1
|
Yin Y, Song Y, Jia Y, Xia J, Bai R, Kong X. Sodium Dynamics in the Cellular Environment. J Am Chem Soc 2023; 145:10522-10532. [PMID: 37104830 DOI: 10.1021/jacs.2c13271] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Sodium ions are essential for the functions of biological cells, and they are maintained at the balance between intra- and extracellular environments. The quantitative assessment of intra- and extracellular sodium as well as its dynamics can provide crucial physiological information on a living system. 23Na nuclear magnetic resonance (NMR) is a powerful and noninvasive technique to probe the local environment and dynamics of sodium ions. However, due to the complex relaxation behavior of the quadrupolar nucleus in the intermediate-motion regime and because of the heterogeneous compartments and diverse molecular interactions in the cellular environment, the understanding of the 23Na NMR signal in biological systems is still at the early stage. In this work, we characterize the relaxation and diffusion of sodium ions in the solutions of proteins and polysaccharides, as well as in the in vitro samples of living cells. The multi-exponential behavior of 23Na transverse relaxation has been analyzed according to the relaxation theory to derive the crucial information related to the ionic dynamics and molecular binding in the solutions. The bi-compartment model of transverse relaxation and diffusion measurements can corroborate each other to quantify the fractions of intra- and extracellular sodium. We show that 23Na relaxation and diffusion can be used to monitor the viability of human cells, which offers versatile NMR metrics for in vivo studies.
Collapse
Affiliation(s)
- Yu Yin
- Department of Chemistry, Zhejiang University, 310027 Hangzhou, P. R. China
| | - Yifan Song
- Department of Chemistry, Zhejiang University, 310027 Hangzhou, P. R. China
| | - Yinhang Jia
- Key Laboratory of Biomedical Engineering of Education Ministry, College of Biomedical Engineering and Instrument Science, Zhejiang University, 310027 Hangzhou, Zhejiang, P. R. China
| | - Juntao Xia
- Department of Chemistry, Zhejiang University, 310027 Hangzhou, P. R. China
| | - Ruiliang Bai
- Key Laboratory of Biomedical Engineering of Education Ministry, College of Biomedical Engineering and Instrument Science, Zhejiang University, 310027 Hangzhou, Zhejiang, P. R. China
- Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, 310029 Hangzhou, China
- Department of Physical Medicine and Rehabilitation, Sir Run Run Shaw Hospital, Zhejiang University, 310016 Hangzhou, China
| | - Xueqian Kong
- Department of Chemistry, Zhejiang University, 310027 Hangzhou, P. R. China
- Department of Physical Medicine and Rehabilitation, Sir Run Run Shaw Hospital, Zhejiang University, 310016 Hangzhou, China
- Institute of Translational Medicine, Shanghai Jiao Tong University, 200240 Shanghai, P. R. China
| |
Collapse
|
2
|
Bajwa AA, Neubauer A, Schwerter M, Schilling L. 23Na chemical shift imaging in the living rat brain using a chemical shift agent, Tm[DOTP] 5. MAGMA (NEW YORK, N.Y.) 2023; 36:107-118. [PMID: 36053432 PMCID: PMC9992022 DOI: 10.1007/s10334-022-01040-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 10/14/2022]
Abstract
OBJECTIVE It is well known that the use of shift reagents (SRs) in nuclear magnetic resonance (NMR) studies is substantially limited by an intact blood-brain barrier (BBB). The current study aims to develop a method enabling chemical shift imaging in the living rat brain under physiological conditions using an SR, Tm[DOTP]5-. MATERIALS AND METHODS Hyperosmotic mannitol bolus injection followed by 60 min infusion of a Tm[DOTP]5- containing solution was administered via a catheter inserted into an internal carotid artery. We monitored the homeostasis of physiological parameters, and we measured the thulium content in brain tissue post mortem using total reflection fluorescence spectroscopy (T-XRF). The alterations of the 23Na resonance spectrum were followed in a 9.4T small animal scanner. RESULTS Based on the T-XRF measurements, the thulium concentration was estimated at 2.3 ± 1.8 mM in the brain interstitial space. Spectroscopic imaging showed a split of the 23Na resonance peak which became visible 20 min after starting the infusion. Chemical shift imaging revealed a significant decrease of the initial intensity level to 0.915 ± 0.058 at the end of infusion. CONCLUSION Our novel protocol showed bulk accumulation of Tm[DOTP]5- thus enabling separation of the extra-/intracellular 23Na signal components in the living rat brain while maintaining physiological homeostasis.
Collapse
Affiliation(s)
- Awais A Bajwa
- Division of Neurosurgical Research, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Andreas Neubauer
- Department of Computer Assisted Clinical Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Michael Schwerter
- Department of Computer Assisted Clinical Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Institute of Neuroscience and Medicine (INM-4), Medical Imaging Physics, Forschungszentrum Jülich, Jülich, Germany
| | - Lothar Schilling
- Division of Neurosurgical Research, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany. .,European Center of Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
| |
Collapse
|
3
|
Handa P, Samkaria A, Sharma S, Arora Y, Mandal PK. Comprehensive Account of Sodium Imaging and Spectroscopy for Brain Research. ACS Chem Neurosci 2022; 13:859-875. [PMID: 35324144 DOI: 10.1021/acschemneuro.2c00027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Sodium (23Na) is a vital component of neuronal cells and plays a key role in various signal transmission processes. Hence, information on sodium distribution in the brain using magnetic resonance imaging (MRI) provides useful information on neuronal health. 23Na MRI and MR spectroscopy (MRS) improve the diagnosis, prognosis, and clinical monitoring of neurological diseases but confront some inherent limitations that lead to low signal-to-noise ratio, longer scan time, and diminished partial volume effects. Recent advancements in multinuclear MR technology have helped in further exploration in this domain. We aim to provide a comprehensive description of 23Na MRI and MRS for brain research including the following aspects: (a) theoretical background for understanding 23Na MRI and MRS fundamentals; (b) technological advancements of 23Na MRI with respect to pulse sequences, RF coils, and sodium compartmentalization; (c) applications of 23Na MRI in the early diagnosis and prognosis of various neurological disorders; (d) structural-chronological evolution of sodium spectroscopy in terms of its numerous applications in human studies; (e) the data-processing tools utilized in the quantitation of sodium in the respective anatomical regions.
Collapse
Affiliation(s)
- Palak Handa
- Neuroimaging and Neurospectroscopy (NINS) Laboratory, National Brain Research Centre, Gurgaon 122051, India
| | - Avantika Samkaria
- Neuroimaging and Neurospectroscopy (NINS) Laboratory, National Brain Research Centre, Gurgaon 122051, India
| | - Shallu Sharma
- Neuroimaging and Neurospectroscopy (NINS) Laboratory, National Brain Research Centre, Gurgaon 122051, India
| | - Yashika Arora
- Neuroimaging and Neurospectroscopy (NINS) Laboratory, National Brain Research Centre, Gurgaon 122051, India
| | - Pravat K. Mandal
- Neuroimaging and Neurospectroscopy (NINS) Laboratory, National Brain Research Centre, Gurgaon 122051, India
- Florey Institute of Neuroscience and Mental Health, Melbourne School of Medicine Campus, Melbourne 3010, Australia
| |
Collapse
|
4
|
Morón M. Protein hydration shell formation: Dynamics of water in biological systems exhibiting nanoscopic cavities. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
5
|
Volkov VI, Chernyak AV, Avilova IA, Slesarenko NA, Melnikova DL, Skirda VD. Molecular and Ionic Diffusion in Ion Exchange Membranes and Biological Systems (Cells and Proteins) Studied by NMR. MEMBRANES 2021; 11:385. [PMID: 34074055 PMCID: PMC8225114 DOI: 10.3390/membranes11060385] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/30/2021] [Accepted: 05/12/2021] [Indexed: 11/16/2022]
Abstract
The results of NMR, and especially pulsed field gradient NMR (PFG NMR) investigations, are summarized. Pulsed field gradient NMR technique makes it possible to investigate directly the partial self-diffusion processes in spatial scales from tenth micron to millimeters. Modern NMR spectrometer diffusive units enable to measure self-diffusion coefficients from 10-13 m2/s to 10-8 m2/s in different materials on 1 H, 2 H, 7 Li, 13 C, 19 F, 23 Na, 31 P, 133 Cs nuclei. PFG NMR became the method of choice for reveals of transport mechanism in polymeric electrolytes for lithium batteries and fuel cells. Second wide field of application this technique is the exchange processes and lateral diffusion in biological cells as well as molecular association of proteins. In this case a permeability, cell size, and associate lifetime could be estimated. The authors have presented the review of their research carried out in Karpov Institute of Physical Chemistry, Moscow, Russia; Institute of Problems of Chemical Physics RAS, Chernogolovka, Russia; Kazan Federal University, Kazan, Russia; Korea University, Seoul, South Korea; Yokohama National University, Yokohama, Japan. The results of water molecule and Li+, Na+, Cs+ cation self-diffusion in Nafion membranes and membranes based on sulfonated polystyrene, water (and water soluble) fullerene derivative permeability in RBC, casein molecule association have being discussed.
Collapse
Affiliation(s)
- Vitaliy I. Volkov
- Institute of Problems of Chemical Physics RAS, 142432 Chernogolovka, Russia; (A.V.C.); (I.A.A.); (N.A.S.)
- Scientific Center in Chernogolovka RAS, 142432 Chernogolovka, Russia
| | - Alexander V. Chernyak
- Institute of Problems of Chemical Physics RAS, 142432 Chernogolovka, Russia; (A.V.C.); (I.A.A.); (N.A.S.)
- Scientific Center in Chernogolovka RAS, 142432 Chernogolovka, Russia
| | - Irina A. Avilova
- Institute of Problems of Chemical Physics RAS, 142432 Chernogolovka, Russia; (A.V.C.); (I.A.A.); (N.A.S.)
| | - Nikita A. Slesarenko
- Institute of Problems of Chemical Physics RAS, 142432 Chernogolovka, Russia; (A.V.C.); (I.A.A.); (N.A.S.)
| | - Daria L. Melnikova
- Institute of Physics, KazanFederal University, 420008 Kazan, Russia; (D.L.M.); (V.D.S.)
| | - Vladimir D. Skirda
- Institute of Physics, KazanFederal University, 420008 Kazan, Russia; (D.L.M.); (V.D.S.)
| |
Collapse
|
6
|
Nian K, Harding IC, Herman IM, Ebong EE. Blood-Brain Barrier Damage in Ischemic Stroke and Its Regulation by Endothelial Mechanotransduction. Front Physiol 2020; 11:605398. [PMID: 33424628 PMCID: PMC7793645 DOI: 10.3389/fphys.2020.605398] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 11/27/2020] [Indexed: 12/21/2022] Open
Abstract
Ischemic stroke, a major cause of mortality in the United States, often contributes to disruption of the blood-brain barrier (BBB). The BBB along with its supportive cells, collectively referred to as the “neurovascular unit,” is the brain’s multicellular microvasculature that bi-directionally regulates the transport of blood, ions, oxygen, and cells from the circulation into the brain. It is thus vital for the maintenance of central nervous system homeostasis. BBB disruption, which is associated with the altered expression of tight junction proteins and BBB transporters, is believed to exacerbate brain injury caused by ischemic stroke and limits the therapeutic potential of current clinical therapies, such as recombinant tissue plasminogen activator. Accumulating evidence suggests that endothelial mechanobiology, the conversion of mechanical forces into biochemical signals, helps regulate function of the peripheral vasculature and may similarly maintain BBB integrity. For example, the endothelial glycocalyx (GCX), a glycoprotein-proteoglycan layer extending into the lumen of bloods vessel, is abundantly expressed on endothelial cells of the BBB and has been shown to regulate BBB permeability. In this review, we will focus on our understanding of the mechanisms underlying BBB damage after ischemic stroke, highlighting current and potential future novel pharmacological strategies for BBB protection and recovery. Finally, we will address the current knowledge of endothelial mechanotransduction in BBB maintenance, specifically focusing on a potential role of the endothelial GCX.
Collapse
Affiliation(s)
- Keqing Nian
- Department of Bioengineering, Northeastern University, Boston, MA, United States
| | - Ian C Harding
- Department of Bioengineering, Northeastern University, Boston, MA, United States
| | - Ira M Herman
- Department of Development, Molecular, and Chemical Biology, Tufts Sackler School of Graduate Biomedical Sciences, Boston, MA, United States.,Center for Innovations in Wound Healing Research, Tufts University School of Medicine, Boston, MA, United States
| | - Eno E Ebong
- Department of Bioengineering, Northeastern University, Boston, MA, United States.,Department of Chemical Engineering, Northeastern University, Boston, MA, United States.,Department of Neuroscience, Albert Einstein College of Medicine, New York, NY, United States
| |
Collapse
|
7
|
Naughton NM, Georgiadis JG. Comparison of two-compartment exchange and continuum models of dMRI in skeletal muscle. ACTA ACUST UNITED AC 2019; 64:155004. [DOI: 10.1088/1361-6560/ab2aa6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
8
|
Seyithanoğlu MH, Abdallah A, Dündar TT, Kitiş S, Aralaşmak A, Gündağ Papaker M, Sasani H. Investigation of Brain Impairment Using Diffusion-Weighted and Diffusion Tensor Magnetic Resonance Imaging in Experienced Healthy Divers. Med Sci Monit 2018; 24:8279-8289. [PMID: 30447152 PMCID: PMC6252049 DOI: 10.12659/msm.911475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background The aim of this study was to understand the changes of decompression illness in healthy divers by comparing diffusion-weighted (DWI) and diffusion tensor MRI findings among healthy professional divers and healthy non-divers with no history of diving. Material/Methods A total of 26 people were recruited in this prospective study: 11 experienced divers with no history of neurological decompression disease (cohort) and 15 healthy non-divers (control). In all study subjects, we evaluated apparent diffusion coefficient (ADC) and type of diffusion tensor metric fractional anisotropy (FA) values of different brain locations (e.g., frontal and parieto-occipital white matter, hippocampus, globus pallidus, putamen, internal capsule, thalamus, cerebral peduncle, pons, cerebellum, and corpus callosum). Results ADC values of hippocampus were high in divers but low in the control group; FA values of globus pallidus and putamen were lower in divers compared to the control group. DWI depicted possible changes due to hypoxia in different regions of the brain. Statistically significant differences in ADC values were found in hypoxia, particularly in the hippocampus (p=0.0002), while FA values in the globus pallidus and putamen were statistically significant (p=0.015 and p=0.031, respectively). We detected forgetfulness in 6 divers and deterioration in fine-motor skills in 2 divers (p=0.002 and p=0.17, respectively). All of them were examined using neuro-psychometric tests. Conclusions Repeated hyperbaric exposure increases the risk of white matter damage in experienced healthy divers without neurological decompression illness. The hippocampus, globus pallidus, and putamen are the brain areas responsible for memory, learning, navigation, and fine-motor skills and are sensitive to repeated hyperbaric exposure.
Collapse
Affiliation(s)
| | - Anas Abdallah
- Department of Neurosurgery, Bezmialem Vakif University, Istanbul, Turkey
| | - Tolga Turan Dündar
- Department of Neurosurgery, Bezmialem Vakif University, Istanbul, Turkey
| | - Serkan Kitiş
- Department of Neurosurgery, Bezmialem Vakif University, Istanbul, Turkey
| | - Ayşe Aralaşmak
- Department of Radiology, Bezmialem Vakif University, Istanbul, Turkey
| | | | - Hadi Sasani
- Department of Radiology, Faculty of Medicine, Namik Kemal University, Tekirdag, Turkey
| |
Collapse
|
9
|
Leroi L, Coste A, de Rochefort L, Santin MD, Valabregue R, Mauconduit F, Giacomini E, Luong M, Chazel E, Valette J, Le Bihan D, Poupon C, Boumezbeur F, Rabrait-Lerman C, Vignaud A. Simultaneous multi-parametric mapping of total sodium concentration, T 1, T 2 and ADC at 7 T using a multi-contrast unbalanced SSFP. Magn Reson Imaging 2018; 53:156-163. [PMID: 30055291 DOI: 10.1016/j.mri.2018.07.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 07/23/2018] [Accepted: 07/23/2018] [Indexed: 01/10/2023]
Abstract
PURPOSE Quantifying multiple NMR properties of sodium could be of benefit to assess changes in cellular viability in biological tissues. A proof of concept of Quantitative Imaging using Configuration States (QuICS) based on a SSFP sequence with multiple contrasts was implemented to extract simultaneously 3D maps of applied flip angle (FA), total sodium concentration, T1, T2, and Apparent Diffusion Coefficient (ADC). METHODS A 3D Cartesian Gradient Recalled Echo (GRE) sequence was used to acquire 11 non-balanced SSFP contrasts at a 6 × 6 × 6 mm3 isotropic resolution with carefully-chosen gradient spoiling area, RF amplitude and phase cycling, with TR/TE = 20/3.2 ms and 25 averages, leading to a total acquisition time of 1 h 18 min. A least-squares fit between the measured and the analytical complex signals was performed to extract quantitative maps from a mono-exponential model. Multiple sodium phantoms with different compositions were studied to validate the ability of the method to measure sodium NMR properties in various conditions. RESULTS Flip angle maps were retrieved. Relaxation times, ADC and sodium concentrations were estimated with controlled precision below 15%, and were in accordance with measurements from established methods and literature. CONCLUSION The results illustrate the ability to retrieve sodium NMR properties maps, which is a first step toward the estimation of FA, T1, T2, concentration and ADC of 23Na for clinical research. With further optimization of the acquired QuICS contrasts, scan time could be reduced to be suitable with in vivo applications.
Collapse
Affiliation(s)
- Lisa Leroi
- NeuroSpin, CEA, DRF/JOLIOT, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Arthur Coste
- NeuroSpin, CEA, DRF/JOLIOT, Université Paris-Saclay, Gif-sur-Yvette, France
| | | | - Mathieu D Santin
- CENIR, Centre de NeuroImagerie de Recherche, Paris, France; ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Université Paris 06 UMR S1127, Institut du Cerveau et de la Moelle épinière, Paris, France
| | - Romain Valabregue
- CENIR, Centre de NeuroImagerie de Recherche, Paris, France; ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Université Paris 06 UMR S1127, Institut du Cerveau et de la Moelle épinière, Paris, France
| | | | - Eric Giacomini
- NeuroSpin, CEA, DRF/JOLIOT, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Michel Luong
- NeuroSpin, CEA, DRF/JOLIOT, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Edouard Chazel
- NeuroSpin, CEA, DRF/JOLIOT, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Julien Valette
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Direction de la Recherche Fondamentale (DRF), Institut de Biologie François Jacob, MIRCen, Fontenay-aux-Roses, France
| | - Denis Le Bihan
- NeuroSpin, CEA, DRF/JOLIOT, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Cyril Poupon
- NeuroSpin, CEA, DRF/JOLIOT, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Fawzi Boumezbeur
- NeuroSpin, CEA, DRF/JOLIOT, Université Paris-Saclay, Gif-sur-Yvette, France
| | | | - Alexandre Vignaud
- NeuroSpin, CEA, DRF/JOLIOT, Université Paris-Saclay, Gif-sur-Yvette, France.
| |
Collapse
|
10
|
Gerhalter T, Carlier PG, Marty B. Acute changes in extracellular volume fraction in skeletal muscle monitored by 23Na NMR spectroscopy. Physiol Rep 2018; 5:5/16/e13380. [PMID: 28867674 PMCID: PMC5582265 DOI: 10.14814/phy2.13380] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 06/20/2017] [Accepted: 07/14/2017] [Indexed: 11/24/2022] Open
Abstract
In this article, we induced acute changes in extracellular volume fraction in skeletal muscle tissue and compared the sensitivity of a standard 1H T2 imaging method with different 23Na‐NMR spectroscopy parameters within acquisition times compatible with clinical investigations. First, we analyzed the effect of a short ischemia on the sodium distribution in the skeletal muscle. Then, the lower leg of 21 healthy volunteers was scanned under different vascular filling conditions (vascular draining, filling, and normal condition) expected to modify exclusively the extracellular volume. The first experiment showed no change in the total sodium content during a 15 min ischemia, but the intracellular weighted 23Na signal slowly decreased. For the second part, significant variations of total sodium content, sodium distribution, and T1 and T2∗ of 23Na signal were observed between different vascular filling conditions. The measured sodium distribution correlates significantly with sodium T1 and with the short and long T2∗ fractions. In contrast, significant changes in the proton T2w signal were observed only in three muscles. Altogether, the mean T2w signal intensity of all muscles as well as their mean T2 did not vary significantly with the extracellular volume changes. In conclusion, at the expense of giving up spatial resolution, the proposed 23Na spectroscopic method proved to be more sensitive than standard 1H T2 approach to monitor acute extracellular compartment changes within muscle tissue.
Collapse
Affiliation(s)
- Teresa Gerhalter
- Institute of Myology, NMR Laboratory, Paris, France .,CEA, DRF, IBFJ, MIRCen, NMR Laboratory, Paris, France
| | - Pierre G Carlier
- Institute of Myology, NMR Laboratory, Paris, France.,CEA, DRF, IBFJ, MIRCen, NMR Laboratory, Paris, France
| | - Benjamin Marty
- Institute of Myology, NMR Laboratory, Paris, France.,CEA, DRF, IBFJ, MIRCen, NMR Laboratory, Paris, France
| |
Collapse
|
11
|
Application of Heteronuclear NMR Spectroscopy to Bioinorganic and Medicinal Chemistry ☆. REFERENCE MODULE IN CHEMISTRY, MOLECULAR SCIENCES AND CHEMICAL ENGINEERING 2018. [PMCID: PMC7157447 DOI: 10.1016/b978-0-12-409547-2.10947-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
12
|
Tagliavini A, Pedersen MG. Spatiotemporal Modeling of Triggering and Amplifying Pathways in GLP-1 Secreting Intestinal L Cells. Biophys J 2017; 112:162-171. [PMID: 28076808 PMCID: PMC5232896 DOI: 10.1016/j.bpj.2016.11.3199] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 11/16/2016] [Accepted: 11/29/2016] [Indexed: 01/06/2023] Open
Abstract
Glucagon-like peptide 1 (GLP-1) is secreted by intestinal L-cells, and augments glucose-induced insulin secretion, thus playing an important role in glucose control. The stimulus-secretion pathway in L-cells is still incompletely understood and a topic of debate. It is known that GLP-1 secreting cells can sense glucose to promote electrical activity either by the electrogenic sodium-glucose cotransporter SGLT1, or by closure of ATP-sensitive potassium channels after glucose metabolism. Glucose also has an effect on GLP-1 secretion downstream of electrical activity. An important aspect to take into account is the spatial organization of the cell. Indeed, the glucose transporter GLUT2 is located at the basolateral, vascular side, while SGLT1 is exposed to luminal glucose at the apical side of the cell, suggesting that the two types of transporters play different roles in glucose sensing. Here, we extend our recent model of electrical activity in primary L-cells to include spatiotemporal glucose and Ca2+ dynamics, and GLP-1 secretion. The model confirmed that glucose transportation into the cell through SGLT1 cotransporters can induce Ca2+ influx and release of GLP-1 as a result of electrical activity, while glucose metabolism alone is insufficient to depolarize the cell and evoke GLP-1 secretion in the model, suggesting a crucial role for SGLT1 in triggering GLP-1 release in agreement with experimental studies. We suggest a secondary, but participating, role of GLUT2 and glucose metabolism for GLP-1 secretion via an amplifying pathway that increases the secretion rate at a given Ca2+ level.
Collapse
Affiliation(s)
- Alessia Tagliavini
- Department of Information Engineering, University of Padova, Padova, Italy
| | | |
Collapse
|
13
|
Giovannetti G, Flori A, Marsigli F, De Marchi D, Frijia F, Giannoni M, Kusmic C, Positano V, Aquaro GD, Menichetti L. A radiofrequency system for in vivo hyperpolarized 13 C MRS experiments in mice with a 3T MRI clinical scanner. SCANNING 2016; 38:710-719. [PMID: 27059822 DOI: 10.1002/sca.21319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 03/20/2016] [Indexed: 06/05/2023]
Abstract
Hyperpolarized carbon-13 magnetic resonance spectroscopy (MRS) is a powerful tool to explore tissue metabolic state, by permitting the study of intermediary metabolism of biomolecules in vivo. However, a number of technological problems still limit this technology and need innovative solutions. In particular, the low molar concentration of derivate metabolites give rise to low signal-to-noise ratio (SNR), which makes the design and development of dedicated radiofrequency (RF) coils a fundamental task. In this article, the authors describe the simulation and the design of a RF coils configuration for MR experiments in mice, constituted by a 1 H whole body volume RF coil for imaging and a 13 C single circular loop surface RF coil for performing 13 C acquisitions. After the building, the RF system was employed in an in vivo experiment in a mouse injected with hyperpolarized [1-13 C]pyruvate by using a 3 T clinical MR scanner. SCANNING 38:710-719, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Giulio Giovannetti
- Institute of Clinical Physiology, National Research Council (CNR), Pisa, Italy
- Fondazione CNR/Regione Toscana G. Monasterio, Pisa, Italy
| | - Alessandra Flori
- Fondazione CNR/Regione Toscana G. Monasterio, Pisa, Italy
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Fabio Marsigli
- Department of Information Engineering, University of Pisa, Pisa, Italy
| | | | | | - Massimo Giannoni
- Institute of Clinical Physiology, National Research Council (CNR), Pisa, Italy
| | - Claudia Kusmic
- Institute of Clinical Physiology, National Research Council (CNR), Pisa, Italy
| | | | | | - Luca Menichetti
- Institute of Clinical Physiology, National Research Council (CNR), Pisa, Italy
- Fondazione CNR/Regione Toscana G. Monasterio, Pisa, Italy
| |
Collapse
|
14
|
Kim JI, Lee IS, Song YS, Park SK, Choi KU, Song JW. Short-term follow-up MRI after unplanned resection of malignant soft-tissue tumours; quantitative measurements on dynamic contrast enhanced and diffusion-weighted MR images. Br J Radiol 2016; 89:20160302. [PMID: 27459249 DOI: 10.1259/bjr.20160302] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVE To determine the diagnostic availability of dynamic contrast-enhanced (DCE) and diffusion-weighted (DW) MR images for evaluating residual tumours at short-term follow-up after unplanned excision of malignant soft-tissue tumours. METHODS From January 2013 to September 2014, 38 patients underwent first follow-up MRI, including DCE and DW imaging (DWI), within 3 months of unplanned malignant soft-tissue tumour excision. The presence or absence of definite nodule formation, focal fluid/haematoma collection, oedema and fascial thickening around or at tumour beds were evaluated using conventional MR images. The volume transfer constant between blood plasma and extracellular/extravascular space (EES) (Ktrans), rate constant between EES and blood plasma (Kep), volume of EES space per unit volume of tissue and initial area under the concentration curve (iAUC) values with time-concentration curve (TCC) plots were obtained on DCE images, and apparent diffusion coefficient (ADC) values were measured on ADC maps. All data were statistically analyzed. RESULTS Of the 21 patients who underwent re-excision, 12 patients had a residual tumor and 9 did not. All conventional MRI variables, except definite nodule formation, were insignificantly related to the presence of residual tumour. However, ADC values were found to be significantly associated with the presence of residual tumour, as were the DCE MRI variables, Ktrans, Kep and iAUC. In particular, TCC pattern and Kep were most significantly associated with residual tumour. CONCLUSION Additional DCE images may be useful for determining the presence of residual tumours in tumour beds during short-term follow-up after inadequate malignant soft-tissue tumour excision. ADVANCES IN KNOWLEDGE The addition of DCE MRI and quantitative analysis of the images obtained might be useful for determining the presence of residual tumour in a tumour bed during short-term follow-up after inadequate excision of a malignant soft-tissue tumour, although DWI was also found to be helpful.
Collapse
Affiliation(s)
- Jeung Il Kim
- 1 Department of Orthopaedic Surgery, Pusan National University Hospital, Biomedical Research Institute, Busan, Korea
| | - In Sook Lee
- 2 Department of Radiology, Pusan National University School of Medicine & Pusan National University Hospital, Biomedical Research Institute, Busan, Korea
| | - You Seon Song
- 2 Department of Radiology, Pusan National University School of Medicine & Pusan National University Hospital, Biomedical Research Institute, Busan, Korea
| | - Se Kyoung Park
- 3 Department of Radiology, Kosin University Gospel Hospital, Busan, Korea
| | - Kyung-Un Choi
- 4 Department of Pathology, Pusan National University Hospital, Biomedical Research Institute, Busan, Korea
| | - Jong Woon Song
- 5 Department of Radiology, Inje University Haeundae Paik Hospital, Busan, Korea
| |
Collapse
|
15
|
Abstract
PURPOSE Transmembrane sodium ((23)Na) gradient is critical for cell survival and viability and a target for the development of anti-cancer drugs and treatment as it serves as a signal transducer. The ability to integrate abdominal (23)Na MRI in clinical settings would be useful to non-invasively detect and diagnose a number of diseases in various organ systems. Our goal in this work was to enhance the quality of (23)Na MRI of the abdomen using a 3-Tesla MR scanner and a novel 8-channel phased-array dual-tuned (23)Na and (1)H transmit (Tx)/receive (Rx) coil specially designed to image a large abdomen region with relatively high SNR. METHODS A modified GRE imaging sequence was optimized for (23)Na MRI to obtain the best possible combination of SNR, spatial resolution, and scan time in phantoms as well as volunteers. Tissue sodium concentration (TSC) of the whole abdomen was calculated from the inhomogeneity-corrected (23)Na MRI for absolute quantification. In addition, in vivo reproducibility and reliability of TSC measurements from (23)Na MRI was evaluated in normal volunteers. RESULTS (23)Na axial images of the entire abdomen with a high spatial resolution (0.3 cm) and SNR (~20) in 15 min using the novel 8-channel dual-tuned (23)Na and (1)H transmit/receive coil were obtained. Quantitative analysis of the sodium images estimated a mean TSC of the liver to be 20.13 mM in healthy volunteers. CONCLUSION Our results have shown that it is feasible to obtain high-resolution (23)Na images using a multi-channel surface coil with good SNR in clinically acceptable scan times in clinical practice for various body applications.
Collapse
|
16
|
Meyerspeer M, Magill AW, Kuehne A, Gruetter R, Moser E, Schmid AI. Simultaneous and interleaved acquisition of NMR signals from different nuclei with a clinical MRI scanner. Magn Reson Med 2015; 76:1636-1641. [PMID: 26608834 PMCID: PMC4996325 DOI: 10.1002/mrm.26056] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Revised: 10/16/2015] [Accepted: 10/25/2015] [Indexed: 11/17/2022]
Abstract
Purpose Modification of a clinical MRI scanner to enable simultaneous or rapid interleaved acquisition of signals from two different nuclei. Methods A device was developed to modify the local oscillator signal fed to the receive channel(s) of an MRI console. This enables external modification of the frequency at which the receiver is sensitive and rapid switching between different frequencies. Use of the device was demonstrated with interleaved and simultaneous 31P and 1H spectroscopic acquisitions, and with interleaved 31P and 1H imaging. Results Signal amplitudes and signal‐to‐noise ratios were found to be unchanged for the modified system, compared with data acquired with the MRI system in the standard configuration. Conclusion Interleaved and simultaneous 1H and 31P signal acquisition was successfully demonstrated with a clinical MRI scanner, with only minor modification of the RF architecture. While demonstrated with 31P, the modification is applicable to any detectable nucleus without further modification, enabling a wide range of simultaneous and interleaved experiments to be performed within a clinical setting. Magn Reson Med 76:1636–1641, 2016. © 2015 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Collapse
Affiliation(s)
- Martin Meyerspeer
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Austria. .,MR Centre of Excellence, Medical University of Vienna, Austria. .,Laboratory for Functional and Metabolic Imaging, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| | - Arthur W Magill
- Laboratory for Functional and Metabolic Imaging, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Department of Radiology, University of Lausanne, Lausanne, Switzerland
| | - Andre Kuehne
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Austria.,MR Centre of Excellence, Medical University of Vienna, Austria
| | - Rolf Gruetter
- Laboratory for Functional and Metabolic Imaging, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Department of Radiology, University of Lausanne, Lausanne, Switzerland.,Department of Radiology, University of Geneva, Geneva, Switzerland
| | - Ewald Moser
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Austria.,MR Centre of Excellence, Medical University of Vienna, Austria
| | - Albrecht Ingo Schmid
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Austria.,MR Centre of Excellence, Medical University of Vienna, Austria
| |
Collapse
|
17
|
Søgaard LV, Schilling F, Janich MA, Menzel MI, Ardenkjaer-Larsen JH. In vivo measurement of apparent diffusion coefficients of hyperpolarized ¹³C-labeled metabolites. NMR IN BIOMEDICINE 2014; 27:561-9. [PMID: 24664927 DOI: 10.1002/nbm.3093] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Revised: 01/09/2014] [Accepted: 01/22/2014] [Indexed: 05/14/2023]
Abstract
The combination of hyperpolarized MRS with diffusion weighting (dw) allows for determination of the apparent diffusion coefficient (ADC), which is indicative of the intra- or extracellular localization of the metabolite. Here, a slice-selective pulsed-gradient spin echo sequence was implemented to acquire a series of dw spectra from rat muscle in vivo to determine the ADCs of multiple metabolites after a single injection of hyperpolarized [1- ¹³C]pyruvate. An optimal control optimized universal-rotation pulse was used for refocusing to minimize signal loss caused by B1 imperfections. Non-dw spectra were acquired interleaved with the dw spectra and these were used to correct for signal decay during the acquisition as a result of T1 decay, pulse imperfections, flow etc. The data showed that the ADC values for [1- ¹³C]lactate (0.4-0.7 µm² /ms) and [1- ¹³C]alanine (0.4-0.9 µm² /ms) were about a factor of two lower than the ADC of [1- ¹³C]pyruvate (1.1-1.5 µm²/ms). This indicates a more restricted diffusion space for the former two metabolites consistent with lactate and alanine being intracellular. The higher ADC for pyruvate (similar to the proton ADC) reflected that the injected substance was not confined inside the muscle cells but also present extracellular.
Collapse
Affiliation(s)
- Lise Vejby Søgaard
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Denmark
| | | | | | | | | |
Collapse
|
18
|
Thawait GK, Subhawong TK, Tatizawa Shiga NY, Fayad LM. "Cystic"-appearing soft tissue masses: what is the role of anatomic, functional, and metabolic MR imaging techniques in their characterization? J Magn Reson Imaging 2013; 39:504-11. [PMID: 24532375 DOI: 10.1002/jmri.24314] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Accepted: 06/21/2013] [Indexed: 11/05/2022] Open
Abstract
Although conventional MR imaging with contrast-enhanced T1-weighted sequences is of paramount importance for evaluating soft tissue masses, noncontrast MR sequences have emerged that facilitate their characterization. In this article, the utility and pitfalls of conventional MR imaging with T1-weighted, fluid-sensitive, and contrast-enhanced sequences will be discussed, along with that of functional (diffusion weighted imaging) and metabolic (proton MR spectroscopy) non-contrast-enhanced techniques for the purpose of soft tissue mass characterization. In particular, we discuss the application of these techniques to differentiating neoplastic or inflammatory masses that have high fluid content from benign cysts, as this distinction is a common pitfall of conventional sequences.
Collapse
Affiliation(s)
- Gaurav K Thawait
- Department of Radiology and Radiological Science, The Johns Hopkins Medical Institutions, 601 North Wolfe Street, Baltimore, Maryland, USA
| | | | | | | |
Collapse
|
19
|
Meyerspeer M, Roig ES, Gruetter R, Magill AW. An improved trap design for decoupling multinuclear RF coils. Magn Reson Med 2013; 72:584-90. [DOI: 10.1002/mrm.24931] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 07/01/2013] [Accepted: 07/30/2013] [Indexed: 11/07/2022]
Affiliation(s)
- Martin Meyerspeer
- LIFMETÉcole Polytechnique Fédérale de LausanneLausanne Switzerland
- Center for Medical Physics and Biomedical EngineeringMedical University of Vienna Austria
- MR Centre of ExcellenceMedical University of Vienna Austria
| | - Eulalia Serés Roig
- LIFMETÉcole Polytechnique Fédérale de LausanneLausanne Switzerland
- Department of RadiologyUniversity of Lausanne Lausanne Switzerland
| | - Rolf Gruetter
- LIFMETÉcole Polytechnique Fédérale de LausanneLausanne Switzerland
- Department of RadiologyUniversity of Lausanne Lausanne Switzerland
- Department of RadiologyUniversity of GenevaGeneva Switzerland
| | - Arthur W. Magill
- LIFMETÉcole Polytechnique Fédérale de LausanneLausanne Switzerland
- Department of RadiologyUniversity of Lausanne Lausanne Switzerland
| |
Collapse
|
20
|
Quantitative model of NMR chemical shifts of 23Na+ induced by TmDOTP: applications in studies of Na+ transport in human erythrocytes. J Inorg Biochem 2012; 115:211-9. [PMID: 22658754 DOI: 10.1016/j.jinorgbio.2012.03.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Revised: 03/25/2012] [Accepted: 03/29/2012] [Indexed: 11/23/2022]
Abstract
The change in the NMR chemical shift of (23)Na(+) induced by the shift reagent TmDOTP was examined under various experimental conditions typical of cells, including changed Na(+), K(+), PO(4)(3-), and Ca(2+) concentrations, pH and temperature. A mathematical model was developed relating these factors to the observed chemical shift change relative to a capillary-sphere reference. This enabled cation concentrations to be deduced quantitatively from experimental chemical shifts, including those observed during biological time courses with cell suspensions containing TmDOTP DOTP, 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetrakis (methylenephosphonate) [corrected]. The model was applied to a (23)Na NMR time course in which monensin, a sodium ionophore, was introduced to human erythrocytes, changing the concentration of cations which may bind TmDOTP, and also resulting in cell volume changes. Using the model with experimentally determined conditions, the chemical shift was predicted and closely followed the experimental values over time. In addition to the model, parameter fitting was achieved by calculating the likelihood distribution of parameters, and seeking the maximum likelihood with a Bayesian type of analysis.
Collapse
|
21
|
Eliav U, Shekar SC, Ling W, Navon G, Jerschow A. Magnetic alignment and quadrupolar/paramagnetic cross-correlation in complexes of Na with LnDOTP5-. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2012; 216:114-120. [PMID: 22342118 DOI: 10.1016/j.jmr.2012.01.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Revised: 01/13/2012] [Accepted: 01/22/2012] [Indexed: 05/31/2023]
Abstract
The observation of a double-quantum filtered signal of quadrupolar nuclei (e.g. (23)Na) in solution has been traditionally interpreted as a sign for anisotropic reorientational motion. Ling and Jerschow (2007) have found that a (23)Na double-quantum signal is observed also in solutions of TmDOTPNa(5). Interference effects between the quadrupolar and the paramagnetic interactions have been reported to lead to the appearance of double-quantum coherences even in the absence of a residual quadrupolar interaction. In addition, such processes lead to differential linebroadening effects between the satellite transitions, akin to effects that are well known for dipolar-CSA cross-correlation. Here, we report experiments on sodium in the presence of LnDOTP compounds, where it is shown that these cross-correlation effects correlate well with the pseudo-contact shift. In addition, anisotropic g-values of the lanthanide compounds in question, can also lead to alignment within the magnetic field, and consequently to the appearance of line splitting and double-quantum coherences. The two competing effects are demonstrated and it is concluded that both cross-correlated relaxation and alignment in the magnetic field must be at work in the systems described here.
Collapse
Affiliation(s)
- Uzi Eliav
- School of Chemistry, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
| | | | | | | | | |
Collapse
|
22
|
Babsky AM, Ju S, Bennett S, George B, McLennan G, Bansal N. Effect of implantation site and growth of hepatocellular carcinoma on apparent diffusion coefficient of water and sodium MRI. NMR IN BIOMEDICINE 2012; 25:312-321. [PMID: 21823182 DOI: 10.1002/nbm.1752] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Revised: 04/15/2011] [Accepted: 04/18/2011] [Indexed: 05/31/2023]
Abstract
Hepatocellular carcinoma (HCC) and liver metastases are an increasing problem worldwide. Non-invasive methods for the early detection of HCC and understanding of the tumor growth mechanisms are highly desirable. Both the diffusion-weighted (1)H (DWI) and (23)Na MRI reflect alterations in tissue compartment volumes in tumors, as well as physiological and metabolic transformation in cells. Effects of untreated growth on apparent diffusion coefficient of water (ADC), single quantum (SQ) and triple quantum-filtered (TQF) (23)Na MRI were compared in intrahepatically and subcutaneously implanted HCCs in rats. Animals were examined weekly for 4 weeks after injection of N1S1 cells. ADC of intrahepatic HCC was 1.5-times higher compared to the nearby liver tissue, and with growth, the ADC did not increase. ADC of subcutaneous HCC was lower compared to intrahepatic HCC and it increased with growth. Untreated growth of both intrahepatic and subcutaneous HCCs was associated with an increase in SQ and TQF (23)Na signal intensity suggesting an increase in tissue Na(+) and intracellular Na(+) (Na(+)(i)), respectively, most likely due to an increase in relative extracellular space and Na(+)(i) concentration as a result of changes in tissue structure and cellular metabolism. Thus, SQ and TQF (23)Na MRI may be complementary to diffusion imaging in areas susceptible to motion for characterizing hepatic tumors and for other applications, such as, predicting and monitoring therapy response.
Collapse
Affiliation(s)
- Andriy M Babsky
- Department of Radiology and Imaging Sciences, Indiana University, Indianapolis, IN 46202-5181, USA.
| | | | | | | | | | | |
Collapse
|
23
|
Wang X, Jacobs MA, Fayad L. Therapeutic response in musculoskeletal soft tissue sarcomas: evaluation by MRI. NMR IN BIOMEDICINE 2011; 24:750-63. [PMID: 21793077 PMCID: PMC3150732 DOI: 10.1002/nbm.1731] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
This article provides a literature review of the use of MRI in monitoring the treatment response of soft tissue sarcomas. The basic classification and physiology of soft tissue tumors are introduced. Then, the major treatment options for soft tissue sarcomas are summarized with brief coverage of possible responses and grading systems. Four major branches of MRI techniques are covered, including conventional T(1) - and T(2) -weighted imaging, contrast-enhanced MRI, MR diffusion and perfusion imaging, and MRS, with a focus on the tumor microenvironment. Although this literature survey focuses on recent clinical developments using these MRI techniques, research venues in preclinical studies, as well as in potential applications other than soft tissue sarcomas, are also included when comparable and/or mutually supporting. Examples from other less-discussed MRI modalities are also briefly covered, not only to complement, but also to expand, the scope and depth of information for various kinds of lesions.
Collapse
Affiliation(s)
- Xin Wang
- Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University, Baltimore, MD, USA
| | | | | |
Collapse
|
24
|
Fung SH, Roccatagliata L, Gonzalez RG, Schaefer PW. MR Diffusion Imaging in Ischemic Stroke. Neuroimaging Clin N Am 2011; 21:345-77, xi. [DOI: 10.1016/j.nic.2011.03.001] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
25
|
Jacobs MA, Stearns V, Wolff AC, Macura K, Argani P, Khouri N, Tsangaris T, Barker PB, Davidson NE, Bhujwalla ZM, Bluemke DA, Ouwerkerk R. Multiparametric magnetic resonance imaging, spectroscopy and multinuclear (²³Na) imaging monitoring of preoperative chemotherapy for locally advanced breast cancer. Acad Radiol 2010; 17:1477-85. [PMID: 20863721 DOI: 10.1016/j.acra.2010.07.009] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Revised: 07/09/2010] [Accepted: 07/10/2010] [Indexed: 12/12/2022]
Abstract
RATIONALE AND OBJECTIVES The aim of this prospective study was to investigate using multiparametric and multinuclear magnetic resonance imaging during preoperative systemic therapy for locally advanced breast cancer. MATERIALS AND METHODS Women with operable stage 2 or 3 breast cancer who received preoperative systemic therapy were studied using dynamic contrast-enhanced magnetic resonance imaging, magnetic resonance spectroscopy, and ²³Na magnetic resonance. Quantitative metrics of choline peak signal-to-noise ratio, total tissue sodium concentration, tumor volumes, and Response Evaluation Criteria in Solid Tumors were determined and compared to final pathologic results using receiver-operating characteristic analysis. Hormonal markers were investigated. Statistical significance was set at P < .05. RESULTS Eighteen eligible women were studied. Fifteen responded to therapy, four (22%) with pathologic complete response and 11 (61%) with pathologic partial response. Three patients (17%) had no response. Among estrogen receptor-positive, HER2-positive, and triple-negative phenotypes, observed frequencies of pathologic complete response, pathologic partial response, and no response were 2, 5, and 0; 1, 4, and 0; and 1, 1, and 3, respectively. Responders (pathologic complete response and pathologic partial response) had the largest reductions in choline signal-to-noise ratio (35%, from 7.2 ± 2.3 to 4.6 ± 2; P < .01) compared to nonresponders (11%, from 8.4 ± 2.7 to 7.5 ± 3.6; P = .13) after the first cycle. Total tissue sodium concentration significantly decreased in responders (27%, from 66 ± 18 to 48.4 ± 8 mmol/L; P = .01), while there was little change in nonresponders (51.7 ± 7.6 to 56.5 ± 1.6 mmol/L; P = .50). Lesion volume decreased in responders (40%, from 78 ± 78 to 46 ± 51 mm³; P = .01) and nonresponders (21%, from 100 ± 104 to 79.2 ± 87 mm³; P = .23) after the first cycle. The largest reduction in Response Evaluation Criteria in Solid Tumors occurred after the first treatment in responders (18%, from 24.5 ± 20 to 20.2 ± 18 mm; P = .01), with a slight decrease in tumor diameter noted in nonresponders (17%, from 23 ± 19 to 19.2 ± 19.1 mm; P = .80). CONCLUSIONS Multiparametric and multinuclear imaging parameters were significantly reduced after the first cycle of preoperative systemic therapy in responders, specifically, choline signal-to-noise ratio and sodium. These new surrogate radiologic biomarkers maybe able to predict and provide a platform for potential adaptive therapy in patients.
Collapse
Affiliation(s)
- Michael A Jacobs
- The Russell H. Morgan Department of Radiology and Radiological Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Froeling M, Oudeman J, van den Berg S, Nicolay K, Maas M, Strijkers GJ, Drost MR, Nederveen AJ. Reproducibility of diffusion tensor imaging in human forearm muscles at 3.0 T in a clinical setting. Magn Reson Med 2010; 64:1182-90. [DOI: 10.1002/mrm.22477] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
27
|
Diffusion-weighted imaging with apparent diffusion coefficient mapping and spectroscopy in prostate cancer. Top Magn Reson Imaging 2009; 19:261-72. [PMID: 19512848 DOI: 10.1097/rmr.0b013e3181aa6b50] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Prostate cancer is a major health problem, and the exploration of noninvasive imaging methods that have the potential to improve specificity while maintaining high sensitivity is still critically needed. Tissue changes induced by tumor growth can be visualized by magnetic resonance imaging (MRI) methods. Current MRI methods include conventional T2-weighted imaging, diffusion-weighted imaging (DWI) with apparent diffusion coefficient (ADC) mapping and magnetic resonance spectroscopy (MRS). Techniques such as DWI/ADC provide functional information about the behavior of water molecules in tissue; MRS can provide biochemical information about the presence or absence of certain metabolites, such as choline, creatine, and citrate. Finally, vascular parameters can be investigated using dynamic contrast-enhanced MRI. Moreover, with whole-body MRI and DWI, metastatic disease can be evaluated in 1 session and may provide a way to monitor treatment. Therefore, when combining these various methods, a multiparametric data set can be built to assist in the detection, localization, assessment of prostate cancer aggressiveness, and tumor staging. Such a comprehensive approach offers more power to evaluate prostate disease than any single measure alone. In this article, we focus on the role of DWI/ADC and MRS in the detection and characterization using both in vivo and ex vivo imaging of prostate pathology.
Collapse
|
28
|
Jacobs MA, Ouwerkerk R, Kamel I, Bottomley PA, Bluemke DA, Kim HS. Proton, diffusion-weighted imaging, and sodium (23Na) MRI of uterine leiomyomata after MR-guided high-intensity focused ultrasound: a preliminary study. J Magn Reson Imaging 2009; 29:649-56. [PMID: 19243047 PMCID: PMC4151255 DOI: 10.1002/jmri.21677] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
PURPOSE To determine the feasibility of using combined proton (1H), diffusion-weighted imaging (DWI), and sodium (23Na) magnetic resonance imaging (MRI) to monitor the treatment of uterine leiomyomata (fibroids). MATERIALS AND METHODS Eight patients with uterine leiomyomata were enrolled and treated using MRI-guided high-intensity frequency ultrasound surgery (MRg-HIFUS). MRI scans collected at baseline and posttreatment consisted of T2-, T1-, and 1H DWI, as well as posttreatment 23Na MRI. The 23Na and 1H MRi were coregistered using a replacement phantom method. Regions of interest in treated and untreated uterine leiomyoma tissue were drawn on 1H MRI and DWI, wherein the tissue apparent diffusion coefficient of water (ADC) and absolute sodium concentrations were measured. RESULTS Regions of treated uterine tissue were clearly identified on both DWI and 23Na images. The sodium concentrations in normal myometrium tissue were 35.8+/-2.1 mmol (mM), in the fundus; 43.4+/-3.8 mM, and in the bladder; 65.3+/-0.8 mM with ADC in normal myometrium of 2.2+/-0.3x10(-3) mm2/sec. Sodium concentration in untreated leiomyomata were 28+/-5 mM, and were significantly elevated (41.6+/-7.6 mM, P<0.05) after treatment. Apparent diffusion coefficient values in the treated leiomyomata (1.30+/-0.38x10(-3) mm2/sec) were decreased compared to areas of untreated leiomyomata (1.75+/--4048micro-4050micro36x10(-3) mm2/sec; P=0.04). CONCLUSION Multiparametric imaging permits identification of uterine leiomyomata, revealing altered 23Na MRI and DWI levels following noninvasive treatment that provides a mechanism to explore the molecular and metabolic pathways after treatment.
Collapse
Affiliation(s)
- Michael A Jacobs
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, School of Medicine, Baltimore, Maryland 21205, USA.
| | | | | | | | | | | |
Collapse
|
29
|
Haupt E, Wontorra C, Rehder D, Merca A, Müller A. Confinement and Step-Wise Reopening of Channels in an Artificial Cell/Inorganic Capsule: A7Li NMR Study. Chemistry 2008; 14:8808-8811. [DOI: 10.1002/chem.200801122] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
30
|
Rehder D, Haupt ETK, Müller A. Cellular cation transport studied by 6/7Li and 23Na NMR in a porous Mo132 Keplerate type nano-capsule as model system. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2008; 46 Suppl 1:S24-S29. [PMID: 18853473 DOI: 10.1002/mrc.2343] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Li+ ions can interplay with other cations intrinsically present in the intra- and extra-cellular space (i.e. Na+, K+, Mg2+ and Ca2+) have therapeutic effects (e.g. in the treatment of bipolar disorder) or toxic effects (at higher doses), likely because Li+ interferes with the intra-/extra-cellular concentration gradients of the mentioned physiologically relevant cations. The cellular transmembrane transport can be modelled by molybdenum-oxide-based Keplerates, i.e. nano-sized porous capsules containing 132 Mo centres, monitored through 6/7Li as well as 23Na NMR spectroscopy. The effects on the transport of Li+ cations through the 'ion channels' of these model cells, caused by variations in water amount, temperature, and by the addition of organic cationic 'plugs' and the shift reagent [Dy(PPP)2](7-) are reported. In the investigated solvent systems, water acts as a transport mediator for Li+. Likewise, the counter-transport (Li+/Na+, Li+/K+, Li+/Cs+ and Li+/Ca2+) has been investigated by 7Li NMR and, in the case of Li+/Na+ exchange, by 23Na NMR, and it has been shown that most (in the case of Na+ and K+, all (Ca2+) or almost none (Cs+) of the Li cations is extruded from the internal sites of the artificial cell to the extra-cellular medium, while Na+, K+ and Ca2+ are partially incorporated.
Collapse
Affiliation(s)
- Dieter Rehder
- Chemistry Department, University of Hamburg, 20146 Hamburg, Germany.
| | | | | |
Collapse
|