1
|
Makino A, Okazawa H, Kiyono Y. Utilization of Antibody Allows Rapid Clearance of Nanoparticle Probes from Blood without the Need of Probe Modifications. ACS OMEGA 2021; 6:21153-21159. [PMID: 34423223 PMCID: PMC8375092 DOI: 10.1021/acsomega.1c03076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
Nanoparticles are attracting attention as drug carriers for realizing "theranostics". However, nanoparticles generally show long blood circulation behaviors, and the remaining nanoparticle probe in the blood is the cause of prolonged optimal time from probe injection to imaging. Recently, it has been reported that some nanoparticles activate the immune system, producing an anti-nanoparticle antibody, which can selectively detect the corresponding nanoparticle and transfer it to the liver by opsonization. Lactosome is a polymer micelle prepared from amphiphilic PNMG-block-PLLA polydepsipeptide and known to activate the immune system when administered to mice at a specific concentration. In this study, radioactive fluorine-labeled lactosome (18F-lactosome) is used as a positron emission tomography probe for tumor imaging, and anti-lactosome antibody was additionally administrated after 2 h from the probe dosage. 18F-lactosome remaining in the blood was opsonized by the anti-lactosome antibody and transferred to the liver under the antibody dose-dependent manner. Because of the probe reduction from the blood, the tumor/blood signal intensity ratio could be improved up to 50% by anti-lactosome antibody administration. There needs further improvement, but the developed method is applicable for imaging utilizing nanoparticle probes, which activate the immune system.
Collapse
Affiliation(s)
- Akira Makino
- Biomedical
Imaging Research Center, University of Fukui, 23-3 Matsuoka-Shimoaizuki, Eiheiji-cho, Yoshida-gun, Fukui 910-1193, Japan
- Life
Science Innovation Center, University of
Fukui, 9-1 Bunkyo-3,
Fukui-shi, Fukui 910-8507, Japan
| | - Hidehiko Okazawa
- Biomedical
Imaging Research Center, University of Fukui, 23-3 Matsuoka-Shimoaizuki, Eiheiji-cho, Yoshida-gun, Fukui 910-1193, Japan
- Life
Science Innovation Center, University of
Fukui, 9-1 Bunkyo-3,
Fukui-shi, Fukui 910-8507, Japan
| | - Yasushi Kiyono
- Biomedical
Imaging Research Center, University of Fukui, 23-3 Matsuoka-Shimoaizuki, Eiheiji-cho, Yoshida-gun, Fukui 910-1193, Japan
- Life
Science Innovation Center, University of
Fukui, 9-1 Bunkyo-3,
Fukui-shi, Fukui 910-8507, Japan
| |
Collapse
|
2
|
Badachhape AA, Working PK, Srivastava M, Bhandari P, Stupin IV, Devkota L, Tanifum EA, Annapragada AV, Ghaghada KB. Pre-clinical dose-ranging efficacy, pharmacokinetics, tissue biodistribution, and toxicity of a targeted contrast agent for MRI of amyloid deposition in Alzheimer's disease. Sci Rep 2020; 10:16185. [PMID: 32999398 PMCID: PMC7527957 DOI: 10.1038/s41598-020-73233-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 09/09/2020] [Indexed: 01/30/2023] Open
Abstract
In these preclinical studies, we describe ADx-001, an Aβ-targeted liposomal macrocyclic gadolinium (Gd) imaging agent, for MRI of amyloid plaques. The targeting moiety is a novel lipid-PEG conjugated styryl-pyrimidine. An MRI-based contrast agent such as ADx-001 is attractive because of the lack of radioactivity, ease of distribution, long shelf life, and the prevalence of MRI scanners. Dose-ranging efficacy studies were performed on a 1 T MRI scanner using a transgenic APP/PSEN1 mouse model of Alzheimer's disease. ADx-001 was tested at 0.10, 0.15, and 0.20 mmol Gd/kg. Gold standard post-mortem amyloid immunostaining was used for the determination of sensitivity and specificity. ADx-001 toxicity was evaluated in rats and monkeys at doses up to 0.30 mmol Gd/kg. ADx-001 pharmacokinetics were determined in monkeys and its tissue distribution was evaluated in rats. ADx-001-enhanced MRI demonstrated significantly higher (p < 0.05) brain signal enhancement in transgenic mice relative to wild type mice at all dose levels. ADx-001 demonstrated high sensitivity at 0.20 and 0.15 mmol Gd/kg and excellent specificity at all dose levels for in vivo imaging of β amyloid plaques. ADx-001 was well tolerated in rats and monkeys and exhibited the slow clearance from circulation and tissue biodistribution typical of PEGylated nanoparticles.
Collapse
Affiliation(s)
- Andrew A Badachhape
- Department of Radiology, Baylor College of Medicine, Houston, TX, 77030, USA
| | | | - Mayank Srivastava
- The Singleton Department of Pediatric Radiology, Texas Children's Hospital, Houston, TX, 77030, USA
| | - Prajwal Bhandari
- Department of Radiology, Baylor College of Medicine, 1102 Bates Street, Suite 850, Houston, TX, 77030, USA
| | - Igor V Stupin
- The Singleton Department of Pediatric Radiology, Texas Children's Hospital, Houston, TX, 77030, USA
| | - Laxman Devkota
- Department of Pediatrics-Oncology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Eric A Tanifum
- The Singleton Department of Pediatric Radiology, Texas Children's Hospital, Houston, TX, 77030, USA
| | - Ananth V Annapragada
- The Singleton Department of Pediatric Radiology, Texas Children's Hospital, Houston, TX, 77030, USA
| | - Ketan B Ghaghada
- The Singleton Department of Pediatric Radiology, Texas Children's Hospital, Houston, TX, 77030, USA.
- Department of Radiology, Baylor College of Medicine, 1102 Bates Street, Suite 850, Houston, TX, 77030, USA.
- Edward B. Singleton Department of Radiology, Texas Children's Hospital, Houston, USA.
| |
Collapse
|
3
|
Bag N, Mathur R, Singh S, Hussain F, Chauhan RP, Chuttani K, Mishra AK. Design, synthesis and evaluation of the QD-DTC–bisbiotin nanobioconjugate as a potential optical-SPECT imaging agent. MEDCHEMCOMM 2015. [DOI: 10.1039/c4md00294f] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Biotinylated dithiocarbamate ligand modified quantum dots improve targeting while maintaining the photoluminescence for efficient imaging applications.
Collapse
Affiliation(s)
- Narmada Bag
- Department of Cyclotron and Radiopharmaceutical Sciences
- Institute of Nuclear Medicine and Allied Sciences
- Defence Research and Development Organization
- New Delhi-110054
- India
| | - Rashi Mathur
- Department of Cyclotron and Radiopharmaceutical Sciences
- Institute of Nuclear Medicine and Allied Sciences
- Defence Research and Development Organization
- New Delhi-110054
- India
| | - Sweta Singh
- Department of Cyclotron and Radiopharmaceutical Sciences
- Institute of Nuclear Medicine and Allied Sciences
- Defence Research and Development Organization
- New Delhi-110054
- India
| | - Firasat Hussain
- Department of Chemistry
- Delhi University
- New Delhi-110054
- India
| | | | - Krishna Chuttani
- Department of Cyclotron and Radiopharmaceutical Sciences
- Institute of Nuclear Medicine and Allied Sciences
- Defence Research and Development Organization
- New Delhi-110054
- India
| | - Anil Kumar Mishra
- Department of Cyclotron and Radiopharmaceutical Sciences
- Institute of Nuclear Medicine and Allied Sciences
- Defence Research and Development Organization
- New Delhi-110054
- India
| |
Collapse
|
4
|
Qiu LH, Zhang JW, Li SP, Xie C, Yao ZW, Feng XY. Molecular imaging of angiogenesis to delineate the tumor margins in glioma rat model with endoglin-targeted paramagnetic liposomes using 3T MRI. J Magn Reson Imaging 2014; 41:1056-64. [PMID: 24677456 DOI: 10.1002/jmri.24628] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 03/06/2014] [Indexed: 02/01/2023] Open
Abstract
PURPOSE To evaluate the use of endoglin-targeted paramagnetic liposomes in delineating the glioma margins using magnetic resonance (MR) angiogenesis imaging in a rat model. MATERIALS AND METHODS Four liposome preparations, including nontargeted paramagnetic liposomes (Gd-SLs), isotype control IgG-coupled paramagnetic liposomes (IgG-Gd-SLs), endoglin monoclonal antibody coupled paramagnetic liposomes (MAb-Gd-SLs), and biotinylated antibodies (Bio-MAb)/streptavidin-coupled paramagnetic liposomes (SAv-Gd-SLs) for two-step pretargeting imaging, were formulated. All animal experiments were carried out with the approval of the Shanghai Animal Care. C6 glioma-bearing Sprague-Dawley rats were intravenously injected with gadolinium-diethylenetriaminepentaacetic acid (Gd-DTPA) or the previously mentioned liposomes (n = 5) and imaged with MR. T1 -weighted MRI was performed before and dynamically repeated after different contrast agents were injected. The enhancement features of the tumors were compared. RESULTS The signal enhancement of the tumor in the two-step pretargeting group increased by 117.9 ± 5.3% at the periphery and 109.2 ± 3.5% in the center (P = 0.032) at the 8-hour timepoint after SAv-Gd-SLs injection. Ring-like enhancement margins were demonstrated at the periphery of the tumor in the two-step targeted group. The specificity of the targeted liposomes was supported by the competitive study. The signal of peak enhancement using MAb-Gd-SLs was 59% less than that of the two-step group and only slightly higher than the non-targeted groups. CONCLUSION The two-step endoglin-targeted imaging using biotin-streptavidin interaction was demonstrated to induce intense enhancement of the tumor periphery, which implies that this advanced MR molecular contrast agent may be suitable for accurately delineating glioma tumor margins. J. Magn. Reson. Imaging 2015;41:1056-1064. © 2014 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Long-Hua Qiu
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
| | | | | | | | | | | |
Collapse
|
5
|
Deddens LH, van Tilborg GAF, van der Toorn A, van der Marel K, Paulis LEM, van Bloois L, Storm G, Strijkers GJ, Mulder WJM, de Vries HE, Dijkhuizen RM. MRI of ICAM-1 upregulation after stroke: the importance of choosing the appropriate target-specific particulate contrast agent. Mol Imaging Biol 2014; 15:411-22. [PMID: 23400400 DOI: 10.1007/s11307-013-0617-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
PURPOSE Magnetic resonance imaging (MRI) with targeted contrast agents provides a promising means for diagnosis and treatment monitoring after cerebrovascular injury. Our goal was to demonstrate the feasibility of this approach to detect the neuroinflammatory biomarker intercellular adhesion molecule-1 (ICAM-1) after stroke and to establish a most efficient imaging procedure. PROCEDURES We compared two types of ICAM-1-functionalized contrast agent: T 1-shortening gadolinium chelate-containing liposomes and T2(*)-shortening micron-sized iron oxide particles (MPIO). Binding efficacy and MRI contrast effects were tested in cell cultures and a mouse stroke model. RESULTS Both ICAM-1-targeted agents bound effectively to activated cerebrovascular cells in vitro, generating significant MRI contrast-enhancing effects. Direct in vivo MRI-based detection after stroke was only achieved with ICAM-1-targeted MPIO, although both contrast agents showed similar target-specific vascular accumulation. CONCLUSIONS Our study demonstrates the potential of in vivo MRI of post-stroke ICAM-1 upregulation and signifies target-specific MPIO as most suitable contrast agent for molecular MRI of cerebrovascular inflammation.
Collapse
Affiliation(s)
- Lisette H Deddens
- Biomedical MR Imaging and Spectroscopy Group, Image Sciences Institute, University Medical Center Utrecht, Yalelaan 2, 3584 CM, Utrecht, the Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Nanomedicine in Cancer Diagnosis and Therapy: Converging Medical Technologies Impacting Healthcare. Nanomedicine (Lond) 2014. [DOI: 10.1007/978-1-4614-2140-5_18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
|
7
|
Deng Y, Luo YF, An LN, Yue T, Gilani MRHS, Liang GL. Covalent Conjugation of Fluorescence Probes to Nanoparticles for Signal Enhancement. CHEM LETT 2013. [DOI: 10.1246/cl.130424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yun Deng
- CAS Key Laboratory of Soft Matter Chemistry, Department of Chemistry, University of Science and Technology of China
| | - Yu-feng Luo
- CAS Key Laboratory of Soft Matter Chemistry, Department of Chemistry, University of Science and Technology of China
| | - Lin-na An
- CAS Key Laboratory of Soft Matter Chemistry, Department of Chemistry, University of Science and Technology of China
| | - Ting Yue
- School of Life Sciences, University of Science and Technology of China
| | - M. Rehan H. Shah Gilani
- CAS Key Laboratory of Soft Matter Chemistry, Department of Chemistry, University of Science and Technology of China
- Department of Chemistry, The Islamia University of Bahawalpur
| | - Gao-lin Liang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Chemistry, University of Science and Technology of China
| |
Collapse
|
8
|
Geelen T, Paulis LE, Coolen BF, Nicolay K, Strijkers GJ. Passive targeting of lipid-based nanoparticles to mouse cardiac ischemia-reperfusion injury. CONTRAST MEDIA & MOLECULAR IMAGING 2013; 8:117-26. [PMID: 23281284 DOI: 10.1002/cmmi.1501] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Revised: 07/12/2012] [Accepted: 08/21/2012] [Indexed: 11/10/2022]
Abstract
Reperfusion therapy is commonly applied after a myocardial infarction. Reperfusion, however, causes secondary damage. An emerging approach for treatment of ischemia-reperfusion (IR) injury involves the delivery of therapeutic nanoparticles to the myocardium to promote cell survival and constructively influence scar formation and myocardial remodeling. The aim of this study was to provide detailed understanding of the in vivo accumulation and distribution kinetics of lipid-based nanoparticles (micelles and liposomes) in a mouse model of acute and chronic IR injury. Both micelles and liposomes contained paramagnetic and fluorescent lipids and could therefore be visualized with magnetic resonance imaging (MRI) and confocal laser scanning microscopy (CLSM). In acute IR injury both types of nanoparticles accumulated massively and specifically in the infarcted myocardium as revealed by MRI and CLSM. Micelles displayed faster accumulation kinetics, probably owing to their smaller size. Liposomes occasionally co-localized with vessels and inflammatory cells. In chronic IR injury only minor accumulation of micelles was observed with MRI. Nevertheless, CLSM revealed specific accumulation of both micelles and liposomes in the infarct area 3 h after administration. Owing to their specific accumulation in the infarcted myocardium, lipid-based micelles and liposomes are promising vehicles for (visualization of) drug delivery in myocardial infarction.
Collapse
Affiliation(s)
- Tessa Geelen
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands
| | | | | | | | | |
Collapse
|
9
|
Miller AD. Lipid-based nanoparticles in cancer diagnosis and therapy. JOURNAL OF DRUG DELIVERY 2013; 2013:165981. [PMID: 23936655 PMCID: PMC3725835 DOI: 10.1155/2013/165981] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Revised: 05/07/2013] [Accepted: 05/24/2013] [Indexed: 11/17/2022]
Abstract
Today, researchers are constantly developing new nanomaterials, nanodevices, and nanoparticles to meet unmet needs in the delivery of therapeutic agents and imaging agents for cancer therapy and diagnosis, respectively. Of particular interest here are lipid-based nanoparticles (LNPs) that are genuine particles (approximately 100 nm in dimension) assembled from varieties of lipid and other chemical components that act collectively to overcome biological barriers (biobarriers), in order for LNPs to preferentially accumulate in or around disease-target cells for the functional delivery of therapeutic agents for treatment or of imaging agents for diagnosis. The capabilities of these LNPs will clearly vary depending on functional requirements, but the nanoscale allows for an impressive level of diversity in capabilities to enable corresponding LNPs to address an equally diverse range of functional requirements. Accordingly, LNPs should be considered appropriate vehicles to provide an integrated, personalized approach to cancer diagnosis and therapy in future cancer disease management.
Collapse
Affiliation(s)
- Andrew D. Miller
- Institute of Pharmaceutical Science, King's College London, Franklin-Wilkins Building, Waterloo Campus, 150 Stamford Street, London SE1 9NH, UK
- GlobalAcorn Ltd., London, UK
| |
Collapse
|
10
|
Langereis S, Geelen T, Grüll H, Strijkers GJ, Nicolay K. Paramagnetic liposomes for molecular MRI and MRI-guided drug delivery. NMR IN BIOMEDICINE 2013; 26:728-44. [PMID: 23703874 DOI: 10.1002/nbm.2971] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 04/04/2013] [Accepted: 04/05/2013] [Indexed: 05/07/2023]
Abstract
Liposomes are a versatile class of nanoparticles with tunable properties, and multiple liposomal drug formulations have been clinically approved for cancer treatment. In recent years, an extensive library of gadolinium (Gd)-containing liposomal MRI contrast agents has been developed for molecular and cellular imaging of disease-specific markers and for image-guided drug delivery. This review discusses the advances in the development and novel applications of paramagnetic liposomes in molecular and cellular imaging, and in image-guided drug delivery. A high targeting specificity has been achieved in vitro using ligand-conjugated paramagnetic liposomes. On targeting of internalizing cell receptors, the effective longitudinal relaxivity r1 of paramagnetic liposomes is modulated by compartmentalization effects. This provides unique opportunities to monitor the biological fate of liposomes. In vivo contrast-enhanced MRI studies with nontargeted liposomes have shown the extravasation of liposomes in diseases associated with endothelial dysfunction, such as tumors and myocardial infarction. The in vivo use of targeted paramagnetic liposomes has facilitated the specific imaging of pathophysiological processes, such as angiogenesis and inflammation. Paramagnetic liposomes loaded with drugs have been utilized for therapeutic interventions. MR image-guided drug delivery using such liposomes allows the visualization and quantification of local drug delivery.
Collapse
Affiliation(s)
- Sander Langereis
- Department of Minimally Invasive Healthcare, Philips Research Eindhoven, Eindhoven, the Netherlands
| | | | | | | | | |
Collapse
|
11
|
Eppenberger P, Andreisek G, Chhabra A. Magnetic resonance neurography: diffusion tensor imaging and future directions. Neuroimaging Clin N Am 2013; 24:245-56. [PMID: 24210323 DOI: 10.1016/j.nic.2013.03.031] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Magnetic resonance (MR) neurography has progressed in the past 2 decades because of rapid technological developments in both hardware and software. In addition to improvements in high-resolution anatomic pulse sequences, functional techniques are becoming feasible. This article presents the current state-of-the-art three-dimensional anatomic techniques, discusses the advantages of functional techniques being exploited, and portrays novel contrast types and molecular techniques that are under development and promise a bright future for this rapidly evolving technique.
Collapse
Affiliation(s)
- Patrick Eppenberger
- Department of Radiology, University Hospital Zurich, Ramistrasse 100, Zurich CH - 8091, Switzerland
| | | | | |
Collapse
|
12
|
Bernsen MR, Ruggiero A, van Straten M, Kotek G, Haeck JC, Wielopolski PA, Krestin GP. Computed tomography and magnetic resonance imaging. Recent Results Cancer Res 2013. [PMID: 23179877 DOI: 10.1007/978-3-642-10853-2_1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Imaging in Oncology is rapidly moving from the detection and size measurement of a lesion to the quantitative assessment of metabolic processes and cellular and molecular interactions. Increasing insights into cancer as a complex disease with involvement of the tumor stroma in tumor pathobiological processes have made it clear that for successful control of cancer, treatment strategies should not only be directed at the tumor cells but also targeted at the tumor microenvironment. This requires understanding of the complex molecular and cellular interactions in cancer tissue. Recent developments in imaging technology have increased the possibility to image various pathobiological processes in cancer development and response to treatment. For computed tomography (CT) and magnetic resonance imaging (MRI) various improvements in hardware, software, and imaging probes have lifted these modalities from classical anatomical imaging techniques to techniques suitable to image and quantify various physiological processes and molecular and cellular interactions. Next to a more general overview of possible imaging targets in oncology this chapter provides an overview of the various developments in CT and MRI technology and some specific applications.
Collapse
Affiliation(s)
- Monique R Bernsen
- Department of Radiology, Erasmus MC-University Medical Center Rotterdam, Rotterdam, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
Magnetic resonance imaging (MRI) is a key imaging modality in cancer diagnostics and therapy monitoring. MRI-based tumor detection and characterization is commonly achieved by exploiting the compositional, metabolic, cellular, and vascular differences between malignant and healthy tissue. Contrast agents are frequently applied to enhance this contrast. The last decade has witnessed an increasing interest in novel multifunctional MRI probes. These multifunctional constructs, often of nanoparticle design, allow the incorporation of multiple imaging agents for complementary imaging modalities as well as anti-cancer drugs for therapeutic purposes. The composition, size, and surface properties of such constructs can be tailored as to improve biodistribution and ensure optimal delivery to the tumor microenvironment by passive or targeted mechanisms. Multifunctional MRI probes hold great promise to facilitate more specific tumor diagnosis, patient-specific treatment planning, the monitoring of local drug delivery, and the early evaluation of therapy. This chapter reviews the state-of-the-art and new developments in the application of multifunctional MRI probes in oncology.
Collapse
Affiliation(s)
- Ewelina Kluza
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.
| | | | | |
Collapse
|
14
|
Distribution of lipid-based nanoparticles to infarcted myocardium with potential application for MRI-monitored drug delivery. J Control Release 2012; 162:276-85. [PMID: 22771978 DOI: 10.1016/j.jconrel.2012.06.035] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Revised: 06/25/2012] [Accepted: 06/27/2012] [Indexed: 11/21/2022]
Abstract
Adverse cardiac remodeling after myocardial infarction ultimately causes heart failure. To stimulate reparative processes in the infarct, efficient delivery and retention of therapeutic agents is desired. This might be achieved by encapsulation of drugs in nanoparticles. The goal of this study was to characterize the distribution pattern of differently sized long-circulating lipid-based nanoparticles, namely micelles (~15 nm) and liposomes (~100 nm), in a mouse model of myocardial infarction (MI). MI was induced in mice (n=38) by permanent occlusion of the left coronary artery. Nanoparticle accumulation following intravenous administration was examined one day and one week after surgery, representing the acute and chronic phase of MI, respectively. In vivo magnetic resonance imaging of paramagnetic lipids in the micelles and liposomes was employed to monitor the trafficking of nanoparticles to the infarcted myocardium. Ex vivo high-resolution fluorescence microscopy of fluorescent lipids was used to determine the exact location of the nanoparticles in the myocardium. In both acute and chronic MI, micelles permeated the entire infarct area, which renders them very suited for the local delivery of cardioprotective or anti-remodeling drugs. Liposomes displayed slower and more restricted extravasation from the vasculature and are therefore an attractive vehicle for the delivery of pro-angiogenic drugs. Importantly, the ability to non-invasively visualize both micelles and liposomes with MRI creates a versatile approach for the development of effective cardioprotective therapeutic interventions.
Collapse
|
15
|
Randolph LM, Chien MP, Gianneschi NC. Biological stimuli and biomolecules in the assembly and manipulation of nanoscale polymeric particles. Chem Sci 2012; 3:10.1039/C2SC00857B. [PMID: 24353895 PMCID: PMC3864871 DOI: 10.1039/c2sc00857b] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Living systems are replete with complex, stimuli-responsive nanoscale materials and molecular self-assemblies. There is an ever increasing and intense interest within the chemical sciences to understand, mimic and interface with these biological systems utilizing synthetic and/or semi-synthetic tools. Our aim in this review is to give perspective on this emerging field of research by highlighting examples of polymeric nanoparticles and micelles that are prepared utilizing biopolymers together with synthetic polymers for the purpose of developing nanomaterials capable of interacting and responding to biologically relevant stimuli. It is expected that with the merging of evolved biological molecules with synthetic materials, will come the ability to prepare complex, functional devices. A variety of applications will become accessible including self-healing materials, self-replicating systems, biodiagnostic tools, drug targeting materials and autonomous, adaptive sensors. Most importantly, the success of this type of strategy will impact how biomolecules are stabilized and incorporated into synthetic devices and at the same time, will influence how synthetic materials are utilized within biomedical applications.
Collapse
Affiliation(s)
| | | | - Nathan C. Gianneschi
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Dr, La Jolla, CA, 92093, USA
| |
Collapse
|
16
|
van Bochove GS, Sanders HMHF, de Smet M, Keizer HM, Mulder WJM, Krams R, Strijkers GJ, Nicolay K. Molecular MR Imaging of Collagen in Mouse Atherosclerosis by Using Paramagnetic CNA35 Micelles. Eur J Inorg Chem 2012. [DOI: 10.1002/ejic.201200010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
17
|
Biotinylated magnetic nanoparticles for pretargeting: synthesis and characterization study. Cancer Nanotechnol 2011; 2:111-120. [PMID: 26069490 PMCID: PMC4452138 DOI: 10.1007/s12645-011-0021-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Accepted: 08/04/2011] [Indexed: 12/24/2022] Open
Abstract
In this paper, we have proposed a simple method to covalently conjugate biotin to magnetic nanoparticles, which can be targeted to the tumour sites by using pretargeting approach with avidin or streptavidin. Magnetic nanoparticles of manganese ferrite were synthesized by alkaline coprecipitation of ferric chloride hexahydrate, ferrous sulphate heptahydrate and manganese sulphate monohydrate using ammonium hydroxide. The synthesized magnetic nanoparticles were then successfully surface modified by using 3-aminopropyl trimethoxysilane, and the amount of aminopropylsilane bound to the surface of magnetic nanoparticles was quantified by measuring the absorbance of a purple-coloured complex (Ruhemann’s purple) formed between amine group and ninhydrin at 576 nm. The aminated magnetic nanoparticles were then conjugated to biotin by reacting them with N-hydroxysuccinimide–biotin in dimethylsulphoxide. The successful conjugation of biotin to magnetic nanoparticles was confirmed by Fourier transform infrared spectroscopy. The size, phase and magnetic nature of the synthesized nanoparticles were analysed by using various techniques like transmission electron microscopy, X-ray diffraction, energy-dispersive X-ray spectroscopy and vibrating sample magnetometry.
Collapse
|
18
|
Strijkers GJ, Kluza E, Van Tilborg GAF, van der Schaft DWJ, Griffioen AW, Mulder WJM, Nicolay K. Paramagnetic and fluorescent liposomes for target-specific imaging and therapy of tumor angiogenesis. Angiogenesis 2010; 13:161-73. [PMID: 20390447 PMCID: PMC2911540 DOI: 10.1007/s10456-010-9165-1] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Accepted: 03/24/2010] [Indexed: 12/18/2022]
Abstract
Angiogenesis is essential for tumor growth and metastatic potential and for that reason considered an important target for tumor treatment. Noninvasive imaging technologies, capable of visualizing tumor angiogenesis and evaluating the efficacy of angiostatic therapies, are therefore becoming increasingly important. Among the various imaging modalities, magnetic resonance imaging (MRI) is characterized by a superb spatial resolution and anatomical soft-tissue contrast. Revolutionary advances in contrast agent chemistry have delivered versatile angiogenesis-specific molecular MRI contrast agents. In this paper, we review recent advances in the preclinical application of paramagnetic and fluorescent liposomes for noninvasive visualization of the molecular processes involved in tumor angiogenesis. This liposomal contrast agent platform can be prepared with a high payload of contrast generating material, thereby facilitating its detection, and is equipped with one or more types of targeting ligands for binding to specific molecules expressed at the angiogenic site. Multimodal liposomes endowed with contrast material for complementary imaging technologies, e.g., MRI and optical, can be exploited to gain important preclinical insights into the mechanisms of binding and accumulation at angiogenic vascular endothelium and to corroborate the in vivo findings. Interestingly, liposomes can be designed to contain angiostatic therapeutics, allowing for image-supervised drug delivery and subsequent monitoring of therapeutic efficacy.
Collapse
Affiliation(s)
- Gustav J Strijkers
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
19
|
Mulder WJM, Strijkers GJ, van Tilborg GAF, Cormode DP, Fayad ZA, Nicolay K. Nanoparticulate assemblies of amphiphiles and diagnostically active materials for multimodality imaging. Acc Chem Res 2009; 42:904-14. [PMID: 19435319 DOI: 10.1021/ar800223c] [Citation(s) in RCA: 201] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Modern medicine has greatly benefited from recent dramatic improvements in imaging techniques. The observation of physiological events through interactions manipulated at the molecular level offers unique insight into the function (and dysfunction) of the living organism. The tremendous advances in the development of nanoparticulate molecular imaging agents over the past decade have made it possible to noninvasively image the specificity, pharmacokinetic profiles, biodistribution, and therapeutic efficacy of many novel compounds. Several types of nanoparticles have demonstrated utility for biomedical purposes, including inorganic nanocrystals, such as iron oxide, gold, and quantum dots. Moreover, natural nanoparticles, such as viruses, lipoproteins, or apoferritin, as well as hybrid nanostructures composed of inorganic and natural nanoparticles, have been applied broadly. However, among the most investigated nanoparticle platforms for biomedical purposes are lipidic aggregates, such as liposomal nanoparticles, micelles, and microemulsions. Their relative ease of preparation and functionalization, as well as the ready synthetic ability to combine multiple amphiphilic moieties, are the most important reasons for their popularity. Lipid-based nanoparticle platforms allow the inclusion of a variety of imaging agents, ranging from fluorescent molecules to chelated metals and nanocrystals. In recent years, we have created a variety of multifunctional lipid-based nanoparticles for molecular imaging; many are capable of being used with more than one imaging technique (that is, with multimodal imaging ability). These nanoparticles differ in size, morphology, and specificity for biological markers. In this Account, we discuss the development and characterization of five different particles: liposomes, micelles, nanocrystal micelles, lipid-coated silica, and nanocrystal high-density lipoprotein (HDL). We also demonstrate their application for multimodal molecular imaging, with the main focus on magnetic resonance imaging (MRI), optical techniques, and transmission electron microscopy (TEM). The functionalization of the nanoparticles and the modulation of their pharmacokinetics are discussed. Their application for molecular imaging of key processes in cancer and cardiovascular disease are shown. Finally, we discuss a recent development in which the endogenous nanoparticle HDL was modified to carry different diagnostically active nanocrystal cores to enable multimodal imaging of macrophages in experimental atherosclerosis. The multimodal characteristics of the different contrast agent platforms have proven to be extremely valuable for validation purposes and for understanding mechanisms of particle-target interaction at different levels, ranging from the entire organism down to cellular organelles.
Collapse
Affiliation(s)
- Willem J. M. Mulder
- Translational and Molecular Imaging Institute and Imaging Science Laboratories, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, New York 10029
| | - Gustav J. Strijkers
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Post Office Box 513, 5600 MB Eindhoven, The Netherlands
| | - Geralda A. F. van Tilborg
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Post Office Box 513, 5600 MB Eindhoven, The Netherlands
| | - David P. Cormode
- Translational and Molecular Imaging Institute and Imaging Science Laboratories, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, New York 10029
| | - Zahi A. Fayad
- Translational and Molecular Imaging Institute and Imaging Science Laboratories, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, New York 10029
| | - Klaas Nicolay
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Post Office Box 513, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
20
|
Improved magnetic resonance molecular imaging of tumor angiogenesis by avidin-induced clearance of nonbound bimodal liposomes. Neoplasia 2009; 10:1459-69. [PMID: 19048124 DOI: 10.1593/neo.08858] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2008] [Revised: 09/29/2008] [Accepted: 10/13/2008] [Indexed: 11/18/2022] Open
Abstract
Angiogenic, that is, newly formed, blood vessels play an important role in tumor growth and metastasis and are a potential target for tumor treatment. In previous studies, the alpha(v)beta(3) integrin, which is strongly expressed in angiogenic vessels, has been used as a target for Arg-Gly-Asp (RGD)-functionalized nanoparticulate contrast agents for magnetic resonance imaging-based visualization of angiogenesis. In the present study, the target-to-background ratio was increased by diminishing the nonspecific contrast enhancement originating from contrast material present in the blood pool. This was accomplished by the use of a so-called avidin chase, which allowed rapid clearance of non-bound paramagnetic RGD-biotin-liposomes from the blood circulation. C57BL/6 mice, bearing a B16F10 mouse melanoma, received RGD-functionalized or untargeted biotin-liposomes, which was followed by avidin infusion or no infusion. Precontrast, postcontrast, and postavidin T(1)-weighted magnetic resonance images were acquired at 6.3 T. Postcontrast images showed similar percentages of contrast-enhanced pixels in the tumors of mice that received RGD-biotin-liposomes and biotin-liposomes. Post avidin infusion this percentage rapidly decreased to precontrast levels for biotin-liposomes, whereas a significant amount of contrast-enhanced pixels remained present for RGD-biotin-liposomes. These results showed that besides target-associated contrast agent, the circulating contrast agent contributed significantly to the contrast enhancement as well. Ex vivo fluorescence microscopy confirmed association of the RGD-biotin-liposomes to tumor endothelial cells both with and without avidin infusion, whereas biotin-liposomes were predominantly found within the vessel lumen. The clearance methodology presented in this study successfully enhanced the specificity of molecular magnetic resonance imaging and opens exciting possibilities for studying detection limits and targeting kinetics of site-directed contrast agents in vivo.
Collapse
|