 0.022, n = 5), whereas similar ΔS values in both rostral and caudal lateral ventricles were observed by ADC-PALAN (3.9 ± 1.9 × 10-3 vs 4.4 ± 1.4 × 10-3 ; p = 0.66 and n = 5). CONCLUSION The PALAN methods are suitable tools to study CSF water exchange across different compartments in the brain.
Collapse
Affiliation(s)
- Anna M. Li
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, USA
| | - Jiadi Xu
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, USA,Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA,Corresponding Author: Jiadi Xu, Ph.D., Kennedy Krieger Institute, The Johns Hopkins University School of Medicine, 707 N. Broadway, Baltimore, MD, 21205, , Tel: 443-923-9572, Fax: 443-923-9505
| |
Collapse
|
12
|
Bibic A, Sordia T, Henningsson E, Knutsson L, Ståhlberg F, Wirestam R. Effects of red blood cells with reduced deformability on cerebral blood flow and vascular water transport: measurements in rats using time-resolved pulsed arterial spin labelling at 9.4 T. Eur Radiol Exp 2021; 5:53. [PMID: 34935093 PMCID: PMC8692551 DOI: 10.1186/s41747-021-00243-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 08/31/2021] [Indexed: 11/18/2022] Open
Abstract
Background Our aim was to introduce damaged red blood cells (RBCs) as a tool for haemodynamic provocation in rats, hypothesised to cause decreased cerebral blood flow (CBF) and prolonged water capillary transfer time (CTT), and to investigate whether expected changes in CBF could be observed and if haemodynamic alterations were reflected by the CTT metric. Methods Damaged RBCs exhibiting a mildly reduced deformability were injected to cause aggregation of RBCs. Arterial spin labelling (ASL) magnetic resonance imaging experiments were performed at 9.4 T. Six datasets (baseline plus five datasets after injection) were acquired for each animal in a study group and a control group (13 and 10 female adult Wistar rats, respectively). For each dataset, ASL images at ten different inversion times were acquired. The CTT model was adapted to the use of a measured arterial input function, implying the use of a realistic labelling profile. Repeated measures ANOVA was used (alpha error = 0.05). Results After injection, significant differences between the study group and control group were observed for relative CBF in white matter (up to 20 percentage points) and putamen (up to 18–20 percentage points) and for relative CTT in putamen (up to 35–40 percentage points). Conclusions Haemodynamic changes caused by injection of damaged RBCs were observed by ASL-based CBF and CTT measurements. Damaged RBCs can be used as a tool for test and validation of perfusion imaging modalities. CTT model fitting was challenging to stabilise at experimental signal-to-noise ratio levels, and the number of free parameters was minimised. Supplementary Information The online version contains supplementary material available at 10.1186/s41747-021-00243-z.
Collapse
Affiliation(s)
- Adnan Bibic
- Department of Medical Radiation Physics, Lund University, Lund, Sweden
| | - Tea Sordia
- Department of Medical Radiation Physics, Lund University, Lund, Sweden
| | | | - Linda Knutsson
- Department of Medical Radiation Physics, Lund University, Lund, Sweden.,Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Freddy Ståhlberg
- Department of Medical Radiation Physics, Lund University, Lund, Sweden
| | - Ronnie Wirestam
- Department of Medical Radiation Physics, Lund University, Lund, Sweden.
| |
Collapse
|
13
|
Lin Z, Jiang D, Liu D, Li Y, Uh J, Hou X, Pillai JJ, Qin Q, Ge Y, Lu H. Noncontrast assessment of blood-brain barrier permeability to water: Shorter acquisition, test-retest reproducibility, and comparison with contrast-based method. Magn Reson Med 2021; 86:143-156. [PMID: 33559214 DOI: 10.1002/mrm.28687] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 11/28/2020] [Accepted: 12/24/2020] [Indexed: 12/19/2022]
Abstract
PURPOSE Assessment of the blood-brain barrier (BBB) permeability without the need for contrast agent is desirable, and the ability to measure the permeability to small molecules such as water may further increase the sensitivity in detecting diseases. This study proposed a time-efficient, noncontrast method to measure BBB permeability to water, evaluated its test-retest reproducibility, and compared it with a contrast agent-based method. METHODS A single-delay water extraction with phase-contrast arterial spin tagging (WEPCAST) method was devised in which spatial profile of the signal along the superior sagittal sinus was used to estimate bolus arrival time, and the WEPCAST signal at the corresponding location was used to compute water extraction fraction, which was combined with global cerebral blood flow to estimate BBB permeability surface area product to water. The reliability of WEPCAST sequence was examined in terms of intrasession, intersession, and inter-vendor (Philips [Ingenia, Best, the Netherlands] and Siemens [Prisma, Erlangen, Germany]) reproducibility. Finally, we compared this new technique to a contrast agent-based method. RESULTS Single-delay WEPCAST reduced the scan duration from approximately 20 min to 5 min. Extract fraction values estimated from single-delay WEPCAST showed good consistency with the multi-delay method (R = 0.82, P = .004). Group-averaged permeability surface area product values were found to be 137.5 ± 9.3 mL/100 g/min. Intrasession, intersession, and inter-vendor coefficient of variation of the permeability surface area product values were 6.6 ± 4.5%, 6.9 ± 3.7%, and 8.9 ± 3.0%, respectively. Finally, permeability surface area product obtained from WEPCAST MRI showed a significant correlation with that from the contrast-based method (R = .73, P = .02). CONCLUSION Single-delay WEPCAST MRI can measure BBB permeability to water within 5 min with an intrasession, intersession, and inter-vendor test-retest reproducibility of 6% to 9%. This method may provide a useful marker of BBB breakdown in clinical studies.
Collapse
Affiliation(s)
- Zixuan Lin
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Dengrong Jiang
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Dapeng Liu
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, Maryland, USA
| | - Yang Li
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jinsoo Uh
- Department of Radiation Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Xirui Hou
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jay J Pillai
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Qin Qin
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, Maryland, USA
| | - Yulin Ge
- Department of Radiology, New York University Langone Medical Center, New York, New York, USA
| | - Hanzhang Lu
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, Maryland, USA
| |
Collapse
|
14
|
Dickie BR, Parker GJM, Parkes LM. Measuring water exchange across the blood-brain barrier using MRI. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2020; 116:19-39. [PMID: 32130957 DOI: 10.1016/j.pnmrs.2019.09.002] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 09/04/2019] [Accepted: 09/09/2019] [Indexed: 05/11/2023]
Abstract
The blood-brain barrier (BBB) regulates the transfer of solutes and essential nutrients into the brain. Growing evidence supports BBB dysfunction in a range of acute and chronic brain diseases, justifying the need for novel research and clinical tools that can non-invasively detect, characterize, and quantify BBB dysfunction in-vivo. Many approaches already exist for measuring BBB dysfunction in man using positron emission tomography and magnetic resonance imaging (e.g. dynamic contrast-enhanced MRI measurements of gadolinium leakage). This review paper focusses on MRI measurements of water exchange across the BBB, which occurs through a wide range of pathways, and is likely to be a highly sensitive marker of BBB dysfunction. Key mathematical models and acquisition methods are discussed for the two main approaches: those that utilize contrast agents to enhance relaxation rate differences between the intravascular and extravascular compartments and so enhance the sensitivity of MRI signals to BBB water exchange, and those that utilize the dynamic properties of arterial spin labelling to first isolate signal from intravascular spins and then estimate the impact of water exchange on the evolving signal. Data from studies in healthy and pathological brain tissue are discussed, in addition to validation studies in rodents.
Collapse
Affiliation(s)
- Ben R Dickie
- Division of Neuroscience and Experimental Psychology, University of Manchester, Oxford Road, Manchester M13 9PT, United Kingdom.
| | - Geoff J M Parker
- Bioxydyn Limited, Manchester M15 6SZ, United Kingdom; Centre for Medical Image Computing, Department of Computer Science and Department of Neuroinflammation, University College London, London, United Kingdom
| | - Laura M Parkes
- Division of Neuroscience and Experimental Psychology, University of Manchester, Oxford Road, Manchester M13 9PT, United Kingdom
| |
Collapse
|
15
|
Hutter J, Harteveld AA, Jackson LH, Franklin S, Bos C, van Osch MJP, O'Muircheartaigh J, Ho A, Chappell L, Hajnal JV, Rutherford M, De Vita E. Perfusion and apparent oxygenation in the human placenta (PERFOX). Magn Reson Med 2019; 83:549-560. [PMID: 31433077 PMCID: PMC6825519 DOI: 10.1002/mrm.27950] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 07/18/2019] [Accepted: 07/25/2019] [Indexed: 02/05/2023]
Abstract
PURPOSE To study placental function-both perfusion and an oxygenation surrogate ( T 2 * )-simultaneously and quantitatively in-vivo. METHODS Fifteen pregnant women were scanned on a 3T MR scanner. For perfusion measurements, a velocity selective arterial spin labeling preparation module was placed before a multi-echo gradient echo EPI readout to integrate T 2 * and perfusion measurements in 1 joint perfusion-oxygenation (PERFOX) acquisition. Joint motion correction and quantification were performed to evaluate changes in T 2 * and perfusion over GA. RESULTS The optimized integrated PERFOX protocol and post-processing allowed successful visualization and quantification of perfusion and T 2 * in all subjects. Areas of high T 2 * and high perfusion appear to correspond to placental sub-units and show a systematic offset in location along the maternal-fetal axis. The areas of highest perfusion are consistently closer to the maternal basal plate and the areas of highest T 2 * closer to the fetal chorionic plate. Quantitative results show a strong negative correlation of gestational age with T 2 * and weak negative correlation with perfusion. CONCLUSIONS A strength of the joint sequence is that it provides truly simultaneous and co-registered estimates of local T 2 * and perfusion, however, to achieve this, the time per slice is prolonged compared to a perfusion only scan which can potentially limit coverage. The achieved interlocking can be particularly useful when quantifying transient physiological effects such as uterine contractions. PERFOX opens a new avenue to elucidate the relationship between maternal supply and oxygen uptake, both of which are central to placental function and dysfunction.
Collapse
Affiliation(s)
- Jana Hutter
- Centre for the Developing BrainKing's College LondonLondonUnited Kingdom
- School of Medical EngineeringKing's College LondonLondonUnited Kingdom
| | - Anita A. Harteveld
- Department of RadiologyUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Laurence H. Jackson
- Centre for the Developing BrainKing's College LondonLondonUnited Kingdom
- School of Medical EngineeringKing's College LondonLondonUnited Kingdom
| | - Suzanne Franklin
- C.J. Gorter Center for High Field MRIDepartment of RadiologyLeiden University Medical CenterLeidenThe Netherlands
| | - Clemens Bos
- Department of RadiologyUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Matthias J. P. van Osch
- C.J. Gorter Center for High Field MRIDepartment of RadiologyLeiden University Medical CenterLeidenThe Netherlands
| | - Jonathan O'Muircheartaigh
- Centre for the Developing BrainKing's College LondonLondonUnited Kingdom
- School of Medical EngineeringKing's College LondonLondonUnited Kingdom
| | - Alison Ho
- Academic Women's Health DepartmentKing's College LondonLondonUnited Kingdom
| | - Lucy Chappell
- Academic Women's Health DepartmentKing's College LondonLondonUnited Kingdom
| | - Joseph V. Hajnal
- Centre for the Developing BrainKing's College LondonLondonUnited Kingdom
- School of Medical EngineeringKing's College LondonLondonUnited Kingdom
| | - Mary Rutherford
- Centre for the Developing BrainKing's College LondonLondonUnited Kingdom
- School of Medical EngineeringKing's College LondonLondonUnited Kingdom
| | - Enrico De Vita
- School of Medical EngineeringKing's College LondonLondonUnited Kingdom
| |
Collapse
|
16
|
Hua J, Liu P, Kim T, Donahue M, Rane S, Chen JJ, Qin Q, Kim SG. MRI techniques to measure arterial and venous cerebral blood volume. Neuroimage 2019; 187:17-31. [PMID: 29458187 PMCID: PMC6095829 DOI: 10.1016/j.neuroimage.2018.02.027] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 02/12/2018] [Accepted: 02/14/2018] [Indexed: 12/14/2022] Open
Abstract
The measurement of cerebral blood volume (CBV) has been the topic of numerous neuroimaging studies. To date, however, most in vivo imaging approaches can only measure CBV summed over all types of blood vessels, including arterial, capillary and venous vessels in the microvasculature (i.e. total CBV or CBVtot). As different types of blood vessels have intrinsically different anatomy, function and physiology, the ability to quantify CBV in different segments of the microvascular tree may furnish information that is not obtainable from CBVtot, and may provide a more sensitive and specific measure for the underlying physiology. This review attempts to summarize major efforts in the development of MRI techniques to measure arterial (CBVa) and venous CBV (CBVv) separately. Advantages and disadvantages of each type of method are discussed. Applications of some of the methods in the investigation of flow-volume coupling in healthy brains, and in the detection of pathophysiological abnormalities in brain diseases such as arterial steno-occlusive disease, brain tumors, schizophrenia, Huntington's disease, Alzheimer's disease, and hypertension are demonstrated. We believe that the continual development of MRI approaches for the measurement of compartment-specific CBV will likely provide essential imaging tools for the advancement and refinement of our knowledge on the exquisite details of the microvasculature in healthy and diseased brains.
Collapse
Affiliation(s)
- Jun Hua
- Neurosection, Div. of MRI Research, Dept. of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA.
| | - Peiying Liu
- Neurosection, Div. of MRI Research, Dept. of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Tae Kim
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Manus Donahue
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Swati Rane
- Radiology, University of Washington Medical Center, Seattle, WA, USA
| | - J Jean Chen
- Rotman Research Institute, Baycrest Centre, Canada; Department of Medical Biophysics, University of Toronto, Canada
| | - Qin Qin
- Neurosection, Div. of MRI Research, Dept. of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Seong-Gi Kim
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon, South Korea; Department of Biomedical Engineering, Sungkyunkwan University, Suwon, South Korea
| |
Collapse
|
17
|
Demiral ŞB, Tomasi D, Sarlls J, Lee H, Wiers CE, Zehra A, Srivastava T, Ke K, Shokri-Kojori E, Freeman CR, Lindgren E, Ramirez V, Miller G, Bandettini P, Horovitz S, Wang GJ, Benveniste H, Volkow ND. Apparent diffusion coefficient changes in human brain during sleep - Does it inform on the existence of a glymphatic system? Neuroimage 2019; 185:263-273. [PMID: 30342236 PMCID: PMC6289767 DOI: 10.1016/j.neuroimage.2018.10.043] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 10/05/2018] [Accepted: 10/17/2018] [Indexed: 01/24/2023] Open
Abstract
The role of sleep in brain physiology is poorly understood. Recently rodent studies have shown that the glymphatic system clears waste products from brain more efficiently during sleep compared to wakefulness due to the expansion of the interstitial fluid space facilitating entry of cerebrospinal fluid (CSF) into the brain. Here, we studied water diffusivity in the brain during sleep and awake conditions, hypothesizing that an increase in water diffusivity during sleep would occur concomitantly with an expansion of CSF volume - an effect that we predicted based on preclinical findings would be most prominent in cerebellum. We used MRI to measure slow and fast components of the apparent diffusion coefficient (ADC) of water in the brain in 50 healthy participants, in 30 of whom we compared awake versus sleep conditions and in 20 of whom we compared rested-wakefulness versus wakefulness following one night of sleep-deprivation. Sleep compared to wakefulness was associated with increases in slow-ADC in cerebellum and left temporal pole and with decreases in fast-ADC in thalamus, insula, parahippocampus and striatal regions, and the density of sleep arousals was inversely associated with ADC changes. The CSF volume was also increased during sleep and was associated with sleep-induced changes in ADCs in cerebellum. There were no differences in ADCs with wakefulness following sleep deprivation compared to rested-wakefulness. Although we hypothesized increases in ADC with sleep, our findings uncovered both increases in slow ADC (mostly in cerebellum) as well as decreases in fast ADC, which could reflect the distinct biological significance of fast- and slow-ADC values in relation to sleep. While preliminary, our findings suggest a more complex sleep-related glymphatic function in the human brain compared to rodents. On the other hand, our findings of sleep-induced changes in CSF volume provide preliminary evidence that is consistent with a glymphatic transport process in the human brain.
Collapse
Affiliation(s)
- Şükrü Barış Demiral
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA; Behavioral Biology Branch, Center for Military Psychiatry and Neuroscience Research, Walter Reed Army Institute of Research, Silver Spring, MD, USA.
| | - Dardo Tomasi
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Joelle Sarlls
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Hedok Lee
- Department of Anesthesiology, Yale School of Medicine, New Haven, CT, USA
| | - Corinde E Wiers
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Amna Zehra
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Tansha Srivastava
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Kenneth Ke
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Ehsan Shokri-Kojori
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Clara R Freeman
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Elsa Lindgren
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Veronica Ramirez
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Gregg Miller
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Peter Bandettini
- National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Silvina Horovitz
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Gene-Jack Wang
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Helene Benveniste
- Department of Anesthesiology, Yale School of Medicine, New Haven, CT, USA
| | - Nora D Volkow
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA; National Institute on Drug Abuse, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
18
|
Nunes D, Ianus A, Shemesh N. Layer-specific connectivity revealed by diffusion-weighted functional MRI in the rat thalamocortical pathway. Neuroimage 2019; 184:646-657. [PMID: 30267858 PMCID: PMC6264401 DOI: 10.1016/j.neuroimage.2018.09.050] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 09/17/2018] [Accepted: 09/18/2018] [Indexed: 12/18/2022] Open
Abstract
Investigating neural activity from a global brain perspective in-vivo has been in the domain of functional Magnetic Resonance Imaging (fMRI) over the past few decades. The intricate neurovascular couplings that govern fMRI's blood-oxygenation-level-dependent (BOLD) functional contrast are invaluable in mapping active brain regions, but they also entail significant limitations, such as non-specificity of the signal to active foci. Diffusion-weighted functional MRI (dfMRI) with relatively high diffusion-weighting strives to ameliorate this shortcoming as it offers functional contrasts more intimately linked with the underlying activity. Insofar, apart from somewhat smaller activation foci, dfMRI's contrasts have not been convincingly shown to offer significant advantages over BOLD-driven fMRI, and its activation maps relied on significant modelling. Here, we study whether dfMRI could offer a better representation of neural activity in the thalamocortical pathway compared to its (spin-echo (SE)) BOLD counterpart. Using high-end forepaw stimulation experiments in the rat at 9.4 T, and with significant sensitivity enhancements due to the use of cryocoils, we show for the first time that dfMRI signals exhibit layer specificity, and, additionally, display signals in areas devoid of SE-BOLD responses. We find that dfMRI signals in the thalamocortical pathway cohere with each other, namely, dfMRI signals in the ventral posterolateral (VPL) thalamic nucleus cohere specifically with layers IV and V in the somatosensory cortex. These activity patterns are much better correlated (compared with SE-BOLD signals) with literature-based electrophysiological recordings in the cortex as well as thalamus. All these findings suggest that dfMRI signals better represent the underlying neural activity in the pathway. In turn, these advanatages may have significant implications towards a much more specific and accurate mapping of neural activity in the global brain in-vivo.
Collapse
Affiliation(s)
- Daniel Nunes
- Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Andrada Ianus
- Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, Lisbon, Portugal; Centre for Medical Image Computing, University College London, London, UK
| | - Noam Shemesh
- Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, Lisbon, Portugal.
| |
Collapse
|
19
|
Shao X, Ma SJ, Casey M, D'Orazio L, Ringman JM, Wang DJJ. Mapping water exchange across the blood-brain barrier using 3D diffusion-prepared arterial spin labeled perfusion MRI. Magn Reson Med 2018; 81:3065-3079. [PMID: 30561821 DOI: 10.1002/mrm.27632] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 10/19/2018] [Accepted: 11/17/2018] [Indexed: 01/22/2023]
Abstract
PURPOSE To present a novel MR pulse sequence and modeling algorithm to quantify the water exchange rate (kw ) across the blood-brain barrier (BBB) without contrast, and to evaluate its clinical utility in a cohort of elderly subjects at risk of cerebral small vessel disease (SVD). METHODS A diffusion preparation module with spoiling of non-Carr-Purcell-Meiboom-Gill signals was integrated with pseudo-continuous arterial spin labeling (pCASL) and 3D gradient and spin echo (GRASE) readout. The tissue/capillary fraction of the arterial spin labeling (ASL) signal was separated by appropriate diffusion weighting (b = 50 s/mm2 ). kw was quantified using a single-pass approximation (SPA) model with total generalized variation (TGV) regularization. Nineteen elderly subjects were recruited and underwent 2 MRIs to evaluate the reproducibility of the proposed technique. Correlation analysis was performed between kw and vascular risk factors, Clinical Dementia Rating (CDR) scale, neurocognitive assessments, and white matter hyperintensity (WMH). RESULTS The capillary/tissue fraction of ASL signal can be reliably differentiated with the diffusion weighting of b = 50 s/mm2 , given ~100-fold difference between the (pseudo-)diffusion coefficients of the 2 compartments. Good reproducibility of kw measurements (intraclass correlation coefficient = 0.75) was achieved. Average kw was 105.0 ± 20.6, 109.6 ± 18.9, and 94.1 ± 19.6 min-1 for whole brain, gray and white matter. kw was increased by 28.2%/19.5% in subjects with diabetes/hypercholesterolemia. Significant correlations between kw and vascular risk factors, CDR, executive/memory function, and the Fazekas scale of WMH were observed. CONCLUSION A diffusion prepared 3D GRASE pCASL sequence with TGV regularized SPA modeling was proposed to measure BBB water permeability noninvasively with good reproducibility. kw may serve as an imaging marker of cerebral SVD and associated cognitive impairment.
Collapse
Affiliation(s)
- Xingfeng Shao
- Laboratory of FMRI Technology (LOFT), Mark & Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Samantha J Ma
- Laboratory of FMRI Technology (LOFT), Mark & Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Marlene Casey
- Laboratory of FMRI Technology (LOFT), Mark & Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Lina D'Orazio
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - John M Ringman
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Danny J J Wang
- Laboratory of FMRI Technology (LOFT), Mark & Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, California.,Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, California
| |
Collapse
|
20
|
Dickie BR, Vandesquille M, Ulloa J, Boutin H, Parkes LM, Parker GJM. Water-exchange MRI detects subtle blood-brain barrier breakdown in Alzheimer's disease rats. Neuroimage 2018; 184:349-358. [PMID: 30219292 DOI: 10.1016/j.neuroimage.2018.09.030] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 09/05/2018] [Accepted: 09/12/2018] [Indexed: 01/21/2023] Open
Abstract
Blood-brain barrier (BBB) breakdown has been hypothesized to play a key role in the onset and progression of Alzheimer's disease (AD). However, the question of whether AD itself contributes to loss of BBB integrity is still uncertain, as many in-vivo studies have failed to detect signs of AD-related BBB breakdown. We hypothesize AD-related BBB damage is subtle, and that these negative results arise from a lack of measurement sensitivity. With the aim of developing a more sensitive measure of BBB breakdown, we have designed a novel MRI scanning protocol to quantify the trans-BBB exchange of endogenous water. Using this method, we detect increased BBB water permeability in a rat model of AD that is associated with reduced expression of the tight junction protein occludin. BBB permeability to MRI contrast agent, assessed using dynamic contrast-enhanced (DCE)-MRI, did not differ between transgenic and wild-type animals and was uncorrelated with occludin expression. Our data supports the occurrence of AD-related BBB breakdown, and indicates that such BBB pathology is subtle and may be undetectable using existing 'tracer leakage' methods. Our validated water-exchange MRI method provides a new powerful tool with which to study BBB damage in-vivo.
Collapse
Affiliation(s)
- Ben R Dickie
- Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine, and Health, Stopford Building, University of Manchester, UK.
| | - Matthias Vandesquille
- Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine, and Health, Stopford Building, University of Manchester, UK
| | | | - Hervé Boutin
- Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine, and Health, Stopford Building, University of Manchester, UK
| | - Laura M Parkes
- Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine, and Health, Stopford Building, University of Manchester, UK
| | - Geoff J M Parker
- Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine, and Health, Stopford Building, University of Manchester, UK; Bioxydyn Ltd, Manchester, UK
| |
Collapse
|
21
|
van Osch MJ, Teeuwisse WM, Chen Z, Suzuki Y, Helle M, Schmid S. Advances in arterial spin labelling MRI methods for measuring perfusion and collateral flow. J Cereb Blood Flow Metab 2018; 38:1461-1480. [PMID: 28598243 PMCID: PMC6120125 DOI: 10.1177/0271678x17713434] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
With the publication in 2015 of the consensus statement by the perfusion study group of the International Society for Magnetic Resonance in Medicine (ISMRM) and the EU-COST action 'ASL in dementia' on the implementation of arterial spin labelling MRI (ASL) in a clinical setting, the development of ASL can be considered to have become mature and ready for clinical prime-time. In this review article new developments and remaining issues will be discussed, especially focusing on quantification of ASL as well as on new technological developments of ASL for perfusion imaging and flow territory mapping. Uncertainty of the achieved labelling efficiency in pseudo-continuous ASL (pCASL) as well as the presence of arterial transit time artefacts, can be considered the main remaining challenges for the use of quantitative cerebral blood flow (CBF) values. New developments in ASL centre around time-efficient acquisition of dynamic ASL-images by means of time-encoded pCASL and diversification of information content, for example by combined 4D-angiography with perfusion imaging. Current vessel-encoded and super-selective pCASL-methodology have developed into easily applied flow-territory mapping methods providing relevant clinical information with highly similar information content as digital subtraction angiography (DSA), the current clinical standard. Both approaches seem therefore to be ready for clinical use.
Collapse
Affiliation(s)
- Matthias Jp van Osch
- 1 Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands.,2 Leiden Institute of Brain and Cognition, Leiden University, Leiden, The Netherlands
| | - Wouter M Teeuwisse
- 1 Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands.,2 Leiden Institute of Brain and Cognition, Leiden University, Leiden, The Netherlands
| | - Zhensen Chen
- 3 Department of Biomedical Engineering, Tsinghua University, Beijing, China
| | - Yuriko Suzuki
- 1 Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Michael Helle
- 4 Philips GmbH Innovative Technologies, Research Laboratories, Hamburg, Germany
| | - Sophie Schmid
- 1 Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands.,2 Leiden Institute of Brain and Cognition, Leiden University, Leiden, The Netherlands
| |
Collapse
|
22
|
Stolp HB, Ball G, So PW, Tournier JD, Jones M, Thornton C, Edwards AD. Voxel-wise comparisons of cellular microstructure and diffusion-MRI in mouse hippocampus using 3D Bridging of Optically-clear histology with Neuroimaging Data (3D-BOND). Sci Rep 2018; 8:4011. [PMID: 29507311 PMCID: PMC5838167 DOI: 10.1038/s41598-018-22295-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 02/07/2018] [Indexed: 12/11/2022] Open
Abstract
A key challenge in medical imaging is determining a precise correspondence between image properties and tissue microstructure. This comparison is hindered by disparate scales and resolutions between medical imaging and histology. We present a new technique, 3D Bridging of Optically-clear histology with Neuroimaging Data (3D-BOND), for registering medical images with 3D histology to overcome these limitations. Ex vivo 120 × 120 × 200 μm resolution diffusion-MRI (dMRI) data was acquired at 7 T from adult C57Bl/6 mouse hippocampus. Tissue was then optically cleared using CLARITY and stained with cellular markers and confocal microscopy used to produce high-resolution images of the 3D-tissue microstructure. For each sample, a dense array of hippocampal landmarks was used to drive registration between upsampled dMRI data and the corresponding confocal images. The cell population in each MRI voxel was determined within hippocampal subregions and compared to MRI-derived metrics. 3D-BOND provided robust voxel-wise, cellular correlates of dMRI data. CA1 pyramidal and dentate gyrus granular layers had significantly different mean diffusivity (p > 0.001), which was related to microstructural features. Overall, mean and radial diffusivity correlated with cell and axon density and fractional anisotropy with astrocyte density, while apparent fibre density correlated negatively with axon density. Astrocytes, axons and blood vessels correlated to tensor orientation.
Collapse
Affiliation(s)
- H B Stolp
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, St Thomas' Hospital, King's College London, London, SE1 7EH, United Kingdom.,Department of Comparative Biomedical Science, Royal Veterinary College, London, NW1 0TU, United Kingdom
| | - G Ball
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, St Thomas' Hospital, King's College London, London, SE1 7EH, United Kingdom.,Developmental Imaging, Clinical Sciences, Murdoch Children's Research Institute, Melbourne, 3052, Australia
| | - P-W So
- Department of Neuroimaging, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 9NU, United Kingdom
| | - J-D Tournier
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, St Thomas' Hospital, King's College London, London, SE1 7EH, United Kingdom
| | - M Jones
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, St Thomas' Hospital, King's College London, London, SE1 7EH, United Kingdom
| | - C Thornton
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, St Thomas' Hospital, King's College London, London, SE1 7EH, United Kingdom.
| | - A D Edwards
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, St Thomas' Hospital, King's College London, London, SE1 7EH, United Kingdom
| |
Collapse
|
23
|
Le Bihan D. What can we see with IVIM MRI? Neuroimage 2017; 187:56-67. [PMID: 29277647 DOI: 10.1016/j.neuroimage.2017.12.062] [Citation(s) in RCA: 283] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Revised: 11/28/2017] [Accepted: 12/19/2017] [Indexed: 12/18/2022] Open
Abstract
Intravoxel Incoherent Motion (IVIM) refers to translational movements which within a given voxel and during the measurement time present a distribution of speeds in orientation and/or amplitude. The IVIM concept has been used to estimate perfusion in tissues as blood flow in randomly oriented capillaries mimics a pseudo-diffusion process. IVIM-based perfusion MRI, which does not require contrast agents, has gained momentum recently, especially in the field oncology. In this introductory review the basic concepts, models, technical requirements and limitations inherent to IVIM-based perfusion MRI are outlined, as well as new, non-perfusion applications of IVIM MRI, such as virtual MR Elastography.
Collapse
Affiliation(s)
- Denis Le Bihan
- NeuroSpin, Frédéric Joliot Institute, Bât 145, CEA-Saclay Center, Gif-sur-Yvette, 91191 France.
| |
Collapse
|
24
|
Wells JA, Thomas DL, Saga T, Kershaw J, Aoki I. MRI of cerebral micro-vascular flow patterns: A multi-direction diffusion-weighted ASL approach. J Cereb Blood Flow Metab 2017; 37:2076-2083. [PMID: 27461904 PMCID: PMC5464702 DOI: 10.1177/0271678x16660985] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The study and clinical assessment of brain disease is currently hindered by a lack of non-invasive methods for the detailed and accurate evaluation of cerebral vascular pathology. Angiography can detect aberrant flow in larger feeding arteries/arterioles but cannot resolve the micro-vascular network. Small vessels are a key site of vascular pathology that can lead to haemorrhage and infarction, which may in turn trigger or exacerbate neurodegenerative processes. In this study, we describe a method to investigate microvascular flow anisotropy using a hybrid arterial spin labelling and multi-direction diffusion-weighted MRI sequence. We present evidence that the technique is sensitive to the mean/predominant direction of microvascular flow in localised regions of the rat cortex. The data provide proof of principle for a novel and non-invasive imaging tool to investigate cerebral micro-vascular flow patterns in healthy and disease states.
Collapse
Affiliation(s)
- J A Wells
- 1 National Institute of Radiological Sciences (NIRS), National Institute for Quantum and Radiological Science and Technology (QST), Chiba, Japan.,2 UCL Centre for Advanced Biomedical Imaging, University College London, London, UK
| | - D L Thomas
- 3 Department of Brain Repair and Rehabilitation, UCL Institute of Neurology, London, UK.,4 Leonard Wolfson Experimental Neurology Centre, UCL Institute of Neurology, London, UK
| | - T Saga
- 1 National Institute of Radiological Sciences (NIRS), National Institute for Quantum and Radiological Science and Technology (QST), Chiba, Japan
| | - J Kershaw
- 1 National Institute of Radiological Sciences (NIRS), National Institute for Quantum and Radiological Science and Technology (QST), Chiba, Japan
| | - I Aoki
- 1 National Institute of Radiological Sciences (NIRS), National Institute for Quantum and Radiological Science and Technology (QST), Chiba, Japan
| |
Collapse
|
25
|
Zhang X, Ingo C, Teeuwisse WM, Chen Z, van Osch MJP. Comparison of perfusion signal acquired by arterial spin labeling-prepared intravoxel incoherent motion (IVIM) MRI and conventional IVIM MRI to unravel the origin of the IVIM signal. Magn Reson Med 2017; 79:723-729. [PMID: 28480534 DOI: 10.1002/mrm.26723] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 03/24/2017] [Accepted: 03/27/2017] [Indexed: 12/29/2022]
Abstract
PURPOSE Applications of intravoxel incoherent motion (IVIM) imaging in the brain are scarce, whereas it has been successfully applied in other organs with promising results. To better understand the cerebral IVIM signal, the diffusion properties of the arterial blood flow within different parts of the cerebral vascular tree (i.e., different generations of the branching pattern) were isolated and measured by employing an arterial spin labeling (ASL) preparation module before an IVIM readout. METHODS ASL preparation was achieved by T1 -adjusted time-encoded pseudo-continuous ASL (te-pCASL). The IVIM readout module was achieved by introducing bipolar gradients immediately after the excitation pulse. The results of ASL-IVIM were compared with those of conventional IVIM to improve our understanding of the signal generation process of IVIM. RESULTS The pseudo-diffusion coefficient D* as calculated from ASL-IVIM data was found to decrease exponentially for postlabeling delays (PLDs) between 883 ms and 2176 ms, becoming relatively stable for PLDs longer than 2176 ms. The fast compartment of the conventional IVIM-experiment shows comparable apparent diffusion values to the ASL signal with PLDs between 1747 ms and 2176 ms. At the longest PLDs, the observed D* values (4.0 ± 2.8 × 10-3 mm2 /s) are approximately 4.5 times higher than the slow compartment (0.90 ± 0.05 × 10-3 mm2 /s) of the conventional IVIM experiment. CONCLUSION This study showed much more complicated diffusion properties of vascular signal than the conventionally assumed single D* of the perfusion compartment in the two-compartment model of IVIM (biexponential behavior). Magn Reson Med 79:723-729, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Xingxing Zhang
- Department of Radiology, C. J. Gorter Center for High Field MRI, Leiden University Medical Center, Leiden, Netherlands
| | - Carson Ingo
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, Illinois, USA
| | - Wouter M Teeuwisse
- Department of Radiology, C. J. Gorter Center for High Field MRI, Leiden University Medical Center, Leiden, Netherlands
| | - Zhensen Chen
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, Tsinghua University, Beijing, China
| | - Matthias J P van Osch
- Department of Radiology, C. J. Gorter Center for High Field MRI, Leiden University Medical Center, Leiden, Netherlands.,Leiden Institute for Brain and Cognition, Leiden University, Leiden, Netherlands
| |
Collapse
|
26
|
Kallioniemi E, Pitkänen M, Könönen M, Vanninen R, Julkunen P. Localization of cortical primary motor area of the hand using navigated transcranial magnetic stimulation, BOLD and arterial spin labeling fMRI. J Neurosci Methods 2016; 273:138-148. [PMID: 27615740 DOI: 10.1016/j.jneumeth.2016.09.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Revised: 07/12/2016] [Accepted: 09/07/2016] [Indexed: 10/21/2022]
Abstract
BACKGROUND Although the relationship between neuronavigated transcranial magnetic stimulation (nTMS) and functional magnetic resonance imaging (fMRI) has been widely studied in motor mapping, it is unknown how the motor response type or the choice of motor task affect this relationship. NEW METHOD Centers of gravity (CoGs) and response maxima were measured with blood-oxygen-level dependent (BOLD) and arterial spin labeling (ASL) fMRI during motor tasks against nTMS CoGs and response maxima, which were mapped with motor evoked potentials (MEPs) and silent periods (SPs). RESULTS No differences in motor representations (CoGs and response maxima) were observed in lateral-medial direction (p=0.265). fMRI methods localized the motor representation more posterior than nTMS (p<0.001). This was not affected by the BOLD fMRI motor task (p>0.999) nor nTMS response type (p>0.999). ASL fMRI maxima did not differ from the nTMS nor BOLD fMRI CoGs (p≥0.070), but the ASL CoG was deeper in comparison to other methods (p≤0.042). The BOLD fMRI motor task did not influence the depth of the motor representation (p≥0.745). The median Euclidean distances between the nTMS and fMRI motor representations varied between 7.7mm and 14.5mm and did not differ between the methods (F≤1.23, p≥0.318). COMPARISON WITH EXISTING METHODS The relationship between fMRI and nTMS mapped excitatory (MEP) and inhibitory (SP) responses, and whether the choice of motor task affects this relationship, have not been studied before. CONCLUSIONS The congruence between fMRI and nTMS is good. The choice of nTMS motor response type nor BOLD fMRI motor task had no effect on this relationship.
Collapse
Affiliation(s)
- Elisa Kallioniemi
- Department of Clinical Neurophysiology, Kuopio University Hospital, Kuopio, Finland; Department of Applied Physics, University of Eastern Finland, Kuopio, Finland.
| | - Minna Pitkänen
- Department of Clinical Neurophysiology, Kuopio University Hospital, Kuopio, Finland; Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland
| | - Mervi Könönen
- Department of Clinical Neurophysiology, Kuopio University Hospital, Kuopio, Finland; Department of Clinical Radiology, Kuopio University Hospital, Kuopio, Finland
| | - Ritva Vanninen
- Department of Clinical Radiology, Kuopio University Hospital, Kuopio, Finland; Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - Petro Julkunen
- Department of Clinical Neurophysiology, Kuopio University Hospital, Kuopio, Finland; Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
27
|
Eccentricity mapping of the human visual cortex to evaluate temporal dynamics of functional T1ρ mapping. J Cereb Blood Flow Metab 2015; 35:1213-9. [PMID: 25966957 PMCID: PMC4640285 DOI: 10.1038/jcbfm.2015.94] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 04/08/2015] [Accepted: 04/09/2015] [Indexed: 11/08/2022]
Abstract
Recent experiments suggest that T1 relaxation in the rotating frame (T(1ρ)) is sensitive to metabolism and can detect localized activity-dependent changes in the human visual cortex. Current functional magnetic resonance imaging (fMRI) methods have poor temporal resolution due to delays in the hemodynamic response resulting from neurovascular coupling. Because T(1ρ) is sensitive to factors that can be derived from tissue metabolism, such as pH and glucose concentration via proton exchange, we hypothesized that activity-evoked T(1ρ) changes in visual cortex may occur before the hemodynamic response measured by blood oxygenation level-dependent (BOLD) and arterial spin labeling (ASL) contrast. To test this hypothesis, functional imaging was performed using T(1ρ), BOLD, and ASL in human participants viewing an expanding ring stimulus. We calculated eccentricity phase maps across the occipital cortex for each functional signal and compared the temporal dynamics of T(1ρ) versus BOLD and ASL. The results suggest that T(1ρ) changes precede changes in the two blood flow-dependent measures. These observations indicate that T(1ρ) detects a signal distinct from traditional fMRI contrast methods. In addition, these findings support previous evidence that T(1ρ) is sensitive to factors other than blood flow, volume, or oxygenation. Furthermore, they suggest that tissue metabolism may be driving activity-evoked T(1ρ) changes.
Collapse
|
28
|
Cheng Y, van Zijl PCM, Pekar JJ, Hua J. Three-dimensional acquisition of cerebral blood volume and flow responses during functional stimulation in a single scan. Neuroimage 2014; 103:533-541. [PMID: 25152092 PMCID: PMC4252776 DOI: 10.1016/j.neuroimage.2014.08.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 08/14/2014] [Indexed: 11/30/2022] Open
Abstract
In addition to the BOLD scan, quantitative functional MRI studies require measurement of both cerebral blood volume (CBV) and flow (CBF) dynamics. The ability to detect CBV and CBF responses in a single additional scan would shorten the total scan time and reduce temporal variations. Several approaches for simultaneous CBV and CBF measurement during functional MRI experiments have been proposed in two-dimensional (2D) mode covering one to three slices in one repetition time (TR). Here, we extended the principles from previous work and present a three-dimensional (3D) whole-brain MRI approach that combines the vascular-space-occupancy (VASO) and flow-sensitive alternating inversion recovery (FAIR) arterial spin labeling (ASL) techniques, allowing the measurement of CBV and CBF dynamics, respectively, in a single scan. 3D acquisitions are complicated for such a scan combination as the time to null blood signal during a steady state needs to be known. We estimated this using Bloch simulations and demonstrate that the resulting 3D acquisition can detect activation patterns and relative signal changes of quality comparable to that of the original separate scans. The same was found for temporal signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR). This approach provides improved acquisition efficiency when both CBV and CBF responses need to be monitored during a functional task.
Collapse
Affiliation(s)
- Ying Cheng
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA; Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Peter C M van Zijl
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA; Division of MR Research, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - James J Pekar
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA; Division of MR Research, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jun Hua
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA; Division of MR Research, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
29
|
Jahng GH, Li KL, Ostergaard L, Calamante F. Perfusion magnetic resonance imaging: a comprehensive update on principles and techniques. Korean J Radiol 2014; 15:554-77. [PMID: 25246817 PMCID: PMC4170157 DOI: 10.3348/kjr.2014.15.5.554] [Citation(s) in RCA: 138] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 07/05/2014] [Indexed: 12/16/2022] Open
Abstract
Perfusion is a fundamental biological function that refers to the delivery of oxygen and nutrients to tissue by means of blood flow. Perfusion MRI is sensitive to microvasculature and has been applied in a wide variety of clinical applications, including the classification of tumors, identification of stroke regions, and characterization of other diseases. Perfusion MRI techniques are classified with or without using an exogenous contrast agent. Bolus methods, with injections of a contrast agent, provide better sensitivity with higher spatial resolution, and are therefore more widely used in clinical applications. However, arterial spin-labeling methods provide a unique opportunity to measure cerebral blood flow without requiring an exogenous contrast agent and have better accuracy for quantification. Importantly, MRI-based perfusion measurements are minimally invasive overall, and do not use any radiation and radioisotopes. In this review, we describe the principles and techniques of perfusion MRI. This review summarizes comprehensive updated knowledge on the physical principles and techniques of perfusion MRI.
Collapse
Affiliation(s)
- Geon-Ho Jahng
- Department of Radiology, Kyung Hee University Hospital at Gangdong, College of Medicine, Kyung Hee University, Seoul 134-727, Korea
| | - Ka-Loh Li
- Wolfson Molecular Imaging Center, The University of Manchester, Manchester M20 3LJ, UK
| | - Leif Ostergaard
- Center for Functionally Integrative Neuroscience, Department of Neuroradiology, Aarhus University Hospital, Aarhus C 8000, Denmark
| | - Fernando Calamante
- Florey Institute of Neuroscience and Mental Health, Heidelberg, Victoria 3084, Australia
| |
Collapse
|
30
|
Fussell D, Young RJ. Role of MRI perfusion in improving the treatment of brain tumors. ACTA ACUST UNITED AC 2013. [DOI: 10.2217/iim.13.50] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
31
|
Lu H, Hua J, van Zijl PCM. Noninvasive functional imaging of cerebral blood volume with vascular-space-occupancy (VASO) MRI. NMR IN BIOMEDICINE 2013; 26:932-948. [PMID: 23355392 PMCID: PMC3659207 DOI: 10.1002/nbm.2905] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Revised: 10/29/2012] [Accepted: 11/18/2012] [Indexed: 06/01/2023]
Abstract
Functional MRI (fMRI) based on changes in cerebral blood volume (CBV) can probe directly vasodilatation and vasoconstriction during brain activation or physiologic challenges, and can provide important insights into the mechanism of blood oxygenation level-dependent (BOLD) signal changes. At present, the most widely used CBV fMRI technique in humans is called vascular-space-occupancy (VASO) MRI, and this article provides a technical review of this method. VASO MRI utilizes T1 differences between blood and tissue to distinguish between these two compartments within a voxel, and employs a blood-nulling inversion recovery sequence to yield an MR signal proportional to 1 - CBV. As such, vasodilatation will result in a VASO signal decrease and vasoconstriction will have the reverse effect. The VASO technique can be performed dynamically with a temporal resolution comparable with several other fMRI methods, such as BOLD or arterial spin labeling (ASL), and is particularly powerful when conducted in conjunction with these complementary techniques. The pulse sequence and imaging parameters of VASO can be optimized such that the signal change is predominantly of CBV origin, but careful considerations should be taken to minimize other contributions, such as those from the BOLD effect, cerebral blood flow (CBF) and cerebrospinal fluid (CSF). The sensitivity of the VASO technique is the primary disadvantage when compared with BOLD, but this technique is increasingly demonstrating its utility in neuroscientific and clinical applications.
Collapse
Affiliation(s)
- Hanzhang Lu
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | | | | |
Collapse
|
32
|
Wells JA, Siow B, Lythgoe MF, Thomas DL. Measuring biexponential transverse relaxation of the ASL signal at 9.4 T to estimate arterial oxygen saturation and the time of exchange of labeled blood water into cortical brain tissue. J Cereb Blood Flow Metab 2013; 33:215-24. [PMID: 23168531 PMCID: PMC3564190 DOI: 10.1038/jcbfm.2012.156] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The transverse decay of the arterial spin labeling (ASL) signal was measured at four inflow times in the rat brain cortex at 9.4 T. Biexponential T2 decay was observed that appears to derive from different T2 values associated with labeled water in the intravasculature (IV) and extravascular (EV) compartments. A two compartment biexponential model was used to assess the relative contribution of the IV and EV compartments to the ASL signal, without assuming a value for T2 of labeled blood water in the vessels. This novel methodology was applied to estimate the exchange time of blood water into EV tissue space and the oxygen saturation of blood on the arterial side of the vasculature. The mean exchange time of labeled blood water was estimated to be 370±40 ms. The oxygen saturation of the arterial side of the vasculature was significantly less than 100% (∼85%), which may have implications for quantitative functional magnetic resonance imaging studies where the arterial oxygen saturation is frequently assumed to be 100%.
Collapse
Affiliation(s)
- Jack A Wells
- Division of Medicine and Institute of Child Health, UCL Centre for Advanced Biomedical Imaging, University College London, London, UK
| | | | | | | |
Collapse
|
33
|
Arterial spin labeling: its time is now. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2012; 25:75-7. [PMID: 22427138 DOI: 10.1007/s10334-012-0309-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
34
|
Hua J, Jones CK, Qin Q, van Zijl PCM. Implementation of vascular-space-occupancy MRI at 7T. Magn Reson Med 2012; 69:1003-13. [PMID: 22585570 DOI: 10.1002/mrm.24334] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Revised: 04/11/2012] [Accepted: 04/22/2012] [Indexed: 11/07/2022]
Abstract
Vascular-space-occupancy (VASO) MRI exploits the difference between blood and tissue T1 to null blood signal and measure cerebral blood volume changes using the residual tissue signal. VASO imaging is more difficult at higher field because of sensitivity loss due to the convergence of tissue and blood T1 values and increased contamination from blood-oxygenation-level-dependent (BOLD) effects. In addition, compared to 3T, 7T MRI suffers from increased geometrical distortions, e.g., when using echo-planar-imaging, and from increased power deposition, the latter especially problematic for the spin-echo-train sequences commonly used for VASO MRI. Third, non-steady-state blood spin effects become substantial at 7T when only a head coil is available for radiofrequency transmit. In this study, the magnetization-transfer-enhanced-VASO approach was applied to maximize tissue-blood signal difference, which boosted signal-to-noise ratio by 149% ± 13% (n = 7) compared to VASO. Second, a 3D fast gradient-echo sequence with low flip-angle (7°) and short echo-time (1.8 ms) was used to minimize the BOLD effect and to reduce image distortion and power deposition. Finally, a magnetization-reset technique was combined with a motion-sensitized-driven-equilibrium approach to suppress three types of non-steady-state spins. Our initial functional MRI results in normal human brains at 7T with this optimized VASO sequence showed better signal-to-noise ratio than at 3T.
Collapse
Affiliation(s)
- Jun Hua
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | | | | | | |
Collapse
|
35
|
Cavusoglu M, Bartels A, Yesilyurt B, Uludağ K. Retinotopic maps and hemodynamic delays in the human visual cortex measured using arterial spin labeling. Neuroimage 2012; 59:4044-54. [DOI: 10.1016/j.neuroimage.2011.10.056] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2011] [Revised: 10/10/2011] [Accepted: 10/18/2011] [Indexed: 11/27/2022] Open
|
36
|
Silva AC. Using manganese-enhanced MRI to understand BOLD. Neuroimage 2012; 62:1009-13. [PMID: 22245640 DOI: 10.1016/j.neuroimage.2012.01.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Revised: 12/12/2011] [Accepted: 01/01/2012] [Indexed: 10/14/2022] Open
Abstract
The 1990s were designated "The Decade of the Brain" by U.S. Congress, perhaps in great anticipation of the impact that functional neuroimaging techniques would have on advancing our understanding of how the brain is functionally organized. While it is impossible to overestimate the impact of functional MRI in neuroscience, many aspects of the blood oxygenation level-dependent (BOLD) contrast remain poorly understood, in great part due to the complex relationship between neural activity and hemodynamic changes. To better understand such relationship, it is important to probe neural activity independently. Manganese-enhanced MRI (MEMRI), when used to monitor neural activity, is a technique that uses the divalent manganese ion, Mn(2+), as a surrogate measure of calcium influx. A major advantage of using Mn(2+) as a functional marker is that the contrast obtained is directly related to the accumulation of the ion in excitable cells in an activity dependent manner. As such, the contrast in MEMRI is more directly related to neural activity then hemodynamic-based fMRI techniques. In the present work, the early conceptualization of MEMRI is reviewed, and the comparative experiments that have helped provide a better understanding of the spatial specificity of BOLD signal changes in the cortex is discussed.
Collapse
Affiliation(s)
- Afonso C Silva
- Cerebral Microcirculation Unit, Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892-1065, USA.
| |
Collapse
|
37
|
Koretsky AP. Early development of arterial spin labeling to measure regional brain blood flow by MRI. Neuroimage 2012; 62:602-7. [PMID: 22245338 DOI: 10.1016/j.neuroimage.2012.01.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Revised: 11/16/2011] [Accepted: 01/01/2012] [Indexed: 12/31/2022] Open
Abstract
Two major avenues of work converged in the late 1980's and early 1990's to give rise to brain perfusion MRI. The development of anatomical brain MRI quickly had as a major goal the generation of angiograms using tricks to label flowing blood in macroscopic vessels. These ideas were aimed at getting information about microcirculatory flow as well. Over the same time course the development of in vivo magnetic resonance spectroscopy had as its primary goal the assessment of tissue function and in particular, tissue energetics. For this the measurement of the delivery of water to tissue was critical for assessing tissue oxygenation and viability. The measurement of the washin/washout of "freely" diffusible tracers by spectroscopic based techniques pointed the way for quantitative approaches to measure regional blood flow by MRI. These two avenues came together in the development of arterial spin labeling (ASL) MRI techniques to measure regional cerebral blood flow. The early use of ASL to measure brain activation to help verify BOLD fMRI led to a rapid development of ASL based perfusion MRI. Today development and applications of regional brain blood flow measurements with ASL continues to be a major area of activity.
Collapse
Affiliation(s)
- Alan P Koretsky
- Laboratory of Functional and Molecular Imaging, National Institutes of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
38
|
Hua J, Qin Q, Pekar JJ, van Zijl PCM. Measurement of absolute arterial cerebral blood volume in human brain without using a contrast agent. NMR IN BIOMEDICINE 2011; 24:1313-25. [PMID: 21608057 PMCID: PMC3192228 DOI: 10.1002/nbm.1693] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Revised: 11/26/2010] [Accepted: 01/19/2011] [Indexed: 05/26/2023]
Abstract
Arterial cerebral blood volume (CBV(a) ) is a vital indicator of tissue perfusion and vascular reactivity. We extended the recently developed inflow vascular-space-occupancy (iVASO) MRI technique, which uses spatially selective inversion to suppress the signal from blood flowing into a slice, with a control scan to measure absolute CBV(a) using cerebrospinal fluid (CSF) for signal normalization. Images were acquired at multiple blood nulling times to account for the heterogeneity of arterial transit times across the brain, from which both CBV(a) and arterial transit times were quantified. Arteriolar CBV(a) was determined separately by incorporating velocity-dependent bipolar crusher gradients. Gray matter (GM) CBV(a) values (n=11) were 2.04 ± 0.27 and 0.76 ± 0.17 ml blood/100 ml tissue without and with crusher gradients (b=1.8 s/mm(2) ), respectively. Arterial transit times were 671 ± 43 and 785 ± 69 ms, respectively. The arterial origin of the signal was validated by measuring its T(2) , which was within the arterial range. The proposed approach does not require exogenous contrast agent administration, and provides a non-invasive alternative to existing blood volume techniques for mapping absolute CBV(a) in studies of brain physiology and neurovascular diseases.
Collapse
Affiliation(s)
- Jun Hua
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD USA
- F.M. Kirby Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD USA
| | - Qin Qin
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD USA
- F.M. Kirby Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD USA
| | - James J. Pekar
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD USA
- F.M. Kirby Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD USA
| | - Peter C. M. van Zijl
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD USA
- F.M. Kirby Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD USA
| |
Collapse
|
39
|
Shen Q, Duong TQ. Background suppression in arterial spin labeling MRI with a separate neck labeling coil. NMR IN BIOMEDICINE 2011; 24:1111-1118. [PMID: 21294207 PMCID: PMC3116975 DOI: 10.1002/nbm.1666] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2010] [Revised: 12/02/2010] [Accepted: 12/05/2010] [Indexed: 05/30/2023]
Abstract
In arterial spin labeling (ASL) MRI to measure cerebral blood flow (CBF), pair-wise subtraction of temporally adjacent non-labeled and labeled images often can not completely cancel the background static tissue signal because of temporally fluctuating physiological noise. While background suppression (BS) by inversion nulling improves CBF temporal stability, imperfect pulses compromise CBF contrast. Conventional BS techniques may not be applicable in small animals because the arterial transit time is short. This study presents a novel approach of BS to overcome these drawbacks using a separate 'neck' radiofrequency coil for ASL and a 'brain' radiofrequency coil for BS with the inversion pulse placed before spin labeling. The use of a separate 'neck' coil for ASL should also improve ASL contrast. This approach is referred to as the inversion-recovery BS with the two-coil continuous ASL (IR-cASL) technique. The temporal and spatial contrast-to-noise characteristics of basal CBF and CBF-based fMRI of hypercapnia and forepaw stimulation in rats at 7 Tesla were analyzed. IR-cASL yielded two times better temporal stability and 2.0-2.3 times higher functional contrast-to-noise ratios for hypercapnia and forepaw stimulation compared with cASL without BS in the same animals. The Bloch equations were modified to provide accurate CBF quantification at different levels of BS and for multislice acquisition where different slices have different degree of BS and residual degree of labeling. Improved basal CBF and CBF-based fMRI sensitivity should lead to more accurate CBF quantification and should prove useful for imaging low CBF conditions such as in white matter and stroke.
Collapse
Affiliation(s)
- Qiang Shen
- Research Imaging Institute, University of Texas Health Science Center, San Antonio, TX, USA
- Department of Ophthalmology, University of Texas Health Science Center, San Antonio, TX, USA
- Department of Radiology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Timothy Q. Duong
- Research Imaging Institute, University of Texas Health Science Center, San Antonio, TX, USA
- Department of Ophthalmology, University of Texas Health Science Center, San Antonio, TX, USA
- Department of Radiology, University of Texas Health Science Center, San Antonio, TX, USA
- Department of Physiology, University of Texas Health Science Center, San Antonio, TX, USA
- South Texas Veterans Health Care System, Department of Veterans Affairs, San Antonio, TX, USA
| |
Collapse
|
40
|
Le Bihan D. Diffusion, confusion and functional MRI. Neuroimage 2011; 62:1131-6. [PMID: 21985905 DOI: 10.1016/j.neuroimage.2011.09.058] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Revised: 09/21/2011] [Accepted: 09/23/2011] [Indexed: 02/06/2023] Open
Abstract
Diffusion MRI has been introduced in 1985 and has had a very successful life on its own. While it has become a standard for imaging stroke and white matter disorders, the borders between diffusion MRI and the general field of fMRI have always remained fuzzy. First, diffusion MRI has been used to obtain images of brain function, based on the idea that diffusion MRI could also be made sensitive to blood flow, through the intravoxel incoherent motion (IVIM) concept. Second, the IVIM concept helped better understand the contribution from different vasculature components to the BOLD fMRI signal. Third, it has been shown recently that a genuine fMRI signal can be obtained with diffusion MRI. This "DfMRI" signal is notably different from the BOLD fMRI signal, especially for its much faster response to brain activation both at onset and offset, which points out to structural changes in the neural tissues, perhaps such as cell swelling, occurring in activated neural tissue. This short article reviews the major steps which have paved the way for this exciting development, underlying how technical progress with MRI equipment has each time been instrumental to expand the horizon of diffusion MRI toward the field of fMRI.
Collapse
|
41
|
St Lawrence KS, Owen D, Wang DJJ. A two-stage approach for measuring vascular water exchange and arterial transit time by diffusion-weighted perfusion MRI. Magn Reson Med 2011; 67:1275-84. [PMID: 21858870 DOI: 10.1002/mrm.23104] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Revised: 06/13/2011] [Accepted: 06/27/2011] [Indexed: 01/01/2023]
Abstract
Changes in the exchange rate of water across the blood-brain barrier, denoted k(w), may indicate blood-brain barrier dysfunction before the leakage of large-molecule contrast agents is observable. A previously proposed approach for measuring k(w) is to use diffusion-weighted arterial spin labeling to measure the vascular and tissue fractions of labeled water, because the vascular-to-tissue ratio is related to k(w). However, the accuracy of diffusion-weighted arterial spin labeling is affected by arterial blood contributions and the arterial transit time (τ(a)). To address these issues, a two-stage method is proposed that uses combinations of diffusion-weighted gradient strengths and post-labeling delays to measure both τ(a) and k(w). The feasibility of this method was assessed by acquiring diffusion-weighted arterial spin labeling data from seven healthy volunteers. Repeat measurements and Monte Carlo simulations were conducted to determine the precision and accuracy of the k(w) estimates. Average grey and white matter k(w) values were 110 ± 18 and 126 ± 18 min(-1), respectively, which compare favorably to blood-brain barrier permeability measurements obtained with positron emission tomography. The intrasubject coefficient of variation was 26% ± 23% in grey matter and 21% ± 17% in white matter, indicating that reproducible k(w) measurements can be obtained.
Collapse
|
42
|
Diekhoff S, Uludağ K, Sparing R, Tittgemeyer M, Cavuşoğlu M, von Cramon DY, Grefkes C. Functional localization in the human brain: Gradient-Echo, Spin-Echo, and arterial spin-labeling fMRI compared with neuronavigated TMS. Hum Brain Mapp 2011; 32:341-57. [PMID: 20533563 DOI: 10.1002/hbm.21024] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
A spatial mismatch of up to 14 mm between optimal transcranial magnetic stimulation (TMS) site and functional magnetic resonance imaging (fMRI) signal has consistently been reported for the primary motor cortex. The underlying cause might be the effect of magnetic susceptibility around large draining veins in Gradient-Echo blood oxygenation level-dependent (GRE-BOLD) fMRI. We tested whether alternative fMRI sequences such as Spin-Echo (SE-BOLD) or Arterial Spin-Labeling (ASL) assessing cerebral blood flow (ASL-CBF) may localize neural activity closer to optimal TMS positions and primary motor cortex than GRE-BOLD. GRE-BOLD, SE-BOLD, and ASL-CBF signal changes during right thumb abductions were obtained from 15 healthy subjects at 3 Tesla. In 12 subjects, tissue at fMRI maxima was stimulated with neuronavigated TMS to compare motor-evoked potentials (MEPs). Euclidean distances between the fMRI center-of-gravity (CoG) and the TMS motor mapping CoG were calculated. Highest SE-BOLD and ASL-CBF signal changes were located in the anterior wall of the central sulcus [Brodmann Area 4 (BA4)], whereas highest GRE-BOLD signal changes were significantly closer to the gyral surface. TMS at GRE-BOLD maxima resulted in higher MEPs which might be attributed to significantly higher electric field strengths. TMS-CoGs were significantly anterior to fMRI-CoGs but distances were not statistically different across sequences. Our findings imply that spatial differences between fMRI and TMS are unlikely to be caused by spatial unspecificity of GRE-BOLD fMRI but might be attributed to other factors, e.g., interactions between TMS-induced electric field and neural tissue. Differences between techniques should be kept in mind when using fMRI coordinates as TMS (intervention) targets.
Collapse
Affiliation(s)
- Svenja Diekhoff
- Max Planck Institute for Neurological Research, Cologne, Germany
| | | | | | | | | | | | | |
Collapse
|
43
|
Hua J, Qin Q, Donahue MJ, Zhou J, Pekar JJ, van Zijl PCM. Inflow-based vascular-space-occupancy (iVASO) MRI. Magn Reson Med 2011; 66:40-56. [PMID: 21695719 DOI: 10.1002/mrm.22775] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2010] [Revised: 11/03/2010] [Accepted: 11/24/2010] [Indexed: 01/24/2023]
Abstract
Vascular-space-occupancy (VASO) MRI, a blood nulling approach for assessing changes in cerebral blood volume (CBV), is hampered by low signal-to-noise ratio (SNR) because only 10-20% of tissue signal is recovered when using nonselective inversion for blood nulling. A new approach, called inflow-VASO (iVASO), is introduced in which only blood flowing into the slice has experienced inversion, thereby keeping tissue and cerebrospinal fluid (CSF) signal in the slice maximal and reducing CSF partial volume effects. SNR increases of 198% ± 12% and 334% ± 9% (mean ± SD, n = 7) with respect to VASO were found at TR values of 5 s and 2 s, respectively. When using inflow approaches, data interpretation is complicated by the fact that signal changes are affected by vascular transit times. An optimal TR-range (1.5-2.5 s) was derived in which the iVASO response during activation predominantly reflects arterial/arteriolar CBV (CBV(a)) changes. In this TR-range, perfusion contributions to the signal change are negligible because arterial label has not yet undergone capillary exchange, and arterial and precapillary blood signals are nulled. For TR = 2 s, the iVASO signal change upon visual stimulation corresponded to a CBV(a) increase of 58% ± 7%, in agreement with arteriolar CBV changes previously reported. The onset of the hemodynamic response for iVASO occurred 1.2 ± 0.5 s (n = 7) faster than for conventional VASO.
Collapse
Affiliation(s)
- Jun Hua
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA.
| | | | | | | | | | | |
Collapse
|
44
|
Abstract
MRI offers the ability to visualise and measure blood flow in the human body non-invasively. MR angiography (MRA) provides images of the arterial blood vessels within the body and allows measurement of blood velocities along these arteries. Arterial spin labelling (ASL) is a method for measuring the perfusion of blood into tissue (i.e. blood flow at the capillary level). This provides a key indicator of nutrient supply to the tissue. In this chapter, we have described the technical basis and practical implementation of these methods, emphasising their non-invasive (no contrast agents required) and quantitative nature.
Collapse
Affiliation(s)
- David Thomas
- Department of Medical Physics and Bioengineering, University College London, London, UK.
| | | |
Collapse
|
45
|
Kelly ME, Blau CW, Griffin KM, Gobbo OL, Jones JFX, Kerskens CM. Quantitative functional magnetic resonance imaging of brain activity using bolus-tracking arterial spin labeling. J Cereb Blood Flow Metab 2010; 30:913-22. [PMID: 20068581 PMCID: PMC2949184 DOI: 10.1038/jcbfm.2009.284] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Blood oxygen level dependent (BOLD) functional magnetic resonance imaging (fMRI) is the most widely used method for mapping neural activity in the brain. The interpretation of altered BOLD signals is problematic when cerebral blood flow (CBF) or cerebral blood volume change because of aging and/or neurodegenerative diseases. In this study, a recently developed quantitative arterial spin labeling (ASL) approach, bolus-tracking ASL (btASL), was applied to an fMRI experiment in the rat brain. The mean transit time (MTT), capillary transit time (CTT), relative cerebral blood volume of labeled water (rCBV(lw)), relative cerebral blood flow (rCBF), and perfusion coefficient in the forelimb region of the somatosensory cortex were quantified during neuronal activation and in the resting state. The average MTT and CTT were 1.939+/-0.175 and 1.606+/-0.106 secs, respectively, in the resting state. Both times decreased significantly to 1.616+/-0.207 and 1.305+/-0.201 secs, respectively, during activation. The rCBV(lw), rCBF, and perfusion coefficient increased on average by a factor of 1.123+/-0.006, 1.353+/-0.078, and 1.479+/-0.148, respectively, during activation. In contrast to BOLD techniques, btASL yields physiologically relevant indices of the functional hyperemia that accompanies neuronal activation.
Collapse
Affiliation(s)
- Michael E Kelly
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | | | | | | | | | | |
Collapse
|
46
|
Wells JA, Lythgoe MF, Gadian DG, Ordidge RJ, Thomas DL. In vivo hadamard encoded continuous arterial spin labeling (H-CASL). Magn Reson Med 2010; 63:1111-8. [DOI: 10.1002/mrm.22266] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
47
|
Characterizing the origin of the arterial spin labelling signal in MRI using a multiecho acquisition approach. J Cereb Blood Flow Metab 2009; 29:1836-45. [PMID: 19654586 DOI: 10.1038/jcbfm.2009.99] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Arterial spin labelling (ASL) can noninvasively isolate the MR signal from arterial blood water that has flowed into the brain. In gray matter, the labelled bolus is dispersed within three main compartments during image acquisition: the intravascular compartment; intracellular tissue space; and the extracellular tissue space. Changes in the relative volumes of the extracellular and intracellular tissue space are thought to occur in many pathologic conditions such as stroke and brain tumors. Accurate measurement of the distribution of the ASL signal within these three compartments will yield better understanding of the time course of blood delivery and exchange, and may have particular application in animal models of disease to investigate the relationship between the source of the ASL signal and pathology. In this study, we sample the transverse relaxation of the ASL perfusion weighted and control images acquired with and without vascular crusher gradients at a range of postlabelling delays and tagging durations, to estimate the tricompartmental distribution of labelled water in the rat cortex. Our results provide evidence for rapid exchange of labelled blood water into the intracellular space relative to the transit time through the vascular bed, and provide a more solid foundation for cerebral blood flow quantification using ASL techniques.
Collapse
|
48
|
Kelly ME, Blau CW, Kerskens CM. Bolus-tracking arterial spin labelling: theoretical and experimental results. Phys Med Biol 2009; 54:1235-51. [DOI: 10.1088/0031-9155/54/5/009] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
49
|
|
50
|
Schillaci O, Travascio L, Bruni C, Bazzocchi G, Testa A, Garaci F, Melis M, Floris R, Simonetti G. Molecular Imaging and Magnetic Resonance Imaging in Early Diagnosis of Alzheimer's Disease. Neuroradiol J 2008; 21:755-71. [DOI: 10.1177/197140090802100603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2008] [Accepted: 09/07/2008] [Indexed: 11/15/2022] Open
Abstract
Alzheimer's disease (AD), a progressive neurodegenerative disorder, is the most common cause of dementia in the elderly. Magnetic resonance (MR) or computed tomography (CT) imaging is recommended for routine evaluation of dementias. The development of molecular imaging agents and the new techniques of MR for AD are critically important for early diagnosis, neuropathogenesis studies and assessing treatment efficacy in AD. Neuroimaging using nuclear medicine techniques such as SPECT, PET and MR spectroscopy has the potential to characterize the biomarkers for Alzheimer's disease. The present review summarizes the results of radionuclide imaging and MR imaging in AD.
Collapse
Affiliation(s)
- O. Schillaci
- Department of Diagnostic and Molecular Imaging, Interventional Radiology and Radiation Therapy, “Tor Vergata” University of Rome; Rome, Italy
| | - L. Travascio
- Department of Diagnostic and Molecular Imaging, Interventional Radiology and Radiation Therapy, “Tor Vergata” University of Rome; Rome, Italy
| | - C. Bruni
- Department of Diagnostic and Molecular Imaging, Interventional Radiology and Radiation Therapy, “Tor Vergata” University of Rome; Rome, Italy
| | - G. Bazzocchi
- Department of Diagnostic and Molecular Imaging, Interventional Radiology and Radiation Therapy, “Tor Vergata” University of Rome; Rome, Italy
| | - A. Testa
- Department of Diagnostic and Molecular Imaging, Interventional Radiology and Radiation Therapy, “Tor Vergata” University of Rome; Rome, Italy
| | - F.G. Garaci
- Department of Diagnostic and Molecular Imaging, Interventional Radiology and Radiation Therapy, “Tor Vergata” University of Rome; Rome, Italy
| | - M. Melis
- Department of Diagnostic and Molecular Imaging, Interventional Radiology and Radiation Therapy, “Tor Vergata” University of Rome; Rome, Italy
| | - R. Floris
- Department of Diagnostic and Molecular Imaging, Interventional Radiology and Radiation Therapy, “Tor Vergata” University of Rome; Rome, Italy
| | - G. Simonetti
- Department of Diagnostic and Molecular Imaging, Interventional Radiology and Radiation Therapy, “Tor Vergata” University of Rome; Rome, Italy
| |
Collapse
|