1
|
Schmitt J, Weidlich D, Weiss K, Stelter J, Montagnese F, Deschauer M, Schoser B, Zimmer C, Karampinos DC, Kirschke JS, Schlaeger S. Deep learning-based acceleration of muscle water T2 mapping in patients with neuromuscular diseases by more than 50% - translating quantitative MRI from research to clinical routine. PLoS One 2025; 20:e0318599. [PMID: 40238781 PMCID: PMC12002432 DOI: 10.1371/journal.pone.0318599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 01/17/2025] [Indexed: 04/18/2025] Open
Abstract
BACKGROUND Quantitative muscle water T2 (T2w) mapping is regarded as a biomarker for disease activity and response to treatment in neuromuscular diseases (NMD). However, the implementation in clinical settings is limited due to long scanning times and low resolution. Using artificial intelligence (AI) to accelerate MR image acquisition offers a possible solution. Combining compressed sensing and parallel imaging with AI-based reconstruction, known as CSAI (SmartSpeed, Philips Healthcare), allows for the generation of high-quality, weighted MR images in a shorter scan time. However, CSAI has not yet been investigated for quantitative MRI. Therefore, in the present work we assessed the performance of CSAI acceleration for T2w mapping compared to standard acceleration with SENSE. METHODS T2w mapping of the thigh muscles, based on T2-prepared 3D TSE with SPAIR fat suppression, was performed using standard SENSE (acceleration factor of 2; 04:35 min; SENSE) and CSAI (acceleration factor of 5; 01:57 min; CSAI 5x) in ten patients with facioscapulohumeral muscular dystrophy (FSHD). Subjects were scanned in two consecutive sessions (14 days in between). In each dataset, six regions of interest were placed in three thigh muscles bilaterally. SENSE and CSAI 5x acceleration were compared for i) image quality using apparent signal- and contrast-to-noise ratio (aSNR/aCNR), ii) diagnostic agreement of T2w values, and iii) intra- and inter-session reproducibility. RESULTS aSNR and aCNR of SENSE and CSAI 5x scans were not significantly different (p > 0.05). An excellent agreement of SENSE and CSAI 5x T2w values was shown (r = 0.99; ICC = 0.992). T2w mapping with both acceleration methods showed excellent, matching intra-method reproducibility. CONCLUSION AI-based acceleration of CS data allows for scan time reduction of more than 50% for T2w mapping in the thigh muscles of NMD patients without compromising quantitative validity.
Collapse
Affiliation(s)
- Joachim Schmitt
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine and Health, TUM Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Dominik Weidlich
- Department of Diagnostic and Interventional Radiology, School of Medicine and Health, TUM Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | | | - Jonathan Stelter
- Department of Diagnostic and Interventional Radiology, School of Medicine and Health, TUM Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Federica Montagnese
- Department of Neurology, Friedrich-Baur-Institute, LMU Munich, Munich, Germany
| | - Marcus Deschauer
- Department of Neurology, School of Medicine and Health, TUM Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Benedikt Schoser
- Department of Neurology, Friedrich-Baur-Institute, LMU Munich, Munich, Germany
| | - Claus Zimmer
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine and Health, TUM Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Dimitrios C. Karampinos
- Department of Diagnostic and Interventional Radiology, School of Medicine and Health, TUM Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Jan S. Kirschke
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine and Health, TUM Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Sarah Schlaeger
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine and Health, TUM Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
- Department of Radiology, LMU University Hospital, LMU Munich, Munich, Germany.
| |
Collapse
|
2
|
Reyngoudt H, Baudin PY, Carlier PG, Lopez Kolkovsky AL, de Almeida Araujo EC, Marty B. New Insights into the Spread of MRS-Based Water T2 Values Observed in Highly Fatty Replaced Muscles. J Magn Reson Imaging 2023; 58:1557-1568. [PMID: 36877200 DOI: 10.1002/jmri.28669] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 02/15/2023] [Accepted: 02/17/2023] [Indexed: 03/07/2023] Open
Abstract
BACKGROUND The reference standard for assessing water T2 (T2,H2O ) at high fat fraction (FF) is 1 H MRS. T2,H2O (T2,H2O,MRS ) dependence on FF (FFMRS ) has recently been demonstrated in muscle at high FF (i.e. ≥60%). PURPOSE To investigate the relationship between T2,H2O,MRS and FFMRS in the thigh/leg muscles of patients with neuromuscular diseases and to compare with quantitative MRI. STUDY TYPE Retrospective case-control study. POPULATION A total of 151 patients with neuromuscular disorders (mean age ± standard deviation = 52.5 ± 22.6 years, 54% male), 44 healthy volunteers (26.5 ± 13.0 years, 57% male). FIELD STRENGTH/SEQUENCE A 3-T; single-voxel stimulated echo acquisition mode (STEAM) MRS, multispin echo (MSE) imaging (for T2 mapping, T2,H2O,MRI ), three-point Dixon imaging (for FFMRI andR 2 * mapping). ASSESSMENT Mono-exponential and bi-exponential models were fitted to water T2 decay curves to extract T2,H2O,MRS and FFMRS . Water resonance full-width-at-half-maximum (FWHM) and B0 spread (∆B0 ) values were calculated. T2,H2O,MRI (mean), FFMRI (mean, kurtosis, and skewness), andR 2 * (mean) values were estimated in the MRS voxel. STATISTICAL TESTS Mann-Whitney U tests, Kruskal-Wallis tests. A P-value <0.05 was considered statistically significant. RESULTS Normal T2,H2O,MRS threshold was defined as the 90th percentile in healthy controls: 30.3 msec. T2,H2O,MRS was significantly higher in all patients with FFMRS < 60% compared to healthy controls. We discovered two subgroups in patients with FFMRS ≥ 60%: one with T2,H2O,MRS ≥ 30.3 msec and one with T2,H2O,MRS < 30.3 msec including abnormally low T2,H2O,MRS . The latter subgroup had significantly higher water resonance FWHM, ∆B0 , FFMRI kurtosis, and skewness values but nonsignificantly differentR 2 * (P = 1.00) and long T2,H2O,MRS component and its fraction (P > 0.11) based on the bi-exponential analysis. DATA CONCLUSION The findings suggest that the cause for (abnormally) T2,H2O,MRS at high FFMRS is biophysical, due to differences in susceptibility between muscle and fat (increased FWHM and ∆B0 ), rather than pathophysiological such as compartmentation changes, which would be reflected by the bi-exponential analysis. EVIDENCE LEVEL 3 TECHNICAL EFFICACY: Stage 3.
Collapse
Affiliation(s)
- Harmen Reyngoudt
- NMR Laboratory, Neuromuscular Investigation Center, Institute of Myology, Paris, France
| | - Pierre-Yves Baudin
- NMR Laboratory, Neuromuscular Investigation Center, Institute of Myology, Paris, France
| | - Pierre G Carlier
- Université Paris Saclay, CEA, Service Hospitalier Frédéric Joliot, Orsay, France
| | | | | | - Benjamin Marty
- NMR Laboratory, Neuromuscular Investigation Center, Institute of Myology, Paris, France
| |
Collapse
|
3
|
Bray TJP, Bainbridge A, Lim E, Hall-Craggs MA, Zhang H. MAGORINO: Magnitude-only fat fraction and R * 2 estimation with Rician noise modeling. Magn Reson Med 2023; 89:1173-1192. [PMID: 36321525 PMCID: PMC10092287 DOI: 10.1002/mrm.29493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 09/26/2022] [Accepted: 09/26/2022] [Indexed: 12/27/2022]
Abstract
PURPOSE Magnitude-based fitting of chemical shift-encoded data enables proton density fat fraction (PDFF) and R 2 * $$ {R}_2^{\ast } $$ estimation where complex-based methods fail or when phase data are inaccessible or unreliable. However, traditional magnitude-based fitting algorithms do not account for Rician noise, creating a source of bias. To address these issues, we propose an algorithm for magnitude-only PDFF and R 2 * $$ {R}_2^{\ast } $$ estimation with Rician noise modeling (MAGORINO). METHODS Simulations of multi-echo gradient-echo signal intensities are used to investigate the performance and behavior of MAGORINO over the space of clinically plausible PDFF, R 2 * $$ {R}_2^{\ast } $$ , and SNR values. Fitting performance is assessed through detailed simulation, including likelihood function visualization, and in a multisite, multivendor, and multi-field-strength phantom data set and in vivo. RESULTS Simulations show that Rician noise-based magnitude fitting outperforms existing Gaussian noise-based fitting and reveals two key mechanisms underpinning the observed improvement. First, the likelihood functions exhibit two local optima; Rician noise modeling increases the chance that the global optimum corresponds to the ground truth. Second, when the global optimum corresponds to ground truth for both noise models, the optimum from Rician noise modeling is closer to ground truth. Multisite phantom experiments show good agreement of MAGORINO PDFF with reference values, and in vivo experiments replicate the performance benefits observed in simulation. CONCLUSION The MAGORINO algorithm reduces Rician noise-related bias in PDFF and R 2 * $$ {R}_2^{\ast } $$ estimation, thus addressing a key limitation of existing magnitude-only fitting methods. Our results offer insight into the importance of the noise model for selecting the correct optimum when multiple plausible optima exist.
Collapse
Affiliation(s)
- Timothy J P Bray
- Centre for Medical Imaging, University College London, London, United Kingdom.,Department of Imaging, University College London Hospital, London, United Kingdom
| | - Alan Bainbridge
- Centre for Medical Imaging, University College London, London, United Kingdom.,Department of Medical Physics, University College London Hospitals, London, United Kingdom
| | - Emma Lim
- Department of Imaging, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Margaret A Hall-Craggs
- Centre for Medical Imaging, University College London, London, United Kingdom.,Department of Medical Physics, University College London Hospitals, London, United Kingdom
| | - Hui Zhang
- Department of Computer Science and Centre for Medical Image Computing, University College London, London, United Kingdom
| |
Collapse
|
4
|
Thorley N, Jones A, Ciurtin C, Castelino M, Bainbridge A, Abbasi M, Taylor S, Zhang H, Hall-Craggs MA, Bray TJP. Quantitative magnetic resonance imaging (qMRI) in axial spondyloarthritis. Br J Radiol 2023; 96:20220675. [PMID: 36607267 PMCID: PMC10078871 DOI: 10.1259/bjr.20220675] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Imaging, and particularly MRI, plays a crucial role in the assessment of inflammation in rheumatic disease, and forms a core component of the diagnostic pathway in axial spondyloarthritis. However, conventional imaging techniques are limited by image contrast being non-specific to inflammation and a reliance on subjective, qualitative reader interpretation. Quantitative MRI methods offer scope to address these limitations and improve our ability to accurately and precisely detect and characterise inflammation, potentially facilitating a more personalised approach to management. Here, we review quantitative MRI methods and emerging quantitative imaging biomarkers for imaging inflammation in axial spondyloarthritis. We discuss the potential benefits as well as the practical considerations that must be addressed in the movement toward clinical translation of quantitative imaging biomarkers.
Collapse
Affiliation(s)
- Natasha Thorley
- Imaging Department, University College London Hospitals NHS Foundation Trust, London, United Kingdom
| | - Alexis Jones
- Department of Rheumatology, University College London Hospitals NHS Foundation Trust, London, United Kingdom
| | - Coziana Ciurtin
- Department of Rheumatology, University College London Hospitals NHS Foundation Trust, London, United Kingdom
| | - Madhura Castelino
- Department of Rheumatology, University College London Hospitals NHS Foundation Trust, London, United Kingdom
| | - Alan Bainbridge
- Department of Medical Physics, University College London Hospitals, London, United Kingdom
| | - Maaz Abbasi
- Imaging Department, University College London Hospitals NHS Foundation Trust, London, United Kingdom
| | - Stuart Taylor
- Centre for Medical Imaging (CMI), University College London, London, United Kingdom
| | - Hui Zhang
- Department of Computer Science and Centre for Medical Image Computing, University College London, London, United Kingdom
| | | | - Timothy J P Bray
- Centre for Medical Imaging (CMI), University College London, London, United Kingdom
| |
Collapse
|
5
|
Choi SH, Ryu YC, Chung JY. Baseline Correction of the Human 1H MRS(I) Spectrum Using T 2* Selective Differential Operators in the Frequency Domain. Metabolites 2022; 12:metabo12121257. [PMID: 36557294 PMCID: PMC9787948 DOI: 10.3390/metabo12121257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022] Open
Abstract
The baseline distortion caused by water and fat signals is a crucial issue in the 1H MRS(I) study of the human brain. This paper suggests an effective and reliable preprocessing technique to calibrate the baseline distortion caused by the water and fat signals exhibited in the MRS spectral signal. For the preprocessing, we designed a T2* (or linewidth within the spectral signal) selective filter for the MRS(I) data based on differential filtering within the frequency domain. The number and types for the differential filtering were determined by comparing the T2* selectivity profile of each differential operator with the T2* profile of the metabolites to be suppressed within the MRS(I) data. In the performance evaluation of the proposed differential filtering, the simulation data for MRS spectral signals were used. Furthermore, the spectral signal of the human 1H MRSI data obtained by 2D free induction decay chemical shift imaging with a typical water suppression technique was also used in the performance evaluation. The absolute values of the average of the filtered dataset were quantitatively analyzed using the LCModel software. With the suggested T2* selective (not frequency selective) filtering technique, in the simulated MRS data, we removed the metabolites from the simulated MRS(I) spectral signal baseline distorted by the water and fat signal observed in the most frequency band. Moreover, in the obtained MRSI data, the quantitative analysis results for the metabolites of interest showed notable improvement in the uncertainty estimation accuracy, the CRLB (Cramer-Rao Lower Bound) levels.
Collapse
Affiliation(s)
- Sang-Han Choi
- Center for Neuroscience Imaging Research, IBS, N Center, Sungkyunkwan University, Seobu-ro 2066, Jangan-gu, Suwon 16419, Republic of Korea
| | - Yeun-Chul Ryu
- Department of Radiological Science, College of Health Science, Gachon University, 191 Hambangmoe-ro, Yeonsu-gu, Incheon 21936, Republic of Korea
- Correspondence: (Y.-C.R.); (J.-Y.C.); Tel.: +82-32-822-5361 (J.-Y.C.)
| | - Jun-Young Chung
- Department of Neuroscience, College of Medicine, Gachon University, 21, Namdong-daero 774 beon-gil, Namdong-gu, Incheon 21565, Republic of Korea
- Correspondence: (Y.-C.R.); (J.-Y.C.); Tel.: +82-32-822-5361 (J.-Y.C.)
| |
Collapse
|
6
|
Schlaeger S, Weidlich D, Zoffl A, Becherucci EA, Kottmaier E, Montagnese F, Deschauer M, Schoser B, Zimmer C, Baum T, Karampinos DC, Kirschke JS. Beyond mean value analysis - a voxel-based analysis of the quantitative MR biomarker water T 2 in the presence of fatty infiltration in skeletal muscle tissue of patients with neuromuscular diseases. NMR IN BIOMEDICINE 2022; 35:e4805. [PMID: 35892264 DOI: 10.1002/nbm.4805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 07/26/2022] [Accepted: 07/26/2022] [Indexed: 06/15/2023]
Abstract
The main pathologies in the muscles of patients with neuromuscular diseases (NMD) are fatty infiltration and edema. Recently, quantitative magnetic resonance (MR) imaging for determination of the MR biomarkers proton density fat fraction (PDFF) and water T2 (T2w ) has been advanced. Biophysical effects or pathology can have different effects on MR biomarkers. Thus, for heterogeneously affected muscles, the routinely performed mean or median value analyses of MR biomarkers are questionable. Our work presents a voxel-based histogram analysis of PDFF and T2w images to point out potential quantification errors. In 12 patients with NMD, chemical-shift encoding-based water-fat imaging for PDFF and T2 mapping with spectral adiabatic inversion recovery (SPAIR) for T2w determination was performed. Segmentation of nine thigh muscles was performed bilaterally (n = 216). PDFF and T2 maps were coregistered. A voxel-based comparison of PDFF and T2w showed a decreased T2w with increasing PDFF. Mean T2w and mean T2w without fatty voxels (PDFF < 10%) show good agreement, whereas standard deviation (σ) T2w and σ T2w without fatty voxels show increasing difference with increasing values of σ. Thereby two subgroups can be observed, referring to muscles in which the exclusion of fatty voxels has a negligible influence versus muscles in which a strong dependency of the T2w value distribution on the exclusion of fatty voxels is present. Because of the two opposite effects that influence T2w in a voxel, namely, (i) a pathophysiologically increased water mobility leading to T2w elevation, and (ii) a dependency of T2w on the PDFF leading to decreased T2w , the T2w distribution within a muscle might be heterogenous and the routine mean or median analysis can lead to a misinterpretation of the muscle health. It was concluded that muscle T2w mean values can wrongly suggest healthy muscle tissue. A deeper analysis of the underlying value distribution is necessary. Therefore, a quantitative analysis of T2w histograms is a potential alternative.
Collapse
Affiliation(s)
- Sarah Schlaeger
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Dominik Weidlich
- Department of Diagnostic and Interventional Radiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Agnes Zoffl
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Edoardo Aitala Becherucci
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Elisabeth Kottmaier
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Department of Diagnostic and Interventional Radiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Federica Montagnese
- Department of Neurology, Friedrich-Baur-Institute, LMU Munich, Munich, Germany
| | - Marcus Deschauer
- Department of Neurology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Benedikt Schoser
- Department of Neurology, Friedrich-Baur-Institute, LMU Munich, Munich, Germany
| | - Claus Zimmer
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Thomas Baum
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Dimitrios C Karampinos
- Department of Diagnostic and Interventional Radiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Jan S Kirschke
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| |
Collapse
|
7
|
Locher N, Wagner B, Balsiger F, Scheidegger O. Quantitative water T2 relaxometry in the early detection of neuromuscular diseases: a retrospective biopsy-controlled analysis. Eur Radiol 2022; 32:7910-7917. [PMID: 35596779 PMCID: PMC9668929 DOI: 10.1007/s00330-022-08862-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 03/15/2022] [Accepted: 05/01/2022] [Indexed: 01/03/2023]
Abstract
OBJECTIVES To assess quantitative water T2 relaxometry for the early detection of neuromuscular diseases (NMDs) in comparison to standard qualitative MR imaging in a clinical setting. METHODS This retrospective study included 83 patients with suspected NMD who underwent multiparametric MRI at 3 T with a subsequent muscle biopsy between 2015 and 2019. Qualitative T1-weighted and T2-TIRM images were graded by two neuroradiologists to be either pathological or normal. Mean and median water T2 relaxation times (water T2) were obtained from manually drawn volumes of interests in biopsied muscle from multi-echo sequence. Histopathologic pattern of corresponding muscle biopsies was used as a reference. RESULTS In 34 patients, the T1-weighted images showed clear pathological alternations indicating late-stage fatty infiltration in NMDs. In the remaining 49 patients without late-stage changes, T2-TIRM grading achieved a sensitivity of 56.4%, and mean and median water T2 a sensitivity of 87.2% and 97.4% to detect early-stage NMDs. Receiver operating characteristic (ROC) analysis revealed an area under the curve (AUC) of 0.682, 0.715, and 0.803 for T2-TIRM, mean water T2, and median water T2, respectively. Median water T2 ranged between 36 and 42 ms depending on histopathologic pattern. CONCLUSIONS Quantitative water T2 relaxometry had a significantly higher sensitivity in detecting muscle abnormalities than subjective grading of T2-TIRM, prior to late-stage fatty infiltration signal alternations in T1-weighted images. Normal-appearing T2-TIRM does not rule out early-stage NMDs. Our findings suggest considering water T2 relaxometry complementary to T2-TIRM for early detection of NMDs in clinical diagnostic routine. KEY POINTS • Quantitative water T2 relaxometry is more sensitive than subjective assessment of fat-suppressed T2-weighted images for the early detection of neuromuscular diseases, prior to late-stage fatty infiltration signal alternations in T1-weighted images. • Normal-appearing muscles in fat-suppressed T2-weighted images do not rule out early-stage neuromuscular diseases. • Quantitative water T2 relaxometry should be considered complementary to subjectively rated fat-suppressed T2-weighted images in clinical practice.
Collapse
Affiliation(s)
- Noah Locher
- Centre for Neuromuscular Diseases, Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Benedikt Wagner
- Support Center for Advanced Neuroimaging (SCAN), Institute for Diagnostic and Interventional Neuroradiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Fabian Balsiger
- Centre for Neuromuscular Diseases, Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Support Center for Advanced Neuroimaging (SCAN), Institute for Diagnostic and Interventional Neuroradiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Olivier Scheidegger
- Centre for Neuromuscular Diseases, Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.
- Support Center for Advanced Neuroimaging (SCAN), Institute for Diagnostic and Interventional Neuroradiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.
- Universitätsklinik für Neurologie, Inselspital, Freiburgstrasse, CH-3010, Bern, Switzerland.
| |
Collapse
|
8
|
Tan ET, Zochowski KC, Sneag DB. Diffusion MRI fiber diameter for muscle denervation assessment. Quant Imaging Med Surg 2022; 12:80-94. [PMID: 34993062 PMCID: PMC8666740 DOI: 10.21037/qims-21-313] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 05/28/2021] [Indexed: 12/19/2022]
Abstract
BACKGROUND To develop and evaluate a diffusion MRI-based apparent muscle fiber diameter (AFD) method in patients with muscle denervation. It was hypothesized that AFD differences between denervated, non-denervated and control muscles would be greater than those from standard diffusion metrics. METHODS A spin-echo diffusion acquisition with multi-b-valued diffusion sampling was used. An orientation-invariant dictionary approach utilized a cylinder-based forward model and multi-compartment model for obtaining restricted and free fractions. Simulations were performed to determine precision, bias, and optimize dictionary parameters. In all, 18 exams of patients with muscle denervation and 8 exams of healthy subjects were performed at 3T. Six regions of interests (ROIs) within separate shoulder muscles were selected, yielding three groups consisting 47 control (healthy), 36 non-denervated (patients), and 68 denervated (patients) muscle ROIs. Two-sample t-tests (α=0.05) between groups were performed with Holm-Bonferroni correction. T2- and fat fraction (FF)-mapping were acquired for comparison. RESULTS Mean AFD was 89.7±13.6 µm in control, 71.6±15.3 µm in non-denervated, and 60.7±15.9 µm in denervated muscles and were significantly different (P<0.001) in paired comparisons and in 10/12 individual muscle region comparisons. Correlation between AFD and FF (-0.331, P<0.001) was low, but correlation between FA and FF was negligible (0.197, P=0.016). Correlation was low between AFD and T2 (-0.395, P<0.001) and between FA and T2 (0.359, P<0.001). CONCLUSIONS Diffusion MRI-based AFD complements T2- and FF-mapping techniques to non-invasively assess muscle denervation.
Collapse
Affiliation(s)
| | - Kelly C. Zochowski
- Department of Radiology and Imaging, Hospital for Special Surgery, New York, NY, USA
| | - Darryl B. Sneag
- Department of Radiology and Imaging, Hospital for Special Surgery, New York, NY, USA
| |
Collapse
|
9
|
Tan ET, Queler SC, Lin B, Endo Y, Burge AJ, Sternberg J, Potter HG, Sneag DB. Improved nerve conspicuity with water-weighting and denoising in two-point Dixon magnetic resonance neurography. Magn Reson Imaging 2021; 79:103-111. [PMID: 33753136 DOI: 10.1016/j.mri.2021.03.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND T2-weighted, two-point Dixon fast-spin-echo (FSE) is an effective technique for magnetic resonance neurography (MRN) that can provide quantitative assessment of muscle denervation. Low signal-to-noise ratio and inadequate fat suppression, however, can impede accurate interpretation. PURPOSE To quantify effects of principal component analysis (PCA) denoising on tissue signal intensities and fat fraction (FF) and to determine qualitative image quality improvements from both denoising and water-weighting (WW) algorithms to improve nerve conspicuity and fat suppression. STUDY TYPE Prospective. SUBJECTS Twenty-one subjects undergoing MR neurography evaluation (11/10 male/female, mean age = 46.3±13.7 years) with 60 image volumes. Twelve subjects (23 image volumes) were determined to have muscle denervation based on diffusely elevated T2 signal intensity. FIELD STRENGTH/SEQUENCE 3 T, 2D, two-point Dixon FSE. ASSESSMENT Qualitative assessment included overall image quality, nerve conspicuity, fat suppression, pulsation and ringing artifacts by 3 radiologists separately on a three-point scale (1 = poor, 2 = average, 3 = excellent). Quantitative measurements for FF and signal intensity relative to normal muscle were made for nerve, abnormal muscle and subcutaneous fat. STATISTICAL TESTS Linear and ordinal regression models were used for quantitative and qualitative comparisons, respectively; 95% confidence intervals (CIs) and p-values for pairwise comparisons were adjusted using the Holm-Bonferroni method. Inter-rater agreement was assessed using Gwet's agreement coefficient (AC2). RESULTS Simulations showed PCA-denoising reduced FF error from 2.0% to 1.0%, and from 7.6% to 3.1% at noise levels of 10% and 30%, respectively. In human subjects, PCA-denoising did not change signal levels and FF quantitatively. WW decreased fat signal significantly (-83.6%, p < 0.001). Nerve conspicuity was improved by WW (odds ratio, OR = 5.8, p < 0.001). Fat suppression was improved by both PCA (OR = 3.6, p < 0.001) and WW (OR = 2.2, p < 0.001). Overall image quality was improved by PCA + WW (OR = 1.7, p = 0.04). CONCLUSIONS WW and PCA-denoising improved nerve conspicuity and fat suppression in MR neurography. Denoising can potentially provide improved accuracy of FF maps for assessing fat-infiltrated muscle.
Collapse
Affiliation(s)
- Ek T Tan
- Department of Radiology and Imaging, Hospital for Special Surgery, New York, NY, USA.
| | - Sophie C Queler
- Department of Radiology and Imaging, Hospital for Special Surgery, New York, NY, USA
| | - Bin Lin
- Department of Radiology and Imaging, Hospital for Special Surgery, New York, NY, USA
| | - Yoshimi Endo
- Department of Radiology and Imaging, Hospital for Special Surgery, New York, NY, USA
| | - Alissa J Burge
- Department of Radiology and Imaging, Hospital for Special Surgery, New York, NY, USA
| | - Julia Sternberg
- Department of Radiology and Imaging, Hospital for Special Surgery, New York, NY, USA
| | - Hollis G Potter
- Department of Radiology and Imaging, Hospital for Special Surgery, New York, NY, USA
| | - Darryl B Sneag
- Department of Radiology and Imaging, Hospital for Special Surgery, New York, NY, USA
| |
Collapse
|
10
|
Santini F, Deligianni X, Paoletti M, Solazzo F, Weigel M, de Sousa PL, Bieri O, Monforte M, Ricci E, Tasca G, Pichiecchio A, Bergsland N. Fast Open-Source Toolkit for Water T2 Mapping in the Presence of Fat From Multi-Echo Spin-Echo Acquisitions for Muscle MRI. Front Neurol 2021; 12:630387. [PMID: 33716931 PMCID: PMC7952742 DOI: 10.3389/fneur.2021.630387] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 02/05/2021] [Indexed: 11/13/2022] Open
Abstract
Imaging has become a valuable tool in the assessment of neuromuscular diseases, and, specifically, quantitative MR imaging provides robust biomarkers for the monitoring of disease progression. Quantitative evaluation of fat infiltration and quantification of the T2 values of the muscular tissue's water component (wT2) are two of the most essential indicators currently used. As each voxel of the image can contain both water and fat, a two-component model for the estimation of wT2 must be used. In this work, we present a fast method for reconstructing wT2 maps obtained from conventional multi-echo spin-echo (MESE) acquisitions and released as Free Open Source Software. The proposed software is capable of fast reconstruction thanks to extended phase graphs (EPG) simulations and dictionary matching implemented on a general-purpose graphic processing unit. The program can also perform more conventional biexponential least-squares fitting of the data and incorporate information from an external water-fat acquisition to increase the accuracy of the results. The method was applied to the scans of four healthy volunteers and five subjects suffering from facioscapulohumeral muscular dystrophy (FSHD). Conventional multi-slice MESE acquisitions were performed with 17 echoes, and additionally, a 6-echo multi-echo gradient-echo (MEGE) sequence was used for an independent fat fraction calculation. The proposed reconstruction software was applied on the full datasets, and additionally to reduced number of echoes, respectively, to 8, 5, and 3, using EPG and biexponential least-squares fitting, with and without incorporating information from the MEGE acquisition. The incorporation of external fat fraction maps increased the robustness of the fitting with a reduced number of echoes per datasets, whereas with unconstrained fitting, the total of 17 echoes was necessary to retain an independence of wT2 from the level of fat infiltration. In conclusion, the proposed software can successfully be used to calculate wT2 maps from conventional MESE acquisition, allowing the usage of an optimized protocol with similar precision and accuracy as a 17-echo acquisition. As it is freely released to the community, it can be used as a reference for more extensive cohort studies.
Collapse
Affiliation(s)
- Francesco Santini
- Division of Radiological Physics, Department of Radiology, University Hospital of Basel, Basel, Switzerland.,Department of Biomedical Engineering, University of Basel, Allschwil, Switzerland
| | - Xeni Deligianni
- Division of Radiological Physics, Department of Radiology, University Hospital of Basel, Basel, Switzerland.,Department of Biomedical Engineering, University of Basel, Allschwil, Switzerland
| | - Matteo Paoletti
- Advanced Imaging and Radiomics Center, Neuroradiology Department, IRCCS Mondino Foundation, Pavia, Italy
| | - Francesca Solazzo
- Advanced Imaging and Radiomics Center, Neuroradiology Department, IRCCS Mondino Foundation, Pavia, Italy
| | - Matthias Weigel
- Division of Radiological Physics, Department of Radiology, University Hospital of Basel, Basel, Switzerland.,Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, University Hospital Basel and University of Basel, Allschwil, Switzerland.,Neurologic Clinic and Policlinic, Departments of Medicine, Clinical Research and Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Paulo Loureiro de Sousa
- ICube, Université de Strasbourg, Centre National de la Recherche Scientifique (CNRS), Strasbourg, France
| | - Oliver Bieri
- Division of Radiological Physics, Department of Radiology, University Hospital of Basel, Basel, Switzerland.,Department of Biomedical Engineering, University of Basel, Allschwil, Switzerland
| | - Mauro Monforte
- Unità Operativa Complessa di Neurologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Enzo Ricci
- Unità Operativa Complessa di Neurologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Dipartimento di Neuroscienze, Istituto di Neurologia, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Giorgio Tasca
- Unità Operativa Complessa di Neurologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Anna Pichiecchio
- Advanced Imaging and Radiomics Center, Neuroradiology Department, IRCCS Mondino Foundation, Pavia, Italy.,Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Niels Bergsland
- Department of Neurology, Buffalo Neuroimaging Analysis Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, United States.,Fondazione Don Carlo Gnocchi Onlus (IRCCS), Milan, Italy
| |
Collapse
|
11
|
Araujo ECA, Marty B, Carlier PG, Baudin P, Reyngoudt H. Multiexponential Analysis of the Water
T2
‐Relaxation in the Skeletal Muscle Provides Distinct Markers of Disease Activity Between Inflammatory and Dystrophic Myopathies. J Magn Reson Imaging 2020; 53:181-189. [DOI: 10.1002/jmri.27300] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 07/06/2020] [Accepted: 07/08/2020] [Indexed: 11/06/2022] Open
Affiliation(s)
- Ericky C. A. Araujo
- NMR laboratory, Neuromuscular Investigation Center Institute of Myology Paris France
- CEA, DRF, IBFJ, MIRCen Paris France
| | - Benjamin Marty
- NMR laboratory, Neuromuscular Investigation Center Institute of Myology Paris France
- CEA, DRF, IBFJ, MIRCen Paris France
| | - Pierre G. Carlier
- NMR laboratory, Neuromuscular Investigation Center Institute of Myology Paris France
- CEA, DRF, IBFJ, MIRCen Paris France
| | | | - Harmen Reyngoudt
- NMR laboratory, Neuromuscular Investigation Center Institute of Myology Paris France
- CEA, DRF, IBFJ, MIRCen Paris France
| |
Collapse
|
12
|
Keene KR, Beenakker JWM, Hooijmans MT, Naarding KJ, Niks EH, Otto LAM, van der Pol WL, Tannemaat MR, Kan HE, Froeling M. T 2 relaxation-time mapping in healthy and diseased skeletal muscle using extended phase graph algorithms. Magn Reson Med 2020; 84:2656-2670. [PMID: 32306450 PMCID: PMC7496817 DOI: 10.1002/mrm.28290] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/06/2020] [Accepted: 03/31/2020] [Indexed: 02/06/2023]
Abstract
PURPOSE Multi-echo spin-echo (MSE) transverse relaxometry mapping using multi-component models is used to study disease activity in neuromuscular disease by assessing the T2 of the myocytic component (T2water ). Current extended phase graph algorithms are not optimized for fat fractions above 50% and the effects of inaccuracies in the T2fat calibration remain unexplored. Hence, we aimed to improve the performance of extended phase graph fitting methods over a large range of fat fractions, by including the slice-selection flip angle profile, a through-plane chemical-shift displacement correction, and optimized calibration of T2fat . METHODS Simulation experiments were used to study the influence of the slice flip-angle profile with chemical-shift and T2fat estimations. Next, in vivo data from four neuromuscular disease cohorts were studied for different T2fat calibration methods and T2water estimations. RESULTS Excluding slice flip-angle profiles or chemical-shift displacement resulted in a bias in T2water up to 10 ms. Furthermore, a wrongly calibrated T2fat caused a bias of up to 4 ms in T2water . For the in vivo data, one-component calibration led to a lower T2fat compared with a two-component method, and T2water decreased with increasing fat fractions. CONCLUSION In vivo data showed a decline in T2water for increasing fat fractions, which has important implications for clinical studies, especially in multicenter settings. We recommend using an extended phase graph-based model for fitting T2water from MSE sequences with two-component T2fat calibration. Moreover, we recommend including the slice flip-angle profile in the model with correction for through-plane chemical-shift displacements.
Collapse
Affiliation(s)
- Kevin R Keene
- C.J. Gorter center for high field MRI, Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands.,Department of Neurology, Leiden University Medical Center, Leiden, the Netherlands
| | - Jan-Willem M Beenakker
- C.J. Gorter center for high field MRI, Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands.,Department of Ophthalmology, Leiden University Medical Center, Leiden, the Netherlands
| | | | - Karin J Naarding
- Department of Neurology, Leiden University Medical Center, Leiden, the Netherlands.,Duchenne Center Netherlands, the Netherlands
| | - Erik H Niks
- Department of Neurology, Leiden University Medical Center, Leiden, the Netherlands.,Duchenne Center Netherlands, the Netherlands
| | - Louise A M Otto
- Department of Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, the Netherlands
| | - W Ludo van der Pol
- Department of Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, the Netherlands
| | - Martijn R Tannemaat
- Department of Neurology, Leiden University Medical Center, Leiden, the Netherlands
| | - Hermien E Kan
- C.J. Gorter center for high field MRI, Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands.,Duchenne Center Netherlands, the Netherlands
| | - Martijn Froeling
- Department of Radiology, University Medical Center Utrecht, Utrecht, the Netherlands
| |
Collapse
|
13
|
Strijkers GJ, Araujo EC, Azzabou N, Bendahan D, Blamire A, Burakiewicz J, Carlier PG, Damon B, Deligianni X, Froeling M, Heerschap A, Hollingsworth KG, Hooijmans MT, Karampinos DC, Loudos G, Madelin G, Marty B, Nagel AM, Nederveen AJ, Nelissen JL, Santini F, Scheidegger O, Schick F, Sinclair C, Sinkus R, de Sousa PL, Straub V, Walter G, Kan HE. Exploration of New Contrasts, Targets, and MR Imaging and Spectroscopy Techniques for Neuromuscular Disease - A Workshop Report of Working Group 3 of the Biomedicine and Molecular Biosciences COST Action BM1304 MYO-MRI. J Neuromuscul Dis 2020; 6:1-30. [PMID: 30714967 PMCID: PMC6398566 DOI: 10.3233/jnd-180333] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Neuromuscular diseases are characterized by progressive muscle degeneration and muscle weakness resulting in functional disabilities. While each of these diseases is individually rare, they are common as a group, and a large majority lacks effective treatment with fully market approved drugs. Magnetic resonance imaging and spectroscopy techniques (MRI and MRS) are showing increasing promise as an outcome measure in clinical trials for these diseases. In 2013, the European Union funded the COST (co-operation in science and technology) action BM1304 called MYO-MRI (www.myo-mri.eu), with the overall aim to advance novel MRI and MRS techniques for both diagnosis and quantitative monitoring of neuromuscular diseases through sharing of expertise and data, joint development of protocols, opportunities for young researchers and creation of an online atlas of muscle MRI and MRS. In this report, the topics that were discussed in the framework of working group 3, which had the objective to: Explore new contrasts, new targets and new imaging techniques for NMD are described. The report is written by the scientists who attended the meetings and presented their data. An overview is given on the different contrasts that MRI can generate and their application, clinical needs and desired readouts, and emerging methods.
Collapse
Affiliation(s)
| | - Ericky C.A. Araujo
- NMR Laboratory, Neuromuscular Investigation Center, Institute of Myology & NMR Laboratory, CEA/DRF/IBFJ/MIRCen, Paris, France
| | - Noura Azzabou
- NMR Laboratory, Neuromuscular Investigation Center, Institute of Myology & NMR Laboratory, CEA/DRF/IBFJ/MIRCen, Paris, France
| | | | - Andrew Blamire
- Institute of Cellular Medicine, Newcastle University, Newcastle-upon-Tyne, UK
| | - Jedrek Burakiewicz
- Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Pierre G. Carlier
- NMR Laboratory, Neuromuscular Investigation Center, Institute of Myology & NMR Laboratory, CEA/DRF/IBFJ/MIRCen, Paris, France
| | - Bruce Damon
- Vanderbilt University Medical Center, Nashville, USA
| | - Xeni Deligianni
- Department of Radiology, Division of Radiological Physics, University Hospital Basel, Basel, Switzerland & Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | | | - Arend Heerschap
- Radboud University Medical Center, Nijmegen, the Netherlands
| | | | | | | | | | | | - Benjamin Marty
- NMR Laboratory, Neuromuscular Investigation Center, Institute of Myology & NMR Laboratory, CEA/DRF/IBFJ/MIRCen, Paris, France
| | - Armin M. Nagel
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany & Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | | | - Francesco Santini
- Department of Radiology, Division of Radiological Physics, University Hospital Basel, Basel, Switzerland & Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Olivier Scheidegger
- Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Fritz Schick
- University of Tübingen, Section on Experimental Radiology, Tübingen, Germany
| | | | | | | | - Volker Straub
- Institute of Cellular Medicine, Newcastle University, Newcastle-upon-Tyne, UK
| | | | - Hermien E. Kan
- Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
14
|
Schlaeger S, Weidlich D, Klupp E, Montagnese F, Deschauer M, Schoser B, Bublitz S, Ruschke S, Zimmer C, Rummeny EJ, Kirschke JS, Karampinos DC. Water T 2 Mapping in Fatty Infiltrated Thigh Muscles of Patients With Neuromuscular Diseases Using a T 2 -Prepared 3D Turbo Spin Echo With SPAIR. J Magn Reson Imaging 2019; 51:1727-1736. [PMID: 31875343 DOI: 10.1002/jmri.27032] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 12/03/2019] [Accepted: 12/05/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Muscle water T2 (T2w ) has been proposed as a biomarker to monitor disease activity and therapy effectiveness in patients with neuromuscular diseases (NMD). Multi-echo spin-echo (MESE) is known to be affected by fatty infiltration. A T2 -prepared 3D turbo spin echo (TSE) is an alternative method for T2 mapping, but has been only applied in healthy muscles. PURPOSE To examine the performance of T2 -prepared 3D TSE in combination with spectral adiabatic inversion recovery (SPAIR) in measuring T2w in fatty infiltrated muscles based on simulations and in vivo measurements in thigh muscles of patients with NMD. STUDY TYPE Prospective. SUBJECTS One healthy volunteer, 34 NMD patients. FIELD STRENGTH/SEQUENCE T2 -prepared stimulated echo acquisition mode (STEAM) magnetic resonance spectroscopy (MRS), SPAIR STEAM MRS, and SPAIR T2 -prepared STEAM MRS were performed in the subcutaneous fat of a healthy volunteer's thigh. T2 mapping based on SPAIR 2D MESE and SPAIR T2 -prepared 3D TSE was performed in the NMD patients' thigh region. Multi-TE STEAM MRS was performed for measuring a reference T2w at different thigh locations. ASSESSMENT The behavior of the fat spectrum in the SPAIR T2 -prepared 3D TSE was simulated using Bloch simulations. The in vivo T2 results of the imaging methods were compared to the in vivo T2w MRS results. STATISTICAL TESTS Pearson correlation coefficient with slope and intercept, relative error. RESULTS The simulated T2 for the SPAIR T2 -prepared 3D TSE sequence remained constant within a relative error of not more than 4% up to a fat fraction of 80%. In vivo T2 values of SPAIR T2 -prepared 3D TSE were in good agreement with the T2w values of STEAM MRS (R = 0.86; slope = 1.12; intercept = -1.41 ms). In vivo T2 values of SPAIR 2D MESE showed large deviations from the T2w values of STEAM MRS (R = 0.14; slope = 0.32; intercept = 38.83 ms). DATA CONCLUSION The proposed SPAIR T2 -prepared 3D TSE shows reduced sensitivity to fatty infiltration for T2w mapping in the thigh muscles of NMD patients. LEVEL OF EVIDENCE 1 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2020;51:1727-1736.
Collapse
Affiliation(s)
- Sarah Schlaeger
- Department of Diagnostic and Interventional Radiology, School of Medicine, Technical University of Munich, Munich, Germany.,Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Dominik Weidlich
- Department of Diagnostic and Interventional Radiology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Elisabeth Klupp
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany
| | | | - Marcus Deschauer
- Department of Neurology, Technical University of Munich, Munich, Germany
| | - Benedikt Schoser
- Friedrich-Baur-Institut, Ludwig Maximilian University, Munich, Germany
| | - Sarah Bublitz
- Department of Neurology, Technical University of Munich, Munich, Germany
| | - Stefan Ruschke
- Department of Diagnostic and Interventional Radiology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Claus Zimmer
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Ernst J Rummeny
- Department of Diagnostic and Interventional Radiology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Jan S Kirschke
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Dimitrios C Karampinos
- Department of Diagnostic and Interventional Radiology, School of Medicine, Technical University of Munich, Munich, Germany
| |
Collapse
|
15
|
Emerging quantitative MR imaging biomarkers in inflammatory arthritides. Eur J Radiol 2019; 121:108707. [PMID: 31707169 DOI: 10.1016/j.ejrad.2019.108707] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 09/14/2019] [Accepted: 10/09/2019] [Indexed: 12/22/2022]
Abstract
PURPOSE To review quantitative magnetic resonance imaging (qMRI) methods for imaging inflammation in connective tissues and the skeleton in inflammatory arthritis. This review is designed for a broad audience including radiologists, imaging technologists, rheumatologists and other healthcare professionals. METHODS We discuss the use of qMRI for imaging skeletal inflammation from both technical and clinical perspectives. We consider how qMRI can be targeted to specific aspects of the pathological process in synovium, cartilage, bone, tendons and entheses. Evidence for the various techniques from studies of both adults and children with inflammatory arthritis is reviewed and critically appraised. RESULTS qMRI has the potential to objectively identify, characterize and quantify inflammation of the connective tissues and skeleton in both adult and pediatric patients. Measurements of tissue properties derived using qMRI methods can serve as imaging biomarkers, which are potentially more reproducible and informative than conventional MRI methods. Several qMRI methods are nearing transition into clinical practice and may inform diagnosis and treatment decisions, with the potential to improve patient outcomes. CONCLUSIONS qMRI enables specific assessment of inflammation in synovium, cartilage, bone, tendons and entheses, and can facilitate a more consistent, personalized approach to diagnosis, characterisation and monitoring of disease.
Collapse
|
16
|
Marty B, Carlier PG. MR fingerprinting for water T1 and fat fraction quantification in fat infiltrated skeletal muscles. Magn Reson Med 2019; 83:621-634. [PMID: 31502715 DOI: 10.1002/mrm.27960] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 07/11/2019] [Accepted: 07/31/2019] [Indexed: 12/28/2022]
Abstract
PURPOSE To develop a fast MR fingerprinting (MRF) sequence for simultaneous estimation of water T1 (T1H2O ) and fat fraction (FF) in fat infiltrated skeletal muscles. METHODS The MRF sequence for T1H2O and FF quantification (MRF T1-FF) comprises a 1400 radial spokes echo train, following nonselective inversion, with varying echo and repetition time, as well as prescribed flip angle. Undersampled frames were reconstructed at different acquisition time-points by nonuniform Fourier transform, and a bi-component model based on Bloch simulations applied to adjust the signal evolution and extract T1H2O and FF. The sequence was validated on a multi-vial phantom, in three healthy volunteers and five patients with neuromuscular diseases. We evaluated the agreement between MRF T1-FF parameters and reference values and confounding effects due to B0 and B1 inhomogeneities. RESULTS In phantom, T1H2O and FF were highly correlated with references values measured with multi-inversion time inversion recovery-stimulated echo acquisition mode and Dixon, respectively (R2 > 0.99). In vivo, T1H2O and FF determined by the MRF T1-FF sequence were also correlated with reference values (R2 = 0.98 and 0.97, respectively). The precision on T1H2O was better than 5% for muscles where FF was less than 0.4. Both T1H2O and FF values were not confounded by B0 nor B1 inhomogeneities. CONCLUSION The MRF T1-FF sequence derived T1H2O and FF values in voxels containing a mixture of water and fat protons. This method can be used to comprehend and characterize the effects of tissue water compartmentation and distribution on muscle T1 values in patients affected by chronic fat infiltration.
Collapse
Affiliation(s)
- Benjamin Marty
- NMR Laboratory, Neuromuscular Investigation Center, Institute of Myology, Paris, France.,NMR Laboratory, CEA, DRF, IBFJ, MIRCen, Paris, France
| | - Pierre G Carlier
- NMR Laboratory, Neuromuscular Investigation Center, Institute of Myology, Paris, France.,NMR Laboratory, CEA, DRF, IBFJ, MIRCen, Paris, France
| |
Collapse
|
17
|
Schlaeger S, Weidlich D, Klupp E, Montagnese F, Deschauer M, Schoser B, Bublitz S, Ruschke S, Zimmer C, Rummeny EJ, Kirschke JS, Karampinos DC. Decreased water T 2 in fatty infiltrated skeletal muscles of patients with neuromuscular diseases. NMR IN BIOMEDICINE 2019; 32:e4111. [PMID: 31180167 DOI: 10.1002/nbm.4111] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 03/07/2019] [Accepted: 03/17/2019] [Indexed: 05/22/2023]
Abstract
Quantitative imaging techniques are emerging in the field of magnetic resonance imaging of neuromuscular diseases (NMD). T2 of water (T2w ) is considered an important imaging marker to assess acute and chronic alterations of the muscle fibers, being generally interpreted as an indicator for "disease activity" in the muscle tissue. To validate the accuracy and robustness of quantitative imaging methods, 1 H magnetic resonance spectroscopy (MRS) can be used as a gold standard. The purpose of the present work was to investigate T2w of remaining muscle tissue in regions of higher proton density fat fraction (PDFF) in 40 patients with defined NMD using multi-TE single-voxel 1 H MRS. Patients underwent MR measurements on a 3 T system to perform a multi-TE single-voxel stimulated echo acquisition method (STEAM) MRS (TE = 11/15/20/25(/35) ms) in regions of healthy, edematous and fatty thigh muscle tissue. Muscle regions for MRS were selected based on T2 -weighted water and fat images of a two-echo 2D Dixon TSE. MRS results were confined to regions with qualitatively defined remaining muscle tissue without edema and high fat content, based on visual grading of the imaging data. The results showed decreased T2w values with increasing PDFF with R2 = 0.45 (p < 10-3 ) (linear fit) and with R2 = 0.51 (exponential fit). The observed dependence of T2w on PDFF should be considered when using T2w as a marker in NMD imaging and when performing single-voxel MRS for T2w in regions enclosing edematous, nonedematous and fatty infiltrated muscle tissue.
Collapse
Affiliation(s)
- Sarah Schlaeger
- Department of Diagnostic and Interventional Radiology, Technical University of Munich, Munich, Germany
- Department of Diagnostic and Interventional of Neuroradiology, Technical University of Munich, Munich, Germany
| | - Dominik Weidlich
- Department of Diagnostic and Interventional Radiology, Technical University of Munich, Munich, Germany
| | - Elisabeth Klupp
- Department of Diagnostic and Interventional of Neuroradiology, Technical University of Munich, Munich, Germany
| | - Federica Montagnese
- Friedrich-Baur-Institut, Department of Neurology, Ludwig-Maximilians-University, Munich, Germany
| | - Marcus Deschauer
- Department of Neurology, Technical University of Munich, Munich, Germany
| | - Benedikt Schoser
- Friedrich-Baur-Institut, Department of Neurology, Ludwig-Maximilians-University, Munich, Germany
| | - Sarah Bublitz
- Department of Neurology, Technical University of Munich, Munich, Germany
| | - Stefan Ruschke
- Department of Diagnostic and Interventional Radiology, Technical University of Munich, Munich, Germany
| | - Claus Zimmer
- Department of Diagnostic and Interventional of Neuroradiology, Technical University of Munich, Munich, Germany
| | - Ernst J Rummeny
- Department of Diagnostic and Interventional Radiology, Technical University of Munich, Munich, Germany
| | - Jan S Kirschke
- Department of Diagnostic and Interventional of Neuroradiology, Technical University of Munich, Munich, Germany
| | - Dimitrios C Karampinos
- Department of Diagnostic and Interventional Radiology, Technical University of Munich, Munich, Germany
| |
Collapse
|
18
|
Krishnamurthy R, Wang DJJ, Cervantes B, McAllister A, Nelson E, Karampinos DC, Hu HH. Recent Advances in Pediatric Brain, Spine, and Neuromuscular Magnetic Resonance Imaging Techniques. Pediatr Neurol 2019; 96:7-23. [PMID: 31023603 DOI: 10.1016/j.pediatrneurol.2019.03.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 02/25/2019] [Accepted: 03/03/2019] [Indexed: 12/21/2022]
Abstract
Magnetic resonance imaging (MRI) is a powerful radiologic tool with the ability to generate a variety of proton-based signal contrast from tissues. Owing to this immense flexibility in signal generation, new MRI techniques are constantly being developed, tested, and optimized for clinical utility. In addition, the safe and nonionizing nature of MRI makes it a suitable modality for imaging in children. In this review article, we summarize a few of the most popular advances in MRI techniques in recent years. In particular, we highlight how these new developments have affected brain, spine, and neuromuscular imaging and focus on their applications in pediatric patients. In the first part of the review, we discuss new approaches such as multiphase and multidelay arterial spin labeling for quantitative perfusion and angiography of the brain, amide proton transfer MRI of the brain, MRI of brachial plexus and lumbar plexus nerves (i.e., neurography), and T2 mapping and fat characterization in neuromuscular diseases. In the second part of the review, we focus on describing new data acquisition strategies in accelerated MRI aimed collectively at reducing the scan time, including simultaneous multislice imaging, compressed sensing, synthetic MRI, and magnetic resonance fingerprinting. In discussing the aforementioned, the review also summarizes the advantages and disadvantages of each method and their current state of commercial availability from MRI vendors.
Collapse
Affiliation(s)
| | - Danny J J Wang
- Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Barbara Cervantes
- Department of Diagnostic and Interventional Radiology, Technische Universität München, Munich, Germany
| | | | - Eric Nelson
- Center for Biobehavioral Health, Nationwide Children's Hospital, Columbus, Ohio
| | - Dimitrios C Karampinos
- Department of Diagnostic and Interventional Radiology, Technische Universität München, Munich, Germany
| | | |
Collapse
|
19
|
Marty B, Carlier PG. Physiological and pathological skeletal muscle T1 changes quantified using a fast inversion-recovery radial NMR imaging sequence. Sci Rep 2019; 9:6852. [PMID: 31048765 PMCID: PMC6497638 DOI: 10.1038/s41598-019-43398-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 04/24/2019] [Indexed: 12/18/2022] Open
Abstract
We investigated the response of skeletal muscle global T1 under different physiological and pathological conditions using an inversion-recovery radial T1 mapping sequence. Thirty five healthy volunteers, seven patients with Becker muscular dystrophy (BMD) and seven patients with sporadic inclusion body myositis (IBM) were investigated in order to evaluate the effects of gender, age, muscle group, exercise and pathological processes on global T1 values. In addition, the intramuscular fat content was measured using 3-point Dixon and the global T2 and water T2 (T2H2O) were determined with a multi-spin-echo sequence. In the muscles of healthy volunteers, there was no impact of age on global T1. However, we measured a significant effect of sex and muscle group. After exercise, a significant 7.7% increase of global T1 was measured in the recruited muscles, and global T1 variations were highly correlated to T2H2O variations (R = 0.91). In pathologies, global T1 values were reduced in fat infiltrated muscles. When fat fraction was taken into account, global T1 values were higher in IBM patients compared to BMD. Global T1 variations are a sensitive indicator of tissue changes in skeletal muscle related to several physiological and pathological events.
Collapse
Affiliation(s)
- Benjamin Marty
- Institute of Myology, Neuromuscular Investigation Center, NMR Laboratory, Paris, France. .,CEA, DRF, IBFJ, MIRCen, NMR Laboratory, Paris, France.
| | - Pierre G Carlier
- Institute of Myology, Neuromuscular Investigation Center, NMR Laboratory, Paris, France.,CEA, DRF, IBFJ, MIRCen, NMR Laboratory, Paris, France
| |
Collapse
|
20
|
Bray TJP, Chouhan MD, Punwani S, Bainbridge A, Hall-Craggs MA. Fat fraction mapping using magnetic resonance imaging: insight into pathophysiology. Br J Radiol 2018; 91:20170344. [PMID: 28936896 PMCID: PMC6223159 DOI: 10.1259/bjr.20170344] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 07/18/2017] [Accepted: 09/06/2017] [Indexed: 02/06/2023] Open
Abstract
Adipose cells have traditionally been viewed as a simple, passive energy storage depot for triglycerides. However, in recent years it has become clear that adipose cells are highly physiologically active and have a multitude of endocrine, metabolic, haematological and immune functions. Changes in the number or size of adipose cells may be directly implicated in disease (e.g. in the metabolic syndrome), but may also be linked to other pathological processes such as inflammation, malignant infiltration or infarction. MRI is ideally suited to the quantification of fat, since most of the acquired signal comes from water and fat protons. Fat fraction (FF, the proportion of the acquired signal derived from fat protons) has, therefore, emerged as an objective, image-based biomarker of disease. Methods for FF quantification are becoming increasingly available in both research and clinical settings, but these methods vary depending on the scanner, manufacturer, imaging sequence and reconstruction software being used. Careful selection of the imaging method-and correct interpretation-can improve the accuracy of FF measurements, minimize potential confounding factors and maximize clinical utility. Here, we review methods for fat quantification and their strengths and weaknesses, before considering how they can be tailored to specific applications, particularly in the gastrointestinal and musculoskeletal systems. FF quantification is becoming established as a clinical and research tool, and understanding the underlying principles will be helpful to both imaging scientists and clinicians.
Collapse
Affiliation(s)
- Timothy JP Bray
- Centre for
Medical Imaging, University College London,University College London,
London, UK
| | - Manil D Chouhan
- Centre for
Medical Imaging, University College London,University College London,
London, UK
| | - Shonit Punwani
- Centre for
Medical Imaging, University College London,University College London,
London, UK
| | - Alan Bainbridge
- Department
of Medical Physics, University College London
Hospitals,University
College London Hospitals, London,
UK
| | - Margaret A Hall-Craggs
- Centre for
Medical Imaging, University College London,University College London,
London, UK
- Department
of Medical Physics, University College London
Hospitals,University
College London Hospitals, London,
UK
| |
Collapse
|
21
|
Hybrid quantitative MRI using chemical shift displacement and recovery-based simultaneous water and lipid imaging: A preliminary study. Magn Reson Imaging 2018; 50:61-67. [DOI: 10.1016/j.mri.2018.03.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 03/08/2018] [Accepted: 03/10/2018] [Indexed: 01/03/2023]
|
22
|
Carlier PG, Marty B, Scheidegger O, Loureiro de Sousa P, Baudin PY, Snezhko E, Vlodavets D. Skeletal Muscle Quantitative Nuclear Magnetic Resonance Imaging and Spectroscopy as an Outcome Measure for Clinical Trials. J Neuromuscul Dis 2018; 3:1-28. [PMID: 27854210 PMCID: PMC5271435 DOI: 10.3233/jnd-160145] [Citation(s) in RCA: 141] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Recent years have seen tremendous progress towards therapy of many previously incurable neuromuscular diseases. This new context has acted as a driving force for the development of novel non-invasive outcome measures. These can be organized in three main categories: functional tools, fluid biomarkers and imagery. In the latest category, nuclear magnetic resonance imaging (NMRI) offers a considerable range of possibilities for the characterization of skeletal muscle composition, function and metabolism. Nowadays, three NMR outcome measures are frequently integrated in clinical research protocols. They are: 1/ the muscle cross sectional area or volume, 2/ the percentage of intramuscular fat and 3/ the muscle water T2, which quantity muscle trophicity, chronic fatty degenerative changes and oedema (or more broadly, “disease activity”), respectively. A fourth biomarker, the contractile tissue volume is easily derived from the first two ones. The fat fraction maps most often acquired with Dixon sequences have proven their capability to detect small changes in muscle composition and have repeatedly shown superior sensitivity over standard functional evaluation. This outcome measure will more than likely be the first of the series to be validated as an endpoint by regulatory agencies. The versatility of contrast generated by NMR has opened many additional possibilities for characterization of the skeletal muscle and will result in the proposal of more NMR biomarkers. Ultra-short TE (UTE) sequences, late gadolinium enhancement and NMR elastography are being investigated as candidates to evaluate skeletal muscle interstitial fibrosis. Many options exist to measure muscle perfusion and oxygenation by NMR. Diffusion NMR as well as texture analysis algorithms could generate complementary information on muscle organization at microscopic and mesoscopic scales, respectively. 31P NMR spectroscopy is the reference technique to assess muscle energetics non-invasively during and after exercise. In dystrophic muscle, 31P NMR spectrum at rest is profoundly perturbed, and several resonances inform on cell membrane integrity. Considerable efforts are being directed towards acceleration of image acquisitions using a variety of approaches, from the extraction of fat content and water T2 maps from one single acquisition to partial matrices acquisition schemes. Spectacular decreases in examination time are expected in the near future. They will reinforce the attractiveness of NMR outcome measures and will further facilitate their integration in clinical research trials.
Collapse
Affiliation(s)
- Pierre G Carlier
- Institute of Myology, Pitie-Salpetriere University Hospital, Paris, France.,CEA, DSV, I2BM, MIRCen, NMR Laboratory, Paris, France.,National Academy of Sciences, United Institute for Informatics Problems, Minsk, Belarus
| | - Benjamin Marty
- Institute of Myology, Pitie-Salpetriere University Hospital, Paris, France.,CEA, DSV, I2BM, MIRCen, NMR Laboratory, Paris, France
| | - Olivier Scheidegger
- Institute of Myology, Pitie-Salpetriere University Hospital, Paris, France.,Support Center for Advanced Neuroimaging (SCAN), Institute of Diagnostic and Interventional Neuroradiology, Inselspital, Bern University Hospital, and University of Bern, Switzerland
| | | | | | - Eduard Snezhko
- National Academy of Sciences, United Institute for Informatics Problems, Minsk, Belarus
| | - Dmitry Vlodavets
- N.I. Prirogov Russian National Medical Research University, Clinical Research Institute of Pediatrics, Moscow, Russian Federation
| |
Collapse
|
23
|
Burakiewicz J, Sinclair CDJ, Fischer D, Walter GA, Kan HE, Hollingsworth KG. Quantifying fat replacement of muscle by quantitative MRI in muscular dystrophy. J Neurol 2017; 264:2053-2067. [PMID: 28669118 PMCID: PMC5617883 DOI: 10.1007/s00415-017-8547-3] [Citation(s) in RCA: 137] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 06/12/2017] [Accepted: 06/13/2017] [Indexed: 12/15/2022]
Abstract
The muscular dystrophies are rare orphan diseases, characterized by progressive muscle weakness: the most common and well known is Duchenne muscular dystrophy which affects young boys and progresses quickly during childhood. However, over 70 distinct variants have been identified to date, with different rates of progression, implications for morbidity, mortality, and quality of life. There are presently no curative therapies for these diseases, but a range of potential therapies are presently reaching the stage of multi-centre, multi-national first-in-man clinical trials. There is a need for sensitive, objective end-points to assess the efficacy of the proposed therapies. Present clinical measurements are often too dependent on patient effort or motivation, and lack sensitivity to small changes, or are invasive. Quantitative MRI to measure the fat replacement of skeletal muscle by either chemical shift imaging methods (Dixon or IDEAL) or spectroscopy has been demonstrated to provide such a sensitive, objective end-point in a number of studies. This review considers the importance of the outcome measures, discusses the considerations required to make robust measurements and appropriate quality assurance measures, and draws together the existing literature for cross-sectional and longitudinal cohort studies using these methods in muscular dystrophy.
Collapse
Affiliation(s)
- Jedrzej Burakiewicz
- Department of Radiology, C. J. Gorter Center for High Field MRI, Leiden University Medical Centre, Leiden, The Netherlands
| | - Christopher D J Sinclair
- MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology, London, UK.,Neuroradiological Academic Unit, UCL Institute of Neurology, London, UK
| | - Dirk Fischer
- Division of Neuropaediatrics, University of Basel Children's Hospital, Spitalstrasse 33, Postfach, Basel, 4031, Switzerland.,Department of Neurology, University of Basel Hospital, Petersgraben 4, Basel, 4031, Switzerland
| | - Glenn A Walter
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL, 32610, USA
| | - Hermien E Kan
- Department of Radiology, C. J. Gorter Center for High Field MRI, Leiden University Medical Centre, Leiden, The Netherlands
| | - Kieren G Hollingsworth
- Newcastle Magnetic Resonance Centre, Institute of Cellular Medicine, Newcastle University, Newcastle-upon-Tyne, UK.
| |
Collapse
|
24
|
Leporq B, Le Troter A, Le Fur Y, Salort-Campana E, Guye M, Beuf O, Attarian S, Bendahan D. Combined quantification of fatty infiltration, T 1-relaxation times and T 2*-relaxation times in normal-appearing skeletal muscle of controls and dystrophic patients. MAGMA (NEW YORK, N.Y.) 2017; 30:407-415. [PMID: 28332039 DOI: 10.1007/s10334-017-0616-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Revised: 03/06/2017] [Accepted: 03/15/2017] [Indexed: 12/13/2022]
Abstract
OBJECTIVES To evaluate the combination of a fat-water separation method with an automated segmentation algorithm to quantify the intermuscular fatty-infiltrated fraction, the relaxation times, and the microscopic fatty infiltration in the normal-appearing muscle. MATERIALS AND METHODS MR acquisitions were performed at 1.5T in seven patients with facio-scapulo-humeral dystrophy and eight controls. Disease severity was assessed using commonly used scales for the upper and lower limbs. The fat-water separation method provided proton density fat fraction (PDFF) and relaxation times maps (T 2* and T 1). The segmentation algorithm distinguished adipose tissue and normal-appearing muscle from the T 2* map and combined active contours, a clustering analysis, and a morphological closing process to calculate the index of fatty infiltration (IFI) in the muscle compartment defined as the relative amount of pixels with the ratio between the number of pixels within IMAT and the total number of pixels (IMAT + normal appearing muscle). RESULTS In patients, relaxation times were longer and a larger fatty infiltration has been quantified in the normal-appearing muscle. T 2* and PDFF distributions were broader. The relaxation times were correlated to the Vignos scale whereas the microscopic fatty infiltration was linked to the Medwin-Gardner-Walton scale. The IFI was linked to a composite clinical severity scale gathering the whole set of scales. CONCLUSION The MRI indices quantified within the normal-appearing muscle could be considered as potential biomarkers of dystrophies and quantitatively illustrate tissue alterations such as inflammation and fatty infiltration.
Collapse
Affiliation(s)
- Benjamin Leporq
- Laboratoire CREATIS CNRS UMR 5220; Inserm U1206; INSA-Lyon; UCBL Lyon 1, 7, Avenue Jean Capelle, 69621, Villeurbanne Cedex, France.
| | - Arnaud Le Troter
- Aix-Marseille University, CRMBM, CNRS UMR, 6612, Marseille, France
| | - Yann Le Fur
- Aix-Marseille University, CRMBM, CNRS UMR, 6612, Marseille, France
| | | | - Maxime Guye
- Aix-Marseille University, CRMBM, CNRS UMR, 6612, Marseille, France
| | - Olivier Beuf
- Laboratoire CREATIS CNRS UMR 5220; Inserm U1206; INSA-Lyon; UCBL Lyon 1, 7, Avenue Jean Capelle, 69621, Villeurbanne Cedex, France
| | - Shahram Attarian
- Reference Center for Neuromuscular Disorders, Timone Hospital, Marseille, France
| | - David Bendahan
- Aix-Marseille University, CRMBM, CNRS UMR, 6612, Marseille, France
| |
Collapse
|
25
|
Sinclair CD, Morrow JM, Janiczek RL, Evans MR, Rawah E, Shah S, Hanna MG, Reilly MM, Yousry TA, Thornton JS. Stability and sensitivity of water T 2 obtained with IDEAL-CPMG in healthy and fat-infiltrated skeletal muscle. NMR IN BIOMEDICINE 2016; 29:1800-1812. [PMID: 27809381 PMCID: PMC5132140 DOI: 10.1002/nbm.3654] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 08/05/2016] [Accepted: 08/29/2016] [Indexed: 05/15/2023]
Abstract
Quantifying muscle water T2 (T2 -water) independently of intramuscular fat content is essential in establishing T2 -water as an outcome measure for imminent new therapy trials in neuromuscular diseases. IDEAL-CPMG combines chemical shift fat-water separation with T2 relaxometry to obtain such a measure. Here we evaluate the reproducibility and B1 sensitivity of IDEAL-CPMG T2 -water and fat fraction (f.f.) values in healthy subjects, and demonstrate the potential of the method to quantify T2 -water variation in diseased muscle displaying varying degrees of fatty infiltration. The calf muscles of 11 healthy individuals (40.5 ± 10.2 years) were scanned twice at 3 T with an inter-scan interval of 4 weeks using IDEAL-CPMG, and 12 patients with hypokalemic periodic paralysis (HypoPP) (42.3 ± 11.5 years) were also imaged. An exponential was fitted to the signal decay of the separated water and fat components to determine T2 -water and the fat signal amplitude muscle regions manually segmented. Overall mean calf-level muscle T2 -water in healthy subjects was 31.2 ± 2.0 ms, without significant inter-muscle differences (p = 0.37). Inter-subject and inter-scan coefficients of variation were 5.7% and 3.2% respectively for T2 -water and 41.1% and 15.4% for f.f. Bland-Altman mean bias and ±95% coefficients of repeatability were for T2 -water (0.15, -2.65, 2.95) ms and f.f. (-0.02, -1.99, 2.03)%. There was no relationship between T2 -water (ρ = 0.16, p = 0.07) or f.f. (ρ = 0.03, p = 0.7761) and B1 error or any correlation between T2 -water and f.f. in the healthy subjects (ρ = 0.07, p = 0.40). In HypoPP there was a measurable relationship between T2 -water and f.f. (ρ = 0.59, p < 0.001). IDEAL-CPMG provides a feasible way to quantify T2 -water in muscle that is reproducible and sensitive to meaningful physiological changes without post hoc modeling of the fat contribution. In patients, IDEAL-CPMG measured elevations in T2 -water and f.f. while showing a weak relationship between these parameters, thus showing promise as a practical means of quantifying muscle water in patient populations.
Collapse
Affiliation(s)
- Christopher D.J. Sinclair
- UCL Institute of Neurology, MRC Centre for Neuromuscular DiseasesLondonWC1N 3BGUK
- UCL Institute of Neurology, Neuroradiological Academic UnitLondonWC1N 3BGUK
| | - Jasper M. Morrow
- UCL Institute of Neurology, MRC Centre for Neuromuscular DiseasesLondonWC1N 3BGUK
| | | | - Matthew R.B. Evans
- UCL Institute of Neurology, MRC Centre for Neuromuscular DiseasesLondonWC1N 3BGUK
| | - Elham Rawah
- UCL Institute of Neurology, Neuroradiological Academic UnitLondonWC1N 3BGUK
| | - Sachit Shah
- UCL Institute of Neurology, Neuroradiological Academic UnitLondonWC1N 3BGUK
| | - Michael G. Hanna
- UCL Institute of Neurology, MRC Centre for Neuromuscular DiseasesLondonWC1N 3BGUK
| | - Mary M. Reilly
- UCL Institute of Neurology, MRC Centre for Neuromuscular DiseasesLondonWC1N 3BGUK
| | - Tarek A. Yousry
- UCL Institute of Neurology, MRC Centre for Neuromuscular DiseasesLondonWC1N 3BGUK
- UCL Institute of Neurology, Neuroradiological Academic UnitLondonWC1N 3BGUK
| | - John S. Thornton
- UCL Institute of Neurology, MRC Centre for Neuromuscular DiseasesLondonWC1N 3BGUK
- UCL Institute of Neurology, Neuroradiological Academic UnitLondonWC1N 3BGUK
| |
Collapse
|
26
|
|
27
|
Quantifying disease activity in fatty-infiltrated skeletal muscle by IDEAL-CPMG in Duchenne muscular dystrophy. Neuromuscul Disord 2016; 26:650-658. [PMID: 27593185 DOI: 10.1016/j.nmd.2016.07.013] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 05/27/2016] [Accepted: 07/25/2016] [Indexed: 12/17/2022]
Abstract
The purpose of this study was to explore the use of iterative decomposition of water and fat with echo asymmetry and least-squares estimation Carr-Purcell-Meiboom-Gill (IDEAL-CPMG) to simultaneously measure skeletal muscle apparent fat fraction and water T2 (T2,w) in patients with Duchenne muscular dystrophy (DMD). In twenty healthy volunteer boys and thirteen subjects with DMD, thigh muscle apparent fat fraction was measured by Dixon and IDEAL-CPMG, with the IDEAL-CPMG also providing T2,w as a measure of muscle inflammatory activity. A subset of subjects with DMD was followed up during a 48-week clinical study. The study was in compliance with the Patient Privacy Act and approved by the Institutional Review Board. Apparent fat fraction in the thigh muscles of subjects with DMD was significantly increased compared to healthy volunteer boys (p <0.001). There was a strong correlation between Dixon and IDEAL-CPMG apparent fat fraction. Muscle T2,w measured by IDEAL-CPMG was independent of changes in apparent fat fraction. Muscle T2,w was higher in the biceps femoris and vastus lateralis muscles of subjects with DMD (p <0.05). There was a strong correlation (p <0.004) between apparent fat fraction in all thigh muscles and six-minute walk distance (6MWD) in subjects with DMD. IDEAL-CPMG allowed independent and simultaneous quantification of skeletal muscle fatty degeneration and disease activity in DMD. IDEAL-CPMG apparent fat fraction and T2,w may be useful as biomarkers in clinical trials of DMD as the technique disentangles two competing biological processes.
Collapse
|
28
|
Marty B, Baudin PY, Reyngoudt H, Azzabou N, Araujo ECA, Carlier PG, de Sousa PL. Simultaneous muscle water T2 and fat fraction mapping using transverse relaxometry with stimulated echo compensation. NMR IN BIOMEDICINE 2016; 29:431-43. [PMID: 26814454 DOI: 10.1002/nbm.3459] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 10/20/2015] [Accepted: 11/13/2015] [Indexed: 05/27/2023]
Abstract
Skeletal muscle inflammation/necrosis and fat infiltration are strong indicators of disease activity and progression in many neuromuscular disorders. They can be assessed by muscle T2 relaxometry and water-fat separation techniques, respectively. In the present work, we exploited differences between water and fat T1 and T2 relaxivities by applying a bi-component extended phase graph (EPG) fitting approach to simultaneously quantify the muscle water T2 and fat fraction from standard multi-slice multi-echo (MSME) acquisitions in the presence of stimulated echoes. Experimental decay curves were adjusted to the theoretical model using either an iterative non-negative least-squares (NNLS) procedure or a pattern recognition approach. Twenty-two patients (age, 49 ± 18 years) were selected to cover a large range of muscle fat infiltration. Four cases of chronic or subchronic juvenile dermatomyositis (age, 8 ± 3 years) were investigated before and 3 months following steroid treatment. For control, five healthy volunteers (age, 25 ± 2 years) were recruited. All subjects underwent the MSME sequence and EPG fitting procedure. The EPG fitting algorithm allowed a precise estimation of water T2 and fat fraction in diseased muscle, even in the presence of large B1(+) inhomogeneities. In the whole cohort of patients, there was no overall correlation between water T2 values obtained with the proposed method and the fat fraction estimated inside muscle tissues (R(2) = 0.02). In the patients with dermatomyositis, there was a significant decrease in water T2 (-4.09 ± 3.7 ms) consequent to steroid treatment. The pattern recognition approach resulted in a 20-fold decrease in processing time relative to the iterative NNLS procedure. The fat fraction derived from the EPG fitting approach correlated well with the fat fraction derived from a standard three-point Dixon method (≈1.5% bias). The bi-component EPG fitting analysis is a precise tool to monitor muscle tissue disease activity and is able to handle bias introduced by fat infiltration and B1(+) inhomogeneities.
Collapse
Affiliation(s)
- Benjamin Marty
- Institute of Myology, NMR Laboratory, Paris, France
- CEA, DSV, I2BM, MIRCen, NMR Laboratory, Paris, France
| | | | - Harmen Reyngoudt
- Institute of Myology, NMR Laboratory, Paris, France
- CEA, DSV, I2BM, MIRCen, NMR Laboratory, Paris, France
| | - Noura Azzabou
- Institute of Myology, NMR Laboratory, Paris, France
- CEA, DSV, I2BM, MIRCen, NMR Laboratory, Paris, France
| | - Ericky C A Araujo
- Institute of Myology, NMR Laboratory, Paris, France
- CEA, DSV, I2BM, MIRCen, NMR Laboratory, Paris, France
| | - Pierre G Carlier
- Institute of Myology, NMR Laboratory, Paris, France
- CEA, DSV, I2BM, MIRCen, NMR Laboratory, Paris, France
| | | |
Collapse
|
29
|
Yao L, Yip AL, Shrader JA, Mesdaghinia S, Volochayev R, Jansen AV, Miller FW, Rider LG. Magnetic resonance measurement of muscle T2, fat-corrected T2 and fat fraction in the assessment of idiopathic inflammatory myopathies. Rheumatology (Oxford) 2016; 55:441-9. [PMID: 26412808 PMCID: PMC4757924 DOI: 10.1093/rheumatology/kev344] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 08/12/2015] [Indexed: 01/08/2023] Open
Abstract
OBJECTIVE This study examines the utility of MRI, including T2 maps and T2 maps corrected for muscle fat content, in evaluating patients with idiopathic inflammatory myopathy. METHODS A total of 44 patients with idiopathic inflammatory myopathy, 18 of whom were evaluated after treatment with rituximab, underwent MRI of the thighs and detailed clinical assessment. T2, fat fraction (FF) and fat corrected T2 (fc-T2) maps were generated from standardized MRI scans, and compared with semi-quantitative scoring of short tau inversion recovery (STIR) and T1-weighted sequences, as well as various myositis disease metrics, including the Physician Global Activity, the modified Childhood Myositis Assessment Scale and the muscle domain of the Myositis Disease Activity Assessment Tool-muscle (MDAAT-muscle). RESULTS Mean T2 and mean fc-T2 correlated similarly with STIR scores (Spearman rs = 0.64 and 0.64, P < 0.01), while mean FF correlated with T1 damage scores (rs = 0.69, P < 0.001). Baseline T2, fc-T2 and STIR scores correlated significantly with the Physician Global Activity, modified Childhood Myositis Assessment Scale and MDAAT-muscle (rs range = 0.41-0.74, P < 0.01). The response of MRI measures to rituximab was variable, and did not significantly agree with a standardized clinical definition of improvement. Standardized response means for the MRI measures were similar. CONCLUSION Muscle T2, fc-T2 and FF measurements exhibit content validity with reference to semi-quantitative scoring of STIR and T1 MRI, and also exhibit construct validity with reference to several myositis activity and damage measures. T2 was as responsive as fc-T2 and STIR scoring, although progression of muscle damage was negligible during the study.
Collapse
Affiliation(s)
| | - Adrienne L Yip
- Environmental Autoimmunity Group, Clinical Research Branch, National Institute of Environmental Health Sciences and
| | - Joseph A Shrader
- Department of Rehabilitation Medicine, Clinical Center, NIH, Bethesda, MD, USA
| | - Sepehr Mesdaghinia
- Environmental Autoimmunity Group, Clinical Research Branch, National Institute of Environmental Health Sciences and
| | - Rita Volochayev
- Environmental Autoimmunity Group, Clinical Research Branch, National Institute of Environmental Health Sciences and
| | - Anna V Jansen
- Environmental Autoimmunity Group, Clinical Research Branch, National Institute of Environmental Health Sciences and
| | - Frederick W Miller
- Environmental Autoimmunity Group, Clinical Research Branch, National Institute of Environmental Health Sciences and
| | - Lisa G Rider
- Environmental Autoimmunity Group, Clinical Research Branch, National Institute of Environmental Health Sciences and
| |
Collapse
|
30
|
Salvati R, Hitti E, Bellanger JJ, Saint-Jalmes H, Gambarota G. Fat ViP MRI: Virtual Phantom Magnetic Resonance Imaging of water-fat systems. Magn Reson Imaging 2015; 34:617-23. [PMID: 26681180 DOI: 10.1016/j.mri.2015.12.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 12/03/2015] [Accepted: 12/07/2015] [Indexed: 11/19/2022]
Abstract
OBJECT Virtual Phantom Magnetic Resonance Imaging (ViP MRI) is a method to generate reference signals on MR images, using external radiofrequency (RF) signals. The aim of this study was to assess the feasibility of ViP MRI to generate complex-data images of phantoms mimicking water-fat systems. MATERIALS AND METHODS Various numerical phantoms with a given fat fraction, T2* and field map were designed. The k-space of numerical phantoms was converted into RF signals to generate virtual phantoms. MRI experiments were performed at 4.7T using a multi-gradient-echo sequence on virtual and physical phantoms. The data acquisition of virtual and physical phantoms was simultaneous. Decomposition of the water and fat signals was performed using a complex-based water-fat separation algorithm. RESULTS Overall, a good agreement was observed between the fat fraction, T2* and phase map values of the virtual and numerical phantoms. In particular, fat fractions of 10.5±0.1 (vs 10% of the numerical phantom), 20.3±0.1 (vs 20%) and 30.4±0.1 (vs 30%) were obtained in virtual phantoms. CONCLUSION The ViP MRI method allows for generating imaging phantoms that i) mimic water-fat systems and ii) can be analyzed with water-fat separation algorithms based on complex data.
Collapse
Affiliation(s)
- Roberto Salvati
- INSERM, UMR 1099, Rennes, F-35000, France; Université de Rennes 1, LTSI, Rennes, F-35000, France.
| | - Eric Hitti
- INSERM, UMR 1099, Rennes, F-35000, France; Université de Rennes 1, LTSI, Rennes, F-35000, France
| | - Jean-Jacques Bellanger
- INSERM, UMR 1099, Rennes, F-35000, France; Université de Rennes 1, LTSI, Rennes, F-35000, France
| | - Hervé Saint-Jalmes
- INSERM, UMR 1099, Rennes, F-35000, France; Université de Rennes 1, LTSI, Rennes, F-35000, France; CRLCC, Centre Eugène Marquis, Rennes, F-35000, France
| | - Giulio Gambarota
- INSERM, UMR 1099, Rennes, F-35000, France; Université de Rennes 1, LTSI, Rennes, F-35000, France
| |
Collapse
|
31
|
Wokke BH, Van Den Bergen JC, Hooijmans MT, Verschuuren JJ, Niks EH, Kan HE. T2 relaxation times are increased in Skeletal muscle of DMD but not BMD patients. Muscle Nerve 2015; 53:38-43. [PMID: 25847364 DOI: 10.1002/mus.24679] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/02/2015] [Indexed: 01/18/2023]
Abstract
INTRODUCTION Exon-skipping drugs in Duchenne muscular dystrophy (DMD) aim to restore truncated dystrophin expression, which is present in the milder Becker muscular dystrophy (BMD). MRI skeletal muscle T2 relaxation times as a representation of edema/inflammation could be quantitative outcome parameters for such trials. METHODS We studied T2 relaxation times, adjusted for muscle fat fraction using Dixon MRI, in lower leg muscles of DMD and BMD patients and healthy controls. RESULTS T2 relaxation times correlated significantly with fat fractions in patients only (P < 0.001). After adjusting for muscle fat, T2 relaxation times were significantly increased in 6 muscles of DMD patients (P < 0.01), except for the extensor digitorum longus. In BMD, T2 relaxation times were unchanged. CONCLUSIONS T2 relaxation times could be a useful outcome parameter in exon-skipping trials in DMD but are influenced by fat despite fat suppression. This should be accounted for when using quantitative T2 mapping to investigate edema/inflammation.
Collapse
Affiliation(s)
- Beatrijs H Wokke
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Melissa T Hooijmans
- C.J. Gorter Centre for high field MRI, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jan J Verschuuren
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| | - Erik H Niks
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| | - Hermien E Kan
- C.J. Gorter Centre for high field MRI, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
32
|
Baudin PY, Marty B, Robert B, Shukelovitch A, Carlier RY, Azzabou N, Carlier PG. Qualitative and quantitative evaluation of skeletal muscle fatty degenerative changes using whole-body Dixon nuclear magnetic resonance imaging for an important reduction of the acquisition time. Neuromuscul Disord 2015; 25:758-63. [PMID: 26346495 DOI: 10.1016/j.nmd.2015.07.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 07/07/2015] [Accepted: 07/15/2015] [Indexed: 11/17/2022]
Abstract
In recent years, MRI has proven its usefulness for the diagnostic workup of patients with musculo-skeletal diseases, and also shown great promise as a non-invasive, quantitative outcome measure in clinical studies. The characterization of patterns of fatty degenerative lesions, which now plays an important part in the diagnosis of some diseases, is typically performed by the radiologist on routine T1-weighted images. We propose to rationalize acquisitions and reduce patients' time in the scanner by allowing radiologists to perform the qualitative grading of the muscles on images derived from fat/water acquisitions. These maps are color-coded, where the different colors correspond to classes of fatty infiltration degree. This allows a quick visual assessment of the muscles, equivalent to the standard method. Using the weighted Kappa agreement test, the agreement between the proposed method and the traditional one, as well as the reproducibility of the results with two raters, was measured on twenty patients suffering from various neuromuscular pathologies. The presented comparisons show that the use of color coded fat fraction maps is statistically equivalent to using the traditional T1-weighted images when performing visual assessment of degenerative lesions with fatty infiltrations in patients with neuromuscular disorders.
Collapse
Affiliation(s)
| | - Benjamin Marty
- NMR Laboratory, Institute of Myology, AIM, Paris, France; CEA, I2BM, MIRCen, NMR Laboratory, F-75651 Paris, France
| | | | - Alexey Shukelovitch
- NMR Laboratory, Institute of Myology, AIM, Paris, France; CEA, I2BM, MIRCen, NMR Laboratory, F-75651 Paris, France; United Institute of Informatics Problems of the National Academy of Sciences of Belarus, Minsk, Belarus
| | - Robert Y Carlier
- AP-HP, Service de Radiologie, Hôpital Raymond Poincaré, Garches, France
| | - Noura Azzabou
- NMR Laboratory, Institute of Myology, AIM, Paris, France; CEA, I2BM, MIRCen, NMR Laboratory, F-75651 Paris, France
| | - Pierre G Carlier
- NMR Laboratory, Institute of Myology, AIM, Paris, France; CEA, I2BM, MIRCen, NMR Laboratory, F-75651 Paris, France
| |
Collapse
|
33
|
|
34
|
Lerski RA, de Certaines JD, Duda D, Klonowski W, Yang G, Coatrieux JL, Azzabou N, Eliat PA. Application of texture analysis to muscle MRI: 2 – technical recommendations. ACTA ACUST UNITED AC 2015. [DOI: 10.1140/epjnbp/s40366-015-0018-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
35
|
Morrow JM, Sinclair CDJ, Fischmann A, Reilly MM, Hanna MG, Yousry TA, Thornton JS. Reproducibility, and age, body-weight and gender dependency of candidate skeletal muscle MRI outcome measures in healthy volunteers. Eur Radiol 2014; 24:1610-20. [PMID: 24748539 PMCID: PMC4046083 DOI: 10.1007/s00330-014-3145-6] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 02/12/2014] [Accepted: 03/05/2014] [Indexed: 12/27/2022]
Abstract
Objectives Quantitative magnetic resonance imaging (MRI) can potentially meet the pressing need for objective, sensitive, reproducible outcome measures in neuromuscular disease trials. We tested, in healthy volunteers, the consistency, reliability and sensitivity to normal inter-subject variation of MRI methods targeted to lower limb muscle pathology to inform the design of practical but comprehensive MRI outcome measure protocols for use in imminent patient studies. Methods Forty-seven healthy volunteers, age 21-81 years, were subject at 3T to three-point Dixon fat-fraction measurement, T1-relaxometry, T2-relaxometry and magnetisation transfer ratio (MTR) imaging at mid-thigh and mid-calf level bilaterally. Fifteen subjects underwent repeat imaging at 2 weeks. Results Mean between-muscle fat fraction and T2 differences were small, but significant (p < 0.001). Fat fraction and T2 correlated positively, and MTR negatively with subject age in both the thigh and calf, with similar significant correlations with weight at thigh level only (p < 0.001 to p < 0.05). Scan-rescan and inter-observer intra-class correlation coefficients ranged between 0.62-0.84 and 0.79-0.99 respectively. Conclusions Quantitative lower-limb muscle MRI using readily implementable methods was sensitive enough to demonstrate inter-muscle differences (small in health), and correlations with subject age and weight. In combination with high reliability, this strongly supports the suitability of these methods to provide longitudinal outcome measures in neuromuscular disease treatment trials. Key points • Quantitative lower limb muscle MRI provides potential outcome measures in neuromuscular diseases • Bilateral thigh/calf coverage using sequences sensitive to acute and chronic pathology • Measurements have excellent scan-rescan and interobserver reliability • Measurements show small but significant inter-subject age and weight dependency • Readily implementable sequences suitable for further assessment in patient studies Electronic supplementary material The online version of this article (doi:10.1007/s00330-014-3145-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jasper M Morrow
- Medical Research Council Centre for Neuromuscular Diseases, Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK,
| | | | | | | | | | | | | |
Collapse
|
36
|
Carlier PG. Global T2 versus water T2 in NMR imaging of fatty infiltrated muscles: different methodology, different information and different implications. Neuromuscul Disord 2014; 24:390-2. [PMID: 24656605 DOI: 10.1016/j.nmd.2014.02.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Pierre G Carlier
- AIM and CEA NMR Laboratory, Institute of Myology, CHU Pitié-Salpêtriere, 47-83 boulevard de l'hôpital, 75651 Paris Cedex 13, France.
| |
Collapse
|
37
|
Longitudinal measurements of MRI-T2 in boys with Duchenne muscular dystrophy: effects of age and disease progression. Neuromuscul Disord 2014; 24:393-401. [PMID: 24491484 DOI: 10.1016/j.nmd.2013.12.012] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 11/15/2013] [Accepted: 12/23/2013] [Indexed: 01/14/2023]
Abstract
Duchenne muscular dystrophy (DMD) is characterized by an increased muscle damage and progressive replacement of muscle by noncontractile tissue. Both of these pathological changes can lengthen the MRI transverse proton relaxation time (T2). The current study measured longitudinal changes in T2 and its distribution in the lower leg of 16 boys with DMD (5-13years, 15 ambulatory) and 15 healthy controls (5-13years). These muscles were chosen to allow extended longitudinal monitoring, due to their slow progression compared with proximal muscles in DMD. In the soleus muscle of boys with DMD, T2 and the percentage of pixels with an elevated T2 (⩾2SD above control mean T2) increased significantly over 1year and 2years, while the width of the T2 histogram increased over 2years. Changes in soleus T2 variables were significantly greater in 9-13years old compared with 5-8years old boys with DMD. Significant correlations between the change in all soleus T2 variables over 2years and the change in functional measures over 2years were found. MRI measurement of muscle T2 in boys with DMD is sensitive to disease progression and shows promise as a clinical outcome measure.
Collapse
|
38
|
Fischmann A, Kaspar S, Reinhardt J, Gloor M, Stippich C, Fischer D. Exercise might bias skeletal-muscle fat fraction calculation from Dixon images. Neuromuscul Disord 2013; 22 Suppl 2:S107-10. [PMID: 22980761 DOI: 10.1016/j.nmd.2012.05.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2011] [Accepted: 04/03/2012] [Indexed: 10/27/2022]
Abstract
We examined the influence of a single exercise session on quantitative muscle fat fraction MRI measurements. Ten healthy volunteers were scanned on a 3T body scanner before and after a session of bilateral squats until muscular fatigue. Axial in- and opposed phase images were acquired at a fixed distance from the knee joint and fat fractions were calculated using a 2-point Dixon technique as well as muscle cross sectional area at the same position. After the squat session, calculated fat fraction in the quadriceps bilaterally appeared to be significantly decreased, while all but one non-exercised muscles showed no change. In conclusion exercise might modify the measured apparent fat fraction. Trials using quantitative MRI should consider the timing of scanning sessions and physical examinations to avoid bias caused by the influence of exercise on measurements.
Collapse
Affiliation(s)
- Arne Fischmann
- University of Basel Hospital, Department of Radiology and Nuclear Medicine, Division of Diagnostic and Interventional Neuroradiology, Petersgraben 4, CH-4031 Basel, Switzerland.
| | | | | | | | | | | |
Collapse
|
39
|
Quantitative MRI and loss of free ambulation in Duchenne muscular dystrophy. J Neurol 2012; 260:969-74. [DOI: 10.1007/s00415-012-6733-x] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 10/11/2012] [Accepted: 10/24/2012] [Indexed: 10/27/2022]
|
40
|
Fat-corrected T2 measurement as a marker of active muscle disease in inflammatory myopathy. AJR Am J Roentgenol 2012; 198:W475-81. [PMID: 22528929 DOI: 10.2214/ajr.11.7113] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE We sought to improve the utility of T2 measurement as a marker of active muscle disease in patients with idiopathic inflammatory myopathy by correcting for T2 prolongations caused by fatty replacement of muscle that accompnaies chronic muscle damage. SUBJECTS AND METHODS Twenty-one patients with idiopathic inflammatory myopathy underwent a standardized MRI evaluation of the thighs. Fat fraction maps were calculated from dual-echo gradient-echo images. Fat-corrected T2 maps were generated from multiecho spin-echo images on the basis of a biexponential model that incorporated voxelwise fat fraction estimates. Semiautomated summaries of conventional and fat-corrected muscle T2 values were compared with one another and with standardized visual scores of muscle disease based on T1-weighted spin-echo and STIR images. RESULTS Fat-corrected muscle T2 maps showed lower mean values and greater histogram entropy than conventional T2 maps, as analyzed over a standardized portion of the thigh muscles. Conventional and fat-corrected T2 values correlated with visual scores of active muscle disease on STIR images and with the varying intensity of disease depicted with STIR in focal muscle regions. CONCLUSION MRI T2 maps of muscle can be corrected for varying fat content by combining the information from chemical shift-sensitive gradient-echo and multiecho spin-echo images. Use of this strategy may prove useful in the study of idiopathic inflammatory myopathy and other diseases characterized by both muscle inflammation and atrophy.
Collapse
|
41
|
Karampinos DC, Yu H, Shimakawa A, Link TM, Majumdar S. Chemical shift-based water/fat separation in the presence of susceptibility-induced fat resonance shift. Magn Reson Med 2012; 68:1495-505. [PMID: 22247024 DOI: 10.1002/mrm.24157] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Revised: 12/14/2011] [Accepted: 12/15/2011] [Indexed: 12/24/2022]
Abstract
Chemical shift-based water/fat separation methods have been emerging due to the growing clinical need for fat quantification in different body organs. Accurate quantification of proton-density fat fraction requires the assessment of many confounding factors, including the need of modeling the presence of multiple peaks in the fat spectrum. Most recent quantitative chemical shift-based water/fat separation approaches rely on a multipeak fat spectrum with precalibrated peak locations and precalibrated or self-calibrated peak relative amplitudes. However, water/fat susceptibility differences can induce fat spectrum resonance shifts depending on the shape and orientation of the fatty inclusions. The effect is of particular interest in the skeletal muscle due to the anisotropic arrangement of extracellular lipids. In this work, the effect of susceptibility-induced fat resonance shift on the fat fraction is characterized in a conventional complex-based chemical shift-based water/fat separation approach that does not model the susceptibility-induced fat resonance shift. A novel algorithm is then proposed to quantify the resonance shift in a complex-based chemical shift-based water/fat separation approach that considers the fat resonance shift in the signal model, aiming to extract information about the orientation/geometry of lipids. The technique is validated in a phantom and preliminary in vivo results are shown in the calf musculature of healthy and diabetic subjects.
Collapse
Affiliation(s)
- Dimitrios C Karampinos
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California, USA.
| | | | | | | | | |
Collapse
|