1
|
van Dorth D, Croese RJI, Jiang FY, Schmitz-Abecassis B, Taphoorn MJB, Smits M, Dirven L, van Osch MJP, de Bresser J, Koekkoek JAF. Perfusion MRI-based differentiation between early tumor progression and pseudoprogression in glioblastoma and its use in clinical practice. Neurooncol Pract 2025; 12:281-290. [PMID: 40110054 PMCID: PMC11913638 DOI: 10.1093/nop/npae099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025] Open
Abstract
Background Early treatment effects in patients with glioblastoma are frequently discussed during multidisciplinary team meetings (MDTM), after which a decision regarding (dis)continuation of tumor-targeted treatment is made. This study examined whether a separate and systematic evaluation of perfusion MRI (pMRI) could impact such treatment decisions in the early stage. Methods This retrospective observational study evaluated the diagnostic accuracy for detecting early tumor progression of 4 different approaches including conventional MRI, pMRI with Arterial Spin Labeling (ASL), and/or Dynamic Susceptibility Contrast (DSC) MRI, and compared those to the MDTM evaluation in clinical practice. Results Sixty-five glioblastoma patients with clinical and radiological data until 9 months after irradiation were included. For all approaches, the sensitivity for detecting early true disease progression was poor to moderate (32%-62%). Area under the curve values were comparable (range 0.63-0.74), but highest for the MDTM evaluation (0.74). In the cases of inconclusive MDTM (26%), systematic pMRI evaluation showed a higher sensitivity compared to conventional MRI (respectively, 36% vs 0%), while the specificity was 100% for all MRI approaches. Multivariable regression analysis showed that a lower KPS score (OR = 0.84 [95% CI: 0.77-0.91]) and pMRI indicative of tumor progression (OR = 0.09 [95% CI: 0.02-0.52]) were independently associated with concluding tumor progression at the MDTM. Conclusion MDTM assessment in daily clinical practice has a higher diagnostic accuracy in distinguishing early tumor progression from pseudoprogression compared to a separate, systematic evaluation of pMRI. Systematic evaluation of pMRI might be helpful if the clinical MDTM assessment is uncertain.
Collapse
Affiliation(s)
- Daniëlle van Dorth
- C. J. Gorter MRI Center, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Robert J I Croese
- Department of Neurology, Haaglanden Medical Center, Den Haag, The Netherlands
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| | - Feng Yan Jiang
- Department of Radiology, HagaZiekenhuis, Den Haag, The Netherlands
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Bárbara Schmitz-Abecassis
- Medical Delta, Delft, The Netherlands
- C. J. Gorter MRI Center, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Martin J B Taphoorn
- Department of Neurology, Haaglanden Medical Center, Den Haag, The Netherlands
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| | - Marion Smits
- Brain Tumor Center, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
- Department of Radiology and Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Medical Delta, Delft, The Netherlands
| | - Linda Dirven
- Department of Neurology, Haaglanden Medical Center, Den Haag, The Netherlands
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| | - Matthias J P van Osch
- Medical Delta, Delft, The Netherlands
- C. J. Gorter MRI Center, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jeroen de Bresser
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Johan A F Koekkoek
- Department of Neurology, Haaglanden Medical Center, Den Haag, The Netherlands
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
2
|
Zheng X, Li L, Gao JM, Hu Y, Deng L, Kang YF, Zhang Y. Radiation-induced white matter dysfunction in patients with nasopharyngeal carcinoma. Front Neurosci 2025; 19:1548744. [PMID: 40129723 PMCID: PMC11931022 DOI: 10.3389/fnins.2025.1548744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 02/26/2025] [Indexed: 03/26/2025] Open
Abstract
Radiation-induced structural abnormalities in white matter (WM) have been reported in patients with nasopharyngeal carcinoma (NPC); however, the alterations in functional domain were insufficiently investigated. A total of 111 NPC patients were included and these patients, based on whether completed radiation therapy (RT) or not, were divided into pre-RT (n = 47) and post-RT (n = 64) groups. Functional connectivity strength (FCS) between WM regions (WW-FCS) and between WM and gray matter (GM) regions (GW-FCS) was used to investigate the radiation-induced changes in WM function. Compared with the pre-RT patients, post-RT NPC patients showed decreased WW-FCS in the left superior cerebellar peduncle, right anterior limb of internal capsule, bilateral posterior thalamic radiation, and left tapetum. Compared with the pre-RT patients, post-RT NPC patients showed decreased GW-FCS in the left caudate, bilateral visual cortex, and the right ventral prefrontal cortex. In the post-RT group, the GW-FCS in left visual cortex was negatively correlated with radiation dosage for the brain stem (r = -0.35, p = 0.039), and for the left temporal lobe (r = -0.46, p = 0.0058). The GW-FCS in right visual cortex was negatively correlated with radiation dosage for the left temporal lobe (r = -0.38, p = 0.025). Our findings of decreased WW-FCS and GW-FCS in such brain regions (such as visual cortex, posterior thalamic radiation, and anterior limb of internal capsule, as well as superior cerebellar peduncle) suggest potential functional impairments in visual and motor systems.
Collapse
Affiliation(s)
- Xingyou Zheng
- Department of Medical Imaging, The Fourth Hospital of Changsha (Integrated Traditional Chinese and Western Medicine Hospital of Changsha, Changsha Hospital of Hunan Normal University), Changsha, Hunan, China
| | - Li Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jian-ming Gao
- State Key Laboratory of Oncology in South China, Department of Radiation Oncology, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yang Hu
- Independent Researcher, Shanghai, China
| | - Limeng Deng
- Department of Medical Imaging, The Fourth Hospital of Changsha (Integrated Traditional Chinese and Western Medicine Hospital of Changsha, Changsha Hospital of Hunan Normal University), Changsha, Hunan, China
| | - Ya-fei Kang
- School of Information, Xi’an University of Finance and Economics, Xi’an, Shaanxi, China
| | - Youming Zhang
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
3
|
Richerson WT, Aumann M, Song AK, Eisma JJ, Davis S, Milner L, Garza M, Taylor Davis L, Martin D, Jordan LC, Donahue MJ. Detectability of white matter cerebral blood flow using arterial spin labeling MRI in patients with sickle cell disease: Relevance of flow territory, bolus arrival time and hematocrit. J Cereb Blood Flow Metab 2025; 45:486-497. [PMID: 39253827 PMCID: PMC11572042 DOI: 10.1177/0271678x241270283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 06/15/2024] [Accepted: 06/16/2024] [Indexed: 09/11/2024]
Abstract
Sickle cell disease (SCD) is the most common genetic blood disorder, characterized by red cell hemolysis, anemia, and corresponding increased compensatory cerebral blood flow (CBF). SCD patients are at high risk for cerebral infarcts and CBF quantification is likely critical to assess infarct risk. Infarcts primarily localize to white matter (WM), yet arterial spin labeling (ASL) MRI, the most common non-invasive CBF approach, has poor WM CBF sensitivity owing to low WM CBF and long WM bolus arrival time (BAT). We hypothesize that anemia, and associated cerebral hyperemia, in SCD leads to improved WM detection with ASL. We performed 3-Tesla multi-delay pulsed ASL in SCD (n = 35; age = 30.5 ± 8.3 years) and control (n = 15; age = 28.7 ± 4.5 years) participants and applied t-tests at each inversion time within different flow territories, and determined which regions were significantly above noise floor (criteria: one-sided p < 0.05). Total WM CBF-weighted signal was primarily detectable outside of borderzone regions in SCD (CBF = 17.7 [range = 12.9-25.0] mL/100 g/min), but was largely unphysiological in control (CBF = 8.1 [range = 7.6-9.9)] mL/100 g/min) participants. WM BAT was reduced in SCD versus control participants (ΔBAT = 37 [range = 46-70] ms) and BAT directly correlated with hematocrit (Spearman's-ρ = 0.62; p < 0.001). Findings support the feasibility of WM CBF quantification using ASL in SCD participants for appropriately parameterized protocols.
Collapse
Affiliation(s)
- Wesley T Richerson
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Megan Aumann
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Alexander K Song
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jarrod J Eisma
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Samantha Davis
- Department of Pediatrics, Division of Pediatric Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Lauren Milner
- Department of Pediatrics, Division of Pediatric Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Maria Garza
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - L Taylor Davis
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Dann Martin
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Lori C Jordan
- Department of Pediatrics, Division of Pediatric Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Manus J Donahue
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
4
|
van Dorth D, Jiang FY, Schmitz-Abecassis B, Croese RJI, Taphoorn MJB, Smits M, Koekkoek JAF, Dirven L, de Bresser J, van Osch MJP. Influence of arterial transit time delays on the differentiation between tumor progression and pseudoprogression in glioblastoma by arterial spin labeling magnetic resonance imaging. NMR IN BIOMEDICINE 2024; 37:e5166. [PMID: 38654579 DOI: 10.1002/nbm.5166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/26/2024] [Accepted: 03/28/2024] [Indexed: 04/26/2024]
Abstract
Arterial spin labeling (ASL) and dynamic susceptibility contrast (DSC) magnetic resonance imaging (MRI) have shown potential for differentiating tumor progression from pseudoprogression. For pseudocontinuous ASL with a single postlabeling delay, the presence of delayed arterial transit times (ATTs) could affect the evaluation of ASL-MRI perfusion data. In this study, the influence of ATT artifacts on the perfusion assessment and differentiation between tumor progression and pseudoprogression were studied. This study comprised 66 adult patients (mean age 60 ± 13 years; 40 males) with a histologically confirmed glioblastoma who received postoperative radio (chemo)therapy. ASL-MRI and DSC-MRI scans were acquired at 3 months postradiotherapy as part of the standard clinical routine. These scans were visually scored regarding (i) the severity of ATT artifacts (%) on the ASL-MRI scans only, scored by two neuroradiologists; (ii) perfusion of the enhancing tumor lesion; and (iii) radiological evaluation of tumor progression versus pseudoprogression by one neuroradiologist. The final outcome was based on combined clinical and radiological follow-up until 9 months postradiotherapy. ATT artifacts were identified in all patients based on the mean scores of two raters. A significant difference between the radiological evaluation of ASL-MRI and DSC-MRI was observed only for ASL images with moderate ATT severity (30%-65%). The perfusion assessment showed ASL-MRI tending more towards hyperperfusion than DSC-MRI in the case of moderate ATT artifacts. In addition, there was a significant difference between the prediction of tumor progression with ASL-MRI and the final outcome in the case of severe ATT artifacts (McNemar test, p = 0.041). Despite using ASL imaging parameters close to the recommended settings, ATT artifacts frequently occur in patients with treated brain tumors. Those artifacts could hinder the radiological evaluation of ASL-MRI data and the detection of true disease progression, potentially affecting treatment decisions for patients with glioblastoma.
Collapse
Affiliation(s)
- Daniëlle van Dorth
- C. J. Gorter MRI Center, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Feng Yan Jiang
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Radiology, HagaZiekenhuis, Den Haag, The Netherlands
| | - Bárbara Schmitz-Abecassis
- C. J. Gorter MRI Center, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
- Medical Delta, Delft, The Netherlands
| | - Robert J I Croese
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Neurology, Haaglanden Medical Center, Den Haag, The Netherlands
| | - Martin J B Taphoorn
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Neurology, Haaglanden Medical Center, Den Haag, The Netherlands
| | - Marion Smits
- Medical Delta, Delft, The Netherlands
- Department of Radiology and Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Brain Tumor Center, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Johan A F Koekkoek
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Neurology, Haaglanden Medical Center, Den Haag, The Netherlands
| | - Linda Dirven
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Neurology, Haaglanden Medical Center, Den Haag, The Netherlands
| | - Jeroen de Bresser
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Matthias J P van Osch
- C. J. Gorter MRI Center, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
- Medical Delta, Delft, The Netherlands
| |
Collapse
|
5
|
Schmitzer L, Kaczmarz S, Göttler J, Hoffmann G, Kallmayer M, Eckstein HH, Hedderich DM, Kufer J, Zimmer C, Preibisch C, Hyder F, Sollmann N. Macro- and microvascular contributions to cerebral structural alterations in patients with asymptomatic carotid artery stenosis. J Cereb Blood Flow Metab 2024; 44:1629-1642. [PMID: 38506325 PMCID: PMC11418673 DOI: 10.1177/0271678x241238935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 01/22/2024] [Accepted: 01/29/2024] [Indexed: 03/21/2024]
Abstract
Atherosclerosis can underly internal carotid artery stenosis (ICAS), a major risk factor for ischemic stroke, as well as small vessel disease (SVD). This study aimed to investigate hemodynamics and structural alterations associated with SVD in ICAS patients. 28 patients with unilateral asymptomatic ICAS and 30 age-matched controls underwent structural (T1-/T2-weighted and diffusion tensor imaging [DTI]) and hemodynamic (pseudo-continuous arterial spin labeling and dynamic susceptibility contrast) magnetic resonance imaging. SVD-related alterations were assessed using free water (FW), FW-corrected DTI, and peak-width of skeletonized mean diffusivity (PSMD). Furthermore, cortical thickness, cerebral blood flow (CBF), and capillary transit time heterogeneity (CTH) were analyzed. Ipsilateral to the stenosis, cortical thickness was significantly decreased in the posterior dorsal cingulate cortex (p = 0.024) and temporal pole (p = 0.028). ICAS patients exhibited elevated PSMD (p = 0.005), FW (p < 0.001), and contralateral alterations in FW-corrected DTI metrics. We found significantly lateralized CBF (p = 0.011) and a tendency for lateralized CTH (p = 0.067) in the white matter (WM) related to ICAS. Elevated PSMD and FW may indicate a link between SVD and WM changes. Contralateral alterations were seen in FW-corrected DTI, whereas hemodynamic and cortical changes were mainly ipsilateral, suggesting SVD might influence global brain changes concurrent with ICAS-related hemodynamic alterations.
Collapse
Affiliation(s)
- Lena Schmitzer
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Department of Radiology & Biomedical Imaging, Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT, USA
- TUM-Neuroimaging Center, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Stephan Kaczmarz
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Department of Radiology & Biomedical Imaging, Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT, USA
- TUM-Neuroimaging Center, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Philips GmbH Market DACH, Hamburg, Germany
| | - Jens Göttler
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Department of Radiology & Biomedical Imaging, Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT, USA
- TUM-Neuroimaging Center, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Gabriel Hoffmann
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- TUM-Neuroimaging Center, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Michael Kallmayer
- Department for Vascular and Endovascular Surgery, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Hans-Henning Eckstein
- Department for Vascular and Endovascular Surgery, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Dennis Martin Hedderich
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Jan Kufer
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Department of Radiology & Biomedical Imaging, Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT, USA
- TUM-Neuroimaging Center, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Claus Zimmer
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Christine Preibisch
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Department of Neurology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Fahmeed Hyder
- Department of Radiology & Biomedical Imaging, Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT, USA
| | - Nico Sollmann
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- TUM-Neuroimaging Center, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Department of Diagnostic and Interventional Radiology, University Hospital Ulm, Ulm, Germany
| |
Collapse
|
6
|
Woods JG, Achten E, Asllani I, Bolar DS, Dai W, Detre JA, Fan AP, Fernández-Seara M, Golay X, Günther M, Guo J, Hernandez-Garcia L, Ho ML, Juttukonda MR, Lu H, MacIntosh BJ, Madhuranthakam AJ, Mutsaerts HJ, Okell TW, Parkes LM, Pinter N, Pinto J, Qin Q, Smits M, Suzuki Y, Thomas DL, Van Osch MJ, Wang DJJ, Warnert EA, Zaharchuk G, Zelaya F, Zhao M, Chappell MA. Recommendations for quantitative cerebral perfusion MRI using multi-timepoint arterial spin labeling: Acquisition, quantification, and clinical applications. Magn Reson Med 2024; 92:469-495. [PMID: 38594906 PMCID: PMC11142882 DOI: 10.1002/mrm.30091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 02/09/2024] [Accepted: 03/07/2024] [Indexed: 04/11/2024]
Abstract
Accurate assessment of cerebral perfusion is vital for understanding the hemodynamic processes involved in various neurological disorders and guiding clinical decision-making. This guidelines article provides a comprehensive overview of quantitative perfusion imaging of the brain using multi-timepoint arterial spin labeling (ASL), along with recommendations for its acquisition and quantification. A major benefit of acquiring ASL data with multiple label durations and/or post-labeling delays (PLDs) is being able to account for the effect of variable arterial transit time (ATT) on quantitative perfusion values and additionally visualize the spatial pattern of ATT itself, providing valuable clinical insights. Although multi-timepoint data can be acquired in the same scan time as single-PLD data with comparable perfusion measurement precision, its acquisition and postprocessing presents challenges beyond single-PLD ASL, impeding widespread adoption. Building upon the 2015 ASL consensus article, this work highlights the protocol distinctions specific to multi-timepoint ASL and provides robust recommendations for acquiring high-quality data. Additionally, we propose an extended quantification model based on the 2015 consensus model and discuss relevant postprocessing options to enhance the analysis of multi-timepoint ASL data. Furthermore, we review the potential clinical applications where multi-timepoint ASL is expected to offer significant benefits. This article is part of a series published by the International Society for Magnetic Resonance in Medicine (ISMRM) Perfusion Study Group, aiming to guide and inspire the advancement and utilization of ASL beyond the scope of the 2015 consensus article.
Collapse
Affiliation(s)
- Joseph G. Woods
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Center for Functional Magnetic Resonance Imaging, Department of Radiology, University of California San Diego, La Jolla, California, USA
| | - Eric Achten
- Ghent Institute for Functional and Metabolic Imaging (GIfMI), Ghent University, Ghent, Belgium
| | - Iris Asllani
- Department of Neuroscience, University of Sussex, UK and Department of Biomedical Engineering, Rochester Institute of Technology, USA
| | - Divya S. Bolar
- Center for Functional Magnetic Resonance Imaging, Department of Radiology, University of California San Diego, La Jolla, California, USA
| | - Weiying Dai
- Department of Computer Science, State University of New York at Binghamton, Binghamton, NY, USA, 13902
| | - John A. Detre
- Department of Neurology, University of Pennsylvania, 3 Dulles Building, 3400 Spruce Street, Philadelphia, PA 19104 USA
| | - Audrey P. Fan
- Department of Biomedical Engineering, Department of Neurology, University of California Davis, Davis, CA, USA
| | - Maria Fernández-Seara
- Department of Radiology, Clínica Universidad de Navarra, Pamplona, Spain; IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| | - Xavier Golay
- UCL Queen Square Institute of Neurology, University College London, London, UK; Gold Standard Phantoms, UK
| | - Matthias Günther
- Imaging Physics, Fraunhofer Institute for Digital Medicine MEVIS, Bremen, Germany
- Departments of Physics and Electrical Engineering, University of Bremen, Bremen, Germany
| | - Jia Guo
- Department of Bioengineering, University of California Riverside, Riverside, CA, USA
| | | | - Mai-Lan Ho
- Department of Radiology, University of Missouri, Columbia, MO, USA. ORCID: 0000-0002-9455-1350
| | - Meher R. Juttukonda
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Hanzhang Lu
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Bradley J. MacIntosh
- Hurvitz Brain Sciences Program, Centre for Brain Resilience & Recovery, Sunnybrook Research Institute, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
- Computational Radiology & Artificial Intelligence unit, Oslo University Hospital, Oslo, Norway
| | - Ananth J. Madhuranthakam
- Department of Radiology and Advanced Imaging Research Center, UT Southwestern Medical Center, Dallas, TX, USA
| | - Henk-Jan Mutsaerts
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Radiology and Nuclear Medicine, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Brain Imaging, Amsterdam, The Netherlands
| | - Thomas W. Okell
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Laura M. Parkes
- School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, UK
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, UK
| | - Nandor Pinter
- Dent Neurologic Institute, Buffalo, New York, USA; University at Buffalo Neurosurgery, Buffalo, New York, USA
| | - Joana Pinto
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, UK
| | - Qin Qin
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Marion Smits
- Department of Radiology & Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
- Medical Delta, Delft, The Netherlands
- Erasmus MC Cancer Institute, Erasmus MC, Rotterdam, NL
| | - Yuriko Suzuki
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - David L. Thomas
- Department of Brain Repair and Rehabilitation, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Matthias J.P. Van Osch
- C.J. Gorter MRI Center, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Danny JJ Wang
- Laboratory of FMRI Technology (LOFT), Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles, CA, USA
| | - Esther A.H. Warnert
- Department of Radiology & Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
- Erasmus MC Cancer Institute, Erasmus MC, Rotterdam, NL
| | - Greg Zaharchuk
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - Fernando Zelaya
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, Kings College London, London, UK
| | - Moss Zhao
- Department of Radiology, Stanford University, Stanford, CA, USA
- Maternal & Child Health Research Institute, Stanford University, Stanford, CA, USA
| | - Michael A. Chappell
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Sir Peter Mansfield Imaging Centre, School of Medicine, University of Nottingham, Nottingham, UK
| |
Collapse
|
7
|
Yazdan-Panah A, Bodini B, Soulier T, Veronese M, Bottlaender M, Tonietto M, Stankoff B. Simultaneous assessment of blood flow and myelin content in the brain white matter with dynamic [11 C]PiB PET: a test-retest study in healthy controls. EJNMMI Res 2024; 14:50. [PMID: 38801594 PMCID: PMC11130116 DOI: 10.1186/s13550-024-01107-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 04/23/2024] [Indexed: 05/29/2024] Open
Abstract
BACKGROUND Exploring the relationship between oxygen supply and myelin damage would benefit from a simultaneous quantification of myelin and cerebral blood flow (CBF) in the brain's white matter (WM). To validate an analytical method for quantifying both CBF and myelin content in the WM using dynamic [11C]PiB positron emission tomography (PET). METHODS A test-retest study was performed on eight healthy subjects who underwent two consecutive dynamic [11 C]PiB-PET scans. Three quantitative approaches were compared: simplified reference tissue model 2 (SRTM2), LOGAN graphical model, and standardized uptake value ratio (SUVR). The sensitivity of methods to the size of the region of interest was explored by simulating lesion masks obtained from 36 subjects with multiple sclerosis. Reproducibility was assessed using the relative difference and interclass correlation coefficient. Repeated measures correlations were used to test for cross-correlations between metrics. RESULTS Among the CBF measures, the relative delivery (R1) of the simplified reference tissue model 2 (SRTM2) displayed the best reproducibility in the white matter, with a strong influence of the size of regions analyzed, the test-retest variability being below 10% for regions above 68 mm3 in the supratentorial white matter. [11C]PiB PET-derived proxies of CBF demonstrated lower perfusion of white matter compared to grey matter with an overall ratio equal to 1.71 ± 0.09 when the SRTM2-R1 was employed. Tissue binding in the white matter was well estimated by the Logan graphical model through estimation of the distribution volume ratio (LOGAN-DVR) and SRTM2 distribution volume ratio (SRTM2-DVR), with test-retest variability being below 10% for regions exceeding 106 mm3 for LOGAN-DVR and 300 mm3 for SRTM2-DVR. SRTM2-DVR provided a better contrast between white matter and grey matter. The interhemispheric variability was also dependent on the size of the region analyzed, being below 10% for regions above 103 mm3 for SRTM2-R1 and above 110 mm3 for LOGAN-DVR. Whereas the 1 to 8-minute standardized uptake value ratio (SUVR1-8) showed an intermediary reproducibility for CBF assessment, SUVR0-2 for perfusion or SUVR50-70 for tissue binding showed poor reproducibility and correlated only mildly with SRTM2-R1 and LOGAN-DVR estimations respectively. CONCLUSIONS [11C]PiB PET imaging can simultaneously quantify perfusion and myelin content in WM diseases associated with focal lesions. For longitudinal studies, SRTM2-R1 and DVR should be preferred over SUVR for the assessment of regional CBF and myelin content, respectively. TRIAL REGISTRATION European Union Clinical Trials Register EUDRACT; EudraCT Number: 2008-004174-40; Date: 2009-03-06; https//www.clinicaltrialsregister.eu ; number 2008-004174-40.
Collapse
Affiliation(s)
- Arya Yazdan-Panah
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, CNRS, Inria, AP-HP, Hôpital de la Pitié Salpêtrière, Paris, F-75013, Inserm, France
| | - Benedetta Bodini
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute -, ICM, CNRS, Inserm, AP-HP, Hôpital de la Pitié Salpêtrière, Paris, F-75013, France
| | - Théodore Soulier
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute -, ICM, CNRS, Inserm, AP-HP, Hôpital de la Pitié Salpêtrière, Paris, F-75013, France
| | - Mattia Veronese
- Department of Information Engineering (DEI), University of Padua, Padua, Italy
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Michel Bottlaender
- Université Paris-Saclay, CEA, CNRS, Inserm, BioMaps, Service Hospitalier Frédéric Joliot, Orsay, France
| | - Matteo Tonietto
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute -, ICM, CNRS, Inserm, AP-HP, Hôpital de la Pitié Salpêtrière, Paris, F-75013, France
- Université Paris-Saclay, CEA, CNRS, Inserm, BioMaps, Service Hospitalier Frédéric Joliot, Orsay, France
- Roche Pharma Research and Early Development, Biomarkers & Translational Technologies, Roche Innovation Center Basel, Basel, Switzerland
| | - Bruno Stankoff
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute -, ICM, CNRS, Inserm, AP-HP, Hôpital de la Pitié Salpêtrière, Paris, F-75013, France.
| |
Collapse
|
8
|
Jiang Z, Chernoff D, Galenchik-Chan A, Tomorri D, Honkanen RA, Duong TQ, Muir ER. Improved MRI methods to quantify retinal and choroidal blood flow applied to a model of glaucoma. FRONTIERS IN OPHTHALMOLOGY 2024; 4:1385495. [PMID: 38984144 PMCID: PMC11182105 DOI: 10.3389/fopht.2024.1385495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 04/23/2024] [Indexed: 07/11/2024]
Abstract
Purpose Blood flow (BF) of the retinal and choroidal vasculatures can be quantitatively imaged using MRI. This study sought to improve methods of data acquisition and analysis for MRI of layer-specific retinal and choroidal BF and then applied this approach to detect reduced ocular BF in a well-established mouse model of glaucoma from both eyes. Methods Quantitative BF magnetic resonance imaging (MRI) was performed on glaucomatous DBA/2J and normal C57BL/6J mice. Arterial spin labeling MRI was applied to image retinal and choroidal BF using custom-made dual eye coils that could image both eyes during the same scan. Statistics using data from a single eye or two eyes were compared. BF values were calculated using two approaches. The BF rate per quantity of tissue was calculated as commonly done, and the peak BF values of the retinal and choroidal vasculatures were taken. Additionally, the BF rate per retinal surface area was calculated using a new analysis approach to attempt to reduce partial volume and variability by integrating BF over the retinal and choroidal depths. Results Ocular BF of both eyes could be imaged using the dual coil setup without effecting scan time. Intraocular pressure was significantly elevated in DBA/2J mice compared to C57BL/6J mice (P<0.01). Both retinal and choroidal BF were significantly decreased in DBA/2J mice in comparison to the age-matched normal C57BL/6J mice across all measurements (P < 0.01). From simulations, the values from the integrated BF analysis method had less partial volume effect, and from in vivo scans, this analysis approach also improved power. Conclusion The dual eye coil setup allows bilateral eye data acquisition, increasing the amount of data acquired without increasing acquisition times in vivo. The reduced ocular BF found using the improved acquisition and analysis approaches replicated the results of previous studies on DBA/2J mice. The ocular hypertensive stress-induced BF reduction found within these mice may represent changes associated with glaucomatous progression.
Collapse
Affiliation(s)
- Zhao Jiang
- Department of Radiology, Stony Brook University, Stony Brook, NY, United States
| | - Diane Chernoff
- Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, United States
| | - Andre Galenchik-Chan
- Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, United States
| | - David Tomorri
- School of Health Professions, Stony Brook University, Stony Brook, NY, United States
| | - Robert A. Honkanen
- Department of Ophthalmology, Stony Brook University, Stony Brook, NY, United States
| | - Timothy Q. Duong
- Department of Radiology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Eric R. Muir
- Department of Radiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
9
|
Ishida S, Isozaki M, Fujiwara Y, Takei N, Kanamoto M, Kimura H, Tsujikawa T. Effects of the Training Data Condition on Arterial Spin Labeling Parameter Estimation Using a Simulation-Based Supervised Deep Neural Network. J Comput Assist Tomogr 2024; 48:459-471. [PMID: 38149628 DOI: 10.1097/rct.0000000000001566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
OBJECTIVE A simulation-based supervised deep neural network (DNN) can accurately estimate cerebral blood flow (CBF) and arterial transit time (ATT) from multidelay arterial spin labeling signals. However, the performance of deep learning depends on the characteristics of the training data set. We aimed to investigate the effects of the ground truth (GT) ranges of CBF and ATT on the performance of the DNN when training data were prepared using arterial spin labeling signal simulation. METHODS Deep neural networks were individually trained using 36 patterns of the training data sets. Simulation test data (1,000,000 points), 17 healthy volunteers, and 1 patient with moyamoya disease were included. The simulation test data were used to evaluate accuracy, precision, and noise immunity of the DNN. The best-performing DNN was determined by the normalized mean absolute error (NMAE), normalized root mean squared error (NRMSE), and normalized coefficient of variation over repeated training (CV Net ). Cerebral blood flow and ATT values and their histograms were compared between the GT and predicted values. For the in vivo data, the dependency of the predicted values on the GT ranges was visually evaluated by comparing CBF and ATT maps between the best-performing DNN and the other DNNs. Moreover, using the synthesized noisy images, noise immunity was compared between the best-performing DNN based on the simulation study and a conventional method. RESULTS The simulation study showed that a network trained by the GT of CBF and ATT in the ranges of 0 to 120 mL/100 g/min and 0 to 4500 milliseconds, respectively, had the highest performance (NMAE CBF , 0.150; NRMSE CBF , 0.231; CV NET CBF , 0.028; NMAE ATT , 0.158; NRMSE ATT , 0.257; and CV NET ATT , 0.028). Although the predicted CBF and ATT varied with the GT range of the training data sets, the appropriate settings preserved the accuracy, precision, and noise immunity of the DNN. In addition, the same results were observed in in vivo studies. CONCLUSIONS The GT ranges to prepare the training data affected the performance of the simulation-based supervised DNNs. The predicted CBF and ATT values depended on the GT range; inappropriate settings degraded the accuracy, whereas appropriate settings of the GT range provided accurate and precise estimates.
Collapse
Affiliation(s)
- Shota Ishida
- From the Department of Radiological Technology, Faculty of medical sciences, Kyoto College of Medical Science, Kyoto
| | - Makoto Isozaki
- Department of Neurosurgery, Division of Medicine, Faculty of Medical Sciences, University of Fukui, Fukui
| | - Yasuhiro Fujiwara
- Department of Medical Image Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto
| | | | | | | | - Tetsuya Tsujikawa
- Department of Radiology, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| |
Collapse
|
10
|
van Dinther M, Hooghiemstra AM, Bron EE, Versteeg A, Leeuwis AE, Kalay T, Moonen JE, Kuipers S, Backes WH, Jansen JFA, van Osch MJP, Biessels G, Staals J, van Oostenbrugge RJ. Lower cerebral blood flow predicts cognitive decline in patients with vascular cognitive impairment. Alzheimers Dement 2024; 20:136-144. [PMID: 37491840 PMCID: PMC10917014 DOI: 10.1002/alz.13408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/26/2023] [Accepted: 07/03/2023] [Indexed: 07/27/2023]
Abstract
INTRODUCTION Chronic cerebral hypoperfusion is one of the assumed pathophysiological mechanisms underlying vascular cognitive impairment (VCI). We investigated the association between baseline cerebral blood flow (CBF) and cognitive decline after 2 years in patients with VCI and reference participants. METHODS One hundred eighty-one participants (mean age 66.3 ± 7.4 years, 43.6% women) underwent arterial spin labeling (ASL) magnetic resonance imaging (MRI) and neuropsychological assessment at baseline and at 2-year follow-up. We determined the association between baseline global and lobar CBF and cognitive decline with multivariable regression analysis. RESULTS Lower global CBF at baseline was associated with more global cognitive decline in VCI and reference participants. This association was most profound in the domain of attention/psychomotor speed. Lower temporal and frontal CBF at baseline were associated with more cognitive decline in memory. DISCUSSION Our study supports the role of hypoperfusion in the pathophysiological and clinical progression of VCI. HIGHLIGHTS Impaired cerebral blood flow (CBF) at baseline is associated with faster cognitive decline in VCI and normal aging. Our results suggest that low CBF precedes and contributes to the development of vascular cognitive impairment. CBF determined by ASL might be used as a biomarker to monitor disease progression or treatment responses in VCI.
Collapse
Affiliation(s)
- Maud van Dinther
- Department of NeurologyMaastricht University Medical CenterMaastrichtThe Netherlands
| | - Astrid M. Hooghiemstra
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Amsterdam UMCVrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - Esther E. Bron
- Department of Radiology & Nuclear MedicineErasmus MC—University Medical Center RotterdamRotterdamThe Netherlands
| | - Adriaan Versteeg
- Department of Radiology & Nuclear MedicineErasmus MC—University Medical Center RotterdamRotterdamThe Netherlands
| | - Anna E. Leeuwis
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Amsterdam UMCVrije Universiteit AmsterdamAmsterdamThe Netherlands
- Department of Old Age PsychiatryGGZ inGeestAmsterdamThe Netherlands
| | - Tugba Kalay
- Department of NeurologySt. Antonius ZiekenhuisNieuwegeinThe Netherlands
| | - Justine E. Moonen
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Amsterdam UMCVrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - Sanne Kuipers
- Department of NeurologyUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Walter H. Backes
- Department of Radiology and Nuclear MedicineMaastricht University Medical CenterMaastrichtThe Netherlands
| | - Jacobus F. A. Jansen
- Department of Radiology and Nuclear MedicineMaastricht University Medical CenterMaastrichtThe Netherlands
| | - Mathias J. P. van Osch
- C.J. Gorter MRI Center, Department of RadiologyLeiden University Medical CenterLeidenThe Netherlands
| | - Geert‐Jan Biessels
- Department of NeurologyUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Julie Staals
- Department of NeurologyMaastricht University Medical CenterMaastrichtThe Netherlands
| | | | | |
Collapse
|
11
|
Yoo HJ, Nashiro K, Dutt S, Min J, Cho C, Thayer JF, Lehrer P, Chang C, Mather M. Daily biofeedback to modulate heart rate oscillations affects structural volume in hippocampal subregions targeted by the locus coeruleus in older adults but not younger adults. Neurobiol Aging 2023; 132:85-99. [PMID: 37769491 PMCID: PMC10840698 DOI: 10.1016/j.neurobiolaging.2023.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 08/24/2023] [Accepted: 08/28/2023] [Indexed: 10/03/2023]
Abstract
Using data from a clinical trial, we tested the hypothesis that daily sessions modulating heart rate oscillations affect older adults' volume of a region-of-interest (ROI) comprised of adjacent hippocampal subregions with relatively strong locus coeruleus (LC) noradrenergic input. Younger and older adults were randomly assigned to one of two daily biofeedback practices for 5 weeks: (1) engage in slow-paced breathing to increase the amplitude of oscillations in heart rate at their breathing frequency (Osc+); (2) engage in self-selected strategies to decrease heart rate oscillations (Osc-). The interventions did not significantly affect younger adults' hippocampal volume. Among older adults, the two conditions affected volume in the LC-targeted hippocampal ROI differentially as reflected in a significant condition × time-point interaction on ROI volume. These condition differences were driven by opposing changes in the two conditions (increased volume in Osc+ and decreased volume in Osc-) and were mediated by the degree of heart rate oscillation during training sessions.
Collapse
Affiliation(s)
- Hyun Joo Yoo
- University of Southern California, Los Angeles, CA 90089, USA
| | - Kaoru Nashiro
- University of Southern California, Los Angeles, CA 90089, USA
| | - Shubir Dutt
- University of Southern California, Los Angeles, CA 90089, USA
| | - Jungwon Min
- University of Southern California, Los Angeles, CA 90089, USA
| | - Christine Cho
- University of Southern California, Los Angeles, CA 90089, USA
| | | | - Paul Lehrer
- Rutgers University, New Brunswick, NJ 08852, USA
| | - Catie Chang
- Vanderbilt University, Nashville, TN 37235, USA
| | - Mara Mather
- University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
12
|
Richerson WT, Meier TB, Cohen AD, Wang Y, Goodman MJ, Schmit BD, Wolfgram DF. Cerebrovascular Function is Altered in Hemodialysis Patients. KIDNEY360 2023; 4:1717-1725. [PMID: 37962988 PMCID: PMC10758518 DOI: 10.34067/kid.0000000000000292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/19/2023] [Indexed: 11/16/2023]
Abstract
Key Points Hemodialysis patients have impaired cerebrovascular reactivity. Hemodialysis patients have cerebral structural deficits. Background Hemodialysis patients have declines in cerebral blood flow (CBF) and cerebral oxygenation during hemodialysis that may lead to ischemic brain injury. Cerebrovascular reactivity (CVR) may indicate which individuals are more susceptible to intradialytic hypoperfusion and ischemia. We hypothesized that hemodialysis patients would have decreased CVR and increased CBF relative to controls and deficits in CVR would be related to brain structural deficits. Methods We measured cortical thickness and white matter hyperintensity (WMH) volume from T1 and T2 fluid attenuation inversion recovery images, respectively; CVR from a breath hold blood oxygen level–dependent CVR functional magnetic resonance imaging (fMRI); and arterial transit time and CBF from arterial spin labeling. Cerebrovascular and structural deficits in gray matter and white matter (GM and WM) were tested by averaging across the tissue and with a pothole analysis. Finally, we correlated cortical thickness and WMH volume with GM and WM cerebrovascular variables to assess the relationship between brain structure and cerebrovascular health. Results In ten hemodialysis patients, cortical thickness was found to be decreased (P = 0.002), WMH volume increased (P = 0.004), and WM CBF increased (P = 0.02) relative to ten controls. Pothole analysis indicated a higher number of increased GM and WM CBF voxels (P = 0.03, P = 0.02) and a higher number of decreased GM and WM CVR voxels (P = 0.02, P = 0.01). Conclusions This pilot study demonstrates that hemodialysis patients have decreased CVR and increased CBF relative to controls, along with reduced brain integrity. Further investigation is required to fully understand whether these cerebrovascular deficits may lead to structural changes.
Collapse
Affiliation(s)
- Wesley T. Richerson
- Department of Biomedical Engineering, Marquette University and Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Timothy B. Meier
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Alexander D. Cohen
- Department of Radiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Yang Wang
- Department of Radiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | | | - Brian D. Schmit
- Department of Biomedical Engineering, Marquette University and Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Dawn F. Wolfgram
- Department of Medicine, Medical College of Wisconsin, Zablocki Veterans Affairs Medical Center, Milwaukee, Wisconsin
| |
Collapse
|
13
|
van Grinsven EE, Guichelaar J, Philippens MEP, Siero JCW, Bhogal AA. Hemodynamic imaging parameters in brain metastases patients - Agreement between multi-delay ASL and hypercapnic BOLD. J Cereb Blood Flow Metab 2023; 43:2072-2084. [PMID: 37632255 PMCID: PMC10925872 DOI: 10.1177/0271678x231196989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 07/14/2023] [Accepted: 07/19/2023] [Indexed: 08/27/2023]
Abstract
Arterial spin labeling (ASL) MRI is a routine clinical imaging technique that provides quantitative cerebral blood flow (CBF) information. A related technique is blood oxygenation level-dependent (BOLD) MRI during hypercapnia, which can assess cerebrovascular reactivity (CVR). ASL is weighted towards arteries, whereas BOLD is weighted towards veins. Their associated parameters in heterogeneous tissue types or under different hemodynamic conditions remains unclear. Baseline multi-delay ASL MRI and BOLD MRI during hypercapnia were performed in fourteen patients with brain metastases. In the ROI analysis, the CBF and CVR values were positively correlated in regions showing sufficient reserve capacity (i.e. non-steal regions, rrm = 0.792). Additionally, longer hemodynamic lag times were related to lower baseline CBF (rrm = -0.822) and longer arterial arrival time (AAT; rrm = 0.712). In contrast, in regions exhibiting vascular steal an inverse relationship was found with higher baseline CBF related to more negative CVR (rrm = -0.273). These associations were confirmed in voxelwise analyses. The relationship between CBF, AAT and CVR measures seems to be dependent on the vascular status of the underlying tissue. Healthy tissue relationships do not hold in tissues experiencing impaired or exhausted autoregulation. CVR metrics can possibly identify at-risk areas before perfusion deficiencies become visible on ASL MRI, specifically within vascular steal regions.
Collapse
Affiliation(s)
- Eva E van Grinsven
- Department of Neurology & Neurosurgery, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Jamila Guichelaar
- Department of Radiation Oncology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Marielle EP Philippens
- Department of Radiation Oncology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jeroen CW Siero
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
- Spinoza Center for Neuroimaging, Amsterdam, Netherlands
| | - Alex A Bhogal
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
14
|
Qi Y, Lin Z, Lu H, Mao J, Zhang H, Zhao P, Hou Y. Cerebral Hemodynamic and Metabolic Abnormalities in Neonatal Hypocalcemia: Findings from Advanced MRI. AJNR Am J Neuroradiol 2023; 44:1224-1230. [PMID: 37709354 PMCID: PMC10549950 DOI: 10.3174/ajnr.a7994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/16/2023] [Indexed: 09/16/2023]
Abstract
BACKGROUND AND PURPOSE Neonatal hypocalcemia is the most common metabolic disorder, and whether asymptomatic disease should be treated with calcium supplements remains controversial. We aimed to quantify neonatal hypocalcemia's global CBF and cerebral metabolic rate of oxygen (CMRO2) using physiologic MR imaging and elucidate the pathophysiologic vulnerabilities of neonatal hypocalcemia. MATERIALS AND METHODS A total of 37 consecutive patients with neonatal hypocalcemia were enrolled. They were further divided into subgroups with and without structural MR imaging abnormalities, denoted as neonatal hypocalcemia-a (n = 24) and neonatal hypocalcemia-n (n = 13). Nineteen healthy neonates were enrolled as a control group. Brain physiologic parameters determined using phase-contrast MR imaging, T2-relaxation-under-spin-tagging MR imaging, and brain volume were compared between patients with neonatal hypocalcemia (their subgroups) and controls. Predictors for neonatal hypocalcemia-related brain injuries were identified using multivariate logistic regression analysis and expressed as ORs with 95% CIs. RESULTS Patients with neonatal hypocalcemia showed significantly lower CBF and CMRO2 compared with controls. Furthermore, the neonatal hypocalcemia-a subset (versus controls or neonatal hypocalcemia-n) had significantly lower CBF and CMRO2. There was no obvious difference in CBF and CMRO2 between the neonatal hypocalcemia-n subset and controls. CBF and CMRO2 were independently associated with neonatal hypocalcemia. The ORs were 0.80 (95% CI, 0.65-0.99) and 0.97 (95% CI, 0.89-1.05) for CBF and CMRO2, respectively. CONCLUSIONS Neonatal hypocalcemia with structural damage may exhibit lower hemodynamics and cerebral metabolism. CBF may be useful in assessing the need for calcium supplementation in asymptomatic neonatal hypocalcemia to prevent brain injury.
Collapse
Affiliation(s)
- Ying Qi
- From the Department of Radiology (Y.Q., H.Z., Y.H.), Shengjing Hospital of China Medical University, Shenyang, China
| | - Zixuan Lin
- Key Laboratory for Biomedical Engineering of Ministry of Education (Z.L.), Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China
| | - Hanzhang Lu
- Department of Radiology (H.L.), Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jian Mao
- Department of Pediatrics (J.M.), Shengjing Hospital of China Medical University, Shenyang, China
| | - Hongyang Zhang
- From the Department of Radiology (Y.Q., H.Z., Y.H.), Shengjing Hospital of China Medical University, Shenyang, China
| | - Pengfei Zhao
- Department of Pharmacology (P.Z.), School of Pharmaceutical Sciences, China Medical University, Shenyang, China
| | - Yang Hou
- From the Department of Radiology (Y.Q., H.Z., Y.H.), Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
15
|
Yoo HJ, Nashiro K, Dutt S, Min J, Cho C, Thayer JF, Lehrer P, Chang C, Mather M. Daily biofeedback to modulate heart rate oscillations affects structural volume in hippocampal subregions targeted by the locus coeruleus in older adults but not younger adults. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.03.02.23286715. [PMID: 37745356 PMCID: PMC10516053 DOI: 10.1101/2023.03.02.23286715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Using data from a clinical trial, we tested the hypothesis that daily sessions modulating heart rate oscillations affect older adults' volume of a region-of-interest (ROI) comprised of adjacent hippocampal subregions with relatively strong locus coeruleus (LC) noradrenergic input. Younger and older adults were randomly assigned to one of two daily biofeedback practices for 5 weeks: 1) engage in slow-paced breathing to increase the amplitude of oscillations in heart rate at their breathing frequency (Osc+); 2) engage in self-selected strategies to decrease heart rate oscillations (Osc-). The interventions did not significantly affect younger adults' hippocampal volume. Among older adults, the two conditions affected volume in the LC-targeted hippocampal ROI differentially as reflected in a significant condition x time-point interaction on ROI volume. These condition differences were driven by opposing changes in the two conditions (increased volume in Osc+ and decreased volume in Osc-) and were mediated by the degree of heart rate oscillation during training sessions.
Collapse
Affiliation(s)
- Hyun Joo Yoo
- University of Southern California, Los Angeles, CA 90089
| | - Kaoru Nashiro
- University of Southern California, Los Angeles, CA 90089
| | - Shubir Dutt
- University of Southern California, Los Angeles, CA 90089
| | - Jungwon Min
- University of Southern California, Los Angeles, CA 90089
| | - Christine Cho
- University of Southern California, Los Angeles, CA 90089
| | | | | | | | - Mara Mather
- University of Southern California, Los Angeles, CA 90089
| |
Collapse
|
16
|
Badji A, Youwakim J, Cooper A, Westman E, Marseglia A. Vascular cognitive impairment - Past, present, and future challenges. Ageing Res Rev 2023; 90:102042. [PMID: 37634888 DOI: 10.1016/j.arr.2023.102042] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 08/29/2023]
Abstract
Vascular cognitive impairment (VCI) is a lifelong process encompassing a broad spectrum of cognitive disorders, ranging from subtle or mild deficits to prodromal and fully developed dementia, originating from cerebrovascular lesions such as large and small vessel disease. Genetic predisposition and environmental exposure to risk factors such as unhealthy lifestyles, hypertension, cardiovascular disease, and metabolic disorders will synergistically interact, yielding biochemical and structural brain changes, ultimately culminating in VCI. However, little is known about the pathological processes underlying VCI and the temporal dynamics between risk factors and disease mechanisms (biochemical and structural brain changes). This narrative review aims to provide an evidence-based summary of the link between individual vascular risk/disorders and cognitive dysfunction and the potential structural and biochemical pathophysiological processes. We also discuss some key challenges for future research on VCI. There is a need to shift from individual risk factors/disorders to comorbid vascular burden, identifying and integrating imaging and fluid biomarkers, implementing a life-course approach, considering possible neuroprotective influences of positive life exposures, and addressing biological sex at birth and gender differences. Finally, this review highlights the need for future researchers to leverage and integrate multidimensional data to advance our understanding of the mechanisms and pathophysiology of VCI.
Collapse
Affiliation(s)
- Atef Badji
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden; Theme Inflammation and Aging, Karolinska University Hospital, Stockholm, Sweden
| | - Jessica Youwakim
- Department of Pharmacology and Physiology, Université de Montréal, Montreal, QC, Canada; Centre interdisciplinaire de recherche sur le cerveau et l'apprentissage (CIRCA), Montreal, QC, Canada; Groupe de Recherche sur la Signalisation Neuronal et la Circuiterie (SNC), Montreal, QC, Canada
| | - Alexandra Cooper
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden; Unit of Integrative Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Eric Westman
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden; Department of Neuroimaging, Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK
| | - Anna Marseglia
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
17
|
van Grinsven EE, de Leeuw J, Siero JCW, Verhoeff JJC, van Zandvoort MJE, Cho J, Philippens MEP, Bhogal AA. Evaluating Physiological MRI Parameters in Patients with Brain Metastases Undergoing Stereotactic Radiosurgery-A Preliminary Analysis and Case Report. Cancers (Basel) 2023; 15:4298. [PMID: 37686575 PMCID: PMC10487230 DOI: 10.3390/cancers15174298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/17/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
Brain metastases occur in ten to thirty percent of the adult cancer population. Treatment consists of different (palliative) options, including stereotactic radiosurgery (SRS). Sensitive MRI biomarkers are needed to better understand radiotherapy-related effects on cerebral physiology and the subsequent effects on neurocognitive functioning. In the current study, we used physiological imaging techniques to assess cerebral blood flow (CBF), oxygen extraction fraction (OEF), cerebral metabolic rate of oxygen (CMRO2) and cerebrovascular reactivity (CVR) before and three months after SRS in nine patients with brain metastases. The results showed improvement in OEF, CBF and CMRO2 within brain tissue that recovered from edema (all p ≤ 0.04), while CVR remained impacted. We observed a global post-radiotherapy increase in CBF in healthy-appearing brain tissue (p = 0.02). A repeated measures correlation analysis showed larger reductions within regions exposed to higher radiotherapy doses in CBF (rrm = -0.286, p < 0.001), CMRO2 (rrm = -0.254, p < 0.001), and CVR (rrm = -0.346, p < 0.001), but not in OEF (rrm = -0.004, p = 0.954). Case analyses illustrated the impact of brain metastases progression on the post-radiotherapy changes in both physiological MRI measures and cognitive performance. Our preliminary findings suggest no radiotherapy effects on physiological parameters occurred in healthy-appearing brain tissue within 3-months post-radiotherapy. Nevertheless, as radiotherapy can have late side effects, larger patient samples allowing meaningful grouping of patients and longer follow-ups are needed.
Collapse
Affiliation(s)
- Eva E. van Grinsven
- Department of Neurology & Neurosurgery, University Medical Center Utrecht Brain Center, Utrecht University, 3584 CX Utrecht, The Netherlands
| | - Jordi de Leeuw
- Department of Radiology, Center for Image Sciences, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (J.d.L.); (A.A.B.)
| | - Jeroen C. W. Siero
- Department of Radiology, Center for Image Sciences, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (J.d.L.); (A.A.B.)
- Spinoza Center for Neuroimaging, 1105 BK Amsterdam, The Netherlands
| | - Joost J. C. Verhoeff
- Department of Radiation Oncology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands (M.E.P.P.)
| | - Martine J. E. van Zandvoort
- Department of Neurology & Neurosurgery, University Medical Center Utrecht Brain Center, Utrecht University, 3584 CX Utrecht, The Netherlands
- Department of Experimental Psychology, Helmholtz Institute, Utrecht University, 3584 CS Utrecht, The Netherlands
| | - Junghun Cho
- Department of Biomedical Engineering, SUNY Buffalo, Buffalo, NY 14228, USA;
| | - Marielle E. P. Philippens
- Department of Radiation Oncology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands (M.E.P.P.)
| | - Alex A. Bhogal
- Department of Radiology, Center for Image Sciences, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (J.d.L.); (A.A.B.)
| |
Collapse
|
18
|
Krishnamurthy LC, Glassman C, Han JH, Song SE, Denmon C, Weatherill M, Rodriguez AD, Crosson BA, Krishnamurthy V. ASL MRI informs blood flow to chronic stroke lesions in patients with aphasia. Front Physiol 2023; 14:1240992. [PMID: 37546533 PMCID: PMC10397521 DOI: 10.3389/fphys.2023.1240992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 07/11/2023] [Indexed: 08/08/2023] Open
Abstract
Introduction: Response to post-stroke aphasia language rehabilitation is difficult to anticipate, mainly because few predictors can help identify optimal, individualized treatment options. Imaging techniques, such as Voxel-based Lesion Symptom Mapping have been useful in linking specific brain areas to language behavior; however, further development is required to optimize the use of structural and physiological information in guiding individualized treatment for persons with aphasia (PWA). In this study, we will determine if cerebral blood flow (CBF) mapped in patients with chronic strokes can be further used to understand stroke-related factors and behavior. Methods: We collected perfusion MRI data using pseudo-Continuous Arterial Spin Labeling (pCASL) using a single post-labeling delay of 2,200 ms in 14 chronic PWA, along with high-resolution structural MRI to compute maps of tissue damage using Tissue Integrity Gradation via T2w T1w Ratio (TIGR). To quantify the CBF in chronic stroke lesions, we tested at what point spatial smoothing should be applied in the ASL analysis pipeline. We then related CBF to tissue damage, time since stroke, age, sex, and their respective cross-terms to further understand the variability in lesion CBF. Finally, we assessed the feasibility of computing multivariate brain-behavior maps using CBF and compared them to brain-behavior maps extracted with TIGR MRI. Results: We found that the CBF in chronic stroke lesions is significantly reduced compared to its homologue grey and white matter regions. However, a reliable CBF signal (although smaller than expected) was detected to reveal a negative relationship between CBF and increasing tissue damage. Further, the relationship between the lesion CBF and age, sex, time since stroke, and tissue damage and cross-terms suggested an aging-by-disease interaction. This relationship was strongest when smoothing was applied in the template space. Finally, we show that whole-brain CBF relates to domain-general visuospatial functioning in PWA. The CBF-based brain-behavior maps provide unique and complementary information to structural (lesion-based) brain-behavior maps. Discussion: Therefore, CBF can be detected in chronic stroke lesions using a standard pCASL MRI acquisition and is informative at the whole-brain level in identifying stroke rehabilitation targets in PWAs due to its relationship with demographic factors, stroke-related factors, and behavior.
Collapse
Affiliation(s)
- Lisa C. Krishnamurthy
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Health Care System, Decatur, GA, United States
- Joint GSU, Georgia Tech, and Emory Center for Translational Research in Neuroimaging and Data Science (TReNDS), Atlanta, GA, United States
- Department of Physics and Astronomy, Georgia State University, Atlanta, GA, United States
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA, United States
| | - Clara Glassman
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Health Care System, Decatur, GA, United States
| | - Joo H. Han
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Health Care System, Decatur, GA, United States
| | - Serena E. Song
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Health Care System, Decatur, GA, United States
| | - Chanse Denmon
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Health Care System, Decatur, GA, United States
| | - Maryanne Weatherill
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Health Care System, Decatur, GA, United States
| | - Amy D. Rodriguez
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Health Care System, Decatur, GA, United States
- Department of Neurology, Emory University, Atlanta, GA, United States
| | - Bruce A. Crosson
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Health Care System, Decatur, GA, United States
- Department of Neurology, Emory University, Atlanta, GA, United States
| | - Venkatagiri Krishnamurthy
- Department of Neurology, Emory University, Atlanta, GA, United States
- Division of Geriatrics and Gerontology, Department of Medicine, Emory University, Atlanta, GA, United States
- Department of Veterans Affairs (VA) Health Care System, Decatur, GA, United States
| |
Collapse
|
19
|
Lindner T, Bolar DS, Achten E, Barkhof F, Bastos-Leite AJ, Detre JA, Golay X, Günther M, Wang DJJ, Haller S, Ingala S, Jäger HR, Jahng GH, Juttukonda MR, Keil VC, Kimura H, Ho ML, Lequin M, Lou X, Petr J, Pinter N, Pizzini FB, Smits M, Sokolska M, Zaharchuk G, Mutsaerts HJMM. Current state and guidance on arterial spin labeling perfusion MRI in clinical neuroimaging. Magn Reson Med 2023; 89:2024-2047. [PMID: 36695294 PMCID: PMC10914350 DOI: 10.1002/mrm.29572] [Citation(s) in RCA: 70] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/16/2022] [Accepted: 12/19/2022] [Indexed: 01/26/2023]
Abstract
This article focuses on clinical applications of arterial spin labeling (ASL) and is part of a wider effort from the International Society for Magnetic Resonance in Medicine (ISMRM) Perfusion Study Group to update and expand on the recommendations provided in the 2015 ASL consensus paper. Although the 2015 consensus paper provided general guidelines for clinical applications of ASL MRI, there was a lack of guidance on disease-specific parameters. Since that time, the clinical availability and clinical demand for ASL MRI has increased. This position paper provides guidance on using ASL in specific clinical scenarios, including acute ischemic stroke and steno-occlusive disease, arteriovenous malformations and fistulas, brain tumors, neurodegenerative disease, seizures/epilepsy, and pediatric neuroradiology applications, focusing on disease-specific considerations for sequence optimization and interpretation. We present several neuroradiological applications in which ASL provides unique information essential for making the diagnosis. This guidance is intended for anyone interested in using ASL in a routine clinical setting (i.e., on a single-subject basis rather than in cohort studies) building on the previous ASL consensus review.
Collapse
Affiliation(s)
- Thomas Lindner
- Department of Diagnostic and Interventional Neuroradiology, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Divya S. Bolar
- Center for Functional Magnetic Resonance Imaging, Department of Radiology, University of California San Diego, San Diego, CA, USA
| | - Eric Achten
- Department of Radiology and Nuclear Medicine, Ghent University, Ghent, Belgium
| | - Frederik Barkhof
- Department of Radiology and Nuclear Medicine, Amsterdam Neuroscience, Amsterdam University Medical Center, Amsterdam, The Netherlands; Queen Square Institute of Neurology and Centre for Medical Image Computing, University College London, UK
| | | | - John A. Detre
- Department of Neurology, University of Pennsylvania, Philadelphia PA USA
| | - Xavier Golay
- UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Matthias Günther
- (1) University Bremen, Germany; (2) Fraunhofer MEVIS, Bremen, Germany; (3) mediri GmbH, Heidelberg, Germany
| | - Danny JJ Wang
- Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles CA USA
| | - Sven Haller
- (1) CIMC - Centre d’Imagerie Médicale de Cornavin, Place de Cornavin 18, 1201 Genève 1201 Genève (2) Department of Surgical Sciences, Radiology, Uppsala University, Uppsala, Sweden (3) Faculty of Medicine of the University of Geneva, Switzerland. Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, P. R. China
| | - Silvia Ingala
- Department of Radiology and Nuclear Medicine, Amsterdam Neuroscience, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Hans R Jäger
- UCL Queen Square Institute of Neuroradiology, University College London, London, UK
| | - Geon-Ho Jahng
- Department of Radiology, Kyung Hee University Hospital at Gangdong, College of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Meher R. Juttukonda
- (1) Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown MA USA (2) Department of Radiology, Harvard Medical School, Boston MA USA
| | - Vera C. Keil
- Department of Radiology and Nuclear Medicine, Cancer Center Amsterdam, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Hirohiko Kimura
- Department of Radiology, Faculty of Medical sciences, University of Fukui, Fukui, JAPAN
| | - Mai-Lan Ho
- Nationwide Children’s Hospital and The Ohio State University, Columbus, OH, USA
| | - Maarten Lequin
- Division Imaging & Oncology, Department of Radiology & Nuclear Medicine | University Medical Center Utrecht & Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Xin Lou
- Department of Radiology, Chinese PLA General Hospital, Beijing, China
| | - Jan Petr
- (1) Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Dresden, Germany (2) Department of Radiology and Nuclear Medicine, Amsterdam Neuroscience, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Nandor Pinter
- Dent Neurologic Institute, Buffalo, NY, USA. University at Buffalo Neurosurgery, Buffalo, NY, USA
| | - Francesca B. Pizzini
- Radiology Institute, Dept. of Diagnostic and Public Health, University of Verona, Verona, Italy
| | - Marion Smits
- (1) Department of Radiology & Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands (2) The Brain Tumour Centre, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Magdalena Sokolska
- Department of Medical Physics and Biomedical Engineering University College London Hospitals NHS Foundation Trust, UK
| | | | - Henk JMM Mutsaerts
- Department of Radiology and Nuclear Medicine, Amsterdam Neuroscience, Amsterdam University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
20
|
Nashiro K, Min J, Yoo HJ, Cho C, Bachman SL, Dutt S, Thayer JF, Lehrer PM, Feng T, Mercer N, Nasseri P, Wang D, Chang C, Marmarelis VZ, Narayanan S, Nation DA, Mather M. Increasing coordination and responsivity of emotion-related brain regions with a heart rate variability biofeedback randomized trial. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2023; 23:66-83. [PMID: 36109422 PMCID: PMC9931635 DOI: 10.3758/s13415-022-01032-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/25/2022] [Indexed: 12/15/2022]
Abstract
Heart rate variability is a robust biomarker of emotional well-being, consistent with the shared brain networks regulating emotion regulation and heart rate. While high heart rate oscillatory activity clearly indicates healthy regulatory brain systems, can increasing this oscillatory activity also enhance brain function? To test this possibility, we randomly assigned 106 young adult participants to one of two 5-week interventions involving daily biofeedback that either increased heart rate oscillations (Osc+ condition) or had little effect on heart rate oscillations (Osc- condition) and examined effects on brain activity during rest and during regulating emotion. While there were no significant changes in the right amygdala-medial prefrontal cortex (MPFC) functional connectivity (our primary outcome), the Osc+ intervention increased left amygdala-MPFC functional connectivity and functional connectivity in emotion-related resting-state networks during rest. It also increased down-regulation of activity in somatosensory brain regions during an emotion regulation task. The Osc- intervention did not have these effects. In this healthy cohort, the two conditions did not differentially affect anxiety, depression, or mood. These findings indicate that modulating heart rate oscillatory activity changes emotion network coordination in the brain.
Collapse
Affiliation(s)
- Kaoru Nashiro
- University of Southern California, 3715 McClintock Avenue, Los Angeles, CA, 90089, USA
| | - Jungwon Min
- University of Southern California, 3715 McClintock Avenue, Los Angeles, CA, 90089, USA
| | - Hyun Joo Yoo
- University of Southern California, 3715 McClintock Avenue, Los Angeles, CA, 90089, USA
| | - Christine Cho
- University of Southern California, 3715 McClintock Avenue, Los Angeles, CA, 90089, USA
| | - Shelby L Bachman
- University of Southern California, 3715 McClintock Avenue, Los Angeles, CA, 90089, USA
| | - Shubir Dutt
- University of Southern California, 3715 McClintock Avenue, Los Angeles, CA, 90089, USA
| | | | | | - Tiantian Feng
- University of Southern California, 3715 McClintock Avenue, Los Angeles, CA, 90089, USA
| | - Noah Mercer
- University of Southern California, 3715 McClintock Avenue, Los Angeles, CA, 90089, USA
| | - Padideh Nasseri
- University of Southern California, 3715 McClintock Avenue, Los Angeles, CA, 90089, USA
| | - Diana Wang
- University of Southern California, 3715 McClintock Avenue, Los Angeles, CA, 90089, USA
| | | | - Vasilis Z Marmarelis
- University of Southern California, 3715 McClintock Avenue, Los Angeles, CA, 90089, USA
| | - Shri Narayanan
- University of Southern California, 3715 McClintock Avenue, Los Angeles, CA, 90089, USA
| | | | - Mara Mather
- University of Southern California, 3715 McClintock Avenue, Los Angeles, CA, 90089, USA.
| |
Collapse
|
21
|
Schmitz-Abecassis B, Dirven L, Jiang J, Keller JA, Croese RJI, van Dorth D, Ghaznawi R, Kant IMJ, Taphoorn MJB, van Osch MJP, Koekkoek JAF, de Bresser J. MRI phenotypes of glioblastomas early after treatment are suggestive of overall patient survival. Neurooncol Adv 2023; 5:vdad133. [PMID: 37908765 PMCID: PMC10613962 DOI: 10.1093/noajnl/vdad133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023] Open
Abstract
Background Distinguishing true tumor progression (TP) from treatment-induced abnormalities (eg, pseudo-progression (PP) after radiotherapy) on conventional MRI scans remains challenging in patients with a glioblastoma. We aimed to establish brain MRI phenotypes of glioblastomas early after treatment by combined analysis of structural and perfusion tumor characteristics and assessed the relation with recurrence rate and overall survival time. Methods Structural and perfusion MR images of 67 patients at 3 months post-radiotherapy were visually scored by a neuroradiologist. In total 23 parameters were predefined and used for hierarchical clustering analysis. Progression status was assessed based on the clinical course of each patient 9 months after radiotherapy (or latest available). Multivariable Cox regression models were used to determine the association between the phenotypes, recurrence rate, and overall survival. Results We established 4 subgroups with significantly different tumor MRI characteristics, representing distinct MRI phenotypes of glioblastomas: TP and PP rates did not differ significantly between subgroups. Regression analysis showed that patients in subgroup 1 (characterized by having mostly small and ellipsoid nodular enhancing lesions with some hyper-perfusion) had a significant association with increased mortality at 9 months (HR: 2.6 (CI: 1.1-6.3); P = .03) with a median survival time of 13 months (compared to 22 months of subgroup 2). Conclusions Our study suggests that distinct MRI phenotypes of glioblastomas at 3 months post-radiotherapy can be indicative of overall survival, but does not aid in differentiating TP from PP. The early prognostic information our method provides might in the future be informative for prognostication of glioblastoma patients.
Collapse
Affiliation(s)
- Bárbara Schmitz-Abecassis
- C.J. Gorter MRI Center, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
- Medical Delta, South-Holland, The Netherlands
| | - Linda Dirven
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Neurology, Haaglanden Medical Center, The Hague, The Netherlands
| | - Janey Jiang
- Department of Radiology, HagaZiekenhuis, The Hague, The Netherlands
| | - Jasmin A Keller
- C.J. Gorter MRI Center, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Robert J I Croese
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Neurology, Haaglanden Medical Center, The Hague, The Netherlands
| | - Daniëlle van Dorth
- C.J. Gorter MRI Center, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Rashid Ghaznawi
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| | - Ilse M J Kant
- Clinical Artificial Intelligence Implementation and Research Lab (CAIRELab) and Department of Information Technology & Digital Innovation, Leiden University Medical Center, Leiden, The Netherlands
- Department of Digital Health, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Martin J B Taphoorn
- C.J. Gorter MRI Center, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Neurology, Haaglanden Medical Center, The Hague, The Netherlands
| | | | - Johan A F Koekkoek
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Neurology, Haaglanden Medical Center, The Hague, The Netherlands
| | - Jeroen de Bresser
- C.J. Gorter MRI Center, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
22
|
Gyanwali B, Mutsaerts HJ, Tan CS, Kaweilh OR, Petr J, Chen C, Hilal S. Association of Arterial Spin Labeling Parameters With Cognitive Decline, Vascular Events, and Mortality in a Memory-Clinic Sample. Am J Geriatr Psychiatry 2022; 30:1298-1309. [PMID: 35871110 DOI: 10.1016/j.jagp.2022.06.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 05/25/2022] [Accepted: 06/12/2022] [Indexed: 01/25/2023]
Abstract
BACKGROUND Cognitive decline in older adults has been attributed to reduced cerebral blood flow (CBF). Recently, the spatial coefficient of variation (sCoV) of ASL has been proposed as a proxy marker of cerebrovascular insufficiency. We investigated the association between baseline ASL parameters with cognitive decline, incident cerebrovascular disease, and risk of vascular events and mortality. DESIGN, SETTING, AND PARTICIPANTS About 368 memory-clinic patients underwent three-annual neuropsychological assessments and brain MRI scans at baseline and follow-up. MRIs were graded for white matter hyperintensities (WMH), lacunes, cerebral microbleeds (CMBs), cortical infarcts, and intracranial stenosis. Baseline gray (GM) and white matter (WM) CBF and GM-sCoV were obtained with ExploreASL from 2D-EPI pseudo-continuous ASL images. Cognitive assessment was done using a validated neuropsychological battery. Data on incident vascular events (heart disease, stroke, transient ischemic attack) and mortality were obtained. RESULTS Higher baseline GM-sCoV was associated with decline in the memory domain over 3 years of follow-up. Furthermore, higher GM-sCoV was associated with a decline in the memory domain only in participants without dementia. Higher baseline GM-sCoV was associated with progression of WMH and incident CMBs. During a mean follow-up of 3 years, 29 (7.8%) participants developed vascular events and 18 (4.8%) died. Participants with higher baseline mean GM-sCoV were at increased risk of vascular events. CONCLUSIONS Higher baseline GM-sCoV of ASL was associated with a decline in memory and risk of cerebrovascular disease and vascular events, suggesting that cerebrovascular insufficiency may contribute to accelerated cognitive decline and worse clinical outcomes in memory clinic participants.
Collapse
Affiliation(s)
- Bibek Gyanwali
- Memory Aging & Cognition Centre, National University Health System (BG, ORK, CC, SH), Singapore
| | - Henk Jmm Mutsaerts
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, Amsterdam Neuroscience (HJMMM), Amsterdam, the Netherlands
| | - Chuen Seng Tan
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System (CST, SH), Singapore
| | - Omar Rajab Kaweilh
- Memory Aging & Cognition Centre, National University Health System (BG, ORK, CC, SH), Singapore
| | - Jan Petr
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research (JP), Dresden, Germany
| | - Christopher Chen
- Memory Aging & Cognition Centre, National University Health System (BG, ORK, CC, SH), Singapore; Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore (CC, SH), Singapore
| | - Saima Hilal
- Memory Aging & Cognition Centre, National University Health System (BG, ORK, CC, SH), Singapore; Saw Swee Hock School of Public Health, National University of Singapore and National University Health System (CST, SH), Singapore; Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore (CC, SH), Singapore.
| |
Collapse
|
23
|
Gärtner M, de Rover M, Václavů L, Scheidegger M, van Osch MJP, Grimm S. Increase in thalamic cerebral blood flow is associated with antidepressant effects of ketamine in major depressive disorder. World J Biol Psychiatry 2022; 23:643-652. [PMID: 34985394 DOI: 10.1080/15622975.2021.2020900] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Ketamine is a promising treatment option for patients with Major Depressive Disorder (MDD) and has become an important research tool to investigate antidepressant mechanisms of action. However, imaging studies attempting to characterise ketamine's mechanism of action using blood oxygen level-dependent signal (BOLD) imaging have yielded inconsistent results- at least partly due to intrinsic properties of the BOLD contrast, which measures a complex signal related to neural activity. To circumvent the limitations associated with the BOLD signal, we used arterial spin labelling (ASL) as an unambiguous marker of neuronal activity-related changes in cerebral blood flow (CBF). We measured CBF in 21 MDD patients at baseline and 24 h after receiving a single intravenous infusion of subanesthetic ketamine and examined relationships with clinical outcomes. Our findings demonstrate that increase in thalamus perfusion 24 h after ketamine administration is associated with greater improvement of depressive symptoms. Furthermore, lower thalamus perfusion at baseline is associated both with larger increases in perfusion 24 h after ketamine administration and with stronger reduction of depressive symptoms. These findings indicate that ASL is not only a useful tool to broaden our understanding of ketamine's mechanism of action but might also have the potential to inform treatment decisions based on CBF-defined regional disruptions.
Collapse
Affiliation(s)
- Matti Gärtner
- MSB-Medical School Berlin, Berlin, Germany.,Department of Psychiatry and Psychotherapy, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Mischa de Rover
- Laboratory for Neurophysiology, Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands.,Department of Clinical Psychology, Institute of Psychology, Leiden University, Leiden, Netherlands
| | - Lena Václavů
- Department of Radiology, C.J. Gorter Center for High Field MRI, Leiden University Medical Center, Leiden, Netherlands
| | - Milan Scheidegger
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| | - Matthias J P van Osch
- Department of Radiology, C.J. Gorter Center for High Field MRI, Leiden University Medical Center, Leiden, Netherlands
| | - Simone Grimm
- MSB-Medical School Berlin, Berlin, Germany.,Department of Psychiatry and Psychotherapy, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| |
Collapse
|
24
|
Gyanwali B, Tan CS, Petr J, Escobosa LLT, Vrooman H, Chen C, Mutsaerts HJ, Hilal S. Arterial Spin-Labeling Parameters and Their Associations with Risk Factors, Cerebral Small-Vessel Disease, and Etiologic Subtypes of Cognitive Impairment and Dementia. AJNR Am J Neuroradiol 2022; 43:1418-1423. [PMID: 36562454 PMCID: PMC9575536 DOI: 10.3174/ajnr.a7630] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 07/01/2022] [Indexed: 01/26/2023]
Abstract
BACKGROUND AND PURPOSE Cerebral small-vessel disease may alter cerebral blood flow (CBF) leading to brain changes and, hence, cognitive impairment and dementia. CBF and the spatial coefficient of variation can be measured quantitatively by arterial spin-labeling. We aimed to investigate the associations of demographics, vascular risk factors, location, and severity of cerebral small-vessel disease as well as the etiologic subtypes of cognitive impairment and dementia with CBF and the spatial coefficient of variation. MATERIALS AND METHODS Three hundred ninety patients with a diagnosis of no cognitive impairment, cognitive impairment no dementia, vascular cognitive impairment no dementia, Alzheimer disease, and vascular dementia were recruited from the memory clinic. Cerebral microbleeds and lacunes were categorized into strictly lobar, strictly deep, and mixed-location and enlarged perivascular spaces into the centrum semiovale and basal ganglia. Total and region-specific white matter hyperintensity volumes were segmented using FreeSurfer. CBF (n = 333) and the spatial coefficient of variation (n = 390) were analyzed with ExploreASL from 2D-EPI pseudocontinuous arterial spin-labeling images in white matter (WM) and gray matter (GM). To analyze the effect of demographic and vascular risk factors as well as the location and severity of cerebral small-vessel disease markers on arterial spin-labeling parameters, we constructed linear regression models, whereas logistic regression models were used to determine the association between arterial spin-labeling parameters and cognitive impairment no dementia, vascular cognitive impairment no dementia, Alzheimer disease, and vascular dementia. RESULTS Increasing age, male sex, hypertension, hyperlipidemia, history of heart disease, and smoking were associated with lower CBF and a higher spatial coefficient of variation. Higher numbers of lacunes and cerebral microbleeds were associated with lower CBF and a higher spatial coefficient of variation. Location-specific analysis showed mixed-location lacunes and cerebral microbleeds were associated with lower CBF. Higher total, anterior, and posterior white matter hyperintensity volumes were associated with a higher spatial coefficient of variation. No association was observed between enlarged perivascular spaces and arterial spin-labeling parameters. A higher spatial coefficient of variation was associated with the diagnosis of vascular cognitive impairment no dementia, Alzheimer's disease, and vascular dementia. CONCLUSIONS Reduced CBF and an increased spatial coefficient of variation were associated with cerebral small-vessel disease, and more specifically lacunes, whereas cerebral microbleeds and white matter hyperintensities were associated with WM-CBF and GM spatial coefficient of variation. The spatial coefficient of variation was associated with cognitive impairment and dementia, suggesting that hypoperfusion might be the key underlying mechanism for vascular brain damage.
Collapse
Affiliation(s)
- B Gyanwali
- From the Memory Aging and Cognition Centre (B.G., C.C., S.H.), National University Health System, Singapore
| | - C S Tan
- Saw Swee Hock School of Public Health (C.S.T., L.L.T.E., S.H.), National University of Singapore, and National University Health System, Singapore
| | - J Petr
- Helmholtz-Zentrum Dresden-Rossendorf (J.P.), Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| | - L L T Escobosa
- Saw Swee Hock School of Public Health (C.S.T., L.L.T.E., S.H.), National University of Singapore, and National University Health System, Singapore
| | - H Vrooman
- Department of Radiology and Nuclear Medicine (H.V.), Erasmus University Medical Center, Rotterdam, The Netherlands
| | - C Chen
- From the Memory Aging and Cognition Centre (B.G., C.C., S.H.), National University Health System, Singapore
- Department of Pharmacology (C.C., S.H.), Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - H J Mutsaerts
- Department of Radiology (H.J.M.), VU University Medical Center, Amsterdam, the Netherlands
- Department of Radiology (H.J.M.), Brain Center Rudolf Magnus, University Medical Center, Utrecht, the Netherlands
| | - S Hilal
- From the Memory Aging and Cognition Centre (B.G., C.C., S.H.), National University Health System, Singapore
- Saw Swee Hock School of Public Health (C.S.T., L.L.T.E., S.H.), National University of Singapore, and National University Health System, Singapore
- Department of Pharmacology (C.C., S.H.), Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
25
|
Koolstra K, Staring M, de Bruin P, van Osch MJP. Subject-specific optimization of background suppression for arterial spin labeling magnetic resonance imaging using a feedback loop on the scanner. NMR IN BIOMEDICINE 2022; 35:e4746. [PMID: 35466446 PMCID: PMC9539598 DOI: 10.1002/nbm.4746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 04/04/2022] [Accepted: 04/20/2022] [Indexed: 06/14/2023]
Abstract
Background suppression (BGS) in arterial spin labeling (ASL) magnetic resonance imaging leads to a higher temporal signal-to-noise ratio (tSNR) of the perfusion images compared with ASL without BGS. The performance of the BGS, however, depends on the tissue relaxation times and on inhomogeneities of the scanner's magnetic fields, which differ between subjects and are unknown at the moment of scanning. Therefore, we developed a feedback loop (FBL) mechanism that optimizes the BGS for each subject in the scanner during acquisition. We implemented the FBL for 2D pseudo-continuous ASL scans with an echo-planar imaging readout. After each dynamic scan, the acquired ASL images were automatically sent to an external computer and processed with a Python processing tool. Inversion times were optimized on the fly using 80 iterations of the Nelder-Mead method, by minimizing the signal intensity in the label image while maximizing the signal intensity in the perfusion image. The performance of this method was first tested in a four-component phantom. The regularization parameter was then tuned in six healthy subjects (three males, three females, age 24-62 years) and set as λ = 4 for all other experiments. The resulting ASL images, perfusion images, and tSNR maps obtained from the last 20 iterations of the FBL scan were compared with those obtained without BGS and with standard BGS in 12 healthy volunteers (five males, seven females, age 24-62 years) (including the six volunteers used for tuning of λ). The FBL resulted in perfusion images with a statistically significantly higher tSNR (2.20) compared with standard BGS (1.96) ( p < 5 x 10 - 3 , two-sided paired t-test). Minimizing signal in the label image furthermore resulted in control images, from which approximate changes in perfusion signal can directly be appreciated. This could be relevant to ASL applications that require a high temporal resolution. Future work is needed to minimize the number of initial acquisitions during which the performance of BGS is reduced compared with standard BGS, and to extend the technique to 3D ASL.
Collapse
Affiliation(s)
- Kirsten Koolstra
- Radiology, Division of Image ProcessingLeiden University Medical CenterLeidenThe Netherlands
| | - Marius Staring
- Radiology, Division of Image ProcessingLeiden University Medical CenterLeidenThe Netherlands
| | | | | |
Collapse
|
26
|
Binnie LR, Pauls MMH, Benjamin P, Dhillon MPK, Betteridge S, Clarke B, Ghatala R, Hainsworth FAH, Howe FA, Khan U, Kruuse C, Madigan JB, Moynihan B, Patel B, Pereira AC, Rostrup E, Shtaya ABY, Spilling CA, Trippier S, Williams R, Isaacs JD, Barrick TR, Hainsworth AH. Test-retest reliability of arterial spin labelling for cerebral blood flow in older adults with small vessel disease. Transl Stroke Res 2022; 13:583-594. [PMID: 35080734 PMCID: PMC9232403 DOI: 10.1007/s12975-021-00983-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 12/15/2021] [Accepted: 12/22/2021] [Indexed: 12/03/2022]
Abstract
Cerebral small vessel disease (SVD) is common in older people and is associated with lacunar stroke, white matter hyperintensities (WMH) and vascular cognitive impairment. Cerebral blood flow (CBF) is reduced in SVD, particularly within white matter.Here we quantified test-retest reliability in CBF measurements using pseudo-continuous arterial spin labelling (pCASL) in older adults with clinical and radiological evidence of SVD (N=54, mean (SD): 66.9 (8.7) years, 15 females/39 males). We generated whole-brain CBF maps on two visits at least 7 days apart (mean (SD): 20 (19), range 7-117 days).Test-retest reliability for CBF was high in all tissue types, with intra-class correlation coefficient [95%CI]: 0.758 [0.616, 0.852] for whole brain, 0.842 [0.743, 0.905] for total grey matter, 0.771 [0.636, 0.861] for deep grey matter (caudate-putamen and thalamus), 0.872 [0.790, 0.923] for normal-appearing white matter (NAWM) and 0.780 [0.650, 0.866] for WMH (all p<0.001). ANCOVA models indicated significant decline in CBF in total grey matter, deep grey matter and NAWM with increasing age and diastolic blood pressure (all p<0.001). CBF was lower in males relative to females (p=0.013 for total grey matter, p=0.004 for NAWM).We conclude that pCASL has high test-retest reliability as a quantitative measure of CBF in older adults with SVD. These findings support the use of pCASL in routine clinical imaging and as a clinical trial endpoint.All data come from the PASTIS trial, prospectively registered at: https://eudract.ema.europa.eu (2015-001235-20, registered 13/05/2015), http://www.clinicaltrials.gov (NCT02450253, registered 21/05/2015).
Collapse
Affiliation(s)
- Lauren R Binnie
- Molecular & Clinical Sciences Research Institute, St George's University of London, Cranmer Terrace, London, SW17 0RE, UK
| | - Mathilde M H Pauls
- Molecular & Clinical Sciences Research Institute, St George's University of London, Cranmer Terrace, London, SW17 0RE, UK
- Department of Neurology, St George's University Hospitals NHS Foundation Trust London, London, UK
| | - Philip Benjamin
- Molecular & Clinical Sciences Research Institute, St George's University of London, Cranmer Terrace, London, SW17 0RE, UK
- Department of Neuroradiology, St George's University Hospitals NHS Foundation Trust London, London, UK
| | - Mohani-Preet K Dhillon
- Molecular & Clinical Sciences Research Institute, St George's University of London, Cranmer Terrace, London, SW17 0RE, UK
| | - Shai Betteridge
- Department of Neuropsychology, St George's University Hospitals NHS Foundation Trust London, London, UK
| | - Brian Clarke
- Department of Neurology, St George's University Hospitals NHS Foundation Trust London, London, UK
| | - Rita Ghatala
- Department of Neurology, St George's University Hospitals NHS Foundation Trust London, London, UK
| | - Fearghal A H Hainsworth
- Molecular & Clinical Sciences Research Institute, St George's University of London, Cranmer Terrace, London, SW17 0RE, UK
| | - Franklyn A Howe
- Molecular & Clinical Sciences Research Institute, St George's University of London, Cranmer Terrace, London, SW17 0RE, UK
| | - Usman Khan
- Department of Neurology, St George's University Hospitals NHS Foundation Trust London, London, UK
| | - Christina Kruuse
- Department of Neurology and Neurovascular Research Unit, Herlev Gentofte Hospital, Herlev, Denmark
| | - Jeremy B Madigan
- Department of Neuroradiology, St George's University Hospitals NHS Foundation Trust London, London, UK
| | - Barry Moynihan
- Department of Neurology, St George's University Hospitals NHS Foundation Trust London, London, UK
- Department of Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| | - Bhavini Patel
- Department of Neurology, St George's University Hospitals NHS Foundation Trust London, London, UK
| | - Anthony C Pereira
- Department of Neurology, St George's University Hospitals NHS Foundation Trust London, London, UK
| | - Egill Rostrup
- Mental Health Centre, University of Copenhagen, Glostrup, Denmark
| | - Anan B Y Shtaya
- Molecular & Clinical Sciences Research Institute, St George's University of London, Cranmer Terrace, London, SW17 0RE, UK
| | - Catherine A Spilling
- Molecular & Clinical Sciences Research Institute, St George's University of London, Cranmer Terrace, London, SW17 0RE, UK
| | - Sarah Trippier
- South London Stroke Research Network, St George's Hospital, London, UK
| | - Rebecca Williams
- South London Stroke Research Network, St George's Hospital, London, UK
| | - Jeremy D Isaacs
- Molecular & Clinical Sciences Research Institute, St George's University of London, Cranmer Terrace, London, SW17 0RE, UK
- Department of Neurology, St George's University Hospitals NHS Foundation Trust London, London, UK
| | - Thomas R Barrick
- Molecular & Clinical Sciences Research Institute, St George's University of London, Cranmer Terrace, London, SW17 0RE, UK
| | - Atticus H Hainsworth
- Molecular & Clinical Sciences Research Institute, St George's University of London, Cranmer Terrace, London, SW17 0RE, UK.
- Department of Neurology, St George's University Hospitals NHS Foundation Trust London, London, UK.
| |
Collapse
|
27
|
Blood flow and perfusion lateralization in border zone infarct using 4D flow and arterial spin labeling. Neuroradiology 2022; 64:2145-2152. [DOI: 10.1007/s00234-022-02967-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 04/27/2022] [Indexed: 10/18/2022]
|
28
|
van Dinther M, Voorter PH, Jansen JF, Jones EA, van Oostenbrugge RJ, Staals J, Backes WH. Assessment of microvascular rarefaction in human brain disorders using physiological magnetic resonance imaging. J Cereb Blood Flow Metab 2022; 42:718-737. [PMID: 35078344 PMCID: PMC9014687 DOI: 10.1177/0271678x221076557] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cerebral microvascular rarefaction, the reduction in number of functional or structural small blood vessels in the brain, is thought to play an important role in the early stages of microvascular related brain disorders. A better understanding of its underlying pathophysiological mechanisms, and methods to measure microvascular density in the human brain are needed to develop biomarkers for early diagnosis and to identify targets for disease modifying treatments. Therefore, we provide an overview of the assumed main pathophysiological processes underlying cerebral microvascular rarefaction and the evidence for rarefaction in several microvascular related brain disorders. A number of advanced physiological MRI techniques can be used to measure the pathological alterations associated with microvascular rarefaction. Although more research is needed to explore and validate these MRI techniques in microvascular rarefaction in brain disorders, they provide a set of promising future tools to assess various features relevant for rarefaction, such as cerebral blood flow and volume, vessel density and radius and blood-brain barrier leakage.
Collapse
Affiliation(s)
- Maud van Dinther
- Department of Neurology, Maastricht University Medical Center, The Netherlands.,CARIM - School for Cardiovascular Diseases, Maastricht University, The Netherlands
| | - Paulien Hm Voorter
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, The Netherlands.,MHeNs - School for Mental Health and Neuroscience, Maastricht University, The Netherlands
| | - Jacobus Fa Jansen
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, The Netherlands.,MHeNs - School for Mental Health and Neuroscience, Maastricht University, The Netherlands
| | | | - Robert J van Oostenbrugge
- Department of Neurology, Maastricht University Medical Center, The Netherlands.,CARIM - School for Cardiovascular Diseases, Maastricht University, The Netherlands.,MHeNs - School for Mental Health and Neuroscience, Maastricht University, The Netherlands
| | - Julie Staals
- Department of Neurology, Maastricht University Medical Center, The Netherlands.,CARIM - School for Cardiovascular Diseases, Maastricht University, The Netherlands
| | - Walter H Backes
- CARIM - School for Cardiovascular Diseases, Maastricht University, The Netherlands.,Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, The Netherlands.,MHeNs - School for Mental Health and Neuroscience, Maastricht University, The Netherlands
| |
Collapse
|
29
|
Uchida Y, Kan H, Sakurai K, Horimoto Y, Hayashi E, Iida A, Okamura N, Oishi K, Matsukawa N. APOE ɛ4 dose associates with increased brain iron and β-amyloid via blood-brain barrier dysfunction. J Neurol Neurosurg Psychiatry 2022; 93:jnnp-2021-328519. [PMID: 35483916 DOI: 10.1136/jnnp-2021-328519] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 03/23/2022] [Indexed: 01/09/2023]
Abstract
OBJECTIVE To examine the effect of apolipoprotein E (APOE) ɛ4 dose on blood-brain barrier (BBB) clearance function, evaluated using an advanced MRI technique and analyse its correlation with brain iron and β-amyloid accumulation in the early stages of the Alzheimer's continuum. METHODS In this single-centre observational prospective cohort study, 24 APOE ɛ4 non-carriers, 22 heterozygotes and 20 homozygotes in the early stages of the Alzheimer's continuum were scanned with diffusion-prepared arterial spin labelling, which estimates the water exchange rate across the BBB (kw). Participants also underwent quantitative susceptibility mapping, [11C]Pittsburgh compound B-positron emission tomography and neuropsychological testing. Using an atlas-based approach, we compared the regional kw of the whole brain among the groups and analysed its correlation with the neuroradiological and neuropsychological findings. RESULTS The BBB kw values in the neocortices differed significantly among the groups (APOE ɛ4 non-carriers>heterozygotes>homozygotes). These values correlated with brain iron levels (frontal lobe: r=-0.476, 95% CI=-0.644 to -0.264, p=0.011; medial temporal lobe: r=-0.455, 95% CI=-0.628 to -0.239, p=0.017), β-amyloid loads (frontal lobe: r=-0.504, 95% CI=-0.731 to -0.176, p=0.015; medial temporal lobe: r=-0.452, 95% CI=-0.699 to -0.110, p=0.036) and neuropsychological scores, after adjusting for age, sex and APOE ɛ4 dose. INTERPRETATION Our results suggest that an increased APOE ɛ4 dose is associated with decreased effective brain-waste clearance, such as iron and β-amyloid, through the BBB.
Collapse
Affiliation(s)
- Yuto Uchida
- Department of Neurology, Nagoya City University, Nagoya, Japan
- Department of Neurology, Toyokawa City Hospital, Toyokawa, Japan
| | - Hirohito Kan
- Department of Integrated Health Sciences, Nagoya University, Nagoya, Japan
| | - Keita Sakurai
- Department of Radiology, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Yoshihiko Horimoto
- Department of Neurology, Nagoya City Rehabilitation Center Group, Nagoya, Japan
| | - Emi Hayashi
- Department of Radiology, Nagoya City Rehabilitation Center Group, Nagoya, Japan
| | - Akihiko Iida
- Department of Radiology, Nagoya City Rehabilitation Center Group, Nagoya, Japan
| | - Nobuyuki Okamura
- Division of Pharmacology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Kenichi Oishi
- Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, Maryland, USA
| | | |
Collapse
|
30
|
Perfusion measurement in brain gliomas using velocity-selective arterial spin labeling: comparison with pseudo-continuous arterial spin labeling and dynamic susceptibility contrast MRI. Eur Radiol 2022; 32:2976-2987. [DOI: 10.1007/s00330-021-08406-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 09/27/2021] [Accepted: 10/12/2021] [Indexed: 12/26/2022]
|
31
|
Bhogal AA. Medullary vein architecture modulates the white matter BOLD cerebrovascular reactivity signal response to CO 2: Observations from high-resolution T2* weighted imaging at 7T. Neuroimage 2021; 245:118771. [PMID: 34861395 DOI: 10.1016/j.neuroimage.2021.118771] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/13/2021] [Accepted: 11/29/2021] [Indexed: 01/24/2023] Open
Abstract
Brain stress testing using blood oxygenation level-dependent (BOLD) MRI to evaluate changes in cerebrovascular reactivity (CVR) is of growing interest for evaluating white matter integrity. However, even under healthy conditions, the white matter BOLD-CVR response differs notably from that observed in the gray matter. In addition to actual arterial vascular control, the venous draining topology may influence the WM-CVR response leading to signal delays and dispersions. These types of alterations in hemodynamic parameters are sometimes linked with pathology, but may also arise from differences in normal venous architecture. In this work, high-resolution T2*weighted anatomical images combined with BOLD imaging during a hypercapnic breathing protocol were acquired using a 7 tesla MRI system. Hemodynamic parameters including base CVR, hemodynamic lag, lag-corrected CVR, response onset and signal dispersion, and finally ΔCVR (corrected CVR minus base CVR) were calculated in 8 subjects. Parameter maps were spatially normalized and correlated against an MNI-registered white matter medullary vein atlas. Moderate correlations (Pearson's rho) were observed between medullary vessel frequency (MVF) and ΔCVR (0.52; 0.58 for total WM), MVF and hemodynamic lag (0.42; 0.54 for total WM), MVF and signal dispersion (0.44; 0.53 for total WM), and finally MVF and signal onset (0.43; 0.52 for total WM). Results indicate that, when assessed in the context of the WM venous architecture, changes in the response shape may only be partially reflective of the actual vascular reactivity response occurring further upstream by control vessels. This finding may have implications when attributing diseases mechanisms and/or progression to presumed impaired WM BOLD-CVR.
Collapse
Affiliation(s)
- Alex A Bhogal
- Radiology, University Medical Center Utrecht, Heidelberglaan 100, , Utrecht 3584 CX, the Netherland.
| |
Collapse
|
32
|
Badji A, de la Colina AN, Boshkovski T, Sabra D, Karakuzu A, Robitaille-Grou MC, Gros C, Joubert S, Bherer L, Lamarre-Cliche M, Stikov N, Gauthier CJ, Cohen-Adad J, Girouard H. A Cross-Sectional Study on the Impact of Arterial Stiffness on the Corpus Callosum, a Key White Matter Tract Implicated in Alzheimer's Disease. J Alzheimers Dis 2021; 77:591-605. [PMID: 32741837 DOI: 10.3233/jad-200668] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Vascular risk factors such as arterial stiffness play an important role in the etiology of Alzheimer's disease (AD), presumably due to the emergence of white matter lesions. However, the impact of arterial stiffness to white matter structure involved in the etiology of AD, including the corpus callosum remains poorly understood. OBJECTIVE The aims of the study are to better understand the relationship between arterial stiffness, white matter microstructure, and perfusion of the corpus callosum in older adults. METHODS Arterial stiffness was estimated using the gold standard measure of carotid-femoral pulse wave velocity (cfPWV). Cognitive performance was evaluated with the Trail Making Test part B-A. Neurite orientation dispersion and density imaging was used to obtain microstructural information such as neurite density and extracellular water diffusion. The cerebral blood flow was estimated using arterial spin labelling. RESULTS cfPWV better predicts the microstructural integrity of the corpus callosum when compared with other index of vascular aging (the augmentation index, the systolic blood pressure, and the pulse pressure). In particular, significant associations were found between the cfPWV, an alteration of the extracellular water diffusion, and a neuronal density increase in the body of the corpus callosum which was also correlated with the performance in cognitive flexibility. CONCLUSION Our results suggest that arterial stiffness is associated with an alteration of brain integrity which impacts cognitive function in older adults.
Collapse
Affiliation(s)
- Atef Badji
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, QC, Canada.,Centre de recherche de l'Institut Universitaire de Gériatrie de Montréal (CRIUGM), Montreal, QC, Canada.,Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada.,Groupe de Recherche sur le Système Nerveux Central (GRSNC), Université de Montréal, Montreal, QC, Canada.,Centre interdisciplinaire de recherche sur le cerveau et l'apprentissage (CIRCA), Université de Montréal, Montreal, QC, Canada
| | - Adrián Noriega de la Colina
- Centre de recherche de l'Institut Universitaire de Gériatrie de Montréal (CRIUGM), Montreal, QC, Canada.,Department of Biomedical Sciences, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada.,Groupe de Recherche sur le Système Nerveux Central (GRSNC), Université de Montréal, Montreal, QC, Canada.,Centre interdisciplinaire de recherche sur le cerveau et l'apprentissage (CIRCA), Université de Montréal, Montreal, QC, Canada
| | - Tommy Boshkovski
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, QC, Canada
| | - Dalia Sabra
- Centre de recherche de l'Institut Universitaire de Gériatrie de Montréal (CRIUGM), Montreal, QC, Canada.,Department of Biomedical Sciences, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada.,Montreal Heart Institute, Montreal, QC, Canada.,PERFORM Centre, Concordia University, Montreal, QC, Canada
| | - Agah Karakuzu
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, QC, Canada.,Montreal Heart Institute, Montreal, QC, Canada
| | | | - Charley Gros
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, QC, Canada
| | - Sven Joubert
- Centre de recherche de l'Institut Universitaire de Gériatrie de Montréal (CRIUGM), Montreal, QC, Canada.,Department of Psychology, Faculty of Arts and Sciences, Université de Montréal, Montreal, QC, Canada
| | - Louis Bherer
- Centre de recherche de l'Institut Universitaire de Gériatrie de Montréal (CRIUGM), Montreal, QC, Canada.,Montreal Heart Institute, Montreal, QC, Canada.,Department of Medicine, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Maxime Lamarre-Cliche
- Institut de Recherches Cliniques de Montréal, Université de Montréal, Montreal, QC, Canada
| | - Nikola Stikov
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, QC, Canada.,Montreal Heart Institute, Montreal, QC, Canada
| | - Claudine J Gauthier
- Montreal Heart Institute, Montreal, QC, Canada.,Physics Department, Concordia University, Montreal, QC, Canada.,PERFORM Centre, Concordia University, Montreal, QC, Canada
| | - Julien Cohen-Adad
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, QC, Canada.,Centre de recherche de l'Institut Universitaire de Gériatrie de Montréal (CRIUGM), Montreal, QC, Canada.,Functional Neuroimaging Unit, Centre de recherche de l'Institut Universitaire de Gériatrie de Montréal (CRIUGM), Université de Montréal, Montreal, QC, Canada
| | - Hélène Girouard
- Centre de recherche de l'Institut Universitaire de Gériatrie de Montréal (CRIUGM), Montreal, QC, Canada.,Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada.,Groupe de Recherche sur le Système Nerveux Central (GRSNC), Université de Montréal, Montreal, QC, Canada.,Centre interdisciplinaire de recherche sur le cerveau et l'apprentissage (CIRCA), Université de Montréal, Montreal, QC, Canada
| |
Collapse
|
33
|
Raimondo L, Oliveira ĹAF, Heij J, Priovoulos N, Kundu P, Leoni RF, van der Zwaag W. Advances in resting state fMRI acquisitions for functional connectomics. Neuroimage 2021; 243:118503. [PMID: 34479041 DOI: 10.1016/j.neuroimage.2021.118503] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 08/16/2021] [Accepted: 08/22/2021] [Indexed: 01/21/2023] Open
Abstract
Resting state functional magnetic resonance imaging (rs-fMRI) is based on spontaneous fluctuations in the blood oxygen level dependent (BOLD) signal, which occur simultaneously in different brain regions, without the subject performing an explicit task. The low-frequency oscillations of the rs-fMRI signal demonstrate an intrinsic spatiotemporal organization in the brain (brain networks) that may relate to the underlying neural activity. In this review article, we briefly describe the current acquisition techniques for rs-fMRI data, from the most common approaches for resting state acquisition strategies, to more recent investigations with dedicated hardware and ultra-high fields. Specific sequences that allow very fast acquisitions, or multiple echoes, are discussed next. We then consider how acquisition methods weighted towards specific parts of the BOLD signal, like the Cerebral Blood Flow (CBF) or Volume (CBV), can provide more spatially specific network information. These approaches are being developed alongside the commonly used BOLD-weighted acquisitions. Finally, specific applications of rs-fMRI to challenging regions such as the laminae in the neocortex, and the networks within the large areas of subcortical white matter regions are discussed. We finish the review with recommendations for acquisition strategies for a range of typical applications of resting state fMRI.
Collapse
Affiliation(s)
- Luisa Raimondo
- Spinoza Centre for Neuroimaging, Amsterdam, the Netherlands; Experimental and Applied Psychology, VU University, Amsterdam, the Netherlands
| | - Ĺcaro A F Oliveira
- Spinoza Centre for Neuroimaging, Amsterdam, the Netherlands; Experimental and Applied Psychology, VU University, Amsterdam, the Netherlands
| | - Jurjen Heij
- Spinoza Centre for Neuroimaging, Amsterdam, the Netherlands; Experimental and Applied Psychology, VU University, Amsterdam, the Netherlands
| | | | - Prantik Kundu
- Hyperfine Research Inc, Guilford, CT, United States; Icahn School of Medicine at Mt. Sinai, New York, United States
| | - Renata Ferranti Leoni
- InBrain, Department of Physics, FFCLRP, University of São Paulo, Ribeirão Preto, Brazil
| | | |
Collapse
|
34
|
Dewey BE, Xu X, Knutsson L, Jog A, Prince JL, Barker PB, van Zijl PCM, Leigh R, Nyquist P. MTT and Blood-Brain Barrier Disruption within Asymptomatic Vascular WM Lesions. AJNR Am J Neuroradiol 2021; 42:1396-1402. [PMID: 34083262 PMCID: PMC8367617 DOI: 10.3174/ajnr.a7165] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 03/13/2021] [Indexed: 01/19/2023]
Abstract
BACKGROUND AND PURPOSE White matter lesions of presumed ischemic origin are associated with progressive cognitive impairment and impaired BBB function. Studying the longitudinal effects of white matter lesion biomarkers that measure changes in perfusion and BBB patency within white matter lesions is required for long-term studies of lesion progression. We studied perfusion and BBB disruption within white matter lesions in asymptomatic subjects. MATERIALS AND METHODS Anatomic imaging was followed by consecutive dynamic contrast-enhanced and DSC imaging. White matter lesions in 21 asymptomatic individuals were determined using a Subject-Specific Sparse Dictionary Learning algorithm with manual correction. Perfusion-related parameters including CBF, MTT, the BBB leakage parameter, and volume transfer constant were determined. RESULTS MTT was significantly prolonged (7.88 [SD, 1.03] seconds) within white matter lesions compared with normal-appearing white (7.29 [SD, 1.14] seconds) and gray matter (6.67 [SD, 1.35] seconds). The volume transfer constant, measured by dynamic contrast-enhanced imaging, was significantly elevated (0.013 [SD, 0.017] minutes-1) in white matter lesions compared with normal-appearing white matter (0.007 [SD, 0.011] minutes-1). BBB disruption within white matter lesions was detected relative to normal white and gray matter using the DSC-BBB leakage parameter method so that increasing BBB disruption correlated with increasing white matter lesion volume (Spearman correlation coefficient = 0.44; P < .046). CONCLUSIONS A dual-contrast-injection MR imaging protocol combined with a 3D automated segmentation analysis pipeline was used to assess BBB disruption in white matter lesions on the basis of quantitative perfusion measures including the volume transfer constant (dynamic contrast-enhanced imaging), the BBB leakage parameter (DSC), and MTT (DSC). This protocol was able to detect early pathologic changes in otherwise healthy individuals.
Collapse
Affiliation(s)
- B E Dewey
- From the Department of Electrical and Computer Engineering (B.E.D., J.L.P.), Johns Hopkins University, Baltimore, Maryland
- F.M. Kirby Research Center for Functional Brain Imaging (B.E.D., X.X., P.B.B., P.C.M.v.Z.), Kennedy Krieger Institute, Baltimore, Maryland
| | - X Xu
- F.M. Kirby Research Center for Functional Brain Imaging (B.E.D., X.X., P.B.B., P.C.M.v.Z.), Kennedy Krieger Institute, Baltimore, Maryland
- Department of Radiology and Radiological Science (X.X., L.K., J.L.P., P.B.B., P.C.M.v.Z.), Division of MRI Research, Johns Hopkins University, Baltimore, Maryland
| | - L Knutsson
- Department of Radiology and Radiological Science (X.X., L.K., J.L.P., P.B.B., P.C.M.v.Z.), Division of MRI Research, Johns Hopkins University, Baltimore, Maryland
- Department of Medical Radiation Physics (L.K.), Lund University, Lund, Sweden
| | - A Jog
- Athinoula A. Martinos Center for Biomedical Imaging (A.J.), Harvard University Medical School, Boston Massachusetts
| | - J L Prince
- From the Department of Electrical and Computer Engineering (B.E.D., J.L.P.), Johns Hopkins University, Baltimore, Maryland
- Department of Radiology and Radiological Science (X.X., L.K., J.L.P., P.B.B., P.C.M.v.Z.), Division of MRI Research, Johns Hopkins University, Baltimore, Maryland
| | - P B Barker
- F.M. Kirby Research Center for Functional Brain Imaging (B.E.D., X.X., P.B.B., P.C.M.v.Z.), Kennedy Krieger Institute, Baltimore, Maryland
- Department of Radiology and Radiological Science (X.X., L.K., J.L.P., P.B.B., P.C.M.v.Z.), Division of MRI Research, Johns Hopkins University, Baltimore, Maryland
| | - P C M van Zijl
- F.M. Kirby Research Center for Functional Brain Imaging (B.E.D., X.X., P.B.B., P.C.M.v.Z.), Kennedy Krieger Institute, Baltimore, Maryland
- Department of Radiology and Radiological Science (X.X., L.K., J.L.P., P.B.B., P.C.M.v.Z.), Division of MRI Research, Johns Hopkins University, Baltimore, Maryland
| | - R Leigh
- Department of Neurology (R.L., P.N.), Electrical and Computer Engineering (B.E.D., J.L.P.), Johns Hopkins University, Baltimore, Maryland
| | - P Nyquist
- Department of Neurology (R.L., P.N.), Electrical and Computer Engineering (B.E.D., J.L.P.), Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
35
|
Hoffmann AC, Ruel Y, Gnirs K, Papageorgiou S, Zilberstein L, Nahmani S, Boddaert N, Gaillot H. Brain perfusion magnetic resonance imaging using pseudocontinuous arterial spin labeling in 314 dogs and cats. J Vet Intern Med 2021; 35:2327-2341. [PMID: 34291497 PMCID: PMC8478041 DOI: 10.1111/jvim.16215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 06/17/2021] [Accepted: 06/22/2021] [Indexed: 11/30/2022] Open
Abstract
Background Arterial spin labeling (ASL) is a noninvasive brain perfusion magnetic resonance imaging (MRI) technique that has not been assessed in clinical veterinary medicine. Hypothesis/Objectives To test the feasibility of ASL using a 1.5 Tesla scanner and provide recommendations for optimal quantification of cerebral blood flow (CBF) in dogs and cats. Animals Three hundred fourteen prospectively selected client‐owned dogs and cats. Methods Each animal underwent brain MRI including morphological sequences and ≥1 ASL sequences using different sites of blood labeling and postlabeling delays (PLD). Calculated ASL success rates were compared. The CBF was quantified in animals that had morphologically normal brain MRI results and parameters of ASL optimization were investigated. Results Arterial spin labeling was easily implemented with an overall success rate of 95% in animals with normal brain MRI. Technical recommendations included (a) positioning of the imaging slab at the foramen magnum and (b) selected PLD of 1025 ms in cats and dogs <7 kg, 1525 ms in dogs 7 to 38 kg, and 2025 ms in dogs >38 kg. In 37 dogs, median optimal CBF in the cortex and thalamic nuclei were 114 and 95 mL/100 g/min, respectively. In 28 cats, median CBF in the cortex and thalamic nuclei were 113 and 114 mL/100 g/min, respectively. Conclusions and Clinical Importance Our survey of brain perfusion ASL‐MRI demonstrated the feasibility of ASL at 1.5 Tesla, suggested technical recommendations and provided CBF values that should be helpful in the characterization of various brain diseases in dogs and cats.
Collapse
Affiliation(s)
- Anne-Cécile Hoffmann
- Unit of Diagnostic Imaging, ADVETIA Veterinary Referral Hospital, Vélizy-Villacoublay, France
| | - Yannick Ruel
- Unit of Diagnostic Imaging, ADVETIA Veterinary Referral Hospital, Vélizy-Villacoublay, France
| | - Kirsten Gnirs
- Unit of Neurology, ADVETIA Veterinary Referral Hospital, Vélizy-Villacoublay, France
| | - Stella Papageorgiou
- Unit of Neurology, ADVETIA Veterinary Referral Hospital, Vélizy-Villacoublay, France
| | - Luca Zilberstein
- Unit of Anesthesiology-Analgesia, ADVETIA Veterinary Referral Hospital, Vélizy-Villacoublay, France
| | - Sarah Nahmani
- Paediatric Radiology Department, AP-HP, Hôpital Necker Enfants Malades, Université de Paris, Paris, France
| | - Nathalie Boddaert
- Paediatric Radiology Department, AP-HP, Hôpital Necker Enfants Malades, Université de Paris, Paris, France.,Universié de Paris, Institut Imagine INSERM U1163, Paris, France
| | - Hugues Gaillot
- Unit of Diagnostic Imaging, ADVETIA Veterinary Referral Hospital, Vélizy-Villacoublay, France
| |
Collapse
|
36
|
Cerritelli F, Chiacchiaretta P, Gambi F, Saggini R, Perrucci MG, Ferretti A. Osteopathy modulates brain-heart interaction in chronic pain patients: an ASL study. Sci Rep 2021; 11:4556. [PMID: 33633195 PMCID: PMC7907192 DOI: 10.1038/s41598-021-83893-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 02/09/2021] [Indexed: 01/31/2023] Open
Abstract
In this study we used a combination of measures including regional cerebral blood flow (rCBF) and heart rate variability (HRV) to investigate brain-heart correlates of longitudinal baseline changes of chronic low back pain (cLBP) after osteopathic manipulative treatment (OMT). Thirty-two right-handed patients were randomised and divided into 4 weekly session of OMT (N = 16) or Sham (N = 16). Participants aged 42.3 ± 7.3 (M/F: 20/12) with cLBP (duration: 14.6 ± 8.0 m). At the end of the study, patients receiving OMT showed decreased baseline rCBF within several regions belonging to the pain matrix (left posterior insula, left anterior cingulate cortex, left thalamus), sensory regions (left superior parietal lobe), middle frontal lobe and left cuneus. Conversely, rCBF was increased in right anterior insula, bilateral striatum, left posterior cingulate cortex, right prefrontal cortex, left cerebellum and right ventroposterior lateral thalamus in the OMT group as compared with Sham. OMT showed a statistically significant negative correlation between baseline High Frequency HRV changes and rCBF changes at T2 in the left posterior insula and bilateral lentiform nucleus. The same brain regions showed a positive correlation between rCBF changes and Low Frequency HRV baseline changes at T2. These findings suggest that OMT can play a significant role in regulating brain-heart interaction mechanisms.
Collapse
Affiliation(s)
- Francesco Cerritelli
- grid.412451.70000 0001 2181 4941Department of Neuroscience, Imaging and Clinical Sciences, “G. D’Annunzio” University of Chieti-Pescara, Via dei Vestini, 33, Chieti Scalo, Italy ,Clinical-Based Human Research Department, Foundation C.O.ME. Collaboration, Pescara, Italy
| | - Piero Chiacchiaretta
- grid.412451.70000 0001 2181 4941Department of Neuroscience, Imaging and Clinical Sciences, “G. D’Annunzio” University of Chieti-Pescara, Via dei Vestini, 33, Chieti Scalo, Italy ,grid.412451.70000 0001 2181 4941ITAB-Institute for Advanced Biomedical Technologies, “G. D’Annunzio” University of Chieti-Pescara, Chieti, Italy
| | - Francesco Gambi
- grid.412451.70000 0001 2181 4941Department of Neuroscience, Imaging and Clinical Sciences, “G. D’Annunzio” University of Chieti-Pescara, Via dei Vestini, 33, Chieti Scalo, Italy ,grid.412451.70000 0001 2181 4941ITAB-Institute for Advanced Biomedical Technologies, “G. D’Annunzio” University of Chieti-Pescara, Chieti, Italy
| | - Raoul Saggini
- grid.412451.70000 0001 2181 4941School of Specialty in Physical and Rehabilitation Medicine, “G. D’Annunzio” University of Chieti-Pescara, Chieti, Italy
| | - Mauro Gianni Perrucci
- grid.412451.70000 0001 2181 4941Department of Neuroscience, Imaging and Clinical Sciences, “G. D’Annunzio” University of Chieti-Pescara, Via dei Vestini, 33, Chieti Scalo, Italy ,grid.412451.70000 0001 2181 4941ITAB-Institute for Advanced Biomedical Technologies, “G. D’Annunzio” University of Chieti-Pescara, Chieti, Italy
| | - Antonio Ferretti
- grid.412451.70000 0001 2181 4941Department of Neuroscience, Imaging and Clinical Sciences, “G. D’Annunzio” University of Chieti-Pescara, Via dei Vestini, 33, Chieti Scalo, Italy ,grid.412451.70000 0001 2181 4941ITAB-Institute for Advanced Biomedical Technologies, “G. D’Annunzio” University of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
37
|
Alisch JSR, Khattar N, Kim RW, Cortina LE, Rejimon AC, Qian W, Ferrucci L, Resnick SM, Spencer RG, Bouhrara M. Sex and age-related differences in cerebral blood flow investigated using pseudo-continuous arterial spin labeling magnetic resonance imaging. Aging (Albany NY) 2021; 13:4911-4925. [PMID: 33596183 PMCID: PMC7950235 DOI: 10.18632/aging.202673] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 02/01/2021] [Indexed: 02/07/2023]
Abstract
Adequate cerebral blood flow (CBF) is essential to a healthy central nervous system (CNS). Previous work suggests that CBF differs between men and women, and declines with age and certain pathologies, but a highly controlled systematic study across a wide age range, and incorporating white matter (WM) regions, has not been undertaken. Here, we investigate age- and sex-related differences in CBF in gray matter (GM) and WM regions in a cohort (N = 80) of cognitively unimpaired individuals over a wide age range. In agreement with literature, we find that GM regions exhibited lower CBF with age. In contrast, WM regions exhibited higher CBF with age in various cerebral regions. We attribute this new finding to increased oligodendrocyte metabolism to maintain myelin homeostasis in the setting of increased myelin turnover with age. Further, consistent with prior studies, we found that CBF was higher in women than in men in all brain structures investigated. Our work provides new insights into the effects of age and sex on CBF. In addition, our results provide reference CBF values for the standard ASL protocol recommended by the ISMRM Perfusion Study Group and the European ASL in Dementia consortium. Thus, these results provide a foundation for further investigations of CNS perfusion in a variety of settings, including aging, cerebrovascular diseases, and dementias.
Collapse
Affiliation(s)
- Joseph S R Alisch
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD 20892, USA
| | - Nikkita Khattar
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD 20892, USA
| | - Richard W Kim
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD 20892, USA
| | - Luis E Cortina
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD 20892, USA
| | - Abinand C Rejimon
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD 20892, USA
| | - Wenshu Qian
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD 20892, USA
| | - Luigi Ferrucci
- Laboratory Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD 20892, USA
| | - Susan M Resnick
- Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD 20892, USA
| | - Richard G Spencer
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD 20892, USA
| | - Mustapha Bouhrara
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD 20892, USA
| |
Collapse
|
38
|
Kaczmarz S, Göttler J, Petr J, Hansen MB, Mouridsen K, Zimmer C, Hyder F, Preibisch C. Hemodynamic impairments within individual watershed areas in asymptomatic carotid artery stenosis by multimodal MRI. J Cereb Blood Flow Metab 2021; 41:380-396. [PMID: 32237952 PMCID: PMC7812517 DOI: 10.1177/0271678x20912364] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Improved understanding of complex hemodynamic impairments in asymptomatic internal carotid artery stenosis (ICAS) is crucial to better assess stroke risks. Multimodal MRI is ideal for measuring brain hemodynamics and has the potential to improve diagnostics and treatment selections. We applied MRI-based perfusion and oxygenation-sensitive imaging in ICAS with the hypothesis that the sensitivity to hemodynamic impairments will improve within individual watershed areas (iWSA). We studied cerebral blood flow (CBF), cerebrovascular reactivity (CVR), relative cerebral blood volume (rCBV), relative oxygen extraction fraction (rOEF), oxygen extraction capacity (OEC) and capillary transit-time heterogeneity (CTH) in 29 patients with asymptomatic, unilateral ICAS (age 70.3 ± 7.0 y) and 30 age-matched healthy controls. In ICAS, we found significant impairments of CBF, CVR, rCBV, OEC, and CTH (strongest lateralization ΔCVR = -24%), but not of rOEF. Although the spatial overlap of compromised hemodynamic parameters within each patient varied in a complex manner, most pronounced changes of CBF, CVR and rCBV were detected within iWSAs (strongest effect ΔCVR = +117%). At the same time, CTH impairments were iWSA independent, indicating widespread dysfunction of capillary-level oxygen diffusivity. In summary, complementary MRI-based perfusion and oxygenation parameters offer deeper perspectives on complex microvascular impairments in individual patients. Furthermore, knowledge about iWSAs improves the sensitivity to hemodynamic impairments.
Collapse
Affiliation(s)
- Stephan Kaczmarz
- Department of Neuroradiology, School of Medicine, Technical University of Munich (TUM), Munich, Germany.,TUM Neuroimaging Center (TUM-NIC), Technical University of Munich (TUM), Munich, Germany.,MRRC, Yale University, New Haven, CT, USA
| | - Jens Göttler
- Department of Neuroradiology, School of Medicine, Technical University of Munich (TUM), Munich, Germany.,TUM Neuroimaging Center (TUM-NIC), Technical University of Munich (TUM), Munich, Germany.,MRRC, Yale University, New Haven, CT, USA.,Department of Radiology, School of Medicine, Technical University of Munich (TUM), Munich, Germany
| | - Jan Petr
- PET Center, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Mikkel Bo Hansen
- Center of Functionally Integrative Neuroscience, Aarhus University, Aarhus, Denmark
| | - Kim Mouridsen
- Center of Functionally Integrative Neuroscience, Aarhus University, Aarhus, Denmark
| | - Claus Zimmer
- Department of Neuroradiology, School of Medicine, Technical University of Munich (TUM), Munich, Germany
| | | | - Christine Preibisch
- Department of Neuroradiology, School of Medicine, Technical University of Munich (TUM), Munich, Germany.,TUM Neuroimaging Center (TUM-NIC), Technical University of Munich (TUM), Munich, Germany.,Clinic for Neurology, School of Medicine, Technical University of Munich (TUM), Munich, Germany
| |
Collapse
|
39
|
Badji A, Westman E. Cerebrovascular pathology in Alzheimer's disease: Hopes and gaps. Psychiatry Res Neuroimaging 2020; 306:111184. [PMID: 32950333 DOI: 10.1016/j.pscychresns.2020.111184] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 06/27/2020] [Accepted: 09/03/2020] [Indexed: 01/10/2023]
Abstract
Alzheimer's disease (AD) is recognized as multifactorial and heterogeneous disease with multiple contributors to its pathophysiology, including vascular dysfunction. Given that a revision of the AT(N) classification is expected in the near future, the present work supports the importance to add an additional vascular (V) category to the framework. In particular, we attempt to shed light on the vascular markers and risk factors that are currently ready-to-be-added to the framework: i) lacunes, ii) white matter hyperintensities and iii) microbleeds seen in Flair, T2* weighted imaging and susceptibility images (SWI). Next, we discuss the added value of other types of imaging, such as diffusion-based metrics and advanced perfusion sequences to encompass more subtle vascular dysfunction. Finally, we highlight the importance to add information about the following cardiovascular risk factors to the framework: history of hypertension, obesity, and diabetes. We believe that adding a V category to the AT(N) framework will improve AD classification and foster efforts to apply the right drug(s) at the right time in the right AD subgroups. Brief communication The present work supports the importance to add an additional vascular (V) category to the AT(N) framework and shed light on the vascular MRI markers and risk factors that are currently ready-to-be-added to the framework.
Collapse
Affiliation(s)
- Atef Badji
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montréal, QC, Canada; Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden.
| | - Eric Westman
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
40
|
Bambach S, Smith M, Morris PP, Campeau NG, Ho ML. Arterial Spin Labeling Applications in Pediatric and Adult Neurologic Disorders. J Magn Reson Imaging 2020; 55:698-719. [PMID: 33314349 DOI: 10.1002/jmri.27438] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 10/26/2020] [Accepted: 10/27/2020] [Indexed: 12/17/2022] Open
Abstract
Arterial spin labeling (ASL) is a powerful noncontrast magnetic resonance imaging (MRI) technique that enables quantitative evaluation of brain perfusion. To optimize the clinical and research utilization of ASL, radiologists and physicists must understand the technical considerations and age-related variations in normal and disease states. We discuss advanced applications of ASL across the lifespan, with example cases from children and adults covering a wide variety of pathologies. Through literature review and illustrated clinical cases, we highlight the subtleties as well as pitfalls of ASL interpretation. First, we review basic physical principles, techniques, and artifacts. This is followed by a discussion of normal perfusion variants based on age and physiology. The three major categories of perfusion abnormalities-hypoperfusion, hyperperfusion, and mixed patterns-are covered with an emphasis on clinical interpretation and relationship to the disease process. Major etiologies of hypoperfusion include large artery, small artery, and venous disease; other vascular conditions; global hypoxic-ischemic injury; and neurodegeneration. Hyperperfusion is characteristic of vascular malformations and tumors. Mixed perfusion patterns can be seen with epilepsy, migraine, trauma, infection/inflammation, and toxic-metabolic encephalopathy. LEVEL OF EVIDENCE: 4 TECHNICAL EFFICACY STAGE: 3.
Collapse
Affiliation(s)
- Sven Bambach
- Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Mark Smith
- Department of Radiology, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - P Pearse Morris
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Mai-Lan Ho
- Department of Radiology, Nationwide Children's Hospital, Columbus, Ohio, USA
| |
Collapse
|
41
|
Abstract
Abnormal brain perfusion is a key mechanism underlying neonatal brain injury. Understanding the mechanisms leading to brain perfusion changes in high-risk neonates and how these alterations may influence brain development is key to improve therapeutic strategies preventing brain injury and the neurodevelopmental outcome of these infants. To date, several studies demonstrated that Arterial Spin Labeling is a reliable tool to accurately and non-invasively analyze brain perfusion, facilitating the understanding of normal and pathological mechanisms underlying neonatal brain maturation and injury. This paper provides an overview of the normal pattern of brain perfusion on Arterial Spin Labeling in term and preterm neonates, and reviews perfusion abnormalities associated with common neonatal neurological disorders.
Collapse
Affiliation(s)
- Domenico Tortora
- Neuroradiology Unit IRCCS, Istituto Giannina Gaslini, Genoa, Italy.
| | | | - Andrea Rossi
- Neuroradiology Unit IRCCS, Istituto Giannina Gaslini, Genoa, Italy; Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy.
| |
Collapse
|
42
|
Zhao L, Taso M, Dai W, Press DZ, Alsop DC. Non-invasive measurement of choroid plexus apparent blood flow with arterial spin labeling. Fluids Barriers CNS 2020; 17:58. [PMID: 32962708 PMCID: PMC7510126 DOI: 10.1186/s12987-020-00218-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 09/09/2020] [Indexed: 01/01/2023] Open
Abstract
Background The choroid plexus is a major contributor to the generation of cerebrospinal fluid (CSF) and the maintenance of its electrolyte and metabolite balance. Here, we sought to characterize the blood flow dynamics of the choroid plexus using arterial spin labeling (ASL) MRI to establish ASL as a non-invasive tool for choroid plexus function and disease studies. Methods Seven healthy volunteers were imaged on a 3T MR scanner. ASL images were acquired with 12 labeling durations and post labeling delays. Regions of the choroid plexus were manually segmented on high-resolution T1 weighted images. Choroid plexus perfusion was characterized with a dynamic ASL perfusion model. Cerebral gray matter perfusion was also quantified for comparison. Results Kinetics of the ASL signal were clearly different in the choroid plexus than in gray matter. The choroid plexus has a significantly longer T1 than the gray matter (2.33 ± 0.30 s vs. 1.85 ± 0.10 s, p < 0.02). The arterial transit time was 1.24 ± 0.20 s at the choroid plexus. The apparent blood flow to the choroid plexus was measured to be 39.5 ± 10.1 ml/100 g/min and 0.80 ± 0.31 ml/min integrated over the posterior lateral ventricles in both hemispheres. Correction with the choroid plexus weight yielded a blood flow of 80 ml/100 g/min. Conclusions Our findings suggest that ASL can provide a clinically feasible option to quantify the dynamic characteristics of choroid plexus blood flow. It also provides useful reference values of the choroid plexus perfusion. The long T1 of the choroid plexus may suggest the transport of water from arterial blood to the CSF, potentially providing a method to quantify CSF generation.
Collapse
Affiliation(s)
- Li Zhao
- Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Manuel Taso
- Radiology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Weiying Dai
- Computer Science, State University of New York At Binghamton, Binghamton, NY, USA
| | - Daniel Z Press
- Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - David C Alsop
- Radiology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
43
|
Puig O, Henriksen OM, Vestergaard MB, Hansen AE, Andersen FL, Ladefoged CN, Rostrup E, Larsson HB, Lindberg U, Law I. Comparison of simultaneous arterial spin labeling MRI and 15O-H 2O PET measurements of regional cerebral blood flow in rest and altered perfusion states. J Cereb Blood Flow Metab 2020; 40:1621-1633. [PMID: 31500521 PMCID: PMC7370368 DOI: 10.1177/0271678x19874643] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Arterial spin labelling (ASL) is a non-invasive magnetic resonance imaging (MRI) technique that may provide fully quantitative regional cerebral blood flow (rCBF) images. However, before its application in clinical routine, ASL needs to be validated against the clinical gold standard, 15O-H2O positron emission tomography (PET). We aimed to compare the two techniques by performing simultaneous quantitative ASL-MRI and 15O-H2O-PET examinations in a hybrid PET/MRI scanner. Duplicate rCBF measurements were performed in healthy young subjects (n = 14) in rest, during hyperventilation, and after acetazolamide (post-ACZ), yielding 63 combined PET/MRI datasets in total. Average global CBF by ASL-MRI and 15O-H2O-PET was not significantly different in any state (40.0 ± 6.5 and 40.6 ± 4.1 mL/100 g/min, respectively in rest, 24.5 ± 5.1 and 23.4 ± 4.8 mL/100 g/min, respectively, during hyperventilation, and 59.1 ± 10.4 and 64.7 ± 10.0 mL/100 g/min, respectively, post-ACZ). Overall, strong correlation between the two methods was found across all states (slope = 1.01, R2 = 0.82), while the correlations within individual states and of reactivity measures were weaker, in particular in rest (R2 = 0.05, p = 0.03). Regional distribution was similar, although ASL yielded higher perfusion and absolute reactivity in highly vascularized areas. In conclusion, ASL-MRI and 15O-H2O-PET measurements of rCBF are highly correlated across different perfusion states, but with variable correlation within and between hemodynamic states, and systematic differences in regional distribution.
Collapse
Affiliation(s)
- Oriol Puig
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Copenhagen, Denmark
| | - Otto M Henriksen
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Copenhagen, Denmark
| | - Mark B Vestergaard
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Copenhagen, Denmark
| | - Adam E Hansen
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Copenhagen, Denmark
| | - Flemming L Andersen
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Copenhagen, Denmark
| | - Claes N Ladefoged
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Copenhagen, Denmark
| | - Egill Rostrup
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Copenhagen, Denmark
| | - Henrik Bw Larsson
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Copenhagen, Denmark
| | - Ulrich Lindberg
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Copenhagen, Denmark
| | - Ian Law
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
44
|
Petersen KJ, Garza M, Donahue PM, Harkins KD, Marton A, Titze J, Donahue MJ, Crescenzi R. Neuroimaging of Cerebral Blood Flow and Sodium in Women with Lipedema. Obesity (Silver Spring) 2020; 28:1292-1300. [PMID: 32568462 PMCID: PMC7360333 DOI: 10.1002/oby.22837] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/16/2020] [Accepted: 04/09/2020] [Indexed: 12/25/2022]
Abstract
OBJECTIVE Lipedema is characterized by pain, fatigue, and excessive adipose tissue and sodium accumulation of the lower extremities. This case-control study aims to determine whether sodium or vascular dysfunction is present in the central nervous system. METHODS Brain magnetic resonance imaging was performed at 3 T in patients with lipedema (n = 15) and control (n = 18) participants matched for sex, age, race, and BMI. Standard anatomical imaging and intracranial angiography were applied to evaluate brain volume and vasculopathy, respectively; arterial spin labeling and sodium magnetic resonance imaging were applied to quantify cerebral blood flow (CBF) (milliliters per 100 grams of tissue/minute) and brain tissue sodium content (millimoles per liter), respectively. A Mann-Whitney U test (significance criteria P < 0.05) was applied to evaluate group differences. RESULTS No differences in tissue volume, white matter hyperintensities, intracranial vasculopathy, or tissue sodium content were observed between groups. Gray matter CBF was elevated (P = 0.03) in patients with lipedema (57.2 ± 9.6 mL per 100 g/min) versus control participants (49.8 ± 9.1 mL per 100 g/min). CONCLUSIONS Findings provide evidence that brain sodium and tissue fractions are similar between patients with lipedema and control participants and that patients with lipedema do not exhibit abnormal radiological indicators of intracranial vasculopathy or ischemic injury. Potential explanations for elevated CBF are discussed in the context of the growing literature on lipedema symptomatology and vascular dysfunction.
Collapse
Affiliation(s)
- Kalen J. Petersen
- Radiology and Radiological Sciences, Vanderbilt University School of Medicine, Nashville TN, USA
- Corresponding author: Kalen J. Petersen, PhD, Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, 1161 21 Avenue South, Medical Center North AA-1105B, Nashville, TN 37232, USA, Tel: +1 615.343.7182, Fax: +1 615.322.0734,
| | - Maria Garza
- Radiology and Radiological Sciences, Vanderbilt University School of Medicine, Nashville TN, USA
| | - Paula M.C. Donahue
- Physical Medicine and Rehabilitation, Vanderbilt University School of Medicine, Nashville TN, USA
- Dayani Center for Health and Wellness, Vanderbilt University School of Medicine, Nashville TN, USA
| | - Kevin D. Harkins
- Biomedical Engineering, Vanderbilt University, Nashville TN, USA
| | - Adriana Marton
- Cardiovascular and Metabolic Disease, Duke-National University of Singapore Medical School
| | - Jens Titze
- Cardiovascular and Metabolic Disease, Duke-National University of Singapore Medical School
| | - Manus J. Donahue
- Radiology and Radiological Sciences, Vanderbilt University School of Medicine, Nashville TN, USA
- Neurology, Vanderbilt University School of Medicine, Nashville, TN, USA
- Psychiatry and Behavioral Sciences, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Rachelle Crescenzi
- Radiology and Radiological Sciences, Vanderbilt University School of Medicine, Nashville TN, USA
| |
Collapse
|
45
|
Fujima N, Kameda H, Shimizu Y, Harada T, Tha KK, Yoneyama M, Kudo K. Utility of a diffusion-weighted arterial spin labeling (DW-ASL) technique for evaluating the progression of brain white matter lesions. Magn Reson Imaging 2020; 69:81-87. [PMID: 32217128 DOI: 10.1016/j.mri.2020.03.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/02/2020] [Accepted: 03/19/2020] [Indexed: 12/13/2022]
Abstract
PURPOSE To investigate the utility of diffusion-weighted arterial spin labeling (DW-ASL) for detecting the progression of brain white matter lesions. MATERIALS AND METHODS A total of 492 regions of interest (ROIs) in 41 patients were prospectively analyzed. DW-ASL was performed using the diffusion gradient prepulse of five b-values (0, 25, 60, 102, and 189) before the ASL readout. We calculated the water exchange rate (Kw) with post-processing using the ASL signal information for each b-value. The cerebral blood flow (CBF) was also calculated using b0 images. Using the signal information in FLAIR (fluid-attenuated inversion recovery) images, we classified the severity of white matter lesions into three grades: non-lesion, moderate, and severe. In addition, the normal Kw level was measured from DW-ASL data of 60 ROIs in five control subjects. The degree of variance of the Kw values (Kw-var) was calculated by squaring the value of the difference between each Kw value and the normal Kw level. All patient's ROIs were divided into non-progressive and progressive white matter lesions by comparing the present FLAIR images with those obtained 2 years before this acquisition. RESULTS Compared to the non-progressive group, the progressive group had significantly lower CBF, significantly higher severity grades in FLAIR, and significantly greater Kw-var values. In a receiver operator characteristic curve analysis, a high area under the curve (AUC) of 0.89 was obtained with the use of Kw-var. In contrast, the AUCs of 0.59 for CBF and 0.72 for severity grades in FLAIR were obtained. CONCLUSIONS The DW-ASL technique can be useful to detect the progression of brain white matter lesions. This technique will become a clinical tool for patients with various degrees of white matter lesions.
Collapse
Affiliation(s)
- Noriyuki Fujima
- Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital, N14 W5, Kita-Ku, Sapporo 0608638, Japan.
| | - Hiroyuki Kameda
- Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital, N14 W5, Kita-Ku, Sapporo 0608638, Japan
| | - Yukie Shimizu
- Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital, N14 W5, Kita-Ku, Sapporo 0608638, Japan
| | - Taisuke Harada
- Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital, N14 W5, Kita-Ku, Sapporo 0608638, Japan
| | - Khin Khin Tha
- Department of Radiation Medicine, Hokkaido University Graduate School of Medicine, N15 W7, Kita-Ku, Sapporo 0608638, Japan; The Global Station for Quantum Medical Science and Engineering, Global Institution for Collaborative Research and Education, N15 W8, Kita-Ku, Sapporo 0608638, Japan
| | - Masami Yoneyama
- Philips Japan, 3-37 Kohnan 2-chome, Minato-ku, Tokyo 108-8507, Japan
| | - Kohsuke Kudo
- Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital, N14 W5, Kita-Ku, Sapporo 0608638, Japan; The Global Station for Quantum Medical Science and Engineering, Global Institution for Collaborative Research and Education, N15 W8, Kita-Ku, Sapporo 0608638, Japan
| |
Collapse
|
46
|
A kinetics-based approach to amyloid PET semi-quantification. Eur J Nucl Med Mol Imaging 2020; 47:2175-2185. [PMID: 31982991 DOI: 10.1007/s00259-020-04689-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 01/07/2020] [Indexed: 10/25/2022]
Abstract
PURPOSE To develop and validate a semi-quantification method (time-delayed ratio, TDr) applied to amyloid PET scans, based on tracer kinetics information. METHODS The TDr method requires two static scans per subject: one early (~ 0-10 min after the injection) and one late (typically 50-70 min or 90-100 min after the injection, depending on the tracer). High perfusion regions are delineated on the early scan and applied onto the late scan. A SUVr-like ratio is calculated between the average intensities in the high perfusion regions and the late scan hotspot. TDr was applied to a naturalistic multicenter dataset of 143 subjects acquired with [18F]florbetapir. TDr values are compared to visual evaluation, cortical-cerebellar SUVr, and to the geometrical semi-quantification method ELBA. All three methods are gauged versus the heterogeneity of the dataset. RESULTS TDr shows excellent agreement with respect to the binary visual assessment (AUC = 0.99) and significantly correlates with both validated semi-quantification methods, reaching a Pearson correlation coefficient of 0.86 with respect to ELBA. CONCLUSIONS TDr is an alternative approach to previously validated ones (SUVr and ELBA). It requires minimal image processing; it is independent on predefined regions of interest and does not require MR registration. Besides, it takes advantage on the availability of early scans which are becoming common practice while imposing a negligible added patient discomfort.
Collapse
|
47
|
Watchmaker JM, Frederick BD, Fusco MR, Davis LT, Juttukonda MR, Lants SK, Kirshner HS, Donahue MJ. Clinical Use of Cerebrovascular Compliance Imaging to Evaluate Revascularization in Patients With Moyamoya. Neurosurgery 2020. [PMID: 29528447 DOI: 10.1093/neuros/nyx635] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Surgical revascularization is often performed in patients with moyamoya, however routine tools for efficacy evaluation are underdeveloped. The gold standard is digital subtraction angiography (DSA); however, DSA requires ionizing radiation and procedural risk, and therefore is suboptimal for routine surveillance of parenchymal health. OBJECTIVE To determine whether parenchymal vascular compliance measures, obtained noninvasively using magnetic resonance imaging (MRI), provide surrogates to revascularization success by comparing measures with DSA before and after surgical revascularization. METHODS Twenty surgical hemispheres with DSA and MRI performed before and after revascularization were evaluated. Cerebrovascular reactivity (CVR)-weighted images were acquired using hypercapnic 3-Tesla gradient echo blood oxygenation level-dependent MRI. Standard and novel analysis algorithms were applied (i) to quantify relative CVR (rCVRRAW), and decompose this response into (ii) relative maximum CVR (rCVRMAX) and (iii) a surrogate measure of the time for parenchyma to respond maximally to the stimulus, CVRDELAY. Measures between time points in patients with good and poor surgical outcomes based on DSA-visualized neoangiogenesis were contrasted (signed-rank test; significance: 2-sided P < .050). RESULTS rCVRRAW increases (P = .010) and CVRDELAY decreases (P = .001) were observed pre- vs post-revascularization in hemispheres with DSA-confirmed collateral formation; no difference was found pre- vs post-revascularization in hemispheres with poor revascularization. No significant change in rCVRMAX post-revascularization was observed in either group, or between any of the MRI measures, in the nonsurgical hemisphere. CONCLUSION Improvement in parenchymal compliance measures post-revascularization, primarily attributed to reductions in microvascular response time, is concurrent with collateral formation visualized on DSA, and may be useful for longitudinal monitoring of surgical outcomes.
Collapse
Affiliation(s)
- Jennifer M Watchmaker
- Vanderbilt University of Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Blaise deB Frederick
- Brain Imaging Center, McLean Hospital, Belmont, Massachusetts.,Consolidated Department of Psychiatry, Harvard Medical School, Boston Massachusetts
| | - Matthew R Fusco
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Larry T Davis
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Meher R Juttukonda
- Vanderbilt University of Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Sarah K Lants
- Vanderbilt University of Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Howard S Kirshner
- Department of Neurology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Manus J Donahue
- Vanderbilt University of Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee.,Department of Neurology, Vanderbilt University Medical Center, Nashville, Tennessee.,Department of Psychiatry, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
48
|
Smith EE, Biessels GJ, De Guio F, de Leeuw FE, Duchesne S, Düring M, Frayne R, Ikram MA, Jouvent E, MacIntosh BJ, Thrippleton MJ, Vernooij MW, Adams H, Backes WH, Ballerini L, Black SE, Chen C, Corriveau R, DeCarli C, Greenberg SM, Gurol ME, Ingrisch M, Job D, Lam BY, Launer LJ, Linn J, McCreary CR, Mok VC, Pantoni L, Pike GB, Ramirez J, Reijmer YD, Romero JR, Ropele S, Rost NS, Sachdev PS, Scott CJ, Seshadri S, Sharma M, Sourbron S, Steketee RM, Swartz RH, van Oostenbrugge R, van Osch M, van Rooden S, Viswanathan A, Werring D, Dichgans M, Wardlaw JM. Harmonizing brain magnetic resonance imaging methods for vascular contributions to neurodegeneration. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2019; 11:191-204. [PMID: 30859119 PMCID: PMC6396326 DOI: 10.1016/j.dadm.2019.01.002] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
INTRODUCTION Many consequences of cerebrovascular disease are identifiable by magnetic resonance imaging (MRI), but variation in methods limits multicenter studies and pooling of data. The European Union Joint Program on Neurodegenerative Diseases (EU JPND) funded the HARmoNizing Brain Imaging MEthodS for VaScular Contributions to Neurodegeneration (HARNESS) initiative, with a focus on cerebral small vessel disease. METHODS Surveys, teleconferences, and an in-person workshop were used to identify gaps in knowledge and to develop tools for harmonizing imaging and analysis. RESULTS A framework for neuroimaging biomarker development was developed based on validating repeatability and reproducibility, biological principles, and feasibility of implementation. The status of current MRI biomarkers was reviewed. A website was created at www.harness-neuroimaging.org with acquisition protocols, a software database, rating scales and case report forms, and a deidentified MRI repository. CONCLUSIONS The HARNESS initiative provides resources to reduce variability in measurement in MRI studies of cerebral small vessel disease.
Collapse
Affiliation(s)
- Eric E. Smith
- Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
- Department of Radiology, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Alberta, Canada
| | - Geert Jan Biessels
- Department of Neurology, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, Netherlands
| | - François De Guio
- Department of Neurology, Lariboisière Hospital, University Paris Diderot, Paris, France
| | - Frank Erik de Leeuw
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Donders Center for Medical Neuroscience, Radboud University Medical Center, Nijmegen, Netherlands
| | - Simon Duchesne
- CERVO Research Center, Quebec Mental Health Institute, Québec, Canada
- Radiology Department, Université Laval, Québec, Canada
| | - Marco Düring
- Institute for Stroke and Dementia Research (ISD), University Hospital, Ludwig-Maximilians-Universität LMU, Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE, Munich), Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Richard Frayne
- Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
- Department of Radiology, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Alberta, Canada
- Seaman Family MR Centre, Foothills Medical Centre, Calgary, Alberta, Canada
| | - M. Arfan Ikram
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Eric Jouvent
- Department of Neurology, Lariboisière Hospital, University Paris Diderot, Paris, France
| | - Bradley J. MacIntosh
- Heart and Stroke Foundation Canadian Partnership for Stroke Recovery, Department of Medical Biophysics, Sunnybrook Research Institute, University of Toronto, Ontario, Canada
| | - Michael J. Thrippleton
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
- Edinburgh Imaging, University of Edinburgh, Edinburgh, UK
- UK Dementia Research Institute, University of Edinburgh, Edinburgh, UK
| | - Meike W. Vernooij
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, Netherlands
- Department of Radiology and Nuclear Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Hieab Adams
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, Netherlands
- Department of Radiology and Nuclear Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Walter H. Backes
- Department of Radiology & Nuclear Medicine, School for Mental Health & Neuroscience, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Lucia Ballerini
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
- Edinburgh Imaging, University of Edinburgh, Edinburgh, UK
- UK Dementia Research Institute, University of Edinburgh, Edinburgh, UK
| | - Sandra E. Black
- Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, University of Toronto, Toronto, Ontario, Canada
- Heart and Stroke Foundation Canadian Partnership for Stroke Recovery, Toronto, Ontario, Canada
- Department of Medicine (Neurology), Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - Christopher Chen
- Memory Aging and Cognition Centre, Department of Pharmacology, National University of Singapore, Singapore
| | - Rod Corriveau
- National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Charles DeCarli
- Department of Neurology and Center for Neuroscience, University of California at Davis, Davis, CA, USA
| | - Steven M. Greenberg
- J. Philip Kistler Stroke Research Center, Stroke Service and Memory Disorders Unit, Massachusetts General Hospital, Boston, MA, USA
| | - M. Edip Gurol
- J. Philip Kistler Stroke Research Center, Stroke Service and Memory Disorders Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Michael Ingrisch
- Department of Radiology, Ludwig-Maximilians-University Hospital Munich, Munich, Germany
| | - Dominic Job
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
- Edinburgh Imaging, University of Edinburgh, Edinburgh, UK
- UK Dementia Research Institute, University of Edinburgh, Edinburgh, UK
| | - Bonnie Y.K. Lam
- Therese Pei Fong Chow Research Centre for Prevention of Dementia, Gerald Choa Neuroscience Centre, Lui Che Woo Institute of Innovative Medicine, Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong
| | - Lenore J. Launer
- National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Jennifer Linn
- Institute of Neuroradiology, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Cheryl R. McCreary
- Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
- Department of Radiology, University of Calgary, Calgary, Alberta, Canada
- Seaman Family MR Centre, Foothills Medical Centre, Calgary, Alberta, Canada
| | - Vincent C.T. Mok
- Therese Pei Fong Chow Research Centre for Prevention of Dementia, Gerald Choa Neuroscience Centre, Lui Che Woo Institute of Innovative Medicine, Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong
| | - Leonardo Pantoni
- Luigi Sacco Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - G. Bruce Pike
- Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
- Department of Radiology, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Alberta, Canada
| | - Joel Ramirez
- Heart and Stroke Foundation Canadian Partnership for Stroke Recovery, Department of Medical Biophysics, Sunnybrook Research Institute, University of Toronto, Ontario, Canada
- Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, University of Toronto, Toronto, Ontario, Canada
| | - Yael D. Reijmer
- Department of Neurology, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, Netherlands
| | - Jose Rafael Romero
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
- Framingham Heart Study, Framingham, MA, USA
| | - Stefan Ropele
- Department of Neurology, Medical University of Graz, Graz, Austria
| | - Natalia S. Rost
- J. Philip Kistler Stroke Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Perminder S. Sachdev
- Centre for Healthy Brain Ageing, University of New South Wales, Sydney, Australia
| | - Christopher J.M. Scott
- Heart and Stroke Foundation Canadian Partnership for Stroke Recovery, Department of Medical Biophysics, Sunnybrook Research Institute, University of Toronto, Ontario, Canada
- Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, University of Toronto, Toronto, Ontario, Canada
| | - Sudha Seshadri
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, University of Texas Health Sciences Center, San Antonio, TX, USA
| | - Mukul Sharma
- Population Health Research Institute, Hamilton, Ontario, Canada
- Department of Medicine (Neurology) McMaster University, Hamilton, Ontario, Canada
| | - Steven Sourbron
- Imaging Biomarkers Group, Department of Biomedical Imaging Sciences, University of Leeds, Leeds, UK
| | - Rebecca M.E. Steketee
- Department of Radiology and Nuclear Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Richard H. Swartz
- Department of Medicine (Neurology), University of Toronto, Toronto, Canada
- Hurvitz Brain Sciences Program, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada
| | - Robert van Oostenbrugge
- Department of Neurology, School for Mental Health and Neuroscience, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Matthias van Osch
- C.J. Gorter Center for high field MRI, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Sanneke van Rooden
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Anand Viswanathan
- J. Philip Kistler Stroke Research Center, Stroke Service and Memory Disorders Unit, Massachusetts General Hospital, Boston, MA, USA
| | - David Werring
- University College London Queen Square institute of Neurology, London, UK
| | - Martin Dichgans
- Institute for Stroke and Dementia Research (ISD), University Hospital, Ludwig-Maximilians-Universität LMU, Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE, Munich), Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Joanna M. Wardlaw
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
- Edinburgh Imaging, University of Edinburgh, Edinburgh, UK
- UK Dementia Research Institute, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
49
|
Thalman SW, Powell DK, Ubele M, Norris CM, Head E, Lin AL. Brain-Blood Partition Coefficient and Cerebral Blood Flow in Canines Using Calibrated Short TR Recovery (CaSTRR) Correction Method. Front Neurosci 2019; 13:1189. [PMID: 31749679 PMCID: PMC6848028 DOI: 10.3389/fnins.2019.01189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 10/21/2019] [Indexed: 11/13/2022] Open
Abstract
The brain–blood partition coefficient (BBPC) is necessary for quantifying cerebral blood flow (CBF) when using tracer based techniques like arterial spin labeling (ASL). A recent improvement to traditional MRI measurements of BBPC, called calibrated short TR recovery (CaSTRR), has demonstrated a significant reduction in acquisition time for BBPC maps in mice. In this study CaSTRR is applied to a cohort of healthy canines (n = 17, age = 5.0 – 8.0 years) using a protocol suited for application in humans at 3T. The imaging protocol included CaSTRR for BBPC maps, pseudo-continuous ASL for CBF maps, and high resolution anatomical images. The standard CaSTRR method of normalizing BBPC to gadolinium-doped deuterium oxide phantoms was also compared to normalization using hematocrit (Hct) as a proxy value for blood water content. The results show that CaSTRR is able to produce high quality BBPC maps with a 4 min acquisition time. The BBPC maps demonstrate significantly higher BBPC in gray matter (0.83 ± 0.05 mL/g) than in white matter (0.78 ± 0.04 mL/g, p = 0.006). Maps of CBF acquired with pCASL demonstrate a negative correlation between gray matter perfusion and age (p = 0.003). Voxel-wise correction for BBPC is also shown to improve contrast to noise ratio between gray and white matter in CBF maps. A novel aspect of the study was to show that that BBPC measurements can be calculated based on the known Hct of the blood sample placed in scanner. We found a strong correlation (R2 = 0.81 in gray matter, R2 = 0.59 in white matter) established between BBPC maps normalized to the doped phantoms and BBPC maps normalized using Hct. This obviates the need for doped water phantoms which simplifies both the acquisition protocol and the post-processing methods. Together this suggests that CaSTRR represents a feasible, rapid method to account for BBPC variability when quantifying CBF. As canines have been used widely for aging and Alzheimer’s disease studies, the CaSTRR method established in the animals may further improve CBF measurements and advance our understanding of cerebrovascular changes in aging and neurodegeneration.
Collapse
Affiliation(s)
- Scott W Thalman
- F. Joseph Halcomb III, Department of Biomedical Engineering, University of Kentucky, Lexington, KY, United States.,Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, United States
| | - David K Powell
- F. Joseph Halcomb III, Department of Biomedical Engineering, University of Kentucky, Lexington, KY, United States.,Magnetic Resonance Imaging and Spectroscopy Center, University of Kentucky, Lexington, KY, United States
| | - Margo Ubele
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, United States
| | - Christopher M Norris
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, United States.,Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, United States
| | - Elizabeth Head
- Department of Pathology and Laboratory Medicine, University of California, Irvine, Irvine, CA, United States.,University of California Irvine Institute for Memory Impairments and Neurological Disorders (UCI MIND), University of California, Irvine, Irvine, CA, United States
| | - Ai-Ling Lin
- F. Joseph Halcomb III, Department of Biomedical Engineering, University of Kentucky, Lexington, KY, United States.,Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, United States.,Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, United States.,Department of Neuroscience, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
50
|
de Rooij SR, Mutsaerts HJMM, Petr J, Asllani I, Caan MWA, Groot P, Nederveen AJ, Schwab M, Roseboom TJ. Late-life brain perfusion after prenatal famine exposure. Neurobiol Aging 2019; 82:1-9. [PMID: 31376728 DOI: 10.1016/j.neurobiolaging.2019.06.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 05/29/2019] [Accepted: 06/30/2019] [Indexed: 01/10/2023]
Abstract
Early nutritional deprivation may cause irreversible damage to the brain and seems to affect cognitive function in older age. We investigated whether prenatal undernutrition was associated with brain perfusion differences in older age. We acquired Arterial spin labeling scans in 118 Dutch famine birth cohort members. Using linear regression analyses, cerebral blood flow was compared between exposed and unexposed groups in gray matter (GM) and white matter (WM), perfusion territories, the neurodegeneration-related regions anterior and posterior cingulate cortex and precuneus. Furthermore, we compared the GM/WM ratio and the spatial coefficient of variation as a proxy of overall cerebrovascular health. The WM arterial spin labeling signal and the GM/WM ratio were significantly lower and higher, respectively, among exposed participants (-2.5 mL/100 g/min [95% CI: -4.3 to -0.8; p = 0.01] and 0.48 [0.19 to 0.76; p = 0.002], respectively). Exposed men had lower cerebral blood flow in anterior and posterior cingulate cortices (-8.0 mL/100 g/min [-15.1 to -0.9; p = 0.03]; -11.4 mL/100 g/min [-19.6 to -3.2; p = 0.02]) and higher spatial coefficient of variation (0.05 [0.00 to 0.09; p = 0.05]). The latter seemed largely mediated by higher 2h-glucose levels at age 50. Our findings suggest that prenatal undernutrition affects brain perfusion parameters providing further evidence for life-long effects of undernutrition during early brain development.
Collapse
Affiliation(s)
- Susanne R de Rooij
- Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Amsterdam UMC, the Netherlands.
| | | | - Jan Petr
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Dresden, Germany; Department of Biomedical Engineering, Rochester Institute of Technology, College of Engineering, Rochester, NY, USA
| | - Iris Asllani
- Department of Biomedical Engineering, Rochester Institute of Technology, College of Engineering, Rochester, NY, USA
| | - Matthan W A Caan
- Department of Biomedical Engineering & Physics, Amsterdam UMC, the Netherlands
| | - Paul Groot
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, the Netherlands
| | - Aart J Nederveen
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, the Netherlands
| | - Matthias Schwab
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany
| | - Tessa J Roseboom
- Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Amsterdam UMC, the Netherlands; Department of Obstetrics and Gynaecology, Amsterdam UMC, the Netherlands
| |
Collapse
|