1
|
Aramendía-Vidaurreta V, Solís-Barquero SM, Vidorreta M, Ezponda A, Echeverria-Chasco R, Bastarrika G, Fernández-Seara MA. Comparison of Myocardial Blood Flow Quantification Models for Double ECG Gating Arterial Spin Labeling MRI: Reproducibility Assessment. J Magn Reson Imaging 2024; 60:1577-1588. [PMID: 38206090 DOI: 10.1002/jmri.29220] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 12/20/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
BACKGROUND Arterial spin labeling (ASL) allows non-invasive quantification of myocardial blood flow (MBF). Double-ECG gating (DG) ASL is more robust to heart rate variability than single-ECG gating (SG), but its reproducibility requires further investigation. Moreover, the existence of multiple quantification models hinders its application. Frequency-offset-corrected-inversion (FOCI) pulses provide sharper edge profiles than hyperbolic-secant (HS), which could benefit myocardial ASL. PURPOSE To assess the performance of MBF quantification models for DG compared to SG ASL, to evaluate their reproducibility and to compare the effects of HS and FOCI pulses. STUDY TYPE Prospective. SUBJECTS Sixteen subjects (27 ± 8 years). FIELD STRENGTH/SEQUENCE 1.5 T/DG and SG flow-sensitive alternating inversion recovery ASL. ASSESSMENT Three models for DG MBF quantification were compared using Monte Carlo simulations and in vivo experiments. Two models used a fitting approach (one using only a single label and control image pair per fit, the other using all available image pairs), while the third model used a T1 correction approach. Slice profile simulations were conducted for HS and FOCI pulses with varying B0 and B1. Temporal signal-to-noise ratio (tSNR) was computed for different acquisition/quantification strategies and inversion pulses. The number of images that minimized MBF error was investigated in the model with highest tSNR. Intra and intersession reproducibility were assessed in 10 subjects. STATISTICAL TESTS Within-subject coefficient of variation, analysis of variance. P-value <0.05 was considered significant. RESULTS MBF was not different across acquisition/quantification strategies (P = 0.27) nor pulses (P = 0.9). DG MBF quantification models exhibited significantly higher tSNR and superior reproducibility, particularly for the fitting model using multiple images (tSNR was 3.46 ± 2.18 in vivo and 3.32 ± 1.16 in simulations, respectively; wsCV = 16%). Reducing the number of ASL pairs to 13/15 did not increase MBF error (minimum = 0.22 mL/g/min). DATA CONCLUSION Reproducibility of MBF was better for DG than SG acquisitions, especially when employing a fitting model. LEVEL OF EVIDENCE 2 TECHNICAL EFFICACY: Stage 1.
Collapse
Affiliation(s)
- Verónica Aramendía-Vidaurreta
- Department of Radiology, Clínica Universidad de Navarra, Pamplona, Spain
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| | - Sergio M Solís-Barquero
- Department of Radiology, Clínica Universidad de Navarra, Pamplona, Spain
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| | | | - Ana Ezponda
- Department of Radiology, Clínica Universidad de Navarra, Pamplona, Spain
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| | - Rebeca Echeverria-Chasco
- Department of Radiology, Clínica Universidad de Navarra, Pamplona, Spain
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| | - Gorka Bastarrika
- Department of Radiology, Clínica Universidad de Navarra, Pamplona, Spain
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| | - María A Fernández-Seara
- Department of Radiology, Clínica Universidad de Navarra, Pamplona, Spain
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| |
Collapse
|
2
|
Bones IK, Franklin SL, Harteveld AA, van Osch MJP, Schmid S, Hendrikse J, Moonen C, van Stralen M, Bos C. Exploring label dynamics of velocity-selective arterial spin labeling in the kidney. Magn Reson Med 2021; 86:131-142. [PMID: 33538350 PMCID: PMC8048977 DOI: 10.1002/mrm.28683] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/07/2020] [Accepted: 12/24/2020] [Indexed: 12/13/2022]
Abstract
Purpose Velocity‐selective arterial spin labeling (VSASL) has been proposed for renal perfusion imaging to mitigate planning challenges and effects of arterial transit time (ATT) uncertainties. In VSASL, label generation may shift in the vascular tree as a function of cutoff velocity. Here, we investigate label dynamics and especially the ATT of renal VSASL and compared it with a spatially selective pulsed arterial spin labeling technique, flow alternating inversion recovery (FAIR). Methods Arterial spin labeling data were acquired in 7 subjects, using free‐breathing dual VSASL and FAIR with five postlabeling delays: 400, 800, 1200, 2000, and 2600 ms. The VSASL measurements were acquired with cutoff velocities of 5, 10, and 15 cm/s, with anterior–posterior velocity‐encoding direction. Cortical perfusion‐weighted signal, temporal SNR, quantified renal blood flow, and arterial transit time were reported. Results In contrast to FAIR, renal VSASL already showed fairly high signal at the earliest postlabeling delays, for all cutoff velocities. The highest VSASL signal and temporal SNR was obtained with a cutoff velocity of 10 cm/s at postlabeling delay = 800 ms, which was earlier than for FAIR at 1200 ms. Fitted ATT on VSASL was ≤ 0 ms, indicating ATT insensitivity, which was shorter than for FAIR (189 ± 79 ms, P < .05). Finally, the average cortical renal blood flow measured with cutoff velocities of 5 cm/s (398 ± 84 mL/min/100 g) and 10 cm/s (472 ± 160 mL/min/100 g) were similar to renal blood flow measured with FAIR (441 ± 84 mL/min/100 g) (P > .05) with good correlations on subject level. Conclusion Velocity‐selective arterial spin labeling in the kidney reduces ATT sensitivity compared with the recommended pulsed arterial spin labeling method, as well as if cutoff velocity is increased to reduce spurious labeling due to motion. Thus, VSASL has potential as a method for time‐efficient, single‐time‐point, free‐breathing renal perfusion measurements, despite lower tSNR than FAIR.
Collapse
Affiliation(s)
- Isabell K Bones
- Center for Image Sciences, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Suzanne L Franklin
- Center for Image Sciences, University Medical Center Utrecht, Utrecht, the Netherlands.,C.J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Anita A Harteveld
- Center for Image Sciences, University Medical Center Utrecht, Utrecht, the Netherlands.,Department of Radiology and Nuclear Medicine, Erasmus MC University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Matthias J P van Osch
- C.J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Sophie Schmid
- C.J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Jeroen Hendrikse
- Department of Radiology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Chrit Moonen
- Center for Image Sciences, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Marijn van Stralen
- Center for Image Sciences, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Clemens Bos
- Center for Image Sciences, University Medical Center Utrecht, Utrecht, the Netherlands
| |
Collapse
|
3
|
Harteveld AA, de Boer A, Franklin SL, Leiner T, van Stralen M, Bos C. Comparison of multi-delay FAIR and pCASL labeling approaches for renal perfusion quantification at 3T MRI. MAGMA (NEW YORK, N.Y.) 2020; 33:81-94. [PMID: 31811490 PMCID: PMC7021666 DOI: 10.1007/s10334-019-00806-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 10/29/2019] [Accepted: 11/19/2019] [Indexed: 12/18/2022]
Abstract
OBJECTIVE To compare the most commonly used labeling approaches, flow-sensitive alternating inversion recovery (FAIR) and pseudocontinuous arterial spin labeling (pCASL), for renal perfusion measurement using arterial spin labeling (ASL) MRI. METHODS Multi-delay FAIR and pCASL were performed in 16 middle-aged healthy volunteers on two different occasions at 3T. Relative perfusion-weighted signal (PWS), temporal SNR (tSNR), renal blood flow (RBF), and arterial transit time (ATT) were calculated for the cortex and medulla in both kidneys. Bland-Altman plots, intra-class correlation coefficient, and within-subject coefficient of variation were used to assess reliability and agreement between measurements. RESULTS For the first visit, RBF was 362 ± 57 and 140 ± 47 mL/min/100 g, and ATT was 0.47 ± 0.13 and 0.70 ± 0.10 s in cortex and medulla, respectively, using FAIR; RBF was 201 ± 72 and 84 ± 27 mL/min/100 g, and ATT was 0.71 ± 0.25 and 0.86 ± 0.12 s in cortex and medulla, respectively, using pCASL. For both labeling approaches, RBF and ATT values were not significantly different between visits. Overall, FAIR showed higher PWS and tSNR. Moreover, repeatability of perfusion parameters was better using FAIR. DISCUSSION This study showed that compared to (balanced) pCASL, FAIR perfusion values were significantly higher and more comparable between visits.
Collapse
Affiliation(s)
- Anita A Harteveld
- Department of Radiology, University Medical Center Utrecht, Utrecht University, Postbox 85500, 3508 GA, Utrecht, The Netherlands.
| | - Anneloes de Boer
- Department of Radiology, University Medical Center Utrecht, Utrecht University, Postbox 85500, 3508 GA, Utrecht, The Netherlands
| | - Suzanne Lisa Franklin
- Department of Radiology, University Medical Center Utrecht, Utrecht University, Postbox 85500, 3508 GA, Utrecht, The Netherlands
- Department of Radiology, C.J. Gorter Center for High Field MRI, Leiden University Medical Center, Leiden, The Netherlands
| | - Tim Leiner
- Department of Radiology, University Medical Center Utrecht, Utrecht University, Postbox 85500, 3508 GA, Utrecht, The Netherlands
| | - Marijn van Stralen
- Department of Radiology, University Medical Center Utrecht, Utrecht University, Postbox 85500, 3508 GA, Utrecht, The Netherlands
| | - Clemens Bos
- Department of Radiology, University Medical Center Utrecht, Utrecht University, Postbox 85500, 3508 GA, Utrecht, The Netherlands
| |
Collapse
|
4
|
Wang X, Greer JS, Dimitrov IE, Pezeshk P, Chhabra A, Madhuranthakam AJ. Frequency Offset Corrected Inversion Pulse for B 0 and B 1 Insensitive Fat Suppression at 3T: Application to MR Neurography of Brachial Plexus. J Magn Reson Imaging 2018; 48:1104-1111. [PMID: 30218576 DOI: 10.1002/jmri.26021] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 03/07/2018] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The 3D short tau inversion recovery (STIR) sequence is routinely used in clinical MRI to achieve robust fat suppression. However, the performance of the commonly used adiabatic inversion pulse, hyperbolic secant (HS), is compromised in challenging areas with increased B0 and B1 inhomogeneities, such as brachial plexus at 3T. PURPOSE To demonstrate the frequency offset corrected inversion (FOCI) pulse as an efficient fat suppression STIR pulse with increased robustness to B0 and B1 inhomogeneities at 3T, compared to the HS pulse. STUDY TYPE Prospective. SUBJECTS/PHANTOM Initial evaluation was performed in phantoms and one healthy volunteer by varying the B1 field, while subsequent comparison was performed in three healthy volunteers and five patients without varying the B1 . FIELD STRENGTH/SEQUENCE 3T; 3D TSE-STIR with HS and FOCI pulses. ASSESSMENT Brachial plexus images were qualitatively evaluated by two musculoskeletal radiologists independently using a four-point grading scale for fat suppression, shading artifacts, and nerve visualization. STATISTICAL TEST The Wilcoxon signed-rank test with P < 0.05 was considered statistically significant. RESULTS Simulations and phantom experiments demonstrated broader bandwidth (2.5 kHz vs. 0.83 kHz, increased B0 robustness) at the same adiabatic threshold and lower adiabatic threshold (5 μT vs. 7 μT at 3.5 ppm, increased B1 robustness) at the same bandwidth with the FOCI pulse compared to the HS pulse With increased bandwidth, the FOCI pulse achieved robust fat suppression even at 50% of maximum B1 strength, while the HS pulse required >75% of maximum B1 strength. Compared to the standard 3D TSE-STIR with HS pulse, the FOCI pulse achieved uniform fat suppression (P < 0.05), better nerve visualization (P < 0.05), and minimal shading artifacts (P < 0.01) in brachial plexus at 3T. DATA CONCLUSION The FOCI pulse has increased robustness to B0 and B1 inhomogeneities, compared to the HS pulse, and enables uniform fat suppression in brachial plexus at 3T. LEVEL OF EVIDENCE 1 Techinical Efficacy: Stage 1 J. Magn. Reson. Imaging 2018;48:1104-1111.
Collapse
Affiliation(s)
- Xinzeng Wang
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Joshua S Greer
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Bioengineering, University of Texas at Dallas, Richardson, Texas, USA
| | - Ivan E Dimitrov
- Philips Medical Systems, Gainesville, Florida, USA.,Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Parham Pezeshk
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Avneesh Chhabra
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Department of Orthopedic Surgery, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Ananth J Madhuranthakam
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
5
|
Suzuki Y, Fujima N, Ogino T, Meakin JA, Suwa A, Sugimori H, Van Cauteren M, van Osch MJP. Acceleration of ASL-based time-resolved MR angiography by acquisition of control and labeled images in the same shot (ACTRESS). Magn Reson Med 2017; 79:224-233. [PMID: 28321915 PMCID: PMC5947673 DOI: 10.1002/mrm.26667] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 01/19/2017] [Accepted: 02/12/2017] [Indexed: 01/15/2023]
Abstract
PURPOSE Noncontrast 4D-MR-angiography (MRA) using arterial spin labeling (ASL) is beneficial because high spatial and temporal resolution can be achieved. However, ASL requires acquisition of labeled and control images for each phase. The purpose of this study is to present a new accelerated 4D-MRA approach that requires only a single control acquisition, achieving similar image quality in approximately half the scan time. METHODS In a multi-phase Look-Locker sequence, the first phase was used as the control image and the labeling pulse was applied before the second phase. By acquiring the control and labeled images within a single Look-Locker cycle, 4D-MRA was generated in nearly half the scan time of conventional ASL. However, this approach potentially could be more sensitive to off-resonance and magnetization transfer (MT) effects. To counter this, careful optimizations of the labeling pulse were performed by Bloch simulations. In in-vivo studies arterial visualization was compared between the new and conventional ASL approaches. RESULTS Optimization of the labeling pulse successfully minimized off-resonance effects. Qualitative assessment showed that residual MT effects did not degrade visualization of the peripheral arteries. CONCLUSION This study demonstrated that the proposed approach achieved similar image quality as conventional ASL-MRA approaches in just over half the scan time. Magn Reson Med 79:224-233, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Yuriko Suzuki
- C.J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands.,Philips Electronics Japan, Ltd., Healthcare, Tokyo, Japan
| | - Noriyuki Fujima
- Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital, Hokkaido, Japan
| | - Tetsuo Ogino
- Philips Electronics Japan, Ltd., Healthcare, Tokyo, Japan
| | - James Alastair Meakin
- Diagnostic Image Analysis Group, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Akira Suwa
- Philips Electronics Japan, Ltd., Healthcare, Tokyo, Japan
| | | | | | - Matthias J P van Osch
- C.J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
6
|
Xu J, Qin Q, Wu D, Hua J, Song X, McMahon MT, Northington FJ, Zhang J, van Zijl PCM, Pekar JJ. Steady pulsed imaging and labeling scheme for noninvasive perfusion imaging. Magn Reson Med 2015; 75:238-48. [PMID: 25732958 DOI: 10.1002/mrm.25641] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 01/05/2015] [Accepted: 01/07/2015] [Indexed: 02/06/2023]
Abstract
PURPOSE A steady pulsed imaging and labeling (SPIL) scheme is proposed to obtain high-resolution multislice perfusion images of mice brain using standard preclinical MRI equipment. THEORY AND METHODS The SPIL scheme repeats a pulsed arterial spin labeling (PASL) module together with a short mixing time to extend the temporal duration of the generated PASL bolus to the total experimental time. Multislice image acquisition takes place during the mixing times. The mixing time is also used for magnetization recovery following image acquisition. The new scheme is able to yield multislice perfusion images rapidly. The perfusion kinetic curve can be measured by a multipulsed imaging and labeling (MPIL) scheme, i.e., acquiring single-slice ASL signals before reaching steady-state in the SPIL sequence. RESULTS When applying the SPIL method to normal mice, and to mice with unilateral ischemia, high-resolution multislice (five slices) CBF images could be obtained in 8 min. Perfusion data from ischemic mice showed clear CBF reductions in ischemic regions. The SPIL method was also applied to postmortem mice, showing that the method is free from magnetization transfer confounds. CONCLUSION The new SPIL scheme provides for robust measurement of CBF with multislice imaging capability in small animals.
Collapse
Affiliation(s)
- Jiadi Xu
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Qin Qin
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Dan Wu
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jun Hua
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Xiaolei Song
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Michael T McMahon
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Frances J Northington
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jiangyang Zhang
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Peter C M van Zijl
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - James J Pekar
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| |
Collapse
|
7
|
Alsop DC, Detre JA, Golay X, Günther M, Hendrikse J, Hernandez-Garcia L, Lu H, MacIntosh BJ, Parkes LM, Smits M, van Osch MJP, Wang DJJ, Wong EC, Zaharchuk G. Recommended implementation of arterial spin-labeled perfusion MRI for clinical applications: A consensus of the ISMRM perfusion study group and the European consortium for ASL in dementia. Magn Reson Med 2015; 73:102-16. [PMID: 24715426 PMCID: PMC4190138 DOI: 10.1002/mrm.25197] [Citation(s) in RCA: 1598] [Impact Index Per Article: 159.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 02/08/2014] [Accepted: 02/10/2014] [Indexed: 12/11/2022]
Abstract
This review provides a summary statement of recommended implementations of arterial spin labeling (ASL) for clinical applications. It is a consensus of the ISMRM Perfusion Study Group and the European ASL in Dementia consortium, both of whom met to reach this consensus in October 2012 in Amsterdam. Although ASL continues to undergo rapid technical development, we believe that current ASL methods are robust and ready to provide useful clinical information, and that a consensus statement on recommended implementations will help the clinical community to adopt a standardized approach. In this review, we describe the major considerations and trade-offs in implementing an ASL protocol and provide specific recommendations for a standard approach. Our conclusion is that as an optimal default implementation, we recommend pseudo-continuous labeling, background suppression, a segmented three-dimensional readout without vascular crushing gradients, and calculation and presentation of both label/control difference images and cerebral blood flow in absolute units using a simplified model.
Collapse
Affiliation(s)
- David C. Alsop
- Department of Radiology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - John A. Detre
- Departments of Neurology and Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Xavier Golay
- Department of Brain Repair and Rehabilitation, UCL Institute of Neurology, London, UK
| | - Matthias Günther
- Fraunhofer MEVIS, Bremen, Germany
- University Bremen, Germany
- Mediri GmbH, Heidelberg, Germany
| | - Jeroen Hendrikse
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Luis Hernandez-Garcia
- FMRI Laboratory, Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Hanzhang Lu
- Advanced Imaging Research Center, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Bradley J. MacIntosh
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Department of Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Laura M. Parkes
- Centre for Imaging Science, Institute of Population Health, Faculty of Medical and Human Sciences, University of Manchester, Manchester, UK
| | - Marion Smits
- Department of Radiology, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - Matthias J. P. van Osch
- C.J. Gorter Center for high field MRI, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Danny JJ Wang
- Department of Neurology, University of California Los Angeles, Los Angeles, California, USA
| | - Eric C. Wong
- Departments of Radiology and Psychiatry, University of California San Diego, La Jolla, California, USA
| | - Greg Zaharchuk
- Department of Radiology, Stanford University, Stanford, California, USA
| |
Collapse
|
8
|
Gardener AG, Jezzard P. Investigating white matter perfusion using optimal sampling strategy arterial spin labeling at 7 Tesla. Magn Reson Med 2014; 73:2243-8. [PMID: 24954898 PMCID: PMC4657501 DOI: 10.1002/mrm.25333] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 06/02/2014] [Accepted: 06/03/2014] [Indexed: 01/05/2023]
Abstract
PURPOSE Cerebral blood flow (CBF) is an informative physiological marker for tissue health. Arterial spin labeling (ASL) is a noninvasive MRI method of measuring this parameter, but it has proven difficult to measure white matter (WM) CBF due to low intrinsic contrast-to-noise ratio compared with gray matter (GM). Here we combine ultra-high field and optimal sampling strategy (OSS) ASL to investigate WM CBF in reasonable scan times. METHODS A FAIR-based ASL sequence at 7T was combined with a real-time-feedback OSS technique, to iteratively improve post-label image acquisition times (TIs) on a tissue- and subject-specific basis to obtain WM CBF quantification. RESULTS It was found 77% of WM voxels gave a reasonable CBF fit. Averaged WM CBF for these voxels was found to be 16.3 ± 1.5 mL/100 g/min (discarding partial-volumed voxels). The generated TI schedule was also significantly different when altering the OSS weighted-tissue-mask, favoring longer TIs in WM. CONCLUSION WM CBF could be reasonably quantified in over 75% of identified voxels, from a total preparation and scan time of 15 min. OSS results suggest longer TIs should be used versus general GM ASL settings; this may become more important in WM disease studies.
Collapse
Affiliation(s)
- Alexander G Gardener
- FMRIB Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Peter Jezzard
- FMRIB Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| |
Collapse
|
9
|
Nasrallah FA, Lee ELQ, Chuang KH. Optimization of flow-sensitive alternating inversion recovery (FAIR) for perfusion functional MRI of rodent brain. NMR IN BIOMEDICINE 2012; 25:1209-1216. [PMID: 22451418 DOI: 10.1002/nbm.2790] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Revised: 12/02/2011] [Accepted: 01/17/2012] [Indexed: 05/31/2023]
Abstract
Arterial spin labeling (ASL) MRI provides a noninvasive method to image perfusion, and has been applied to map neural activation in the brain. Although pulsed labeling methods have been widely used in humans, continuous ASL with a dedicated neck labeling coil is still the preferred method in rodent brain functional MRI (fMRI) to maximize the sensitivity and allow multislice acquisition. However, the additional hardware is not readily available and hence its application is limited. In this study, flow-sensitive alternating inversion recovery (FAIR) pulsed ASL was optimized for fMRI of rat brain. A practical challenge of FAIR is the suboptimal global inversion by the transmit coil of limited dimensions, which results in low effective labeling. By using a large volume transmit coil and proper positioning to optimize the body coverage, the perfusion signal was increased by 38.3% compared with positioning the brain at the isocenter. An additional 53.3% gain in signal was achieved using optimized repetition and inversion times compared with a long TR. Under electrical stimulation to the forepaws, a perfusion activation signal change of 63.7 ± 6.3% can be reliably detected in the primary somatosensory cortices using single slice or multislice echo planar imaging at 9.4 T. This demonstrates the potential of using pulsed ASL for multislice perfusion fMRI in functional and pharmacological applications in rat brain.
Collapse
Affiliation(s)
- Fatima A Nasrallah
- Magnetic Resonance Imaging Group, Singapore Bioimaging Consortium, Agency for Science Technology and Research, Singapore
| | | | | |
Collapse
|
10
|
Wells JA, Siow B, Lythgoe MF, Thomas DL. The importance of RF bandwidth for effective tagging in pulsed arterial spin labeling MRI at 9.4T. NMR IN BIOMEDICINE 2012; 25:1139-1143. [PMID: 22514019 DOI: 10.1002/nbm.2782] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Revised: 12/19/2011] [Accepted: 12/28/2011] [Indexed: 05/31/2023]
Abstract
The movement towards MRI at higher field strengths (>7T) has enhanced the appeal of arterial spin labeling (ASL) for many applications due to improved SNR of the measurements. Greater field strength also introduces increased magnetic susceptibility effects resulting in marked B(0) field inhomogeneity. Although B(0) field perturbations can be minimised by shimming over the imaging volume, marked field inhomogeneity is likely to remain within the labeling region for pulsed ASL (PASL). This study highlights a potential source of error in cerebral blood flow quantification using PASL at high field. We show that labeling efficiency in flow-sensitive alternating inversion recovery (FAIR) displayed marked sensitivity to the RF bandwidth of the inversion pulse in a rat model at 9.4T. The majority of preclinical PASL studies have not reported the bandwidth of the inversion pulse. We show that a high bandwidth pulse of > = 15 kHz was required to robustly overcome the field inhomogeneity in the labeling region at high field strength, which is significantly greater than the inversion bandwidth ~2-3 kHz used in previous studies. Unless SAR levels are at their limit, we suggest the use of a high bandwidth labeling pulse for most PASL studies.
Collapse
Affiliation(s)
- J A Wells
- UCL Centre for Advanced Biomedical Imaging, Division of Medicine and Institute of Child Health, University College London, UK.
| | | | | | | |
Collapse
|
11
|
Çavuşoğlu M, Pohmann R, Burger HC, Uludağ K. Regional effects of magnetization dispersion on quantitative perfusion imaging for pulsed and continuous arterial spin labeling. Magn Reson Med 2012; 69:524-30. [PMID: 22488815 DOI: 10.1002/mrm.24278] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Revised: 02/15/2012] [Accepted: 03/09/2012] [Indexed: 12/20/2022]
Abstract
Most experiments assume a global transit delay time with blood flowing from the tagging region to the imaging slice in plug flow without any dispersion of the magnetization. However, because of cardiac pulsation, nonuniform cross-sectional flow profile, and complex vessel networks, the transit delay time is not a single value but follows a distribution. In this study, we explored the regional effects of magnetization dispersion on quantitative perfusion imaging for varying transit times within a very large interval from the direct comparison of pulsed, pseudo-continuous, and dual-coil continuous arterial spin labeling encoding schemes. Longer distances between tagging and imaging region typically used for continuous tagging schemes enhance the regional bias on the quantitative cerebral blood flow measurement causing an underestimation up to 37% when plug flow is assumed as in the standard model.
Collapse
Affiliation(s)
- Mustafa Çavuşoğlu
- Max-Planck Institute for Biological Cybernetics, High Field Magnetic Resonance Center, Tübingen, Germany.
| | | | | | | |
Collapse
|
12
|
Konstandin S, Heiler PM, Scharf J, Schad LR. Comparison of selective arterial spin labeling using 1D and 2D tagging RF pulses. Z Med Phys 2010; 21:26-32. [PMID: 20884188 DOI: 10.1016/j.zemedi.2010.06.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2010] [Revised: 04/29/2010] [Accepted: 06/01/2010] [Indexed: 12/20/2022]
Abstract
Generic arterial spin labeling (ASL) techniques label all brain feeding arteries. In this work, we used two different selective ASL (SASL) methods to show the perfusion of one single artery. A slice selective inversion of an area including the desired vessel was compared to a multidimensional RF pulse with Gaussian profile to label only the artery of interest. Perfusion images with a resolution of 2 x 2 x 5 mm(3) are shown that were acquired after tagging only the internal carotid artery of healthy volunteers. In addition, both techniques were applied to a patient with an extra-intracranial bypass to illustrate its perfusion territory. These perfusion images are consistent with a standard angiography. SASL imaging with a resolution of 2 x 2 x 5 mm(3) is possible in a total scan time of 5 min. The presented MR techniques may in part replace the assessment of revascularization success by conventional angiography.
Collapse
Affiliation(s)
- Simon Konstandin
- Computer Assisted Clinical Medicine, Medical Faculty Mannheim, Heidelberg University, Germany.
| | | | | | | |
Collapse
|
13
|
Gardener AG, Francis ST. Multislice perfusion of the kidneys using parallel imaging: Image acquisition and analysis strategies. Magn Reson Med 2010; 63:1627-36. [DOI: 10.1002/mrm.22387] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
14
|
Grossman EJ, Zhang K, An J, Voorhees A, Inglese M, Ge Y, Oesingmann N, Xu J, McGorty KA, Chen Q. Measurement of deep gray matter perfusion using a segmented true-fast imaging with steady-state precession (True-FISP) arterial spin-labeling (ASL) method at 3T. J Magn Reson Imaging 2009; 29:1425-31. [PMID: 19472418 DOI: 10.1002/jmri.21794] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
PURPOSE To study the feasibility of using the MRI technique of segmented true-fast imaging with steady-state precession arterial spin-labeling (True-FISP ASL) for the noninvasive measurement and quantification of local perfusion in cerebral deep gray matter at 3T. MATERIALS AND METHODS A flow-sensitive alternating inversion-recovery (FAIR) ASL perfusion preparation was used in which the echo-planar imaging (EPI) readout was replaced with a segmented True-FISP data acquisition strategy. The absolute perfusion for six selected regions of deep gray matter (left and right thalamus, putamen, and caudate) were calculated in 11 healthy human subjects (six male, five female; mean age = 35.5 years +/- 9.9). RESULTS Preliminary measurements of the average absolute perfusion values at the six selected regions of deep gray matter are in agreement with published values for mean absolute cerebral blood flow (CBF) baselines acquired from healthy volunteers using positron emission tomography (PET). CONCLUSION Segmented True-FISP ASL is a practical and quantitative technique suitable to measure local tissue perfusion in cerebral deep gray matter at a high spatial resolution without the susceptibility artifacts commonly associated with EPI-based methods of ASL.
Collapse
Affiliation(s)
- Elan J Grossman
- Department of Radiology, New York University School of Medicine, New York, NY, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Gallichan D, Jezzard P. Variation in the shape of pulsed arterial spin labeling kinetic curves across the healthy human brain and its implications for CBF quantification. Magn Reson Med 2009; 61:686-95. [PMID: 19132757 DOI: 10.1002/mrm.21886] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Arterial spin labeling (ASL) uses proximally inverted blood water spins as an endogenous contrast agent to measure blood perfusion in tissue. In this work pulsed ASL was used to measure the kinetic curves of cerebral blood flow (CBF) across eight anatomically based regions of interest (ROIs) in five normal healthy subjects. CBF estimates based on these data were compared when obtained using a single inversion time versus fitting a kinetic model to all 10 measured inversion times. CBF estimates were also compared when fitting to the 10 inversion time data using a standard two-parameter approach (CBF and bolus arrival time) or a more recently proposed three-parameter model (CBF, bolus arrival time, and arrival time dispersion). Variations in the shape of the kinetic curve were found across the brain that were consistent across subjects. The arrival time in the occipital ROI was found to be long enough to lead to underestimation of the CBF when using a single inversion time of 1.5 s. In four out of the eight ROIs there was significant underestimation of CBF using the standard two-parameter model compared to the three-parameter approach. These results have important implications for the development of a robust, quantitative ASL protocol.
Collapse
Affiliation(s)
- Daniel Gallichan
- Centre for Functional Magnetic Resonance Imaging of the Brain, John Radcliffe Hospital, University of Oxford, Oxford, UK.
| | | |
Collapse
|
16
|
Pedrosa I, Alsop DC, Rofsky NM. Magnetic resonance imaging as a biomarker in renal cell carcinoma. Cancer 2009; 115:2334-2345. [DOI: 10.1002/cncr.24237] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Affiliation(s)
- Ivan Pedrosa
- Department of Radiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - David C. Alsop
- Department of Radiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Neil M. Rofsky
- Department of Radiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
17
|
Gardener A, Gowland P, Francis S. Implementation of quantitative perfusion imaging using pulsed arterial spin labeling at ultra-high field. Magn Reson Med 2009; 61:874-82. [DOI: 10.1002/mrm.21796] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
18
|
Kiefer C, Schroth G, Gralla J, Diehm N, Baumgartner I, Husmann M. A feasibility study on model-based evaluation of kidney perfusion measured by means of FAIR prepared true-FISP arterial spin labeling (ASL) on a 3-T MR scanner. Acad Radiol 2009; 16:79-87. [PMID: 19064215 DOI: 10.1016/j.acra.2008.04.024] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2008] [Revised: 04/14/2008] [Accepted: 04/24/2008] [Indexed: 11/30/2022]
Abstract
RATIONALE AND OBJECTIVES A feasibility study on measuring kidney perfusion by a contrast-free magnetic resonance (MR) imaging technique is presented. MATERIALS AND METHODS A flow-sensitive alternating inversion recovery (FAIR) prepared true fast imaging with steady-state precession (TrueFISP) arterial spin labeling sequence was used on a 3.0-T MR-scanner. The basis for quantification is a two-compartment exchange model proposed by Parkes that corrects for diverse assumptions in single-compartment standard models. RESULTS Eleven healthy volunteers (mean age, 42.3 years; range 24-55) were examined. The calculated mean renal blood flow values for the exchange model (109 +/- 5 [medulla] and 245 +/- 11 [cortex] ml/min - 100 g) are in good agreement with the literature. Most important, the two-compartment exchange model exhibits a stabilizing effect on the evaluation of perfusion values if the finite permeability of the vessel wall and the venous outflow (fast solution) are considered: the values for the one-compartment standard model were 93 +/- 18 (medulla) and 208 +/- 37 (cortex) ml/min - 100 g. CONCLUSION This improvement will increase the accuracy of contrast-free imaging of kidney perfusion in treatment renovascular disease.
Collapse
Affiliation(s)
- Claus Kiefer
- Department of Angiology, Institute for Diagnostic and Interventional Neuroradiology, University Hospital Berne and University of Berne, Berne, Switzerland.
| | | | | | | | | | | |
Collapse
|
19
|
Holm DA, Sidaros K. Slice profile optimization in arterial spin labeling using presaturation and optimized RF pulses. Magn Reson Imaging 2006; 24:1229-40. [PMID: 17071344 DOI: 10.1016/j.mri.2006.07.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2005] [Accepted: 07/02/2006] [Indexed: 11/19/2022]
Abstract
OBJECTIVE An important source of error in arterial spin labeling (ASL) is incomplete static tissue subtraction due to imperfect slice profiles. This effect can be reduced by saturating the spins in the imaging area prior to labeling. In this study, the use of optimized presaturation is compared with the use of optimized RF pulses for minimizing this error. MATERIALS AND METHODS Different methods for optimizing presaturation were simulated by numerical solution of the Bloch equation. Presaturation was optimized by changing the number of presaturation pulses, their position in the pulse sequence and the area of the crusher gradients following each saturation pulse. It was also investigated whether the use of optimized presaturation could reduce the tag gap needed to ensure complete static tissue subtraction. Simulation results were verified using phantom and in vivo studies at 3T. RESULTS In proximal inversion with control for off-resonance effects, optimized presaturation could reduce the necessary tag gap to 15% of the imaging slab for experiments using standard RF pulses, while c-FOCI RF pulses could reduce it to 11%. In flow-sensitive alternating inversion recovery, a single presaturation pulse could reduce the inversion width to 122% of the imaging slab and neither multiple presaturation pulses nor optimized RF pulses could reduce it further. CONCLUSION Optimized presaturation can reduce the necessary inversion width to the same level as if using optimized RF pulses and can, therefore, be used to optimize ASL sensitivity. Furthermore, optimized presaturation can reduce the B(1)-dependent sensitivity in static tissue subtraction.
Collapse
Affiliation(s)
- David Alberg Holm
- Danish Research Centre for Magnetic Resonance, Copenhagen University Hospital, 2650 Hvidovre, Denmark.
| | | |
Collapse
|
20
|
Golay X, Petersen ET. Arterial Spin Labeling: Benefits and Pitfalls of High Magnetic Field. Neuroimaging Clin N Am 2006; 16:259-68, x. [PMID: 16731365 DOI: 10.1016/j.nic.2006.02.003] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Arterial spin labeling (ASL) techniques are MR imaging methods designed to measure the endogenous perfusion signal coming from arterial blood by manipulation of its magnetization. These methods are based on the subtraction of two consecutively acquired images: one acquired after preparation of the arterial blood magnetization upstream to the area of interest, and the second without any manipulation of its arterial magnetization. The subtraction of both images provides information on the perfusion of the tissue present in the slice of interest. Because ASL is a very low SNR technique, the shift from 1.5 T to 3.0 T should be regarded as a great way to increase signal-to-noise ratio (SNR). Furthermore, the concomitant increase in blood T(1) should improve the SNR of ASL further. Other effects related to poorer magnetic filed homogeneities and reduced T(2) relaxation times, however, will counterbalance both effects partially. In this article, the pros and cons of the use of ASL at high field are summarized, after a brief description of the major techniques used and their theoretical limitations. Finally, a summary of the few existing dedicated ASL perfusion techniques available are presented.
Collapse
Affiliation(s)
- Xavier Golay
- Laboratory of Molecular Imaging, Singapore Bioimaging Consortium, 11 Biopolis Way, Singapore 138667.
| | | |
Collapse
|
21
|
Abstract
We summarize here current methods for the quantification of CBF using pulsed arterial spin labeling (ASL) methods. Several technical issues related to CBF quantitation are described briefly, including transit delay, signal from larger arteries, radio frequency (RF) slice profiles, magnetization transfer, tagging efficiency, and tagging geometry. Many pulsed tagging schemes have been devised, which differ in the type of tag or control pulses, and which have various advantages and disadvantages for quantitation. Several other modifications are also available that can be implemented as modules in an ASL pulse sequence, such as varying the wash-in time to estimate the transit delay. Velocity-selective ASL (VS-ASL) uses a new type of pulse labeling in which inflowing arterial spins are tagged based on their velocity rather than their spatial location. In principle, this technique may allow ASL measurement of cerebral blood flow (CBF) that is insensitive to transit delays.
Collapse
Affiliation(s)
- Eric C Wong
- University of California, San Diego, La Jolla, California CA 92093-0677, USA.
| |
Collapse
|
22
|
Garcia DM, Duhamel G, Alsop DC. Efficiency of inversion pulses for background suppressed arterial spin labeling. Magn Reson Med 2005; 54:366-72. [PMID: 16032674 DOI: 10.1002/mrm.20556] [Citation(s) in RCA: 208] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Background suppression strategies for arterial spin labeling (ASL) MRI offer reduced noise from motion and other system instabilities. However, the inversion pulses used for suppression can also attenuate the ASL signal, which may offset the advantages of background suppression. Numerical simulations were used to optimize the inversion efficiency of four candidate pulses over a range of radiofrequency (RF) and static magnetic field variations typical of in vivo imaging. Optimized pulses were then used within a pulsed ASL sequence to assess the pulses' in vivo inversion efficiencies for ASL. The measured in vivo inversion efficiency was significantly lower than theoretical predictions (e.g., 93% experimental compared to 99% theoretical) for the tangent hyperbolic pulse applied in a background suppression scheme. This inefficiency was supported by an in vitro study of human blood. These results suggest that slow magnetization transfer (MT) in blood, either with bound water or macromolecular protons, dominates the inversion inefficiency in blood. Despite the attenuated signal relative to unsuppressed ASL, the signal-to-noise ratio (SNR) with suppression was improved by 23-110% depending on the size of the region measured. Knowledge of efficiency will aid optimization of the number of suppression pulses and provide more accurate quantification of blood flow.
Collapse
Affiliation(s)
- Dairon M Garcia
- Department of Radiology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02215, USA
| | | | | |
Collapse
|
23
|
Shen J, Chen Z, Yang J. New FOCI pulses with reduced radiofrequency power requirements. J Magn Reson Imaging 2004; 20:531-7. [PMID: 15332264 DOI: 10.1002/jmri.20134] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
PURPOSE To propose new frequency offset corrected inversion (FOCI) pulses with significantly reduced radiofrequency (RF) power deposition for spin echo imaging by incorporating the variable-rate selective excitation (VERSE) schemes into the pulse design. MATERIALS AND METHODS Two schemes are proposed to design the new FOCI pulses with dramatically reduced peak RF power requirements. In scheme A, the time-dilation function is derived from a predefined adiabaticity factor modulation function. In scheme B, the time-dilation function is predefined, while the adiabaticity factor is conserved. RESULTS The new FOCI pulses are shown to be able to operate at reduced specific absorption rate (SAR), specifically at the same peak RF power as that of a five- or seven-lobe sinc inversion pulse of the same duration. Using the new FOCI pulse, significant gain in sensitivity was observed in in vivo spin-echo echo-planar imaging, which was attributed to the improved refocusing slice profile. CONCLUSION The new FOCI pulses can replace the 180 degrees five- or seven-lobe sinc pulses in spin-echo imaging with the same peak RF power requirement and significantly improved slice profile.
Collapse
Affiliation(s)
- Jun Shen
- Molecular Imaging Branch, National Institute of Mental Health, Bethesda, Maryland, USA.
| | | | | |
Collapse
|
24
|
Abstract
Arterial spin labeling is a magnetic resonance method for the measurement of cerebral blood flow. In its simplest form, the perfusion contrast in the images gathered by this technique comes from the subtraction of two successively acquired images: one with, and one without, proximal labeling of arterial water spins after a small delay time. Over the last decade, the method has moved from the experimental laboratory to the clinical environment. Furthermore, numerous improvements, ranging from new pulse sequence implementations to extensive theoretical studies, have broadened its reach and extended its potential applications. In this review, the multiple facets of this powerful yet difficult technique are discussed. Different implementations are compared, the theoretical background is summarized, and potential applications of various implementations in research as well as in the daily clinical routine are proposed. Finally, a summary of the new developments and emerging techniques in this field is provided.
Collapse
Affiliation(s)
- Xavier Golay
- Department of Neuroradiology, National Neuroscience Institute, Singapore.
| | | | | |
Collapse
|
25
|
Golay X, Petersen ET, Hui F. Pulsed star labeling of arterial regions (PULSAR): A robust regional perfusion technique for high field imaging. Magn Reson Med 2004; 53:15-21. [PMID: 15690497 DOI: 10.1002/mrm.20338] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Regional perfusion imaging (RPI) has recently been introduced as a potentially powerful technique to map the perfusion territories of patients with vascular diseases in a fully noninvasive manner. However, this technique suffers from the problems of the transfer insensitive labeling technique upon which it is based. In particular, RPI is very sensitive to magnetic field inhomogeneities, and therefore the definition of the labeled bolus can deteriorate at field strength higher than 1.5 T. Furthermore, the slab-selective triple-pulse postsaturation sequence used originally will also be impaired due to the same problem, rendering RPI unusable at higher field. In this work, an adiabatic-based signal targeting with alternating radiofrequency pulses sequence is proposed as a labeling scheme to solve the problems related to variations in local magnetic field, together with an improved four-pulse water suppression enhanced through T(1) effects technique as a presaturation scheme.
Collapse
Affiliation(s)
- Xavier Golay
- Department of Neuroradiology, National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore 308433.
| | | | | |
Collapse
|
26
|
Schepers J, Veldhuis WB, Pauw RJ, de Groot JW, van Osch MJP, Nicolay K, van der Sanden BPJ. Comparison of FAIR perfusion kinetics with DSC-MRI and functional histology in a model of transient ischemia. Magn Reson Med 2004; 51:312-20. [PMID: 14755657 DOI: 10.1002/mrm.10691] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Flow-sensitive alternating inversion recovery (FAIR) is a noninvasive method for perfusion imaging. It has been shown that the FAIR signal may depend on hemodynamic parameters other than perfusion, the most important one being transit delays of labeled spins to the observed tissue. These parameters are expected to change with ischemia. The goal of this study was to assess the effect of these changes on the interpretation of FAIR results in the case of altered perfusion. This was investigated in a rat model of transient cerebral ischemia. It was shown that the ratio of FAIR signal in the infarct compared to the contralateral side was lower at short inflow times, which suggests that transit times affected the effective FAIR signal. The FAIR results were compared with those from functional histology and dynamic susceptibility contrast MRI, and the findings indicated that the altered kinetics of the FAIR signal were related to reduced and delayed inflow in the infarct region--not to a decrease in the number of functional vessels.
Collapse
Affiliation(s)
- Janneke Schepers
- Department of Experimental In Vivo NMR, Image Sciences Institute, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
27
|
Schepers J, Van Osch MJP, Nicolay K. Effect of vascular crushing on FAIR perfusion kinetics, using a BIR-4 pulse in a magnetization prepared FLASH sequence. Magn Reson Med 2003; 50:608-13. [PMID: 12939769 DOI: 10.1002/mrm.10571] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Flow-sensitive alternating inversion recovery (FAIR) perfusion imaging suffers from high vascular signal, resulting in artifacts and overestimation of perfusion. With TurboFLASH acquisition, crushing of vascular signal by bipolar gradients after each excitation is difficult due to the requirement of an ultrashort repetition time. Therefore, insertion of a preparation phase in the FAIR sequence, after labeling and prior to TurboFLASH acquisition, is proposed. A segmented adiabatic BIR-4 pulse, interleaved with crusher gradients, was used for flow crushing. The effect of the crusher preparation is shown as a function of crusher strength for a flow phantom and in rat brain. Influence of crusher strength on the time-dependent FAIR signal from rat brain was also measured. Signal from flowing spins in a flow phantom and from arterial spins in rat brain was significantly suppressed. Image quality was improved and the overestimation of perfusion at short inflow times was eliminated.
Collapse
Affiliation(s)
- Janneke Schepers
- Department of Experimental in vivo NMR, Image Sciences Institute, University Medical Center Utrecht, Utrecht, The Netherlands.
| | | | | |
Collapse
|
28
|
Schepers J, Garwood M, van der Sanden B, Nicolay K. Improved subtraction by adiabatic FAIR perfusion imaging. Magn Reson Med 2002; 47:330-6. [PMID: 11810677 DOI: 10.1002/mrm.10062] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
For pulsed arterial spin labeling techniques (e.g., FAIR), mismatches between the imaging and inversion slice profile result in a nonperfusion-related offset. Several methods have been proposed to reduce subtraction errors in FAIR imaging. Here an acquisition method for FAIR experiments based on adiabatic principles is proposed. It is shown that with adiabatic pulses the same pulse can be used for labeling and echo refocusing, thereby reducing the mismatch between imaging and labeling slice. A twofold reduction in subtraction errors compared to 5-lobe sinc excitation was shown both experimentally and by simulation.
Collapse
Affiliation(s)
- Janneke Schepers
- Department of Experimental in vivo NMR, Image Sciences Institute, University Medical Center Utrecht, Utrecht, The Netherlands.
| | | | | | | |
Collapse
|
29
|
Keilholz-George SD, Knight-Scott J, Berr SS. Theoretical analysis of the effect of imperfect slice profiles on tagging schemes for pulsed arterial spin labeling MRI. Magn Reson Med 2001; 46:141-8. [PMID: 11443720 DOI: 10.1002/mrm.1169] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Pulsed arterial spin labeling (ASL) techniques provide a noninvasive method of obtaining qualitative and quantitative perfusion images with MRI. ASL techniques employ inversion recovery and/or saturation recovery to induce perfusion weighting, and thus the performance of these techniques is dependent on the slice profiles of the inversion or saturation pulses. This article systematically examines through simulations the effects of slice profile imperfections on the perfusion signal for nine labeling schemes, including FAIR, FAIRER, and EST (UNFAIR). Each sequence is evaluated for quantitative accuracy, suppression of stationary signal, and magnitude of perfusion signal. Perfusion effects are modeled from a modified Bloch equation and experimentally determined slice profiles. The results show that FAIR, FAIRER, and EST have excellent tissue suppression. The magnitude of the perfusion signal is comparable for FAIR and FAIRER, with EST providing a slightly weaker signal. For quantitative measurements, all three methods underestimate the perfusion signal by more than 20%. Of the additional six ASL techniques examined, only one performed well in this model. This method, which combines inversion and saturation recovery, yields improved signal accuracy (<15% difference from the theoretical value) and tissue suppression similar to that of FAIR and its variants, but has only half the signal. Magn Reson Med 46:141-148, 2001.
Collapse
Affiliation(s)
- S D Keilholz-George
- Engineering Physics Program, School of Engineering, University of Virginia, Charlottesville, VA 22908, USA
| | | | | |
Collapse
|
30
|
Sidaros K, Andersen IK, Gesmar H, Rostrup E, Larsson HB. Improved perfusion quantification in FAIR imaging by offset correction. Magn Reson Med 2001; 46:193-7. [PMID: 11443727 DOI: 10.1002/mrm.1176] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Perfusion quantification using pulsed arterial spin labeling has been shown to be sensitive to the RF pulse slice profiles. Therefore, in Flow-sensitive Alternating-Inversion Recovery (FAIR) imaging the slice selective (ss) inversion slab is usually three to four times thicker than the imaging slice. However, this reduces perfusion sensitivity due to the increased transit delay of the incoming blood with unperturbed spins. In the present article, the dependence of the magnetization on the RF pulse slice profiles is inspected both theoretically and experimentally. A perfusion quantification model is presented that allows the use of thinner ss inversion slabs by taking into account the offset of RF slice profiles between ss and nonselective inversion slabs. This model was tested in both phantom and human studies. Magn Reson Med 46:193-197, 2001.
Collapse
Affiliation(s)
- K Sidaros
- Department of Mathematical Modelling, Technical University of Denmark, Lyngby, Denmark.
| | | | | | | | | |
Collapse
|
31
|
Abstract
Numerous techniques have been proposed in the last 15 years to measure various perfusion-related parameters in the brain. In particular, two approaches have proven extremely successful: injection of paramagnetic contrast agents for measuring cerebral blood volumes (CBV) and arterial spin labeling (ASL) for measuring cerebral blood flows (CBF). This review presents the methodology of the different magnetic resonance imaging (MRI) techniques in use for CBV and CBF measurements and briefly discusses their limitations and potentials.
Collapse
Affiliation(s)
- E L Barbier
- Laboratoire mixte INSERM U438, Université Joseph Fourier: RMN Bioclinique, LRC-CEA, Hôpital Albert Michallon, Grenoble, France
| | | | | |
Collapse
|
32
|
Yongbi MN, Tan CX, Frank JA, Duyn JH. A protocol for assessing subtraction errors of arterial spin-tagging perfusion techniques in human brain. Magn Reson Med 2000; 43:896-900. [PMID: 10861886 DOI: 10.1002/1522-2594(200006)43:6<896::aid-mrm17>3.0.co;2-j] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A protocol for assessing signal contributions from static tissue (subtraction errors) in perfusion images acquired with arterial spin-labeling (ASL) techniques in human brain is proposed. The method exploits the reduction of blood T(1) caused by the clinically available paramagnetic contrast agent, gadopentetate dimeglumine (Gd-DTPA). The protocol is demonstrated clinically with multislice FAIR images acquired before, during, and after Gd-DTPA administration using a range of selective inversion widths. Perfusion images acquired postcontrast for selective inversion widths large enough (threshold) to avoid interaction with the imaging slice had signal intensities reduced to noise level, as opposed to subtraction errors manifested on images acquired using inversion widths below the threshold. The need for these experiments to be performed in vivo is further illustrated by comparison with phantom results. The protocol allows a one-time calibration of relevant ASL parameters (e.g., selective inversion widths) in vivo, which may otherwise cause subtraction errors. Magn Reson Med 43:896-900, 2000. Published 2000 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- M N Yongbi
- Laboratory of Diagnostic Radiology Research, Clinical Center, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
33
|
Yongbi MN, Yang Y, Frank JA, Duyn JH. Multislice perfusion imaging in human brain using the C-FOCI inversion pulse: comparison with hyperbolic secant. Magn Reson Med 1999; 42:1098-105. [PMID: 10571931 DOI: 10.1002/(sici)1522-2594(199912)42:6<1098::aid-mrm14>3.0.co;2-1] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Perfusion studies based on pulsed arterial spin labeling have primarily applied hyperbolic secant (HS) pulses for spin inversion. To optimize perfusion sensitivity, it is highly desirable to implement the HS pulse with the same slice width as the width of the imaging pulse. Unfortunately, this approach causes interactions between the slice profiles and manifests as residual signal from static tissue in the resultant perfusion image. This problem is currently overcome by increasing the selective HS width relative to the imaging slice width. However, this solution increases the time for the labeled blood to reach the imaging slice (transit time), causing loss of perfusion sensitivity as a result of T(1) relaxation effects. In this study, we demonstrate that the preceding problems can be largely overcome by use of the C-shaped frequency offset corrected inversion (FOCI) pulse [Ordidge et al., Magn Reson Med 1996;36:562]. The implementation of this pulse for multislice perfusion imaging on the cerebrum is presented, showing substantial improvement in slice definition in vivo compared with the HS pulse. The sharper FOCI profile is shown to reduce the physical gap (or "safety margin") between the inversion and imaging slabs, resulting in a significant increase in perfusion signal without residual contamination from static tissue. The mean +/- SE (n = 6) gray matter perfusion-weighted signal (DeltaM/M(o)) without the application of vascular signal suppression gradients were 1.19 +/- 0. 10% (HS-flow-sensitive alternating inversion recovery [FAIR]), and 1. 51 +/- 0.11% for the FOCI-FAIR sequence. The corresponding values with vascular signal suppression were 0.64 +/- 0.14%, and 0.91 +/- 0. 08% using the HS- and FOCI-FAIR sequences, respectively. Compared with the HS-based data, the FOCI-FAIR results correspond to an average increase in perfusion signal of up to between 26%-30%. Magn Reson Med 42:1098-1105, 1999.
Collapse
Affiliation(s)
- M N Yongbi
- Laboratory of Diagnostic Radiology Research, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
34
|
Calamante F, Thomas DL, Pell GS, Wiersma J, Turner R. Measuring cerebral blood flow using magnetic resonance imaging techniques. J Cereb Blood Flow Metab 1999; 19:701-35. [PMID: 10413026 DOI: 10.1097/00004647-199907000-00001] [Citation(s) in RCA: 435] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Magnetic resonance imaging techniques measuring CBF have developed rapidly in the last decade, resulting in a wide range of available methods. The most successful approaches are based either on dynamic tracking of a bolus of a paramagnetic contrast agent (dynamic susceptibility contrast) or on arterial spin labeling. This review discusses their principles, possible pitfalls, and potential for absolute quantification and outlines clinical and neuroscientific applications.
Collapse
Affiliation(s)
- F Calamante
- RCS Unit of Biophysics, Institute of Child Health, University College London Medical School, United Kingdom
| | | | | | | | | |
Collapse
|