1
|
Lindner JR, Morello M. In Vivo Cardiovascular Molecular Imaging: Contributions to Precision Medicine and Drug Development. Circulation 2024; 150:1885-1897. [PMID: 39621762 DOI: 10.1161/circulationaha.124.066522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Conventional forms of noninvasive cardiovascular imaging that evaluate morphology, function, flow, and metabolism play a vital role in individual treatment decisions, often based on guidelines. Innovations in molecular imaging have enhanced our ability to spatially quantify the expression of a wider array of disease-related proteins, genes, or cell types, or the activity of specific pathogenic pathways. These techniques, which usually rely on design of targeted imaging probes, have already been used extensively in cancer medicine and have now become part of cardiovascular care in conditions such as amyloidosis and sarcoidosis. The recognition that common cardiovascular conditions are caused by a substantial diversity of pathobiologic pathways and the diversity of therapies available for use have rekindled interest in expanding the role of molecular imaging of tissue phenotype to improve precision in diagnosis and therapeutic decision-making. The intent of this article is to raise awareness and understanding of approaches to molecular or cellular imaging of phenotype with targeted probes, and their potential to promote the principles of precision medicine. Also addressed are the diverse roles of molecular imaging to improve precision and efficiency of new drug development at the stages of candidate identification, preclinical testing, and clinical trials.
Collapse
Affiliation(s)
- Jonathan R Lindner
- Cardiovascular Division and Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville
| | - Matteo Morello
- Cardiovascular Division and Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville
| |
Collapse
|
2
|
Tesoro L, Hernandez I, Saura M, Badimón L, Zaragoza C. Novel cutting edge nano-strategies to address old long-standing complications in cardiovascular diseases. A comprehensive review. Eur J Clin Invest 2024; 54:e14208. [PMID: 38622800 DOI: 10.1111/eci.14208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/21/2024] [Accepted: 03/23/2024] [Indexed: 04/17/2024]
Abstract
BACKGROUND Cardiovascular diseases (CVD) impact a substantial portion of the global population and represent a significant threat to experiencing life-threatening outcomes, such as atherosclerosis, myocardial infarction, stroke and heart failure. Despite remarkable progress in pharmacology and medical interventions, CVD persists as a major public health concern, and now ranks as the primary global cause of death and the highest consumer of global budgets. Ongoing research endeavours persist in seeking novel therapeutic avenues and interventions to deepen our understanding of CVD, enhance prevention measures, and refine treatment strategies. METHODS Nanotechnology applied to the development of new molecular probes with diagnostic and theranostic properties represents one of the greatest technological challenges in preclinical and clinical research. RESULTS The application of nanotechnology in cardiovascular medicine holds great promise for advancing our understanding of CVDs and revolutionizing their diagnosis and treatment strategies, ultimately improving patient care and outcomes. In addition, the capacity of drug encapsulation in nanoparticles has significantly bolstered their biological safety, bioavailability and solubility. In combination with imaging technologies, molecular imaging has emerged as a pivotal therapeutic tool, offering insight into the molecular events underlying disease and facilitating targeted treatment approaches. CONCLUSION Here, we present a comprehensive overview of the recent advancements in targeted nanoparticle approaches for diagnosing CVDs, encompassing molecular imaging techniques, underscoring the significant progress in theranostic, as a novel and promising therapeutic strategy.
Collapse
Affiliation(s)
- Laura Tesoro
- Unidad Mixta de Investigación Cardiovascular, Departamento de Cardiología, Universidad Francisco de Vitoria, Hospital Ramón y Cajal (IRYCIS), Madrid, Spain
| | - Ignacio Hernandez
- Unidad Mixta de Investigación Cardiovascular, Departamento de Cardiología, Universidad Francisco de Vitoria, Hospital Ramón y Cajal (IRYCIS), Madrid, Spain
| | - Marta Saura
- Unidad de Fisiología, Departamento de Biología de Sistemas, Universidad de Alcalá (IRYCIS), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Lina Badimón
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Cardiovascular-Program ICCC, Institut d'Investigació Biomèdica Sant Pau (IIB Sant Pau), Barcelona, Spain
- Cardiovascular Research Chair, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Carlos Zaragoza
- Unidad Mixta de Investigación Cardiovascular, Departamento de Cardiología, Universidad Francisco de Vitoria, Hospital Ramón y Cajal (IRYCIS), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| |
Collapse
|
3
|
Kim KM, An HJ, Kim SH, Kim J, Sim C, Lee J, Park SH, Lee HI, Jang I, Lee S. Therapeutic Effect of Pericytes for Diabetic Wound Healing. Front Cardiovasc Med 2022; 9:868600. [PMID: 35647064 PMCID: PMC9135971 DOI: 10.3389/fcvm.2022.868600] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 04/12/2022] [Indexed: 12/28/2022] Open
Abstract
Objective Numerous attempts have been made to devise treatments for ischemic foot ulcer (IFU), which is one of the most severe and fatal consequences of diabetes mellitus (DM). Pericytes, which are perivascular multipotent cells, are of interest as a treatment option for IFU because they play a critical role in forming and repairing various tissues. In this study, we want to clarify the angiogenic potential of pericytes in DM-induced wounds. Methods We evaluated pericyte stimulation capability for tube formation, angiogenesis, and wound healing (cell migration) in human umbilical vein endothelial cells (HUVECs) with in-vivo and in-vitro models of high glucose conditions. Results When HUVECs were co-cultured with pericytes, their tube-forming capacity and cell migration were enhanced. Our diabetic mouse model showed that pericytes promote wound healing via increased vascularization. Conclusion The findings of this study indicate that pericytes may enhance wound healing in high glucose conditions, consequently making pericyte transplantation suitable for treating IFUs.
Collapse
Affiliation(s)
- Kyeong Mi Kim
- Department of Laboratory Medicine, CHA Ilsan Medical Center, CHA University School of Medicine, Goyang-si, South Korea
| | - Hyun-Ju An
- Department of Orthopaedic Surgery, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam-si, South Korea
| | - Sang-Hoon Kim
- Department of Cardiology, CHA Bundang Medical Center, CHA University School of Medicine, Gyeonggi-do, South Korea
| | - JuHee Kim
- Department of Orthopaedic Surgery, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam-si, South Korea
| | - Changgon Sim
- CHA Graduate School of Medicine, Gyeonggi-do, South Korea
| | - Jaemin Lee
- Department of Orthopaedic Surgery, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam-si, South Korea
| | - Sin Hyung Park
- Department of Orthopaedic Surgery, Bucheon Hospital, Soonchunhyang University School of Medicine, Gyeonggi-do, South Korea
| | - Hyun Il Lee
- Department of Orthopedic Surgery, Ilsan Paik Hospital, Inje University, Gyeonggi-do, South Korea
| | - Inseok Jang
- Department of Orthopaedic Surgery, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam-si, South Korea
| | - Soonchul Lee
- Department of Orthopaedic Surgery, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam-si, South Korea
- *Correspondence: Soonchul Lee
| |
Collapse
|
4
|
Yang Z, Yao J, Wang J, Zhang C, Cao Y, Hao L, Yang C, Wu C, Zhang J, Wang Z, Ran H, Tian Y. Ferrite-encapsulated nanoparticles with stable photothermal performance for multimodal imaging-guided atherosclerotic plaque neovascularization therapy. Biomater Sci 2021; 9:5652-5664. [PMID: 34259244 DOI: 10.1039/d1bm00343g] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Pathological angiogenesis is a critical contributor to atherosclerotic plaque rupture. However, there are few effective theranostic strategies to stabilize plaques by suppressing neovascularization. In this study, we fabricated a polymeric nanosystem using 3 nm manganese ferrite (MnFe2O4) and perfluorohexane (PFH) stabilized by polylactic acid-glycolic acid (PLGA) shells and conjugated to the surface of an anti-vascular endothelial growth factor receptor 2 (VEGFR2) antibody [ramucirumab (Ram)]. The PFH@PLGA/MnFe2O4-Ram nanoparticles (NPs) were used as atherosclerotic plaque angiogenesis theranostics for multimodal imaging-guided photothermal therapy (PTT). Three-nanometer MnFe2O4 is an excellent magnetic resonance imaging T1 and photoacoustic imaging contrast agent. Upon exposure to near-infrared (NIR) light, MnFe2O4 in the NPs could transform NIR light into thermal energy for the photothermal elimination of plaque angiogenesis. Additionally, optical droplet vaporization of PFH in the NPs triggered by the thermal effect to form gas bubbles enhanced ultrasound imaging. Our in vitro experiments revealed that PFH@PLGA/MnFe2O4-Ram NPs actively accumulated in rabbit aortic endothelial cells, and NP-mediated PTT promoted endothelial cell apoptosis while inhibiting their proliferation, migration, and tubulogenesis. Notably, the PFH@PLGA/MnFe2O4-Ram NPs possessed excellent photostability and biocompatibility. In the rabbit advanced atherosclerotic plaque model, PFH@PLGA/MnFe2O4-Ram NP-guided PTT significantly induced apoptosis of neovascular endothelial cells and improved the hypoxia status in the plaque 3 days after treatment. On day 28, PTT significantly reduced the density of neovessels and subsequently stabilized rabbit plaques by inhibiting plaque hemorrhage and macrophage infiltration. Collectively, these results suggest that PFH@PLGA/MnFe2O4-Ram NP-guided PTT is a safe and effective theranostic strategy for inhibiting atherosclerotic plaque angiogenesis.
Collapse
Affiliation(s)
- Zhuowen Yang
- Department of Cardiology, The First Affiliated Hospital, Cardiovascular Institute, Harbin Medical University, Harbin 150001, P. R. China. and Department of Gerontology, The First Affiliated Hospital, Harbin Medical University, Harbin 150001, P. R. China
| | - Jianting Yao
- Department of Ultrasound, Chongqing Key Laboratory of Ultrasound Molecular Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P. R. China
| | - Jianxin Wang
- Department of Ultrasound, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, P. R. China
| | - Cong Zhang
- Department of Ultrasound, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, P. R. China
| | - Yang Cao
- Department of Ultrasound, Chongqing Key Laboratory of Ultrasound Molecular Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P. R. China
| | - Lan Hao
- Department of Ultrasound, Chongqing Key Laboratory of Ultrasound Molecular Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P. R. China
| | - Chao Yang
- Department of Radiology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing 400014, P. R. China
| | - Changjun Wu
- Department of Ultrasound, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, P. R. China
| | - Jingqi Zhang
- Department of Cardiology, The First Affiliated Hospital, Cardiovascular Institute, Harbin Medical University, Harbin 150001, P. R. China.
| | - Zhigang Wang
- Department of Ultrasound, Chongqing Key Laboratory of Ultrasound Molecular Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P. R. China
| | - Haitao Ran
- Department of Ultrasound, Chongqing Key Laboratory of Ultrasound Molecular Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P. R. China
| | - Ye Tian
- Department of Cardiology, The First Affiliated Hospital, Cardiovascular Institute, Harbin Medical University, Harbin 150001, P. R. China. and Department of Pathophysiology and Key Laboratory of Cardiovascular Pathophysiology, Harbin Medical University, Key Laboratory of Cardiovascular Medicine Research (Harbin Medical University), Ministry of Education, Harbin 150086, P. R. China
| |
Collapse
|
5
|
Abstract
Nanotechnology could offer a new complementary strategy for the treatment of vascular diseases including coronary, carotid, or peripheral arterial disease due to narrowing or blockage of the artery caused by atherosclerosis. These arterial diseases manifest correspondingly as angina and myocardial infarction, stroke, and intermittent claudication of leg muscles during exercise. The pathogenesis of atherosclerosis involves biological events at the cellular and molecular level, thus targeting these using nanomaterials precisely and effectively could result in a better outcome. Nanotechnology can mitigate the pathological events by enhancing the therapeutic efficacy of the therapeutic agent by delivering it at the point of a lesion in a controlled and efficacious manner. Further, combining therapeutics with imaging will enhance the theranostic ability in atherosclerosis. Additionally, nanoparticles can provide a range of delivery systems for genes, proteins, cells, and drugs, which individually or in combination can address various problems within the arteries. Imaging studies combined with nanoparticles helps in evaluating the disease progression as well as the response to the treatment because imaging and diagnostic agents can be delivered precisely to the targeted destinations via nanocarriers. This review focuses on the use of nanotechnology in theranostics of coronary artery and peripheral arterial disease.
Collapse
|
6
|
Farber G, Boczar KE, Wiefels CC, Zelt JG, Guler EC, deKemp RA, Beanlands RS, Rotstein BH. The Future of Cardiac Molecular Imaging. Semin Nucl Med 2020; 50:367-385. [DOI: 10.1053/j.semnuclmed.2020.02.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
7
|
Rajabi M, Adeyeye M, Mousa SA. Peptide-Conjugated Nanoparticles as Targeted Anti-angiogenesis Therapeutic and Diagnostic in Cancer. Curr Med Chem 2019; 26:5664-5683. [DOI: 10.2174/0929867326666190620100800] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 03/11/2019] [Accepted: 03/21/2019] [Indexed: 12/25/2022]
Abstract
:Targeting angiogenesis in the microenvironment of a tumor can enable suppression of tumor angiogenesis and delivery of anticancer drugs into the tumor. Anti-angiogenesis targeted delivery systems utilizing passive targeting such as Enhanced Permeability and Retention (EPR) and specific receptor-mediated targeting (active targeting) should result in tumor-specific targeting. One targeted anti-angiogenesis approach uses peptides conjugated to nanoparticles, which can be loaded with anticancer agents. Anti-angiogenesis agents can suppress tumor angiogenesis and thereby affect tumor growth progression (tumor growth arrest), which may be further reduced with the targetdelivered anticancer agent. This review provides an update of tumor vascular targeting for therapeutic and diagnostic applications, with conventional or long-circulating nanoparticles decorated with peptides that target neovascularization (anti-angiogenesis) in the tumor microenvironment.
Collapse
Affiliation(s)
- Mehdi Rajabi
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY 12144, United States
| | - Mary Adeyeye
- Department of Chemistry, University of Albany, State University of New York, Albany, NY 12222, United States
| | - Shaker A. Mousa
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY 12144, United States
| |
Collapse
|
8
|
Abstract
Noninvasive imaging has played an increasing role in the process of cardiovascular drug development. This review focuses specifically on the use of molecular imaging, which has been increasingly applied to improve and accelerate certain preclinical steps in drug development, including the identification of appropriate therapeutic targets, evaluation of on-target and off-target effects of candidate therapies, assessment of dose response, and the evaluation of drug or biological biodistribution and pharmacodynamics. Unlike the case in cancer medicine, in cardiovascular medicine, molecular imaging has not been used as a primary surrogate clinical end point for drug approval. However, molecular imaging has been applied in early clinical trials, particularly in phase 0 studies, to demonstrate proof-of-concept or to explain variation in treatment effect. Many of these applications where molecular imaging has been used in drug development have involved the retasking of technologies that were originally intended as clinical diagnostics. With greater experience and recognition of the rich information provided by in vivo molecular imaging, it is anticipated that it will increasingly be used to address the enormous time and costs associated with bringing a new drug to clinical launch.
Collapse
Affiliation(s)
- Jonathan R Lindner
- From the Knight Cardiovascular Institute (J.R.L.), Oregon National Primate Research Center (J.R.L.), and Center for Radiologic Research (J.L.), Oregon Health and Science University, Portland.
| | - Jeanne Link
- From the Knight Cardiovascular Institute (J.R.L.), Oregon National Primate Research Center (J.R.L.), and Center for Radiologic Research (J.L.), Oregon Health and Science University, Portland
| |
Collapse
|
9
|
Wang CX, Gao ZY, Wang X, Ke C, Zhang Z, Zhang CJ, Fu LM, Wang Y, Zhang JP. Noninvasive and real-time pharmacokinetics imaging of polymeric nanoagents in the thoracoepigastric vein networks of living mice. JOURNAL OF BIOMEDICAL OPTICS 2019; 24:1-11. [PMID: 31222991 PMCID: PMC6977018 DOI: 10.1117/1.jbo.24.6.066009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 06/05/2019] [Indexed: 06/09/2023]
Abstract
Noninvasive and real-time visualization of the thoracoepigastric veins (TVs) of living mice was demonstrated by using two-photon excitation (TPE) optical imaging with a Eu-luminescent polymeric nanoagent as the angiographic contrast. The spatiotemporal evolution of the polymeric nanoagent in TVs was monitored for up to 2 h by TPE time-resolved (TPE-TR) bioimaging, which is free from the interference of tissue autofluorescence. A wide field-of-view covering the thoracoabdominal region allowed the visualization of the entire TV network with an imaging depth of 1 to 2 mm and a lateral resolution of 80 μm at submillimeter. Detailed analysis of the uptake, transport, and clearance processes of the polymeric nanoagent revealed a clearance time constant of ∼30 min and an apparent clearance efficiency of 80% to 90% for the nanoagent in both axial and lateral TVs. TPE-TR imaging of the dissected internal organs proved that the liver is mainly responsible for the sequestration of the nanoagent, which is consistent with the apparent retention efficiency of liver, ∼32 % , as determined by the real-time in vivo TV imaging. We demonstrate the potency of TPE-TR modality in the pharmacokinetics imaging of the peripheral vascular systems of animal models, which can be beneficial for related nanotheranostics study.
Collapse
Affiliation(s)
- Chuan-Xi Wang
- Peking University, College of Chemistry and Molecular Engineering, Academy for Advanced Interdisciplinary Studies, Beijing National Laboratory for Molecular Science, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing, China
| | - Zhi-Yue Gao
- Peking University, College of Chemistry and Molecular Engineering, Academy for Advanced Interdisciplinary Studies, Beijing National Laboratory for Molecular Science, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing, China
| | - Xin Wang
- Peking University, College of Chemistry and Molecular Engineering, Academy for Advanced Interdisciplinary Studies, Beijing National Laboratory for Molecular Science, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing, China
| | - Can Ke
- Peking University, College of Chemistry and Molecular Engineering, Academy for Advanced Interdisciplinary Studies, Beijing National Laboratory for Molecular Science, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing, China
| | - Zhuo Zhang
- Renmin University of China, Department of Chemistry, Beijing, China
| | - Chao-Jie Zhang
- Renmin University of China, Department of Chemistry, Beijing, China
| | - Li-Min Fu
- Renmin University of China, Department of Chemistry, Beijing, China
| | - Yuan Wang
- Peking University, College of Chemistry and Molecular Engineering, Academy for Advanced Interdisciplinary Studies, Beijing National Laboratory for Molecular Science, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing, China
| | - Jian-Ping Zhang
- Renmin University of China, Department of Chemistry, Beijing, China
| |
Collapse
|
10
|
Boutagy NE, Feher A, Alkhalil I, Umoh N, Sinusas AJ. Molecular Imaging of the Heart. Compr Physiol 2019; 9:477-533. [PMID: 30873600 DOI: 10.1002/cphy.c180007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Multimodality cardiovascular imaging is routinely used to assess cardiac function, structure, and physiological parameters to facilitate the diagnosis, characterization, and phenotyping of numerous cardiovascular diseases (CVD), as well as allows for risk stratification and guidance in medical therapy decision-making. Although useful, these imaging strategies are unable to assess the underlying cellular and molecular processes that modulate pathophysiological changes. Over the last decade, there have been great advancements in imaging instrumentation and technology that have been paralleled by breakthroughs in probe development and image analysis. These advancements have been merged with discoveries in cellular/molecular cardiovascular biology to burgeon the field of cardiovascular molecular imaging. Cardiovascular molecular imaging aims to noninvasively detect and characterize underlying disease processes to facilitate early diagnosis, improve prognostication, and guide targeted therapy across the continuum of CVD. The most-widely used approaches for preclinical and clinical molecular imaging include radiotracers that allow for high-sensitivity in vivo detection and quantification of molecular processes with single photon emission computed tomography and positron emission tomography. This review will describe multimodality molecular imaging instrumentation along with established and novel molecular imaging targets and probes. We will highlight how molecular imaging has provided valuable insights in determining the underlying fundamental biology of a wide variety of CVDs, including: myocardial infarction, cardiac arrhythmias, and nonischemic and ischemic heart failure with reduced and preserved ejection fraction. In addition, the potential of molecular imaging to assist in the characterization and risk stratification of systemic diseases, such as amyloidosis and sarcoidosis will be discussed. © 2019 American Physiological Society. Compr Physiol 9:477-533, 2019.
Collapse
Affiliation(s)
- Nabil E Boutagy
- Department of Medicine, Yale Translational Research Imaging Center, Yale University School of Medicine, Section of Cardiovascular Medicine, New Haven, Connecticut, USA
| | - Attila Feher
- Department of Medicine, Yale Translational Research Imaging Center, Yale University School of Medicine, Section of Cardiovascular Medicine, New Haven, Connecticut, USA
| | - Imran Alkhalil
- Department of Medicine, Yale Translational Research Imaging Center, Yale University School of Medicine, Section of Cardiovascular Medicine, New Haven, Connecticut, USA
| | - Nsini Umoh
- Department of Medicine, Yale Translational Research Imaging Center, Yale University School of Medicine, Section of Cardiovascular Medicine, New Haven, Connecticut, USA
| | - Albert J Sinusas
- Department of Medicine, Yale Translational Research Imaging Center, Yale University School of Medicine, Section of Cardiovascular Medicine, New Haven, Connecticut, USA.,Yale University School of Medicine, Department of Radiology and Biomedical Imaging, New Haven, Connecticut, USA
| |
Collapse
|
11
|
Gao Y, Zheng QC, Xu S, Yuan Y, Cheng X, Jiang S, Kenry, Yu Q, Song Z, Liu B, Li M. Theranostic Nanodots with Aggregation-Induced Emission Characteristic for Targeted and Image-Guided Photodynamic Therapy of Hepatocellular Carcinoma. Theranostics 2019; 9:1264-1279. [PMID: 30867829 PMCID: PMC6401505 DOI: 10.7150/thno.29101] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 11/16/2018] [Indexed: 12/21/2022] Open
Abstract
Photosensitizer (PS) serves as the central element of photodynamic therapy (PDT). The use of common nanoparticles (NPs) for PDT has typically been rendered less effective by the undesirable aggregation-caused quenching (ACQ) effect, resulting in quenched fluorescence and reduced reactive oxygen species (ROS) generation that diminish the imaging quality and PDT efficacy. To overcome the ACQ effect and to enhance the overall efficacy of PDT, herein, integrin ανβ3-targeted organic nanodots for image-guided PDT were designed and synthesized based on a red emissive aggregation-induced emission (AIE) PS. Methods: The TPETS nanodots were prepared by nano-precipitation method and further conjugated with thiolated cRGD (cRGD-SH) through a click reaction to yield the targeted TPETS nanodots (T-TPETS nanodots). Nanodots were characterized for encapsulation efficiency, conjugation rate, particle size, absorption and emission spectra and ROS production. The targeted fluorescence imaging and antitumor efficacy of T-TPETS nanodot were evaluated both in vitro and in vivo. The mechanism of cell apoptosis induced by T-TPETS nanodot mediated-PDT was explored. The biocompatibility and toxicity of the nanodots was examined using cytotoxicity test, hemolysis assay, blood biochemistry test and histological staining. Results: The obtained nanodots show bright red fluorescence and highly effective 1O2 generation in aggregate state. Both in vitro and in vivo experiments demonstrate that the nanodots exhibit excellent tumor-targeted imaging performance, which facilitates image-guided PDT for tumor ablation in a hepatocellular carcinoma model. Detailed analysis reveals that the nanodot-mediated PDT is able to induce time- and concentration-dependent cell death. The use of PDT at a high PDT intensity leads to direct cell necrosis, while cell apoptosis via the mitochondria-mediated pathway is achieved under low PDT intensity. Conclusion: Our results suggest that well-designed AIE nanodots are promising for image-guided PDT applications.
Collapse
Affiliation(s)
- Yang Gao
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Qi Chang Zheng
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Shidang Xu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585
| | - Youyong Yuan
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585
| | - Xiang Cheng
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Shuai Jiang
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Kenry
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585
| | - Qihong Yu
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zifang Song
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Bin Liu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585
| | - Min Li
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
12
|
The Multifaceted Uses and Therapeutic Advantages of Nanoparticles for Atherosclerosis Research. MATERIALS 2018; 11:ma11050754. [PMID: 29738480 PMCID: PMC5978131 DOI: 10.3390/ma11050754] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 04/29/2018] [Accepted: 04/30/2018] [Indexed: 12/27/2022]
Abstract
Nanoparticles are uniquely suited for the study and development of potential therapies against atherosclerosis by virtue of their size, fine-tunable properties, and ability to incorporate therapies and/or imaging modalities. Furthermore, nanoparticles can be specifically targeted to the atherosclerotic plaque, evading off-target effects and/or associated cytotoxicity. There has been a wealth of knowledge available concerning the use of nanotechnologies in cardiovascular disease and atherosclerosis, in particular in animal models, but with a major focus on imaging agents. In fact, roughly 60% of articles from an initial search for this review included examples of imaging applications of nanoparticles. Thus, this review focuses on experimental therapy interventions applied to and observed in animal models. Particular emphasis is placed on how nanoparticle materials and properties allow researchers to learn a great deal about atherosclerosis. The objective of this review was to provide an update for nanoparticle use in imaging and drug delivery studies and to illustrate how nanoparticles can be used for sensing and modelling, for studying fundamental biological mechanisms, and for the delivery of biotherapeutics such as proteins, peptides, nucleic acids, and even cells all with the goal of attenuating atherosclerosis. Furthermore, the various atherosclerosis processes targeted mainly for imaging studies have been summarized in the hopes of inspiring new and exciting targeted therapeutic and/or imaging strategies.
Collapse
|
13
|
Porter TR, Mulvagh SL, Abdelmoneim SS, Becher H, Belcik JT, Bierig M, Choy J, Gaibazzi N, Gillam LD, Janardhanan R, Kutty S, Leong-Poi H, Lindner JR, Main ML, Mathias W, Park MM, Senior R, Villanueva F. Clinical Applications of Ultrasonic Enhancing Agents in Echocardiography: 2018 American Society of Echocardiography Guidelines Update. J Am Soc Echocardiogr 2018; 31:241-274. [DOI: 10.1016/j.echo.2017.11.013] [Citation(s) in RCA: 142] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
14
|
Stroke Management: An Emerging Role of Nanotechnology. MICROMACHINES 2017; 8:mi8090262. [PMID: 30400452 PMCID: PMC6190436 DOI: 10.3390/mi8090262] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 08/07/2017] [Accepted: 08/09/2017] [Indexed: 12/21/2022]
Abstract
Stroke is among the leading causes of mortality and morbidity worldwide. Stroke incidences and associated mortality are expected to rise to 23 million and 7.8 million, respectively, by 2030. Further, the aging population, imbalanced lifestyles, and environmental factors continue to shift the rate of stroke incidence, particularly in developing countries. There is an urgent need to develop new therapeutic approaches for treating stroke. Nanotechnology is a growing field, offering an encouraging future prospect for medical research in the management of strokes. The world market for nanotechnology derived products is expected to rise manyfold in the coming decades. Different types of nanomaterials such as perfluorocarbon nanoparticles, iron oxide nanoparticles, gold nanoparticles, polymeric nanoparticles, quantum dots, nanospheres, etc. have been developed for the diagnosis as well as therapy of strokes. Today, nanotechnology has also been integrated with stem cell therapy for treating stroke. However several obstacles remain to be overcome when using such nanomaterials for treating stroke and other neurological diseases.
Collapse
|
15
|
Molecular Imaging to Predict Response to Targeted Therapies in Renal Cell Carcinoma. CONTRAST MEDIA & MOLECULAR IMAGING 2017; 2017:7498538. [PMID: 29097936 PMCID: PMC5612742 DOI: 10.1155/2017/7498538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 01/26/2017] [Accepted: 03/09/2017] [Indexed: 12/21/2022]
Abstract
Molecular magnetic resonance imaging targeted to an endothelial integrin involved in neoangiogenesis was compared to DCE-US and immunochemistry to assess the early response of three different therapeutic agents in renal cell carcinoma. Human A498 renal cells carcinoma was subcutaneously inoculated into 24 nude mice. Mice received either phosphate-buffered saline solution, sunitinib, everolimus, or bevacizumab during 4 days. DCE-US and molecular MRI targeting αvβ3 were performed at baseline and 4 days after treatment initiation. PI, AUC, relaxation rate variations ΔR2⁎, and percentage of vessels area quantified on CD31-stained microvessels were compared. Significant decreases were observed for PI and AUC parameters measured by DCE-US for bevacizumab group as early as 4 days, whereas molecular αvβ3-targeted MRI was able to detect significant changes in both bevacizumab and everolimus groups. Percentage of CD31-stained microvessels was significantly correlated with DCE-US parameters, PI (R = 0.87, p = 0.0003) and AUC (R = 0.81, p = 0.0013). The percentage of vessel tissue area was significantly reduced (p < 0.01) in both sunitinib and bevacizumab groups. We report an early detection of neoangiogenesis modification after induction of targeted therapies, using DCE-US or αvβ3-targeted MRI. We consider these outcomes should encourage clinical trial developments to further evaluate the potential of this molecular MRI technique.
Collapse
|
16
|
Suero-Abreu GA, Aristizábal O, Bartelle BB, Volkova E, Rodríguez JJ, Turnbull DH. Multimodal Genetic Approach for Molecular Imaging of Vasculature in a Mouse Model of Melanoma. Mol Imaging Biol 2016; 19:203-214. [PMID: 27677887 DOI: 10.1007/s11307-016-1006-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
PURPOSE In this study, we evaluated a genetic approach for in vivo multimodal molecular imaging of vasculature in a mouse model of melanoma. PROCEDURES We used a novel transgenic mouse, Ts-Biotag, that genetically biotinylates vascular endothelial cells. After inoculating these mice with B16 melanoma cells, we selectively targeted endothelial cells with (strept)avidinated contrast agents to achieve multimodal contrast enhancement of Tie2-expressing blood vessels during tumor progression. RESULTS This genetic targeting system provided selective labeling of tumor vasculature and showed in vivo binding of avidinated probes with high specificity and sensitivity using microscopy, near infrared, ultrasound, and magnetic resonance imaging. We further demonstrated the feasibility of conducting longitudinal three-dimensional (3D) targeted imaging studies to dynamically assess changes in vascular Tie2 from early to advanced tumor stages. CONCLUSIONS Our results validated the Ts-Biotag mouse as a multimodal targeted imaging system with the potential to provide spatio-temporal information about dynamic changes in vasculature during tumor progression.
Collapse
Affiliation(s)
- Giselle A Suero-Abreu
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine (NYUSoM), 540 First Ave, New York, NY, 10016, USA
- Biomedical Imaging Graduate Program, NYUSoM, New York, NY, USA
- Department of Radiology, NYUSoM, New York, NY, USA
| | - Orlando Aristizábal
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine (NYUSoM), 540 First Ave, New York, NY, 10016, USA
| | - Benjamin B Bartelle
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine (NYUSoM), 540 First Ave, New York, NY, 10016, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Eugenia Volkova
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine (NYUSoM), 540 First Ave, New York, NY, 10016, USA
| | - Joe J Rodríguez
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine (NYUSoM), 540 First Ave, New York, NY, 10016, USA
| | - Daniel H Turnbull
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine (NYUSoM), 540 First Ave, New York, NY, 10016, USA.
- Biomedical Imaging Graduate Program, NYUSoM, New York, NY, USA.
- Department of Radiology, NYUSoM, New York, NY, USA.
- Department of Pathology, NYUSoM, New York, NY, USA.
| |
Collapse
|
17
|
Molecular Imaging of Vulnerable Atherosclerotic Plaques in Animal Models. Int J Mol Sci 2016; 17:ijms17091511. [PMID: 27618031 PMCID: PMC5037788 DOI: 10.3390/ijms17091511] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 08/24/2016] [Accepted: 08/31/2016] [Indexed: 12/13/2022] Open
Abstract
Atherosclerosis is characterized by intimal plaques of the arterial vessels that develop slowly and, in some cases, may undergo spontaneous rupture with subsequent heart attack or stroke. Currently, noninvasive diagnostic tools are inadequate to screen atherosclerotic lesions at high risk of acute complications. Therefore, the attention of the scientific community has been focused on the use of molecular imaging for identifying vulnerable plaques. Genetically engineered murine models such as ApoE−/− and ApoE−/−Fbn1C1039G+/− mice have been shown to be useful for testing new probes targeting biomarkers of relevant molecular processes for the characterization of vulnerable plaques, such as vascular endothelial growth factor receptor (VEGFR)-1, VEGFR-2, intercellular adhesion molecule (ICAM)-1, P-selectin, and integrins, and for the potential development of translational tools to identify high-risk patients who could benefit from early therapeutic interventions. This review summarizes the main animal models of vulnerable plaques, with an emphasis on genetically altered mice, and the state-of-the-art preclinical molecular imaging strategies.
Collapse
|
18
|
Zhang J, Zu Y, Dhanasekara CS, Li J, Wu D, Fan Z, Wang S. Detection and treatment of atherosclerosis using nanoparticles. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2016; 9. [PMID: 27241794 DOI: 10.1002/wnan.1412] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 03/25/2016] [Accepted: 04/12/2016] [Indexed: 01/10/2023]
Abstract
Atherosclerosis is the key pathogenesis of cardiovascular disease, which is a silent killer and a leading cause of death in the United States. Atherosclerosis starts with the adhesion of inflammatory monocytes on the activated endothelial cells in response to inflammatory stimuli. These monocytes can further migrate into the intimal layer of the blood vessel where they differentiate into macrophages, which take up oxidized low-density lipoproteins and release inflammatory factors to amplify the local inflammatory response. After accumulation of cholesterol, the lipid-laden macrophages are transformed into foam cells, the hallmark of the early stage of atherosclerosis. Foam cells can die from apoptosis or necrosis, and the intracellular lipid is deposed in the artery wall forming lesions. The angiogenesis for nurturing cells is enhanced during lesion development. Proteases released from macrophages, foam cells, and other cells degrade the fibrous cap of the lesion, resulting in rupture of the lesion and subsequent thrombus formation. Thrombi can block blood circulation, which represents a major cause of acute heart events and stroke. There are generally no symptoms in the early stages of atherosclerosis. Current detection techniques cannot easily, safely, and effectively detect the lesions in the early stages, nor can they characterize the lesion features such as the vulnerability. While the available therapeutic modalities cannot target specific molecules, cells, and processes in the lesions, nanoparticles appear to have a promising potential in improving atherosclerosis detection and treatment via targeting the intimal macrophages, foam cells, endothelial cells, angiogenesis, proteolysis, apoptosis, and thrombosis. Indeed, many nanoparticles have been developed in improving blood lipid profile and decreasing inflammatory response for enhancing therapeutic efficacy of drugs and decreasing their side effects. WIREs Nanomed Nanobiotechnol 2017, 9:e1412. doi: 10.1002/wnan.1412 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Jia Zhang
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX, USA
| | - Yujiao Zu
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX, USA
| | | | - Jun Li
- Laboratory Animal Center, Peking University, Beijing, PR China
| | - Dayong Wu
- Nutritional Immunology Laboratory, Jean Mayer Human Nutrition Research Center on Aging, Tufts University, Boston, MA, USA
| | - Zhaoyang Fan
- Department of Electrical and Computer Engineering and Nano Tech Center, Texas Tech University, Lubbock, TX, USA
| | - Shu Wang
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX, USA
| |
Collapse
|
19
|
Palekar RU, Jallouk AP, Lanza GM, Pan H, Wickline SA. Molecular imaging of atherosclerosis with nanoparticle-based fluorinated MRI contrast agents. Nanomedicine (Lond) 2016; 10:1817-32. [PMID: 26080701 DOI: 10.2217/nnm.15.26] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
As atherosclerosis remains one of the most prevalent causes of patient mortality, the ability to diagnose early signs of plaque rupture and thrombosis represents a significant clinical need. With recent advances in nanotechnology, it is now possible to image specific molecular processes noninvasively with MRI, using various types of nanoparticles as contrast agents. In the context of cardiovascular disease, it is possible to specifically deliver contrast agents to an epitope of interest for detecting vascular inflammatory processes, which serve as predecessors to atherosclerotic plaque development. Herein, we review various applications of nanotechnology in detecting atherosclerosis using MRI, with an emphasis on perfluorocarbon nanoparticles and fluorine imaging, along with theranostic prospects of nanotechnology in cardiovascular disease.
Collapse
Affiliation(s)
- Rohun U Palekar
- Department of Biomedical Engineering, Washington University, Whitaker Hall, Campus Box 1097, One Brookings Drive, St. Louis, MO 63130, USA
| | - Andrew P Jallouk
- Department of Medicine, Washington University, Campus Box 8215, 4320 Forest Park Avenue, St Louis, MO 63108, USA
| | - Gregory M Lanza
- Department of Biomedical Engineering, Washington University, Whitaker Hall, Campus Box 1097, One Brookings Drive, St. Louis, MO 63130, USA.,Department of Medicine, Washington University, Campus Box 8215, 4320 Forest Park Avenue, St Louis, MO 63108, USA
| | - Hua Pan
- Department of Medicine, Washington University, Campus Box 8215, 4320 Forest Park Avenue, St Louis, MO 63108, USA
| | - Samuel A Wickline
- Department of Biomedical Engineering, Washington University, Whitaker Hall, Campus Box 1097, One Brookings Drive, St. Louis, MO 63130, USA.,Department of Medicine, Washington University, Campus Box 8215, 4320 Forest Park Avenue, St Louis, MO 63108, USA
| |
Collapse
|
20
|
Schmieder AH, Caruthers SD, Keupp J, Wickline SA, Lanza GM. Recent Advances in 19Fluorine Magnetic Resonance Imaging with Perfluorocarbon Emulsions. ENGINEERING (BEIJING, CHINA) 2015; 1:475-489. [PMID: 27110430 PMCID: PMC4841681 DOI: 10.15302/j-eng-2015103] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The research roots of 19fluorine (19F) magnetic resonance imaging (MRI) date back over 35 years. Over that time span, 1H imaging flourished and was adopted worldwide with an endless array of applications and imaging approaches, making magnetic resonance an indispensable pillar of biomedical diagnostic imaging. For many years during this timeframe, 19F imaging research continued at a slow pace as the various attributes of the technique were explored. However, over the last decade and particularly the last several years, the pace and clinical relevance of 19F imaging has exploded. In part, this is due to advances in MRI instrumentation, 19F/1H coil designs, and ultrafast pulse sequence development for both preclinical and clinical scanners. These achievements, coupled with interest in the molecular imaging of anatomy and physiology, and combined with a cadre of innovative agents, have brought the concept of 19F into early clinical evaluation. In this review, we attempt to provide a slice of this rich history of research and development, with a particular focus on liquid perfluorocarbon compound-based agents.
Collapse
Affiliation(s)
- Anne H. Schmieder
- Division of Cardiology, Washington University School of Medical, St. Louis, MO 63110, USA
| | - Shelton D. Caruthers
- Toshiba Medical Research Institute USA, Inc., Cleveland, OH 44143, USA
- Department of Biomedical Engineering, Washington University, St. Louis, MO 63130, USA
| | - Jochen Keupp
- Philips Research Hamburg, Hamburg 22335, Germany
| | - Samuel A. Wickline
- Division of Cardiology, Washington University School of Medical, St. Louis, MO 63110, USA
| | - Gregory M. Lanza
- Division of Cardiology, Washington University School of Medical, St. Louis, MO 63110, USA
- Correspondence author.
| |
Collapse
|
21
|
Stendahl JC, Sinusas AJ. Nanoparticles for Cardiovascular Imaging and Therapeutic Delivery, Part 1: Compositions and Features. J Nucl Med 2015; 56:1469-75. [PMID: 26272808 DOI: 10.2967/jnumed.115.160994] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 07/23/2015] [Indexed: 01/08/2023] Open
Abstract
Imaging agents made from nanoparticles are functionally versatile and have unique properties that may translate to clinical utility in several key cardiovascular imaging niches. Nanoparticles exhibit size-based circulation, biodistribution, and elimination properties different from those of small molecules and microparticles. In addition, nanoparticles provide versatile platforms that can be engineered to create both multimodal and multifunctional imaging agents with tunable properties. With these features, nanoparticulate imaging agents can facilitate fusion of high-sensitivity and high-resolution imaging modalities and selectively bind tissues for targeted molecular imaging and therapeutic delivery. Despite their intriguing attributes, nanoparticulate imaging agents have thus far achieved only limited clinical use. The reasons for this restricted advancement include an evolving scope of applications, the simplicity and effectiveness of existing small-molecule agents, pharmacokinetic limitations, safety concerns, and a complex regulatory environment. This review describes general features of nanoparticulate imaging agents and therapeutics and discusses challenges associated with clinical translation. A second, related review to appear in a subsequent issue of JNM highlights nuclear-based nanoparticulate probes in preclinical cardiovascular imaging.
Collapse
Affiliation(s)
- John C Stendahl
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut Yale Translational Research Imaging Center, Yale University School of Medicine, New Haven, Connecticut; and
| | - Albert J Sinusas
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut Yale Translational Research Imaging Center, Yale University School of Medicine, New Haven, Connecticut; and Department of Diagnostic Radiology, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
22
|
Simons M, Alitalo K, Annex BH, Augustin HG, Beam C, Berk BC, Byzova T, Carmeliet P, Chilian W, Cooke JP, Davis GE, Eichmann A, Iruela-Arispe ML, Keshet E, Sinusas AJ, Ruhrberg C, Woo YJ, Dimmeler S. State-of-the-Art Methods for Evaluation of Angiogenesis and Tissue Vascularization: A Scientific Statement From the American Heart Association. Circ Res 2015; 116:e99-132. [PMID: 25931450 DOI: 10.1161/res.0000000000000054] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
23
|
Kyle S, Saha S. Nanotechnology for the detection and therapy of stroke. Adv Healthc Mater 2014; 3:1703-20. [PMID: 24692428 DOI: 10.1002/adhm.201400009] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Indexed: 01/06/2023]
Abstract
Over the years, nanotechnology has greatly developed, moving from careful design strategies and synthesis of novel nanostructures to producing them for specific medical and biological applications. The use of nanotechnology in diagnostics, drug delivery, and tissue engineering holds great promise for the treatment of stroke in the future. Nanoparticles are employed to monitor grafted cells upon implantation, or to enhance the imagery of the tissue, which is coupled with a noninvasive imaging modality such as magnetic resonance imaging, computed axial tomography or positron emission tomography scan. Contrast imaging agents used can range from iron oxide, perfluorocarbon, cerium oxide or platinum nanoparticles to quantum dots. The use of nanomaterial scaffolds for neuroregeneration is another area of nanomedicine, which involves the creation of an extracellular matrix mimic that not only serves as a structural support but promotes neuronal growth, inhibits glial differentiation, and controls hemostasis. Promisingly, carbon nanotubes can act as scaffolds for stem cell therapy and functionalizing these scaffolds may enhance their therapeutic potential for treatment of stroke. This Progress Report highlights the recent developments in nanotechnology for the detection and therapy of stroke. Recent advances in the use of nanomaterials as tissue engineering scaffolds for neuroregeneration will also be discussed.
Collapse
Affiliation(s)
- Stuart Kyle
- School of Medicine; University of Leeds; Leeds LS2 9JT UK
| | - Sikha Saha
- Division of Cardiovascular and Diabetes Research; Leeds Institute of Genetics; Health and Therapeutics; University of Leeds; Leeds LS2 9JT UK
| |
Collapse
|
24
|
Goette MJ, Keupp J, Rahmer J, Lanza GM, Wickline SA, Caruthers SD. Balanced UTE-SSFP for 19F MR imaging of complex spectra. Magn Reson Med 2014; 74:537-43. [PMID: 25163853 DOI: 10.1002/mrm.25437] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 07/18/2014] [Accepted: 08/15/2014] [Indexed: 12/30/2022]
Abstract
PURPOSE A novel technique for highly sensitive detection of multiresonant fluorine imaging agents was designed and tested with the use of dual-frequency 19F/1H ultrashort echo times (UTE) sampled with a balanced steady-state free precession (SSFP) pulse sequence and three-dimensional (3D) radial readout. METHODS Feasibility of 3D radial balanced UTE-SSFP imaging was demonstrated for a phantom comprising liquid perfluorooctyl bromide (PFOB). Sensitivity of the pulse sequence was measured and compared with other sequences imaging the PFOB (CF2 )6 line group including UTE radial gradient-echo (GRE) at α = 30°, as well as Cartesian GRE, balanced SSFP, and fast spin-echo (FSE). The PFOB CF3 peak was also sampled with FSE. RESULTS The proposed balanced UTE-SSFP technique exhibited a relative detection sensitivity of 51 μmolPFOB(-1) min(-1/2) (α = 30°), at least twice that of other sequence types with either 3D radial (UTE GRE: 20 μmolPFOB(-1) min(-1/2) ) or Cartesian k-space filling (GRE: 12 μmolPFOB(-1) min(-1/2) ; FSE: 16 μmolPFOB(-1) min(-1/2) ; balanced SSFP: 23 μmolPFOB(-1) min(-1/2) ). In vivo imaging of angiogenesis-targeted PFOB nanoparticles was demonstrated in a rabbit model of cancer on a clinical 3 Tesla scanner. CONCLUSION A new dual 19F/1H balanced UTE-SSFP sequence manifests high SNR, with detection sensitivity more than two-fold better than traditional techniques, and alleviates imaging problems caused by dephasing in complex spectra.
Collapse
Affiliation(s)
- Matthew J Goette
- Department of Biomedical Engineering, Washington University in St. Louis, Missouri, USA
| | | | | | - Gregory M Lanza
- Department of Biomedical Engineering, Washington University in St. Louis, Missouri, USA.,Department of Medicine, Washington University in St. Louis, Missouri, USA
| | - Samuel A Wickline
- Department of Biomedical Engineering, Washington University in St. Louis, Missouri, USA.,Department of Medicine, Washington University in St. Louis, Missouri, USA
| | - Shelton D Caruthers
- Department of Biomedical Engineering, Washington University in St. Louis, Missouri, USA.,Philips Healthcare, Cleveland, Ohio, USA
| |
Collapse
|
25
|
Winter P. Molecular Imaging at Nanoscale with Magnetic Resonance Imaging. Nanomedicine (Lond) 2014. [DOI: 10.1201/b17246-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
26
|
Winter PM. Perfluorocarbon nanoparticles: evolution of a multimodality and multifunctional imaging agent. SCIENTIFICA 2014; 2014:746574. [PMID: 25024867 PMCID: PMC4082945 DOI: 10.1155/2014/746574] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2013] [Accepted: 05/20/2014] [Indexed: 06/03/2023]
Abstract
Perfluorocarbon nanoparticles offer a biologically inert, highly stable, and nontoxic platform that can be specifically designed to accomplish a range of molecular imaging and drug delivery functions in vivo. The particle surface can be decorated with targeting ligands to direct the agent to a variety of biomarkers that are associated with diseases such as cancer, cardiovascular disease, obesity, and thrombosis. The surface can also carry a high payload of imaging agents, ranging from paramagnetic metals for MRI, radionuclides for nuclear imaging, iodine for CT, and florescent tags for histology, allowing high sensitivity mapping of cellular receptors that may be expressed at very low levels in the body. In addition to these diagnostic imaging applications, the particles can be engineered to carry highly potent drugs and specifically deposit them into cell populations that display biosignatures of a variety of diseases. The highly flexible and robust nature of this combined molecular imaging and drug delivery vehicle has been exploited in a variety of animal models to demonstrate its potential impact on the care and treatment of patients suffering from some of the most debilitating diseases.
Collapse
Affiliation(s)
- Patrick M. Winter
- Department of Radiology, Cincinnati Children's Hospital, Cincinnati, OH 45229, USA
| |
Collapse
|
27
|
Bai YY, Gao X, Wang YC, Peng XG, Chang D, Zheng S, Li C, Ju S. Image-guided pro-angiogenic therapy in diabetic stroke mouse models using a multi-modal nanoprobe. Theranostics 2014; 4:787-97. [PMID: 24955140 PMCID: PMC4063977 DOI: 10.7150/thno.9525] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 04/29/2014] [Indexed: 12/18/2022] Open
Abstract
Purpose: The efficacy of pro-angiogenic therapy is difficult to evaluate with current diagnostic modalities. The objectives were to develop a non-invasive imaging strategy to define the temporal characteristics of angiogenesis and to evaluate the response to pro-angiogenic therapy in diabetic stroke mouse models. Methods: A home-made ανβ3 integrin-targeted multi-modal nanoprobe was intravenously injected into mouse models at set time points after photothrombotic stroke. Magnetic resonance imaging (MRI) and near-infrared fluorescence (NIRF) imaging were carried out at 24 h post-injection. Bone marrow-derived endothelial progenitor cells (EPCs) were infused into the mouse models of ischemic stroke to stimulate angiogenesis. Results: The peak signal intensity in the ischemic-angiogenic area of diabetic and wild-type mouse models was achieved on day 10, with significantly lower signal enhancement observed in the diabetic models. Although the signal intensity was significantly higher after EPC treatment in both models, the enhancement was less pronounced in the diabetic animals compared with the wild-type controls. Histological analysis revealed that the microvessel density and expression of β3 integrin were correlated with the signal intensity assessed with MRI and NIRF imaging. Conclusions: The non-invasive imaging method could be used for early and accurate evaluation of the response to pro-angiogenic therapy in diabetic stroke models.
Collapse
|
28
|
Cicha I, Garlichs CD, Alexiou C. Cardiovascular therapy through nanotechnology – how far are we still from bedside? EUROPEAN JOURNAL OF NANOMEDICINE 2014. [DOI: 10.1515/ejnm-2014-0001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractRecent years brought about a widespread interest in the potential applications of nanotechnology for the diagnostics and the therapy of human diseases. With its promise of disease-targeted, patient-tailored treatment and reduced side effects, nanomedicine brings hope for millions of patients suffering of non-communicable diseases such as cancer or cardiovascular disorders. However, the emergence of the complex, multicomponent products based on new technologies poses multiple challenges to successful approval in clinical practice. Regulatory and development considerations, including properties of the components, reproducible manufacturing and appropriate characterization methods, as well as nanodrugs’ safety and efficacy are critical for rapid marketing of the new products. This review discusses the recent advances in cardiovascular applications of nanotechnologies and highlights the challenges that must be overcome in order to fill the gap existing between the promising bench trials and the successful bedside applications.
Collapse
|
29
|
Abstract
Techniques for in vivo assessment of disease-related molecular changes are being developed for all forms of non-invasive cardiovascular imaging. The ability to evaluate tissue molecular or cellular phenotype in patients has the potential to not only improve diagnostic capabilities but to enhance clinical care either by detecting disease at an earlier stage when it is more amenable to therapy, or by guiding most appropriate therapies. These new techniques also can be used in research programs in order to characterize pathophysiology and as a surrogate endpoint for therapeutic efficacy. The most common approach for molecular imaging involves the creation of novel-targeted contrast agents that are designed so that their kinetic properties are different in disease tissues. The main focus of this review is not to describe all the different molecular imaging approaches that have been developed, but rather to describe the status of the field and highlight some of the clinical and research applications that molecular imaging will likely provide meaningful benefit. Specific target areas include assessment of atherosclerotic disease, tissue ischemia, and ventricular and vascular remodeling.
Collapse
Affiliation(s)
- Jonathan R Lindner
- Knight Cardiovascular Institute, Oregon Health & Science University, UHN-62, 3181 SW Sam Jackson Park Rd, Portland, OR, 97239, USA,
| | | |
Collapse
|
30
|
He T, Smith N, Saunders D, Pittman BP, Lerner M, Lightfoot S, Silasi-Mansat R, Lupu F, Towner RA. Molecular MRI differentiation of VEGF receptor-2 levels in C6 and RG2 glioma models. AMERICAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING 2013; 3:300-311. [PMID: 23901356 PMCID: PMC3715774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 06/21/2013] [Indexed: 06/02/2023]
Abstract
Vascular endothelial growth factor receptor 2 (VEGFR2) is an important angiogenic marker over-expressed in gliomas. With the use of molecular magnetic resonance imaging (mMRI) differing levels of VEGFR2 can be characterized in vivo with in rodent gliomas varying in angiogenesis. VEGFR2 levels were assessed by intravenous administration of an anti-VEGFR2 probe (anti-VEGFR2-albumin-Gd (gadolinium)-DTPA (diethylene triamine penta acetic acid)-biotin) into C6 or RG2 glioma-bearing rats, and visualized with mMRI. A non-specific IgG was coupled to the albumin-Gd-DTPA-biotin construct as a contrast agent molecular weight control. VEGFR2 levels are heterogeneous in different regions of C6 gliomas, whereas VEGFR2 was more homogenous or evenly distributed in RG2 gliomas. RG2 gliomas have less VEGFR2 within tumor periphery and peri-necrotic (p<0.05) regions, but more VEGFR2 within tumor interior regions (p<0.01), compared to C6 gliomas. mMRI results were confirmed with fluorescence staining and mean fluorescence intensity (MFI) quantification of the anti-VEGFR2 probe in excised glioma and brain tissues, as well as detection of VEGFR2 in C6 and RG2 gliomas and corresponding contalateral brain tissues. Ex vivo VEGFR2 levels were found to be significantly higher in C6 gliomas compared to RG2 tumors (p<0.001), which corresponded with in vivo detection using the VEGFR2 probe. Immunohistochemistry staining for HIF-1α (hypoxia inducible factor 1α), which is associated with angiogenesis, indicated higher levels in RG2 (p<0.01) compared to C6 gliomas. The data suggests that C6 gliomas have angiogenesis which is associated more with large blood vessels in tumor periphery and peri-necrotic regions, and less microvascular angiogenesis within the tumor interior, compared to RG2 gliomas.
Collapse
Affiliation(s)
- Ting He
- Advanced Magnetic Resonance Center, Oklahoma Medical Research FoundationOklahoma City, OK 73104 USA
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences CenterOklahoma City, OK 73104 USA
| | - Nataliya Smith
- Advanced Magnetic Resonance Center, Oklahoma Medical Research FoundationOklahoma City, OK 73104 USA
| | - Debra Saunders
- Advanced Magnetic Resonance Center, Oklahoma Medical Research FoundationOklahoma City, OK 73104 USA
| | - Benjamin P Pittman
- Advanced Magnetic Resonance Center, Oklahoma Medical Research FoundationOklahoma City, OK 73104 USA
| | - Megan Lerner
- Department of Surgery, University of Oklahoma Health Sciences CenterOklahoma City, OK 73104 USA
| | - Stanley Lightfoot
- Department of Pathology, University of Oklahoma Health Sciences CenterOklahoma City, OK 73104 USA
| | - Robert Silasi-Mansat
- Cardiovascular Biology, Oklahoma Medical Research FoundationOklahoma City, OK 73104 USA
| | - Florea Lupu
- Cardiovascular Biology, Oklahoma Medical Research FoundationOklahoma City, OK 73104 USA
| | - Rheal A Towner
- Advanced Magnetic Resonance Center, Oklahoma Medical Research FoundationOklahoma City, OK 73104 USA
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences CenterOklahoma City, OK 73104 USA
- Department of Pathology, University of Oklahoma Health Sciences CenterOklahoma City, OK 73104 USA
| |
Collapse
|
31
|
Bernsen MR, Ruggiero A, van Straten M, Kotek G, Haeck JC, Wielopolski PA, Krestin GP. Computed tomography and magnetic resonance imaging. Recent Results Cancer Res 2013. [PMID: 23179877 DOI: 10.1007/978-3-642-10853-2_1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Imaging in Oncology is rapidly moving from the detection and size measurement of a lesion to the quantitative assessment of metabolic processes and cellular and molecular interactions. Increasing insights into cancer as a complex disease with involvement of the tumor stroma in tumor pathobiological processes have made it clear that for successful control of cancer, treatment strategies should not only be directed at the tumor cells but also targeted at the tumor microenvironment. This requires understanding of the complex molecular and cellular interactions in cancer tissue. Recent developments in imaging technology have increased the possibility to image various pathobiological processes in cancer development and response to treatment. For computed tomography (CT) and magnetic resonance imaging (MRI) various improvements in hardware, software, and imaging probes have lifted these modalities from classical anatomical imaging techniques to techniques suitable to image and quantify various physiological processes and molecular and cellular interactions. Next to a more general overview of possible imaging targets in oncology this chapter provides an overview of the various developments in CT and MRI technology and some specific applications.
Collapse
Affiliation(s)
- Monique R Bernsen
- Department of Radiology, Erasmus MC-University Medical Center Rotterdam, Rotterdam, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
32
|
Jo JI, Lin X, Nakahara T, Aoki I, Saga T, Tabata Y. Preparation of Polymer-Based Magnetic Resonance Imaging Contrast Agent to Visualize Therapeutic Angiogenesis. Tissue Eng Part A 2013; 19:30-9. [DOI: 10.1089/ten.tea.2012.0131] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Affiliation(s)
- Jun-ichiro Jo
- Department of Biomaterials, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan
- Diagnostic Imaging Program, Molecular Imaging Center, National Institute of Radiological Sciences, Chiba, Japan
| | - Xue Lin
- Department of Biomaterials, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan
| | - Teppei Nakahara
- Diagnostic Imaging Program, Molecular Imaging Center, National Institute of Radiological Sciences, Chiba, Japan
| | - Ichio Aoki
- Diagnostic Imaging Program, Molecular Imaging Center, National Institute of Radiological Sciences, Chiba, Japan
| | - Tsuneo Saga
- Diagnostic Imaging Program, Molecular Imaging Center, National Institute of Radiological Sciences, Chiba, Japan
| | - Yasuhiko Tabata
- Department of Biomaterials, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan
| |
Collapse
|
33
|
Chung E, Ricles LM, Stowers RS, Nam SY, Emelianov SY, Suggs LJ. Multifunctional nanoscale strategies for enhancing and monitoring blood vessel regeneration. NANO TODAY 2012; 7:514-531. [PMID: 28989343 PMCID: PMC5630157 DOI: 10.1016/j.nantod.2012.10.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Nanomedicine has great potential in biomedical applications, and specifically in regenerative medicine and vascular tissue engineering. Designing nanometer-sized therapeutic and diagnostic devices for tissue engineering applications is critical because cells experience and respond to stimuli on this spatial scale. For example, nanoscaffolds, including nanoscalestructured or nanoscale surface-modified vascular scaffolds, can influence cell alignment, adhesion, and differentiation to promote better endothelization. Furthermore, nanoscale contrast agents can be extended to the field of biomedical imaging to monitor and track stem cells to better understand the process of neovascularization. In addition, nanoscale systems capable of delivering biomolecules (e.g. peptides and angiogenic genes/proteins) can influence cell behavior, function, and phenotype to promote blood vessel regeneration. This review will focus on nanomedicine and nanoscale strategies applied to vascular tissue engineering. In particular, some of the latest research and potential applications pertaining to nanoscaffolds, biomedical imaging and cell tracking using nanoscale contrast agents, and nanodelivery systems of bioactive molecules applied to blood vessel regeneration will be discussed. In addition, the overlap between these three areas and their synergistic effects will be examined as related to vascular tissue engineering.
Collapse
Affiliation(s)
- Eunna Chung
- Department of Biomedical Engineering, The University of Texas at Austin, 1 University Station, C0800, Austin, TX 78712-0238, USA
| | - Laura M. Ricles
- Department of Biomedical Engineering, The University of Texas at Austin, 1 University Station, C0800, Austin, TX 78712-0238, USA
| | - Ryan S. Stowers
- Department of Biomedical Engineering, The University of Texas at Austin, 1 University Station, C0800, Austin, TX 78712-0238, USA
| | - Seung Yun Nam
- Department of Biomedical Engineering, The University of Texas at Austin, 1 University Station, C0800, Austin, TX 78712-0238, USA
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX 78712-0238, USA
| | - Stanislav Y. Emelianov
- Department of Biomedical Engineering, The University of Texas at Austin, 1 University Station, C0800, Austin, TX 78712-0238, USA
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX 78712-0238, USA
| | - Laura J. Suggs
- Department of Biomedical Engineering, The University of Texas at Austin, 1 University Station, C0800, Austin, TX 78712-0238, USA
| |
Collapse
|
34
|
Gadolinium-Based Contrast Agents for Vessel Wall Magnetic Resonance Imaging (MRI) of Atherosclerosis. CURRENT CARDIOVASCULAR IMAGING REPORTS 2012; 6:11-24. [PMID: 23539505 DOI: 10.1007/s12410-012-9177-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cardiovascular disease due to atherosclerosis is the number one killer in the Western world, and threatens to become the major cause of morbidity and mortality worldwide. It is therefore paramount to develop non-invasive methods for the detection of high-risk, asymptomatic individuals before the onset of clinical symptoms or events. In the recent past, great strides have been made in the understanding of the pathological mechanisms involved in the atherosclerotic cascade down to the molecular details. This has allowed the development of contrast agents that can aid in the in vivo characterization of these processes. Gadolinium chelates are among the contrast media most commonly used in MR imaging. Originally used for MR angiography for the detection and quantification of vascular stenosis, more recently they have been applied to improve characterization of atherosclerotic plaques. In this manuscript, we will briefly review gadolinium-chelates (Gd) based contrast agents for non-invasive MR imaging of atherosclerosis. We will first describe Gd-based non-targeted FDA approved agents, used routinely in clinical practice for the evaluation of neovascularization in other diseases. Secondly, we will describe non-specific and specific targeted contrast agents, which have great potential for dissecting specific biological processes in the atherosclerotic cascade. Lastly, we will briefly compare Gd-based agents to others commonly used in MRI and to other imaging modalities.
Collapse
|
35
|
Winter PM. Magnetic resonance chemical exchange saturation transfer imaging and nanotechnology. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2012; 4:389-98. [PMID: 22422650 DOI: 10.1002/wnan.1167] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Chemical exchange saturation transfer (CEST) agents and paramagnetic CEST (PARACEST) agents display bound water signals that exchange protons with the bulk water. CEST magnetic resonance imaging (MRI) relies on exchangeable protons that resonate at a chemical shift that is distinguishable from the bulk water signal. In some cases, paramagnetic chelates are utilized to shift the bound water frequency further away from the bulk water. Radiofrequency prepulses applied at the appropriate frequency can saturate the exchangeable protons, which transfer into the bulk water pool and lead to reduced equilibrium magnetization. Therefore, CEST and PARACEST agents allow the image contrast to be switched 'on' and 'off' by simply changing the pulse sequence parameters. One of the main limitations with this approach is the inherent insensitivity of MRI to CEST and PARACEST agents. Nanoscale carriers have been developed to improve the limit of detection for these agents, demonstrating the feasibility of in vivo molecular or cellular MRI based on CEST or PARACEST contrast. These carriers have been based on a number of different nanoparticle constructs, such as liposomes, dendrimers, polymers, adenovirus particles, and perfluorocarbon nanoparticles. The unique MRI properties of CEST and PARACEST nanoparticle systems have spawned research into an array of potential medical applications.
Collapse
Affiliation(s)
- Patrick M Winter
- Department of Radiology, Cincinnati Children's Hospital, Cincinnati, OH, USA.
| |
Collapse
|
36
|
Flament J, Geffroy F, Medina C, Robic C, Mayer JF, Mériaux S, Valette J, Robert P, Port M, Le Bihan D, Lethimonnier F, Boumezbeur F. In vivo CEST MR imaging of U87 mice brain tumor angiogenesis using targeted LipoCEST contrast agent at 7 T. Magn Reson Med 2012; 69:179-87. [PMID: 22378016 DOI: 10.1002/mrm.24217] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Accepted: 01/25/2012] [Indexed: 01/22/2023]
Abstract
LipoCEST are liposome-encapsulating paramagnetic contrast agents (CA) based on chemical exchange saturation transfer with applications in biomolecular MRI. Their attractive features include biocompatibility, subnanomolar sensitivity, and amenability to functionalization for targeting biomarkers. We demonstrate MR imaging using a targeted lipoCEST, injected intravenously. A lipoCEST carrying Tm(III)-complexes was conjugated to RGD tripeptide (RGD-lipoCEST), to target integrin α(ν)β(3) receptors involved in tumor angiogenesis and was compared with an unconjugated lipoCEST. Brain tumors were induced in athymic nude mice by intracerebral injection of U87MG cells and were imaged at 7 T after intravenous injection of either of the two contrast agents (n = 12 for each group). Chemical exchange saturation transfer-MSME sequence was applied over 2 h with an average acquisition time interval of 13.5 min. The chemical exchange saturation transfer signal was ∼1% in the tumor and controlateral regions, and decreased to ∼0.3% after 2 h; while RGD-lipoCEST signal was ∼1.4% in the tumor region and persisted for up to 2 h. Immunohistochemical staining revealed a persistent colocalization of RGD-lipoCEST with α(ν)β(3) receptors in the tumor region. These results constitute an encouraging step toward in vivo MRI imaging of tumor angiogenesis using intravenously injected lipoCEST.
Collapse
Affiliation(s)
- Julien Flament
- Neurospin, I2BM, Commissariat à l'Energie Atomique, Gif-sur-Yvette, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Nanomedicine and veterinary science: the reality and the practicality. Vet J 2012; 193:12-23. [PMID: 22365842 DOI: 10.1016/j.tvjl.2012.01.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Revised: 12/20/2011] [Accepted: 01/03/2012] [Indexed: 01/04/2023]
Abstract
Nanomedicine is a rapidly expanding field with a promising future that is already permeating veterinary science. This review summarises the current applications for nanoparticles in human medicine and explores their potential applicability for veterinary use. The principles underlying the use of nanoparticles in drug delivery, imaging and as vaccine adjuvants are explored along with the unique issues surrounding nanoparticle toxicity and regulatory approval. A brief overview of the properties of different nanoparticle systems including, liposomes, micelles, emulsions and inorganic nanoparticles, is provided, along with a description of their current and potential future applications in veterinary medicine.
Collapse
|
38
|
Winter PM, Taylor MD. Magnetic Resonance Molecular Imaging of Plaque Angiogenesis. CURRENT CARDIOVASCULAR IMAGING REPORTS 2012. [DOI: 10.1007/s12410-011-9121-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
39
|
Krafft MP. Controlling phospholipid self-assembly and film properties using highly fluorinated components – Fluorinated monolayers, vesicles, emulsions and microbubbles. Biochimie 2012; 94:11-25. [DOI: 10.1016/j.biochi.2011.07.027] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Accepted: 07/19/2011] [Indexed: 01/23/2023]
|
40
|
Abstract
Cardiovascular disease (CVD) is the leading cause of morbidity and mortality worldwide. New diagnostic and therapeutic strategies are needed to mitigate this public health issue. Advances in nanotechnology have generated innovative strategies for diagnosis and therapy in a variety of diseases, foremost in cancer. Based on these studies, a novel concept referred to as nanomedical theranostics, or the combinatory application of nanoparticulate agents to allow diagnostic therapy, is being explored to enable image-guided, personalized, or targeted treatment. Preclinically, theranostics have been gradually applied to CVD with several interesting and encouraging findings. This article summarizes studies and challenges of nanotheranostic strategies in CVD. It also evaluates nanotheranostic strategies that may potentially be utilized to benefit patients.
Collapse
|
41
|
Laurent S, Mahmoudi M. Superparamagnetic iron oxide nanoparticles: promises for diagnosis and treatment of cancer. INTERNATIONAL JOURNAL OF MOLECULAR EPIDEMIOLOGY AND GENETICS 2011; 2:367-390. [PMID: 22199999 PMCID: PMC3243452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Accepted: 11/22/2011] [Indexed: 05/31/2023]
Abstract
During the last decade, significant scientific research efforts have led to a significant growth in understanding of cancer at the genetic, molecular, and cellular levels providing great opportunities for diagnosis and treatment of cancer diseases. The hopes for fast cancer diagnosis and treatment were significantly increased by the entrance of nanoparticles to the medical sciences. Nanoparticles are attractive due to their unique opportunities together with negligible side effects not only in cancer therapy but also in the treatment of other ailments. Among all types of nanoparticles, surface-engineered superparamagnetic iron oxide nanoparticles (SPIONs) have been attracted a great attention for cancer therapy applications. This review covers the recent advances in the development of SPIONs together with their opportunities and challenges, as theranosis agents, in cancer treatment.
Collapse
Affiliation(s)
- Sophie Laurent
- Department of General, Organic, and Biomedical Chemistry, NMR and Molecular Imaging Laboratory, University of Mons, Avenue Maistriau19, B-7000 Mons, Belgium
| | - Morteza Mahmoudi
- National Cell Bank, Pasteur Institute of IranTehran, Iran
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical SciencesTehran, Iran
| |
Collapse
|
42
|
te Boekhorst BC, van Tilborg GA, Strijkers GJ, Nicolay K. Molecular MRI of Inflammation in Atherosclerosis. CURRENT CARDIOVASCULAR IMAGING REPORTS 2011; 5:60-68. [PMID: 22308200 PMCID: PMC3261392 DOI: 10.1007/s12410-011-9114-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Inflammatory activity in atherosclerotic plaque is a risk factor for plaque rupture and atherothrombosis and may direct interventional therapy. Inflammatory activity can be evaluated at the (sub)cellular level using in vivo molecular MRI. This paper reviews recent progress in contrast-enhanced molecular MRI to visualize atherosclerotic plaque inflammation. Various MRI contrast agents, among others ultra-small particles of iron oxide, low-molecular-weight Gd-chelates, micelles, liposomes, and perfluorocarbon emulsions, have been used for in vivo visualization of various inflammation-related targets, such as macrophages, oxidized LDL, endothelial cell expression, plaque neovasculature, MMPs, apoptosis, and activated platelets/thrombus. An enzyme-activatable magnetic resonance contrast agent has been developed to study myeloperoxidase activity in inflamed plaques. Agents creating contrast based on the chemical exchange saturation transfer mechanism were used for thrombus imaging. Transfer of these molecular MRI techniques to the clinic will critically depend on the safety profiles of these newly developed magnetic resonance contrast agents.
Collapse
Affiliation(s)
- Bernard C. te Boekhorst
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Den Dolech 2, 5612 AZ Eindhoven, The Netherlands
| | - Geralda A. van Tilborg
- Biomedical MR Imaging and Spectroscopy Group, Image Sciences Institute, University Medical Center Utrecht, Yalelaan 2, 3584 CM Utrecht, The Netherlands
| | - Gustav J. Strijkers
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Den Dolech 2, 5612 AZ Eindhoven, The Netherlands
| | - Klaas Nicolay
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Den Dolech 2, 5612 AZ Eindhoven, The Netherlands
| |
Collapse
|
43
|
Fitzgerald KT, Holladay CA, McCarthy C, Power KA, Pandit A, Gallagher WM. Standardization of models and methods used to assess nanoparticles in cardiovascular applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2011; 7:705-717. [PMID: 21319299 DOI: 10.1002/smll.201001347] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Revised: 09/22/2010] [Indexed: 05/30/2023]
Abstract
Nanotechnology has the potential to revolutionize the management and treatment of cardiovascular disease. Controlled drug delivery and nanoparticle-based molecular imaging agents have advanced cardiovascular disease therapy and diagnosis. However, the delivery vehicles (dendrimers, nanocrystals, nanotubes, nanoparticles, nanoshells, etc.), as well as the model systems that are used to mimic human cardiac disease, should be questioned in relation to their suitability. This review focuses on the variations of the biological assays and preclinical models that are currently being used to study the biocompatibility and suitability of nanomaterials in cardiovascular applications. There is a need to standardize appropriate models and methods that will promote the development of novel nanomaterial-based cardiovascular therapies.
Collapse
Affiliation(s)
- Kathleen T Fitzgerald
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | | | | | | | | | | |
Collapse
|